Multi-Factor Password-Authenticated Key Exchange

Douglas Stebila!?, Poornaprajna Udupi?, and Sheueling Chang?

! Dept. of Combinatorics & Optimization, University of Waterloo, Waterloo, ON, Canada
2 Sun Microsystems Laboratories, Menlo Park, CA, USA
email: douglas@stebila.ca, {poornaprajna.udupi,sheueling.chang}@sun.com

2008 April 3

Abstract

We consider a new form of authenticated key exchange which we call multi-factor password-
authenticated key exchange, where session establishment depends on successful authentication
of multiple short secrets that are complementary in nature, such as a long-term password and a
one-time response, allowing the client and server to be mutually assured of each other’s identity
without directly disclosing private information to the other party.

Multi-factor authentication can provide an enhanced level of assurance in higher security
scenarios such as online banking, virtual private network access, and physical access because a
multi-factor protocol is designed to remain secure even if all but one of the factors has been
compromised.

We introduce the first formal security model for multi-factor password-authenticated key
exchange protocols, propose an efficient and secure protocol called MFPAK, and provide a
formal argument to show that our protocol is secure in this model. Our security model is an
extension of the Bellare-Pointcheval-Rogaway security model for password-authenticated key
exchange and the formal analysis proceeds in the random oracle model.

Keywords: passwords, authentication, key exchange, multi-factor.

Contents
I Introductionl 2
|2 Security for multi-factor protocols| 4
[2.1 Formal security model| oo 4
13 MFPAK: a multi-factor password-authenticated key exchange protocol| 7
[3.1 Ingredients] e 7
[3.2 Protocol specification|. o 8
4 Formal security analysis| 9
[4.1 Case 1: Attacking a client instance, first factor uncompromised| 10
42 Overall resultl e 13
6E_Conclusion and future workl 14
[References] 15

|IA° Other protocols| 17

BT PAK . . . o oo e 17
A PAK-Z4] e e e 18
|IB_Remainder of cases in formal analysis| 19
[BT Case 2: Attacking a server instance, Arst factor uncompromised] 20
[B.2 Case 3: Attacking a client instance, second factor uncompromised|. 22
[B.3 Case 4: Attacking a server instance, second factor uncompromised| 24
|IC Example instantiation| 27

1 Introduction

Practical motivation. Two major security problems on the Internet today are phishing
and spyware. Phishing, or server impersonation, occurs when a malicious server convinces a user
to reveal sensitive personal information, such as a username and password, to a malicious server
instead of the real server; the phisher can then use the information obtained to impersonate the
user. Additionally, many users’ computers are compromised with spyware, which can record
users’ keystrokes (and thus passwords) and again provide this information to a malicious party.

Such attacks are possible not because of the break of any cryptographic protocol but because
of externalities such as social engineering and software bugs.

Several techniques to reduce the risks of these attacks are being used in practice. Physical
devices that generate one-time passwords are being used to secure corporate virtual private
networks (VPNs) and some online banking sessions. Server-side multi-layer techniques that take
into account additional attributes, such as HTTP cookies, IP address, and browser user agent
string, are being deployed as well. These techniques can offer greater assurance as to the identity
of the user but, even when deployed over today’s web security protocol HTTPS/TLS, remain
susceptible to sophisticated impersonation attacks because they do not protect authentication
secrets or provide strong, intuitive server-to-client authentication.

Password-authenticated key exchange is a strong technique to defend against impersonation
attacks and provide server-to-client authentication, but current protocols depend solely on a
long-term password, which can be risky when used on a spyware-infested computer.

Multi-factor authentication adds a further degree of assurance to the authentication proce-
dure. Long-term passwords are easily memorized, infrequently changed, and used repeatedly.
One-time responses are used once: they change frequently and, though not easily memorized,
can be provided by a small electronic token or a sheet of paper. These factors offer different but
complementary resistance to different types of compromise. Together, they offer more assurance
in authentication because stealing the long-term password alone (for example, by installing spy-
ware) or losing the one-time password card alone is insufficient to compromise the authentication
procedure.

We believe that it is important to design a multi-factor protocol that can leverage multiple
client authentication attributes and, equally important, to convey them securely in a multi-factor
cryptographic protocol. Our approach builds upon previous work on password-authenticated
key exchange by combining multiple authentication factors of complementary natures in a multi-
factor authenticated key exchange protocol.

Our contributions. We provide the first formal treatment of multi-factor password-authenticated
key exchange. We define a formal model which is an extension of the Bellare-Pointcheval-
Rogaway model [BPRO0|] for password-authenticated key exchange. We formalize the security
notion that a multi-factor protocol should remain secure even if all but one of the factors has
been compromised by adapting the definition of freshness of a session.

We present an efficient two-factor protocol that is secure in this model under standard
cryptographic assumptions in the random oracle model.

Our work differs from previous work in password-authenticated key exchange because it
utilizes two independent, complementary factors for authentication. Other work has considered
some aspects of multi-factor authentication, but these have either used at least one factor that
is a long cryptographic secret (as opposed to our work which allows both factors to be short,
human-friendly strings), or have not provided strong server-to-client authentication resistant to
man-in-the-middle attacks.

Related work. Password-authenticated key exchange protocols have been extensively stud-
ied in the literature. A large list of papers concerning password-based key agreement is main-
tained by Jablon [Jab07].

Password-authenticated key exchange was first introduced by Bellovin and Merritt in 1992
[BM92] in the form of encrypted key exchange (EKE), a protocol in which the client and server
shared the plaintext password and exchanged encrypted information to allow them to derive a
shared session key. A later variant by Bellovin and Merritt, Augmented EKE (A-EKE) [BM94],
removed the requirement that the server have the plaintext password, instead having a one-way
function of the password. The former is called a symmetric password-based protocol, because
both client and server share the same plaintext password, whereas the latter is called asymmetric.

A number of formal models for the security of password-authenticated key exchange proto-
cols have been introduced, including one by Shoup [Sho99b], one by Bellare, Pointcheval, and
Rogaway [BPRO0], and the three-party setting of Abdalla, Fouque, and Pointcheval [AFP05].

Many password-authenticated key exchange protocols have been developed; recent work has
focused on protocols with formal security claims and proofs in both the random oracle model
and the standard model, with some protocols (e.g., JABCT06, TWMP06]) focusing on suitability
for implementation in existing network protocols such as SSL/TLS.

The design of our protocol combines aspects of PAK [BMP00al,[Mac02] and PAK-Z+ [GMRO05].
PAK is a symmetric protocol whereas PAK-Z+ is an asymmetric protocol: both have a similar
structure but use authentication secrets of different natures. Both have been shown to be secure
in the Bellare-Pointcheval-Rogaway model. The technique used to show the security of PAK-Z+
is a specialization of the same authors’ later Q-method [GMROG] for converting a symmetric
password-authenticated key exchange protocol into an asymmetric one.

A two-factor authentication scheme for smart cards was proposed by Yang et al. [YWWDO06al.
Their scheme relies on a smart card storing and returning a cryptographically large (e.g., 160-
bit) private value, relies on a public key infrastructure, and requires that the user input a
password into the smart card for each login. Other protocols that require the client to store a
long cryptographic secret and the server’s public key include schemes by Park and Park [PP04]
and Yoon and Yoo [YYO06].

There are other two-factor authentication schemes used in practice which do not provide
cryptographic protection for the two factors. In a multi-channel system, the second factor is
delivered over over a separate second channel (e.g., via an SMS text message on a mobile phone),
which the user then inputs into their web browser along side their password. In a multi-layer
system, software installed on the server evaluates additional attributes such as an HT'TP cookie,
IP address, and browser user agent string to heuristically analyze whether the user is likely to
be authentic. Some multi-layer systems try to offer additional reassurance to the user of the
server’s identity by presenting the user with a customized image or string. While these multi-
channel and multi-layer approaches can offer some increased assurance, they can be defeated
by non-cryptographic means such as sophisticated man-in-the-middle attacks and spyware, and
have been shown to be easily ignored by users [SDOF07].

Outline. The rest of our paper proceeds as follows. In Section [2] we describe the security
model for multi-factor password-authenticated key exchange. In Section we present our
protocol MFPAK, and show in Section Ié-_ll (and Appendix through a formal analysis that it
is secure in our model. Section [5| concludes the paper with what we believe are interesting
directions for future research. Appendix [A] specifies the PAK and PAK-Z+ protocols, design
elements of which we use in MFPAK, and states the security results for both of these protocols.

Appendix [C] provides a sample instantiation of the MFPAK protocol for a common security
level.

2 Security for multi-factor protocols

In a multi-factor password-authenticated key exchange protocol, multiple authentication secrets
of complementary natures, such as a long-term password and a one-time response value, are
combined securely to provide mutual authentication and to establish a shared secret key for a
private channel.

The authentication secrets must be combined so that the client can convince the server that
it knows all the authentication secrets, and that the server can convince the client that it knows
all the authentication secrets: this provides mutual authentication. However, the protocol must
be carefully designed to not reveal any information about the authentication secrets to a passive
or even active adversary.

In addition to providing authentication, the protocol should also establish an ephemeral
shared secret key between client and server that can then be used, for example, to establish a
private channel using bulk encryption.

Informal security criteria. The general security criteria we use for multi-factor password-
authenticated key exchange is that the protocol should remain secure even if all but one au-
thentication factor is fully known to an adversary. Throughout this paper, we present the first
example of such a protocol using two authentication factors. We identify four security properties
that such a protocol should have:

1. Strong two-factor server-to-client authentication: without knowledge of both of the au-
thentication factors, a server cannot successfully convince a client of its identity.

2. Strong two-factor client-to-server authentication: without knowledge of both of the au-
thentication factors, a client cannot successfully convince a server of its identity.

3. Authentication secrets protected: no useful information about the authentication secrets
is revealed during the authentication process.

4. Secure session key establishment: at the end of the protocol, an honest client and an honest
server end up with a secure shared session key suitable for bulk encryption if and only if
the mutual authentication is successful; otherwise no session is established.

Figure [T compares our scheme with existing password-authenticated key exchange protocols,
with a two-factor scheme that transmits the password and response value across an SSL channel,
and with a multi-layer scheme that uses non-cryptographic attributes, such as browser version
and IP address, for additional assurance.

This table shows that other two-factor schemes that the financial industry is deploying
today, such as transmitting one-time values over TLS, will not address the phishing problem.
Solving this problem requires a fundamental change in the underlying cryptographic protocol.
Our scheme provides a secure solution to this problem, in the form of multi-factor password-
authenticated key exchange.

2.1 Formal security model

We define a formal model for the security of multi-factor password-authenticated key exchange
that allows us to show that our protocol is secure by giving upper bounds on the probability
that an adversary can break server-to-client or client-to-server authentication, or determine the
session key established; the authentication secrets are protected as well.

This formal model is an extension of the model for password-authenticated key exchange
proposed by Bellare, Pointcheval, and Rogaway [BPR0O0] and modified by Gentry, MacKenzie,
and Ramzan [GMRO5]. We state our model for two factors, but it could easily be extended for
an arbitrary number of factors.

SSL + password + Existing password
: SSL + . Our
Security property lticch | sch one-time response or auth. key exchange rotocol
muitl-channel schemes SSL + multi-layer schemes protocols p
1. Strong two- Susceptible to man-in-the-middle attacks. Only one factor Yes
factor server auth. Server authenticated only by X.509 certificate. Y ' ’
2. Strong two- Susceptible to man-in-the-middle attacks. Only one factor. Yes.
factor client auth.
Needs second channel.
3. Auth. secrets Authentication occurs after session key established.
.. . Yes. Yes.
protected User authentication secrets sent directly to server.
4. Secure session
key establishment Yes. Yes. Yes.

Figure 1: Comparison of security properties of various schemes.

Participants. In this model, each interacting party is either a client or a server, is identified
by a unique fixed length string, and the identifier is a member of either the set Clients or Servers,
respectively, with Parties = Clients U Servers.

Authentication secrets are short strings selected uniformly at random from an appropriate
set. The long term passwords (the first factor) are chosen from the set Passwords while the
short term responses (the second factor) are chosen from the set Responses.

For each client-server pair (C,.S) € Clients x Servers, authentication secrets exist. There is a
long-term password pw ¢ € Passwords, and a corresponding password verifier pwg [C] which is
some transformation of pwe ¢; pwg[C] is stored on the server S, which is the asymmetric model.
There is a short-term respdnse rec,s € Responses, which is known to both the client and the
server, which is the symmetric model.

Execution of the protocol. During execution, a party may have multiple instances of
the protocol running. Each instance i of a party U € Parties is treated as an oracle denoted by
v,

In a protocol, there is a sequence of messages, called flows, starting with a flow from the
client instance, responded to by a server instance, and so on. After some fixed number of flows,
both instances may terminate and accept, at which point they hold a session key sk, partner id
pid, and session id sid. Two instances HlC and Hf are said to be partnered if they both accept,
hold (pid, sid, sk) and (pid’, sid’, sk’) with pid = S, pid’ = C, sid = sid’, and sk = sk, and no other
instance accepts with session id equal to sid.

Queries allowed. The protocol is determined by how participants respond to inputs from
the environment, and the environment is considered to be controlled by the adversary, which
is formally a probabilistic algorithm that issues queries to parties’ oracle instances and receives
responses. For a protocol P, the queries that the adversary can issue are defined as follows
(where clear by the setting, we may omit the subscript P):

e Executep(C,i,S,7): Causes client instance IT{' and server instance HJS to faithfully execute
protocol P and returns the resulting transcript.

e Sendp(U,i, M): Sends message M to user instance IV, which faithfully performs the

appropriate portion of protocol P based on its current state and the message M, updates

its state as appropriate, and returns any resulting messages.

o Testp(U,i): If user instance I1Y has accepted, then causes the following to happen: choose
b egr {0,1}; if b =1, then return the session key of HzU, otherwise return a random string
of the same length as the session key. This query may only be asked once.

e Revealp(U,): If user instance I1Y has accepted, then returns session key sk held by I1V.
e CorruptPWCp(C, S): Returns the password pw. g of client C' with server S.
e CorruptPWS, (S, C): Returns the password verifier pwg[C] of client C' on server S.

e CorruptRep(C,S): Returns the response rec g of client C' with server S.

The various Corrupt* queries model the adversary learning the authentication secrets, which
corresponds to weak corruption in the Bellare-Pointcheval-Rogaway model. We do not allow
the adversary to modify stored authentication secrets.

Freshness. We have adapted the notion of freshness to accommodate the idea that a session
should remain fresh even if one of the authentication factors has been fully compromised. An
instance IIY with partner id U’ is fresh in the first factor (with forward-secrecy) if and only if
none of the following events occur:

1. a Reveal(U, i) query occurs;
2. a Reveal(U’, j) query occurs, where Hg-]/ is the partner instance of IIV;

3. U € Clients, either CorruptPWC(U, U’) or CorruptPWS(U’, U) occurs before the Test query,
and Send(U, i, M) occurs for some string M;

4. U € Servers, CorruptPWC(U’,U) occurs before the Test query, and Send(U, i, M) occurs
for some string M.

An instance IV with partner id U’ is fresh in the second factor (with forward-secrecy) if and
only if none of the following events occur:

1. a Reveal(U, i) query occurs;
2. a Reveal(U’, j) query occurs, where H?/ is the partner instance of qu;

3. U € Clients, any CorruptRe query occurs before the Test query, and Send(U, ¢, M) occurs
for some string M;

4. U € Servers, any CorruptRe occurs before the Test query, and Send(U, i, M) occurs for some
string M.

If a session is fresh in both the first and second factors, then it is also fresh in the original notion
of freshness for password-authenticated key exchange.

Adversary’s goals. The goal of an adversary is to guess the bit b used in the Test query
of a fresh in the first (or second) factor session; this corresponds to the ability of an adversary
to distinguish the session key from a random string of the same length. Let Succi‘;kc'fl (A)
(respectively, Succ}ke‘fz(ﬂ)) be the event that the adversary A makes a single Test query to
some fresh in the first (respectively, second) factor instance IIY that has terminated and A

eventually outputs a bit &', where ¥’ = b and b is the randomly selected bit in the Test query.
The ake-f1 advantage of A attacking P is defined to be Advix ™ (A4) = 2Pr (Succ‘}ke'ﬂ (A)) -1,

and analogously for ake-f2.

We can define similar notions for client-to-server, server-to-client, and mutual authentica-
tion. We define Adv§Z*™ (A) (resp., AdviZ*2(A)) to be the probability that a server instance
Hf with partner id C' terminates without having a partner oracle before a CorruptPWC,(C, S)

(resp., CorruptRep(C, S)) query. We define Adviz™(A) (resp., AdviZ“™(A)) to be the proba-

bility that a client instance ch with partner id S terminates without having a partner oracle

before either a CorruptPWCp(C, S) or CorruptPWS (S, C) (resp., CorruptRep(C, S)) query. Fi-
ma-fi

nally, we define Advip®"*(A) to be the probability that any instance terminates without having
a partner oracle, for each notion i above.

We overload the Adv (and corresponding Pr(Succ)) notation as follows: Adv® (£, Gse, Gex; Gro) =
max A{Advg (A)}, where the maximum is taken over all adversaries running in time at most ¢,
making at most gs and gex queries of type Sendp and Executep, respectively, and making at
most ¢, random oracle queries.

Security. We say that a protocol P is a secure multi-factor password authenticated key agree-
ment protocol if, for all polynomially-bounded adversaries A, there exists a constant § and a
negligible € such that

+e and AdvEe(A) < 04se

0g
Ad ake-f1 .A < se
Ve (A) ~ |Responses|

~ |Passwords|

and corresponding bounds apply for Advis*™(A) and Advi*(A). Intuitively, this notion of
security says that any polynomially-bounded adversary can only do negligibly better than doing
an online dictionary attack at any unknown factors and can gain no advantage by doing an
offline dictionary attack.

Since a session that is fresh in both the first and second factors is also fresh in the original
ake notion of password-authenticated key exchange, we have that

Adv®(A) < min {Adv;ke'fl (A), Adyke2 (A)}

3 MFPAK: a multi-factor password-authenticated key ex-
change protocol

MFPAK is the first password-authenticated key exchange protocol to be based on multiple au-
thentication factors. The first factor is meant to represent a long-term user memorized password.
This is an asymmetric factor in the terminology of [BPRO0], meaning that the value stored on
the server is the output of a (supposed) one-way function of the password, so that the compro-
mise of the server’s database does not allow the client to be impersonated. The second factor
is meant to represent a dynamic one-time response ValueEl This is a symmetric factor, meaning
that the client and the server store (effectively) the same value.

We designed MFPAK by considering two existing one-factor protocols as our building blocks:
the asymmetric password protocol PAK-Z+ for the long-term password, and the symmetric
password protocol PAK for the one-time response values. These two protocols have design
characteristics that we need for the design of our two-factor protocol and have formal secu-
rity arguments. Both factors are tightly integrated into the authentication and key exchange
processes.

3.1 Ingredients

Let x be a cryptographic security parameter. The notation z €r Z denotes an element z
selected uniformly at random from a set Z. Angle brackets, (-), denote a list, and -||- denotes
concatenation.

Computational Diffie-Hellman assumption. MFPAK operates over a finite cycle
group G for which the Computational Diffie-Hellman (CDH) assumption holds. Let G be a finite
cyclic group of order g, let g be a generator of G, and let ey, be the time it takes to perform

If the second factor changes over time, or is the response to challenge issued by the server, then our model
accommodates those shorter-lived values as a specialization of the general case. Synchronizing changing response
values has been studied: for example, the second factor response value could be the output of a small calculator-like
device which outputs pseudorandom values (e.g., the RSA SecurID device [RSA]) or the response to a particular
one-time challenge from a sheet of paper listing one-time responses.

an exponentiation in G. Let Acceptable : G — {true,false} such that Acceptable(z) = true if
and only if z € G, where G is a specified abelian group which has G as a subgroup. For two
values X and Y, define DH(X,Y) = XV, if Acceptable(X) and Y = ¢¥, or DH(X,Y) = Y7,
if Acceptable(Y) and X = g*. Let A be a probabilistic algorithm with input (G, g, X,Y") that
outputs a subset of G, and define

Advih(A) = Pr(DH(X,Y) € A(G,g,X,Y) : (z,y) €r Zg, X = g",Y = g¥)

Let AdeGd,};(t7 n) = max A{AdeGd,};(.A)} where the maximum is taken over all algorithms running
in time ¢ and outputting a subset of size at most n. The CDH assumption is that, for any
probabilistic polynomial time algorithm A, Advgdg (A) is negligible.

Random hash functions. MFPAK makes use of a number of random hash functions
based on random oracles [BR93]. A random hash function H : {0,1}* — {0,1}* is constructed
by selecting each bit of H(z) uniformly at random and independently for every = € {0,1}*.
We make use of a number of independent random hash functions Hi, Hs, ..., which can be
constructed from a single random hash function H by setting H,(z) = H(¢||z). Constructing a
hash function that outputs elements of a group instead of {0,1}* is also possible and efficient,
and in fact all of the hash functions used in MFPAK are into the group G.

Signature scheme. MFPAK makes use of a signature scheme 8 = (Gen, Sign, Verify) that
is existentially unforgeable under chosen message attacks [GMRSS]. Let (V, W) « Gen(1%). Let
tGen be the runtime of Gen(1%), and tg be the runtime of Sign and Verify. A forger ¥ is given a
public key W and must forge signatures; it can query an oracle that returns Signy,(m) for any
messages m of its choice. It succeeds if it can output a forgery (m, o) such that Verifyy, (m, o) =
true, where m was not queried to the signing oracle. Let Succg’™™*(F) = Pr(JF succeeds),
and Succg';™™* (¢, gsign) = maxg {Succg’™*(F)} where the maximum is taken over all forgers
running in time ¢ and making at most gsign queries to the signing oracle. A signature scheme
8 is ewistentially unforgeable under chosen message attacks (eu-cma) if, for any probabilistic

eu-cma

polynomial time algorithm F, Succg’.**(F) is negligible.

3.2 Protocol specification

The MFPAK protocol, like many other protocols, contains two stages: a user registration stage,
completed once per user, and a login stage, completed each time a user attempts to login.

The user registration stage of MFPAK is given in Figure 2] below. This stage should be com-
pleted over a private, authentic channel. As above, we assume the response value re is fixed for
each client-server pair, but the scenario could allow for a challenge/response or pseudorandomly-
generated response value.

The login stage of MFPAK is given in Figure |3} This stage can be completed over a public,
untrusted channel. A client C initiates the login stage with a server S. The client knows the
password pw g and response rec, s that was previously established in the registration stage, and
the server S has its databases pwg[C] and reg[C], for all C' € Clients, of corresponding values.
If the response values are meant to be responses to challenges issued by the server, an initial
message from the server to the client conveying the challenge can be added to the login stage
of the protocol.

It is helpful to be able to refer to the action of a party upon receipt of a message. We use
the notation CLIENTACTIONip and SERVERACTIONip to refer to the portion of the protocol P
performed by the client or server, respectively, after the ith flow. Thus, MFPAK as described
in Figurespeciﬁes CLIENTACTIONOMFPAK, SERVERACTION]\rpaAK, CLIENTACTION2)MFPAK,
and SERVERACTION3MFPAK

MFPAK User Registration

Client C' Server S
pwe s €r Passwords

rec,s €r Responses

(V,W) — Gen(1")

7/ = (Hl(ca S, pWC,S))il

V' = Hy(C,S,pwe) ®V

V" = Hs(V)

7= (I‘L;(CV7 S, rec,s))*l

Cr WV V7!

© X NS oUE N

Store pwg[C| = (', W, V', V")
Store reg[C] =7’

,_.
e

Figure 2: The user registration stage of the MFPAK protocol.

Efficiency. We consider group exponentiations, group inversions, and signature generation
and verification operations to be expensive, but group multiplication, addition, and hash func-
tion computation to be inexpensive. Compared to the one-factor protocol PAK-Z+-, our protocol
MFPAK achieves two-factor security with almost the same efficiency. In particular, MFPAK
uses the same number expensive operations on the server side as PAK-Z+ (2 exponentiations, 1
signature verification), and only one more expensive operation on client side than PAK-Z+ (2
exponentiations, 1 signature generation, and 2 inversions (compared to the same but with only
1 inversion)). In many situations, such as e-commerce and online banking, the limiting factor
is the number of connections a server can handle, and so MFPAK can increase security without
substantial additional computational burden on the server.

4 Formal security analysis

Our general technique is to show that, if one factor remains uncompromised, then the difficulty
of breaking MFPAK is related to the difficulty of breaking the corresponding one of either PAK
or PAK-Z+.

More precisely, for each of the two factors (password and response), we describe a procedure
specified by a modifier M to transform an adversary A against MFPAK with the specified
factor uncompromised into an adversary A* against the corresponding one of the two underlying
protocols (PAK-Z+ and PAK, respectively). The transformations are such that, if the oracle
instance in MFPAK against which the Test query is directed is fresh in the first (resp, second)
factor, then the corresponding oracle instance is also fresh in the corresponding attack on PAK-
Z+ (resp., PAK).

Our formal argument proceeds by considering four cases. There are two cases correspond-
ing to the password being uncompromised and two cases corresponding to the response being
uncompromised, and for each of those one case is when U € Clients and the other case is when
U € Servers, where U is the user instance towards which the Test query is directed. We can then
combine the four cases probabilistically and obtain a security argument for the general setting.

In the main body of the paper, we provide the detailed description of the procedure for one
case and state the overall result. The other three cases follow in an analogous way and are
provided in Appendix

The four cases, and the sections in which the details appear, are as follows:

1. U* € Clients, no CorruptPWCyppax (U*,U™*) or CorruptPWSyppax (U™, U*) query (Sec-
tion ,

2. U* € Servers, no CorruptPWCyppax (U™, U*) query (Appendix (B.1]),

3. U* € Clients, no CorruptReyppax query (Appendix [B.2)), and

MFPAK Login
Client C Server S
1. T ER Zq
2. X =g"
3. y=Hi(C, S pwe)
4. T:H4(C, S, rec’s)
5. m=X-~v-7
6. _om .
7. Abort if —Acceptable(m)
8. Y €R Zq
9. Y =g4¥
10. (Y, WV, V") = pwg|C]
11. 7' = reg[C]
12. X=m-v -7
13. o=X"Y
14. sid =(C,S,m,Y)
15. k= HS(Sid7Ua 7/77/)
16. a' = HG(Sidao-v 7/77—/)
17. a=ad eV’
18. ke V"
19. o=Y"*
20. ' =471
21. /=771
22. sid=(C,S,m,Y)
23. Abort if k # Hs(sid, 0,v',7')
24. kK = Hy(sid,o,7',7")
25. d' = Hg(sid, 0,v',7")
26. V'=d ®a
27. 'V =Hy(C, S, pwgg) @V’
28. Abort if V" # H3(V)
29. s = Signy(sid)
30. LN
31. Abort if k' # Hr(sid, 0,~',7")
392. Abort if —Verifyy, (sid, s)
33. sk = Hg(sid, 0,7, ") sk = Hg(sid, 0,7, 7")

Figure 3: The login stage of the MFPAK protocol.

4. U* € Servers, no CorruptReyppak query (Appendix [B.3).

These four cases are combined into the overall result in Section 4.2

4.1 Case 1: Attacking a client instance, first factor uncompromised

This case addresses impersonation of the server when the session being attacked is a client
instance and the first factor remains uncompromised.

The modifier M first uniformly at randomly guesses U* € Clients and U’* €g Servers as its
guess of who the adversary A will end up attacking. If the attacker ends up attacking the pair
of users the modifier has guessed, then we will show how to transform the attack into an attack
on PAK-Z+.

10

Let GuessCS be the event that the modifier M correctly guesses U* and U’*. Then

* /% 1
= > .
Pr(GuessCS) = Pr((U™ correct) A (U™ correct)) > [Clients] - [Servers| (1)

For this case, we assume that no CorruptPWCyppaw (U*, U™) or CorruptPWSyppax (U™, U*)
query is issued against M: this case models server impersonation in the first factor, which is why
no CorruptPWSyppax (U™, U*) query is allowed. Furthermore, no CorruptPWCyppax (U, U"™)
is allowed because an adversary can easily recover the verifier pwy,.[U*] from the password
pWr+ g+ and one interaction with U

The modifier M does the following to convert an MFPAK adversary A into a PAK-Z+
adversary A*.

Password and response preparation. For each (C,S) € Clients x Servers, M sets
rec,s €r Responses and constructs the corresponding reg[C]. In particular, M sets 7% =
Hy(U*, U, rey= yr=) and 7* = (7*)71. For each (C,S) € (Clients x Servers) \ {(U*,U"™")},
M sets pwe g = CorruptPWCpy i 7, (C,S) and pwg[C] = CorruptPWSpax 7, (S,C). Of all the
password and response values, only pwg . ¢« and pw . [U*] remain unknown to M at this point.

Instantiation of PAK-Z+ simulator. We instantiate the PAK-Z+ simulator Spak.z+
with the following random oracles: H; = Hy, for £ = 1,2,3, and H;((C,S,m,Y),0,v") =
H,({(C,S,m - 7,Y), 0,79 ,7), for £ = 5,678E| These ‘starred’ functions are independent
random oracles if the corresponding unstarred functions are. The above construction is possible
since 7* and 7* are fixed and known to M because of the guesses made at the beginning of this
case.

Further, Spak.z+ is instantiated with the following signature scheme (Gen, Sign™, Verify™):

Signy, ((C, 8, m,Y)) = Signy, ((C, S,m - 7, Y))
Verifyy, ((C, S,m,Y), s) = Verifyy, ((C, S,m - 7*,Y),s) .

Since the transformation that sends (C,S,m,Y) — (C,S,m - 7/*,Y) is just a permutation, it
follows that (Gen, Sign®, Verify™) is an eu-cma signature scheme whenever (Gen, Sign, Verify) is.

M’s handling of A’s queries. The modifier M performs the following modifications to the
queries of A. The main goal is for M to simulate all queries except for ones that are related to
the U* and U’* guessed at the beginning of the case: these queries are passed to the underlying
PAK-Z+ simulator Spak.z+ -

CorruptPWC(C, S): guess of U* and U'* at the beginning of
11 (C,S) 4 (U, U"™): this case was incorrect.
Return pwe g. CorruptRe(C, S): Return rec s.
2. If (C,8) = (U*,U™): Test(U, 1):
Abort; if this que/ry occurs, t.her} M’s 1. U = U*:
guess of U* apd U™ at the beginning of Send a Testpax.z4 (U, i) query to PAK-
this case was incorrect. Z+ simulator 8pak.z4 and return the re-
CorruptPWS(S, C): sult to A.
2. U £ U™
1. If (C,S) # (U*,U"™*): Abort; if this query occurs, then M’s
Return pwg[C]. guess of U* at the beginning of this case
2. If (C, 8) = (U*,U"™): was incorrect.

Abort; if this query occurs, then M’s | Reveal(U,1):

2Note that we do not need to instantiate H; and H3 because these oracles are not used by PAK-Z+.

11

1. fU=U*or U =U"":
Send a Revealpak.z+ (U, i) query to PAK-
Z+ simulator Spak.z+ and return the re-
sult to A.

2. Otherwise:
Return sk for instance H?.
Execute(C, 1,5, j):

1. If (C,S) # (U*,U"™):
M performs Executenppak(C,i,S,7)
with all the values it has and returns
the transcript.
2. If (C,8) = (U*,U"™):
M will use the PAK-Z+ simulator
SpAK-zZ+ to obtain a transcript for this
query.
(a) Send an Executepak.z+(C,14,S,7)
query to Spak.zy+ and receive
(C,m, Y, k,a, V", s).
(b) Set m =m-7*.
(c) Set k! €p range(Hz).
(d) Return (C,Th,Y,k;,u,V”,&k?’} to A.
Send(U, i, M):

If M is not a valid protocol message in a mean-
ingful sequence, then abort as would be done
in MFPAK.

1. f M = (“start”,S) and (U,S) #
Perform CLIENTACTIONOyppak and re-
turn (U, m).

2. If M = (“start”,S) and (U,S) =

(a) Send a Sendpak.z+ (U, i, M) query to
Spak.-z+ and receive (U, m).

(b) Set m =m -7
(¢) Return (U,m).

.M =(C,m)and (C,U) # (U*,U"™):

Perform SERVERACTION]yppak and re-
turn (Y, k,a,V").

.M ={(C,m) and (C,U) = (U*,U"™):

(a) Set m =m -7

(b) Send a Sendpak.z+(U, 1, {(C,m))
query to Spak.zy+ and receive
(Y, k,a,V").

(¢) Return (Y, k,a,V").

.M o= (Yk,a, V") and (U,U) #

(U*,U"™), where U’ is the partner of U:
Perform CLIENTACTION2\ppak and re-
turn (k. s).

CIf M = (Y.k,a, V") and (U,U) =

(U*,U"™), where U’ is the partner of U:

(a) Send a Sendpak.z+(U, i, (Y, k,a, V"))
query to Spak.z+ and receive (s).

(b) Set k’ €g range(H;) and store.

(¢) Return (k/, s).

.UM = (K, s) and (U, U) £ (U*,U"™),

where U’ is the partner of U:
Perform SERVERACTION3\FPAK.-

M = (k,s) and (U, U) = (U*,U"™),

where U’ is the partner of U:

(a) Abort if &’ is not the same as the &’
generated in Case 6 above.

(b) Send a Sendpak.z+(U,i,(s)) query
to SpAK-7Z+-

Differences from MFPAK simulator. We must now analyze the differences between a
true MFPAK simulator and the view presented to the MFPAK adversary A by the modifier M.

First we note that the distributions of generated passwords and responses exactly match the
MFPAK specifications. Furthermore, all the generated passwords exactly match the PAK-Z+
specifications.

Next, we note that M’s handling of A’s queries precisely matches what an MFPAK simulator
would do except in a small number of cases. The messages received from and forwarded from
the use of the PAK-Z+ simulator Spak.z4 can by inspection be seen to match what the MFPAK
simulator would do because 8pak-z+ is using the specially-constructed random oracles H;. The
differences between M and what a true MFPAK simulator would do are as follows:

e CorruptPWC(C, S) when (C,S) = (U*,U"™), CorruptPWS(S, C) when (C,S) = (U*,U"™),
and Test(U, i) when U # U*:
The modifier M aborts here, while a true MFPAK simulator should not. If M correctly
guessed U* and U'* at the beginning of this case, then none of these queries would occur,
for if one did then the session in which a Test query is directed to IIY" would not be fresh.

12

e Execute(C,i,S,j) when (C,S) = (U*,U"™), Send(U,i, M) when M = (Y,k,a,V") and
(U,U") = (U*,U"™), where U’ is the partner of U, and Send(U, i, M) when M = (k’, s) and
(U,U") = (U™,U*), where U’ is the partner of U:

The modifier M generated a random value k' for this session instead of generating k' =
Hy(sid,0,v',7'). Since Hr is a random oracle, this substitution is distinguishable by the
adversary A if and only if A queries H; on the arguments sid, 0,7, 7/. But if that occurs,
then A must know 7’. These are the same inputs to the HJ oracle used to compute the
session key in the PAK-Z+ simulation Spak._z4, so the same adversary could distinguish
the output of Testpak.z+(U*, %) received from Spak.z+. The latter event corresponds to
the event Succia)lfK_Z 4, and so the substitution is distinguishable with probability at most

Pr(SUCC%IIfK_Z+).
Let Dist; AGuessCS be the event that the simulation M is distinguishable from a real MFPAK

simulator from A’s perspective given that the modifier correctly guessed U* and U™ at the
beginning of this case. Then Pr(Dist; A GuessCS) < 3 Pr(Succhik) by the argument above.

Result for case 1. Let U* € Clients, U™* € Servers and let E; be the event that nei-
ther CorruptPWCyppak (U, U™*) nor CorruptPWSyppax (U, U*) occurs. The session involving
U*, U™ in 8pak.z+ is fresh if and only if the corresponding session in M is fresh in the first
factor Thus, if event E; occurs and event GuessCS occurs, then, whenever A wins against M,
A* wins against Spak.z+, except with probability at most Pr(Dist; A GuessCS). Therefore,

PI(SUCC?\}E&H (t, Gse» Gex Qro)|E1 A GuessCS) < PT(SUCC%IXQK_Z-% (t/a Gse» Gexs Q:o)))

where Q.{o < Gro + 2+ 1 + 6¢ex + 4Gse, v <t+ texp + le(Btexp + tsig) + C]se(2texp + tsig)v and
z = min{¢se + Gex, |Clients| - |Servers|}. Moreover,

Pr(Succirefl L (£, Gses Gexs Gro) |E1 A GuessCS) — Pr(Succii™ (¢, gse, Gex, Gro)|[E1 A GuessCS)
< Pr(Dist; A GuessCS) .
Combining these two expressions yields the following result:

Lemma 1 Let U* € Clients, U™ € Servers, and suppose that neither CorruptPWCyppax (U, U"™)
nor CorruptPWSyppax (U™*,U*) occurs (which is event Ey). Then

Pr(Succi}fﬁ'&K(t, Gses exs 9ro) |E1 A GuessCS) < 4Pr(Succi‘;lj\eK_ZJr(t/7 Gses Qexs Gro))

where Q:o < o + 2+ 1 4 6gex + 4Gse, v < t+ texp + Qex(Stexp + tsig) + QSe(Qtexp + tsig); and

2 = min{se + Gex, |Clients| - |Servers|}, and a similar bound exists for Adviabh .

4.2 Overall result

By combining the cases 1 and 2, we can obtain a result for sessions that are fresh in the first
factor, and by combining cases 3 and 4 we can obtain a result for sessions that are fresh in the
second factor. For the ake-fl advantage, we have

Pr(Succiitl 1o (£ Gses Gexs Gro)) < Pr(Succiieil (£, gse, Gexs Gro)|E1 A GuessCS)/ Pr(GuessCS)
+ Pr(Succi}fﬁ]ﬁkK(t, Gses Qexs Gro) |E2 A GuessSC)/ Pr(GuessSC)
< |Clients| - |Servers| - 8 Pr(Succpak.z+(t', Gse, Gexs 1))

where t' <t + tep + Gex(Btexp T tsig) + Gse(3lexp + tsig), @lo < Gro + 1 + 2 + 6¢ex + 5Gse, and
2z = max{qse + ¢ex, |Clients| - |Servers|}. For the ake-f2 advantage, we have

Pr(Succikef L (¢, Gses Gexs Gro)) < Pr(Succiieif2 L (£, ees Gexs Gro)|Es A GuessCS)/ Pr(GuessCS)
+ Pr(Succiied2 - (¢, se Gexs Gro) |E3 A GuessSC)/ Pr(GuessSC)
< |Clients| - |Servers| - 2 Pr(Succpak (£, gses Gex, Gho))

13

where q;./g S 2(]r'o + 1 + 4z + 6qex + 5qse7 t/I S t+z- tGen + texp + Qex(gtexp + tsig) + QSe(Stexp + tsig)a
and z = max{gse + gex, |Clients| - |Servers|}.

Similar bounds apply for Advﬁ%’f}AK and Advﬁ?ﬁiK.

Substituting the security statements for PAK (Appendix[A.1]) and PAK-Z+ (Appendix[A.2)
and simplifying the expressions, we obtain the following theorem describing the security of

MFPAK:

Theorem 1 Let G be a finite cyclic group generated by g and let S be a signature scheme with
security parameter k. Let A be an adversary that runs in time t and makes at most qse and
Gex queries of type Send and Execute, respectively, and at most q,, queries to the random oracle.
Then MFPAK is a secure multi-factor password-authenticated key exchange protocol, with

i 1604, - 4dq
Advakefl gy < _ 190Gse d Advekef2 gy < TTdse
vMEPAK (A) < |Passwords| Te an Varpaxk (4) < |Responses|

where € = O (qSeAdVCGd’};(t/,qg) + qsesucces:t’x’;cma&/’qse) + (QSe"l'Qex)(qur;"'l'(IseJl'(Iex)) and & = |Clients| -

\Servers|, f07" t = O(t + (Z + q;g + Gse + Qex)texp); C]ﬁo = O(Qro + 24 Qex + QSe); and z = maX{QSe +
Gex, | Clients| - |Servers|}; similar bounds exist for Advijimh i (A) and Adviisi « (A).

In Appendix [C] we give an example set of parameters that instantiates MFPAK so that the
advantage of an adversary running in time 280 is at most 272°. In this case, MFPAK can be
instantiated with 9-character passwords and a 452-bit elliptic curve, using the ECDSA signature
scheme and SHA-512 hash function, where we assume that |Clients| = 215 and |Servers| = 25;
Qse, Qex, and ¢y, are chosen reasonably.

5 Conclusion and future work

We have presented the first formal security model for multi-factor password-authenticated key
exchange protocols and provided a formal argument showing that our new protocol, MFPAK, is
secure in this model. Our multi-factor authentication protocol involves two factors, a long-term
password and a one-time response, and and achieves two-factor security with the same server-
side efficiency as the one-factor protocol PAK-Z+. The protocol remains secure even if all but
one of the authentication factors is fully known to an adversary. Our multi-factor protocol is
resistant to man-in-the-middle and impersonation attacks, providing enhanced authentication
in the face of more complex threats like spyware and phishing.

We also expect that there are opportunities for protocols that offer improved efficiency, have a
tighter security reduction, are secure in the standard model, or are based on other cryptographic
assumptions. We hope to see a wide range of multi-factor protocol designs developed by the
community on the subject of multi-factor authentication.

Other recent work in the field of password-authenticated key exchange protocols has focused
on protocols where the sequence of flows fits existing network protocols such as SSL/TLS. We
are working on designing a two-factor password-authenticated key exchange protocol that fits
within the message flow of the dominant Internet security protocol HTTPS/TLS to offer greater
security for e-commerce transactions on the Internet.

While our model, in its currently stated form, only addresses two factors, it can be easily
extended to accommodate additional factors if an application demands greater authentication
security. We believe that an efficient protocol can be developed for more than two factors by
combining additional factors in the same way as we combined aspects of the PAK and PAK-Z+
protocols.

An interesting future direction would be to integrate “fuzzy” attributes, such as biometric in-
formation, into a multi-factor authenticated key exchange protocol. Multi-factor authentication
is often colloquially described as being based on ‘something you know’ (a password), ’something
you have’ (a one-time response value), and ’something you are’ (a biometric attribute, such
as a fingerprint). Biometric attributes can be challenging to use in a cryptographic protocol,

14

however, because they are not perfectly reproduced every time, and thus some techniques must
be used to accommodate their “fuzziness”.

Acknowledgements

D.S. is supported in part by an NSERC Canada Graduate Scholarship. The authors gratefully
acknowledge helpful discussions with Alfred Menezes, Bodo Méller, Michele Mosca, and Berkant

Ustaoglu.

References

[ABC+06]

[AFPO5]

[BCC+06]

[BM92]

[BMYA4]

[BMP00a]

[BMPOOb)]

[BPROO]

[BRO3]

[GMRSS]

Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, Bodo Méller, and David
Pointcheval. Provably secure password-based authentication in TLS. In Shiuh-
pyng Shieh and Sushil Jajodia, editors, Proc. 2006 ACM Symposium on Informa-
tion, Computer and Communications Security (ASIACCS’06), pp. 35-45. ACM
Press, 2006. D01:10.1145/1128817.1128827.

Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based
authenticated key exchange in the three-party setting. In Serge Vaudenay, editor,
Public Key Cryptography (PKC) 2005, LNCS, volume 3386, pp. 65-84. Springer,
2005. po1{10.1007/H105124.

Steve Babbage, Dario Catalano, Carlos Cid, Louis Granboulan, Tanja Lange,
Arjen Lenstra, Phong Nguyen, Christof Paar, Jan Pelzl, Thomas Pornin, Bart
Preneel, Matt Robshaw, Andy Rupp, Nigel Smart, and Michael Ward. ECRYPT
yearly report on algorithms and keysizes (2005), January 2006. URL http://www.
ecrypt.eu.org/documents/D.SPA.16-1.0.pdf.

Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-
based protocols secure against dictionary attacks. In Proceedings of the 1992
IEEE Computer Society Conference on Research in Security and Privacy, May
1992. po1:10.1109/RISP.1992.213269. URL http://www.alw.nih.gov/Security/
FIRST/papers/crypto/neke.ps.

Steven M. Bellovin and Michael Merritt. Augmented encrypted key exchange:
a password-based protocol secure against dictionary attacks and password file
compromise. Technical report, AT&T Bell Laboratories, c¢. 1994. URL http:
//www.alw.nih.gov/Security/FIRST/papers/crypto/aeke.ps.

Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably secure Password-
Authenticated Key exchange using Diffie-Hellman. In Preneel [Pre00], pp. 156
171. pO1:10.1007/3-540-45539-6_12. Full version available as [BMPQQD].

Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably secure Password-
Authenticated Key exchange using Diffie-Hellman, 2000. EPRINT http://eprint.
iacr.org/2000/044. Short version published as [BMP00a].

Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Preneel [Pre00], pp. 139-155.
DO1:10.1007/3-540-45539-6_11.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: a
paradigm for designing efficient protocols. In Proc. 1st ACM Conference
on Computer and Communications Security (CCS), pp. 62-73. ACM, 1993.
DOI:10.1145/168588.168596.

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Computing, 17(2):281—
308, April 1988. po1:10.1137/0217017.

15

http://dx.doi.org/10.1145/1128817.1128827
http://dx.doi.org/10.1007/b105124
http://www.ecrypt.eu.org/documents/D.SPA.16-1.0.pdf
http://www.ecrypt.eu.org/documents/D.SPA.16-1.0.pdf
http://dx.doi.org/10.1109/RISP.1992.213269
http://www.alw.nih.gov/Security/FIRST/papers/crypto/neke.ps
http://www.alw.nih.gov/Security/FIRST/papers/crypto/neke.ps
http://www.alw.nih.gov/Security/FIRST/papers/crypto/aeke.ps
http://www.alw.nih.gov/Security/FIRST/papers/crypto/aeke.ps
http://dx.doi.org/10.1007/3-540-45539-6_12
http://eprint.iacr.org/2000/044
http://eprint.iacr.org/2000/044
http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1137/0217017

[GMRO5)

[GMRO6]

[Jab07]
[KM04]
[KMOG6]

[KMO07]

[Mac02]

[PP04]

[Pre00]
[RSA]

[SDOF07]

[Sho99a]

[Sho99b]

[TWMPO06]

[YWWDO06a

[YWWDO6b]

Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. PAK-Z+, August 2005.
URL http://grouper.ieee.org/groups/1363/WorkingGroup/presentations/
pakzplusv2.pdf. Contribution to the IEEE P1363-2000 study group for Future
PKC Standards.

Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for making
password-based key exchange resilient to server compromise. In Cynthia Dwork,
editor, Advances in Cryptology — Proc. CRYPTO 2006, LNCS, volume 4117, pp.
142-159. Springer, 2006. D01:10.1007/11818175_9.

David P. Jablon. Research papers on password-based cryptography, 2007. URL
http://www.jablon.org/passwordlinks.html|

Neal Koblitz and Alfred J. Menezes. Another look at “provable security”, 2004.
EPRINT http://eprint.iacr.org/2004/152. Published as [KMO7].

Neal Koblitz and Alfred J. Menezes. Another look at “provable security”. II,
2006. EPRINT http://eprint.iacr.org/2006/229.

Neal Koblitz and Alfred J. Menezes. Another look at “provable security”. Journal
of Cryptology, 20(1):3-37, 2007. DOI1:10.1007/s00145-005-0432-z. Earlier version
appeared as [KMO04].

Philip MacKenzie. The PAK suite: Protocols for password-authenticated key
exchange. Technical Report 2002-46, DIMACS Center, Rutgers University,
2002. URL http://dimacs.rutgers.edu/TechnicalReports/abstracts/2002/
2002-46.html.

Young Man Park and Sang Gyu Park. Two factor authenticated key exchange
(TAKE) protocol in public wireless LANs. IEICE Transactions on Communica-
tions, E87-B(5):1382-1385, May 2004.

Bart Preneel, editor. Advances in Cryptology — Proc. EUROCRYPT 2000, LNCS,
volume 1807. Springer, 2000. DO1:10.1007/3-540-45539-6.

RSA Security Inc. RSA SecurID. URL http://www.rsa.com/node.aspx?id=
1156.

Stuart Schecter, Rachna Dhamija, Andy Ozment, and Ian Fischer. The emperor’s
new security indicators: An evaluation of website authentication and the effect of
role playing on usability studies. In Proc. IEEE Symposium on Security and Pri-
vacy (SEP) 2007, pp. 51-65. IEEE Press, 2007. Do1{10.1109/SP.2007.35. EPRINT
http://usablesecurity.org/emperor/.

Victor Shoup. On formal models for secure key exchange. Report RZ 3120, IBM
Research, April 1999.

Victor Shoup. On formal models for secure key exchange (version 4), November
1999. URL http://shoup.net/papers/skey.pdf. Earlier version appeared as
[Sho99a).

David Taylor, Thomas Wu, Nikos Mavrogiannopoulos, and Trevor Perrin. Us-
ing SRP for TLS authentication, December 2006. URL http://www.ietf.org/
internet-drafts/draft-ietf-tls-srp-13.txt. Internet-Draft.

Guomin Yang, Duncan S. Wong, Huaxiong Wang, and Xiaotie Deng. For-
mal analysis and systematic construction of two-factor authentication scheme
(short paper). In Peng Ning, Sihan Qing, and Ninghui Li, editors, Information
and Communications Security, LNCS, volume 4307, pp. 82-91. Springer, 2006.
Do1{10.1007/11935308_7. Full version available as [YWWDOGD].

Guomin Yang, Duncan S. Wong, Huaxiong Wang, and Xiaotie Deng. Formal
analysis and systematic construction of two-factor authentication scheme (short
paper), 2006. EPRINT http://eprint.iacr.org/2006/270. Short version pub-
lished as [YWWD0QG6a)].

16

http://grouper.ieee.org/groups/1363/WorkingGroup/presentations/pakzplusv2.pdf
http://grouper.ieee.org/groups/1363/WorkingGroup/presentations/pakzplusv2.pdf
http://dx.doi.org/10.1007/11818175_9
http://www.jablon.org/passwordlinks.html
http://eprint.iacr.org/2004/152
http://eprint.iacr.org/2006/229
http://dx.doi.org/10.1007/s00145-005-0432-z
http://dimacs.rutgers.edu/TechnicalReports/abstracts/2002/2002-46.html
http://dimacs.rutgers.edu/TechnicalReports/abstracts/2002/2002-46.html
http://dx.doi.org/10.1007/3-540-45539-6
http://www.rsa.com/node.aspx?id=1156
http://www.rsa.com/node.aspx?id=1156
http://dx.doi.org/10.1109/SP.2007.35
http://usablesecurity.org/emperor/
http://shoup.net/papers/skey.pdf
http://www.ietf.org/internet-drafts/draft-ietf-tls-srp-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-srp-13.txt
http://dx.doi.org/10.1007/11935308_7
http://eprint.iacr.org/2006/270

[YY06] Eun-Jun Yoon and Kee-Young Yoo. An optimized two factor authenticated key
exchange protocol in PWLANs. In Vassil N. Alexandrov, Geert Dick van Albada,
Peter M.A. Sloot, and Jack Dongarra, editors, Computational Science — ICCS
2006, LNCS, volume 3992, pp. 1000-1007. Springer, 2006. Do1:10.1007/11758525.
URL 10.1007/11758525_133.

A Other protocols

This section gives the specifications of the PAK [Mac02] and PAK-Z+ [GMRO05] protocols and
the formal security statements for these protocols. The line numbering is irregular so as to
emphasize the relationship between each of the PAK and PAK-Z+ protocols and the MFPAK
protocol into which they are combined. The notation has been adapted from the original papers
to match the notation in this paper.

A.1 PAK

The user registration stage of the PAK protocol is given below. This stage should be completed
over a private, authentic channel.

PAK User Registration
Client C Server S

2. rec,s €r Responses

7. T = (H4(C, S, I’ecys))il
8.
1

c,r’
—/

0. Store reg[C] = 7/

The login stage of the PAK protocol is given below. This stage can be completed over a
public, untrusted channel.

PAK Login
Client C Server S
1. X €ER Zq
2. X =9"
4. T =]‘]4(07 S, rec,s)
5. m=X-T
6. g
7. Abort if —Acceptable(m)
8. Y €R Zq
9. Y =g¢¥
11. 7' = reg[C]
12. X=m- 71
13. o=XY
14. sid = (C,S,m,Y)
15. k = Hx(sid, o, 7")
18. htd
19. o=Y"
21. 7' =7"1
22. sid=(C,S,m,Y)
23. Abort if k # Hs(sid, o, 7")
24. k' = Hq(sid,o,7")
30. LN
31. Abort if ¥ # Hr(sid, o, 7")
33. sk = Hg(sid, o, 7’) sk = Hg(sid, o, 7")

17

http://dx.doi.org/10.1007/11758525
10.1007/11758525_133

The formal security statement for PAK is as follows:

Theorem 2 (Theorem 6.9, [Mac02]) Let G be a finite cyclic group generated by g. Let A
be an adversary that runs in time t and makes at most gse and gex queries of type Send and
Execute, and at most g, queries to the random oracles. Then, fort' = O(t+ (g2 + gse + Gex)texp) s

ake Gse cdh [, 2 (QSe + Qex)(Qro + Gse + Qex)
AdVES(A) < ——=—— + O (geeAd t
VPAK() — ‘Responses| + (qse VG7g (’ qro) + |G|

Moreover, the same bound applies for Advpak (A).

A.2 PAK-Z+

The user registration stage of the PAK-Z+ protocol is given below. This stage should be
completed over a private, authentic channel.

PAK-Z+ User Registration

Client C Server S
pwe s €r Passwords

(V,W) < Gen(1")

’Y/ = (Hl(C7 S7 pW))71

V= Hy(C,S,pw) ®V

V" = Hy(V)

oy \wyv' v
B —

© o o

Store pwg[C] = (+/, W, V', V")

The login stage of the PAK-Z+ protocol is given below. This stage can be completed over a
public, untrusted channel.

18

PAK-Z+ Login
Client C Server S
1. T ER Zq
2. X =g"
3. ~v=H(C,S, pw)
5. m=X- vy
6. _¢&m |
7. Abort if —-Acceptable(m)
8. Y ER Zq
9. Y =¢¥
10. (', W, V', V") = pwg[C]
11. X=m-v
12. o=XY
13. sid=(C,S,m,Y)
14. k = Hs(sid,0,7")
15. a' = Hg(sid, 0,v")
16. a=d oV’
17. RANAS
18. o=Y~*
19. o' =~71
21, sid=(C,S,m,Y)
22. Abort if k # Hs(sid, 0,7')
24. o = Hg(sid, 0,7")
25. V' =d da
26. V =Hy(C,S,pw) @V’
27. Abort if V" # H3(V)
28. s = Signy,(sid)
29. s
31. Abort if —Verifyy;, (sid, s)
32. sk = Hg(sid, 0,7) sk = Hs(sid, 0,7')

The formal security statement for PAK-Z+ is as follows:

Theorem 3 (Theorem 5.1, [GMRO5]) Let G be a finite cyclic group generated by g and let
S be a signature scheme with security parameter k. Let A be an adversary that runs in time t and
makes at most qse and qex queries of type Send and Execute, and at most ¢, queries to the random
oracles. Let beo = 1 if A makes a CorruptPWS query to a server, and 0 otherwise. Then, fort =

O(t'f‘(qgo'i‘QSe"_qex)texp); and € = O <QSeAdngi72 (t/; (I?o) + QSeSUCCg?écma(t/, qse) -+ (qse+Qex)(|qC;rc‘+QSe+QeX))

QSe(l - bco) + Qrobco
Advake A) <
Veak-z+(A) < |Passwords| te

Moreover,
QSe(l - bco) + Grobeo
|Passwords|

. qSe
Advs2e A< — .
Veak-z+ (A) < |Passwords| e

AdvZy 74 (A) <

+€, and

B Remainder of cases in formal analysis

This section includes the remaining three cases of the formal analysis in Section [

19

)

B.1 Case 2: Attacking a server instance, first factor uncompromised

This case addresses impersonation of the client when the session being attacked is a server
instance and the first factor remains uncompromised.

The modifier M first uniformly at randomly guesses U* € Servers and U'* € Clients as its
guess of who the adversary A will end up attacking. Let GuessSC be the event that the modifier
M correctly guesses U* and U’*. We note that Pr(GuessSC) = Pr(GuessCS).

For this case, we assume that no CorruptPWCyppax (U*, U*) query is issued against M: this
case models client impersonation in the first factor, which is why this query is not allowed.

The modifier M does the following to convert an MFPAK adversary A into a PAK-Z+
adversary A*.

Password and response preparation. For each (C,S) € Clients x Servers, M sets
rec,s €r Responses and constructs the corresponding reg[C]. In particular, M sets 7% =
Hy(U™*,U*, rey= yr) and 7/* = (7*)~1. For each (C,S) € (Clients x Servers) \ {(U"*,U*)}, M
sets pwe g = CorruptPWCp,ax 7 (C, S) and pwg[C] = CorruptPWSp, i 7 (S, C). Finally, M sets
pwyr« [U*] = CorruptPWSp i 7 (U*,U"™) (but only if M receives a CorruptPWSy pppi (U*,U"™)
query). Of all the password and response values, only pwy;/« 7« remains unknown to M.

Instantiation of PAK-Z+ simulator. We instantiate the PAK-Z+ simulator Spax.z4
with the following random oracles: H; = Hy, for £ = 1,2,3, and H;((C,S,m,Y),0,v") =
H,((C,S,m-7*Y),0,v,7), for £ =5,6,8. These ‘starred’ functions are independent random
oracles if the corresponding unstarred functions are. The above construction is possible since
7* and 7'* are fixed and known to M because of the guesses made at the beginning of this case.
Further, Spak.z+ is instantiated with the following signature scheme (Gen, Sign™, Verify™):

Signy ((C, 8,m,Y)) = Signy ((C, S,m - 7", Y))
Verifyly, ((C, S, m,Y), s) := Verify,, ((C,S,m - 7*,Y),s) .

As before, we note that (Gen, Sign™, Verify™) is an eu-cma signature scheme if (Gen, Sign, Verify)
is.

M’s handling of A’s queries. The modifier M performs the following modifications to
the queries of A.

CorruptPWC(C, S): 1. U =U"
I 7T Send a Testpak.z+ (U, i) query to Spak.z+
L IE(C, 8) # (U™, U7): and return the result to A.
Return pwe g.
2. It U # U™

2. If (C,8) = (U™, U*):
Abort; if this query occurs, then M’s
guess of U* and U™ at the beginning of
this case was incorrect.

CorruptPWS(S, C):

1. If (C,8) # (U™, U*):
Return pwg[C].

Abort; if this query occurs, then M’s
guess of U* at the beginning of this case
was incorrect.

Reveal(U, i):
1. U =U*or U =U":

Send a Revealpak.z+ (U, i) query to PAK-
Z+ simulator Spak z+ and return the re-

2. If (C,8) = (U™, U*): sult to A.
(a) Send a CorruptPWS(U*,U’™*) query 2. Otherwise:
to Spak-z+ and receive pwy. [U"]. Return sk for instance T1V.

(b) Return pwy.[U"*].
CorruptRe(C, S): Return rec,gs.

Execute(C, 4, S, j):

1. If (C,S) # (U™, U*):
Test(U, 1): M performs Executenppak(C,i,S,7)

20

with all the values it has and returns
the transcript.

2. If (C,8) = (U™, U*):
M will use the PAK-Z+ simulator
SpAK-Z+ to obtain a transcript for this

query.
(a) Send an Executepax.z+(C,i,S5,7))
query to Spak.z+ and receive

(C,m, Y, k,a, V" s).
(b) Set m =m -7
(c) Set k' € range(Hy).
(d) Return (C,m,Y,k,a, V”,l%’,s}.
Send(U, i, M):
If M is not a valid protocol message in a mean-

ingful sequence, then abort as would be done
in MFPAK.

1. If M = (“start”, S):
Perform CLIENTACTIONOyppak and re-

(b) Send a Sendpak-z+(U,1,{(C,m))
query to Spak.zy+ and receive
Y, k,a, V).

(¢) Return (Y, k,a,V").

LI M = (Y.ka, V") and (U,U') #

(U™, U*), where U’ is the partner of U:
Perform CLIENTACTION2\rpak and re-
turn (K, s).

LI M o= Yk, V") and (U U) =

(U™, U*), where U’ is the partner of U:

(a) Send a Sendpak.z+(U, i, (Y, k,a, V"))
query to Spak.z+ and receive (s).

(b) Set k' € range(H7) and store.

(¢) Return (K, s).

CIEM = (K, s) and (U',U) # (U™, U*),

where U’ is the partner of U:
Perform SERVERACTION3MFPAK.-

CIEM = (K,s) and (U, U) = (U*,U*),

turn (U, m).

2. If M =(C,m) and (C,U) # (U™, U*):
Perform SERVERACTION]yrpak and re-
turn (Y, k, a, V).

3. M= {(C,m)and (C,U) = (U™*,U*):

(a) Set 7 =m -~

where U’ is the partner of U:

(a) Abort if k' is not the same as the &/
generated in Case 5 above.

(b) Send a Sendpak.z+(U,1,(s)) query
to SPAK-Z+-

Differences from MFPAK simulator. We must now analyze the differences between a
true MFPAK simulator and the view presented to the MFPAK adversary A by the modifier M.

First we note that the distributions of generated passwords and responses exactly match the
MFPAK specifications. Furthermore, all the generated passwords exactly match the PAK-Z+
specifications.

Next, we note that M’s handling of A’s queries precisely matches what an MFPAK simulator
would do except in a small number of cases. The messages received from and forwarded from
the use of the PAK-Z+ simulator Spak._z4 can by inspection be seen to match what the MFPAK
simulator would do because Spak._z+ is using the specially-constructed random oracles H*. The
differences between M and what a true MFPAK simulator would are as follows:

e CorruptPWC(C, S) when (C,S) = (U™*,U*) and Test(U, i) when U # U*:
The modifier M aborts here, while a true MFPAK simulator should not. If M correctly
guessed U* and U'* at the beginning of this case, then this query would never occur, for
if it did then the session in which a Test query is directed to H?* would not be fresh.

e Execute(C,4,S,5) when (C,S) = (U™*,U*), Send(U,i, M) when M = (Y,k,a,V") and
(U,U") = (U™, U*) where U’ is the partner of U, and Send(U, i, M) when M = (k’, s) and
(U',U) = (U™, U*) where U’ is the partner of U:

The modifier M generated a random value k' for this session instead of generating k' =
H+(sid,0,+',7"). Since H7 is a random oracle, this substitution is distinguishable by the
adversary A if and only if A queries H; on the arguments sid, o,~’, 7/. But if that occurs,
then A must know 4. These are the same inputs to the Hg oracle used to compute the
session key in the PAK-Z+ simulation Spak.z+, so the same adversary could distinguish
the output of Test(U*,i) received from Spak z+. The latter event corresponds to the

21

event Succ%lffK_Z 4, and so the substitution is distinguishable with probability at most
Pr(SuccPik.z4)-
Let Dista AGuessSC be the event that the simulation M is distinguishable from a real MFPAK

simulator from A’s perspective given that the modifier correctly guessed U* and U’* at the
beginning of this case. Then Pr(Disty A GuessSC) < 3Pr(Succ%1§K_Z+) by the argument above.

Result for case 2. Let U* € Servers, U* € Clients and let Es be the event that query
CorruptPWCyppax (U™, U*) does not occur. The session involving U™, U* in Spak.z+ is fresh
if and only if the corresponding session in M is fresh in the first factor. Thus, if event Ey occurs
and event GuessSC occurs, then, whenever A wins against M, A* wins against Spak.z+, except
with probability at most Pr(Dista A GuessSC), since. Therefore,

ake-f1

Pr(Succhi" (, gses Gex, Gro) [E2 A GuessSC) < Pr(Succ%lffK_ZJr(t’, Gses Qex> Qo)) s

where qﬁo < Qro + 1+2z+ 6Qex + 5QSea t’ < t+ texp + Qex(gtexp + tsig) + qse(3texp + tsig)v and
z = min{gse + Gex, |Clients| - |Servers|}. Moreover,

Pr(Succ%}fﬁ}f}AK(t, Gses exs ro) |E2 A GuessSC) — Pr(SuccﬁC'fl (t, Gses Gexs Gro) |[E2 A GuessSC)
< Pr(Dista A GuessSC) .

Combining these two expressions yields the following result:

Lemma 2 Let U* € Servers, U™ € Clients, and suppose that CorruptPWCyppa (U™, U*) does
not occur (which is event Es). Then

Pr(Succikesth (£, Gses Gexs Gro) |E2 A GuessSC) < 4Plr(Succfplij_ZJr(t’7 Gses Gexs o)) s

where q:o < Qro + 1+2+ 6qex + 5QSey t' <t+ texp + Qex(gtexp + tsig) + QSe(3texp + tsig); and

2 = min{ge + Gex, |Clients| - [Servers|}, and a similar bound exists for Advirpmak -

B.2 Case 3: Attacking a client instance, second factor uncompromised

This case addresses impersonation of the server when the session being attacked is a client
instance and the second factor remains uncompromised.

The modifier M first uniformly at randomly guesses U* € Clients and U’ €g Servers as
its guess of who the adversary A will end up attacking. The event that the modifier correctly
guesses these values is GuessCS and Pr(GuessCS) is given in (I]).

For this case, we assume that no CorruptRey;ppak query is issued against M: this case models
server impersonation in the second factor, which is why this query is not allowed.

The modifier M does the following to convert an MFPAK adversary A into a PAK adversary
A*.

Password and response preparation. For each (C,S) € Clients x Servers, M sets

pweo s €r Passwords and (V, W) & Gen(1"), and constructs the corresponding pwg[C]. In
particular, M sets v* = Hy(U*,U", pwy. y) and 7" = (y*)~1. For each (C,S5) € (Clients x
Servers) \ {(U*,U"™)}, M sets rec. s € Responses. Of all the password and response values, only
rey-,us+ remains unknown to M at this point.

Instantiation of PAK simulator. We instantiate the PAK simulator Spax with the fol-
lowing random oracles: Hy = Hy, H¥((C,S,m,Y),0,7') = H5((C, S,m~*,Y),0,v™*,7') || Hs({C, S, m-
v, Y), 0.4, 7"), and H; ((C,S,m,Y),0,7") = H/((C,S,m-~*,Y),0,~"*,7") for £ = 7,8. These
‘starred’ functions are independent random oracles if the component unstarred functions are.

The above construction is possible since v* and +'* are fixed and known to M because of the
guesses made at the beginning of this case.

22

M’s handling of A’s queries. The modifier M performs the following modifications to

the queries of A.

CorruptPWC(C, S): Return pw g.
CorruptPWS(S, C): Return pwg[C].

CorruptRe(C, S): Abort; this query cannot oc-
cur in this case.
Test(U, 4):
1. HU =U™
Send a Testpak (U, %) query to simulator
Spak and return the result to A.
2. U £ U™
Abort; if this query occurs, then M’s

guess of U* at the beginning of this case
was incorrect.

Reveal(U, 7):
1. U=U*or U =U"*:
Send a Revealpak(U,i) query to PAK
simulator Spax and return the result to
A.

2. Otherwise:
Return sk for instance I1Y.

Execute(C, 1,5, j):

1. If (C,S) # (U*,U"™*):
M performs Executemppak(C,i,S,7)
with all the values it has and returns
the transcript.

2. If (C,8) = (U*,U™):
M will use the PAK simulator Spax to
help construct a full transcript by per-
forming the following sequence of opera-
tions:

(a) Send an Executepak(C,1i,S,j) query
to 8pak and receive (C,m, Y, k, k).
(b) Set

§ = Signy, ((C, S,m,Y)) .
(¢) Return (C, 7, Y, k,a, V" K s) to A.
Send(U, i, M):
If M is not a valid protocol message in a mean-

ingful sequence, then abort as would be done
in MFPAK.

1. If M = {(“start”,S) and (U,S) #
(U*,U"*):

23

Perform CLIENTACTIONOyppak and re-
turn (U, m).

I M= (“start”,S) and (U,S) =

(U*,U"™):

(a) Send a Sendpax(U,i, (“start”,S))
query to 8pak and receive (U, m).

(b) Set m =m -~* and store.

(¢) Return (U,m).

.M ={(C,m) and (C,U) # (U*,U"™):

Perform SERVERACTION]yppak and re-
turn (Y, k,a, V).

M =(C,m) and (C,U) = (U*,U"™):

(a) Set 7 = m -+"* and store.
(b) Send a Sendpak (U, i, (C 7)) query
to Spak and receive (Y, k).

(c) Set
k = substring, (k)
a/ = substring, (k)
a=a oV .

(d) Return (Y, k,a,V").

.M = (Yk,a, V") and (UU') #

(U*,U"™), where U’ is the partner of U:
Perform CLIENTACTION2yppak and re-
turn (k. s).

I M = (Y.ka, V") and (U,U') =

(U*,U"), where U’ is the partner of U:
(a) Seta’ =a® V' and k =k || a'.

(b) Send a Sendpax (U, i, (Y, k)) query to
Spak and receive (k') or abort.

(¢c) Set § = Signy,((U*, U™, m,Y))
where m is the value generated in
step 2.

(d) Return (', 3).

CIEM = (K, s) and (U',U) # (U*,U™),

where U’ is the partner of U:
Perform SERVERACTION3MFPAK.-

CIEM = (K,s) and (U, U) = (U*,U"),

where U’ is the partner of U:

(a) Abort if =Verifyy, (U*,U"™*,1,Y), s)
where m is the value generated in
step 4.

(b) Send a Sendpak (U, %, (k') query to
SPAK-

Differences from MFPAK simulator. We must now analyze the differences between a
true MFPAK simulator and the view presented to the MFPAK adversary A by the modifier M.

First we note that the distributions of generated passwords and responses exactly match
the MFPAK specifications. Furthermore, all the generated responses exactly match the PAK
specifications.

Next, we note that M’s handling of A’s queries precisely matches what an MFPAK simulator
would do except in a small number of cases. The messages received from and forwarded from the
use of the PAK simulator Spak can by inspection be seen to match what the MFPAK simulator
would do because Spaxk is using the specially-constructed random oracles H*. The differences
between M and what a true MFPAK simulator would do are as follows:

o CorruptRe(C, S):

The modifier M aborts here, while a true MFPAK simulator should not. However, if this
query did occur, then no session could be fresh in the second factor.

o Test(U,:) when U # U*:

The modifier M aborts here, while a true MFPAK simulator should not. If M correctly
guessed U™ at the beginning of this case, then this query would never occur, for if it did
then the session in which a Test query is directed to 1Y " would not be fresh.

In particular, we note that, when the event GuessCS occurs, the handling of A’s Execute and
Send queries exactly matches the behaviour and distributions of a true MFPAK simulator.

Result for case 3. Let U* € Clients, U* € Servers and let E3 be the event that no
CorruptReyppak query occurs. If event E3 occurs, the session involving U*, U™ in Spak is
fresh if and only if the corresponding session in M is fresh in the second factor. Thus, if event
E3 occurs and event GuessCS occurs, then, whenever A wins against M, A* wins against Spak.
Therefore,

Pr(Succﬁe‘m(t, Gses Gexs Gro)|E3 A\ GuessCS) < Pr(Succ®C (¢, gse, Gexs 4s))

and z = min{gse + gex, |Clients| - |Servers|}. Moreover,

where Q:o < 2Qro +1+4z2+ 6Qex + 5q567 t <t+ 2z 1gen + texp + Qex(3texp + tsig) + QSe(gtexp + tsig)a

Pr(Succiieii k (£ Gses Gexs Gro) |Es A GuessCS) = Pr(Sucche® (¢, gse, ex; Gro) |Es A GuessCS) .
Combining these two expressions yields the following result:

Lemma 3 Let U* € Clients, U™ € Servers, and suppose that no CorruptReyppag query occurs
(which is event E3). Let A be an adversary that runs in time t and makes at most ¢se and gex
queries of type Send and Execute, respectively, and at most ¢, random oracle queries. Then

Pr(Succiieita i (A)|Es A GuessCS) < Pr(Succhi (', Gses Gexs @)

where q:o < 2¢o+ 1+ 4z + 6Gex + 5¢se, t <t+ 2 lgen + texp + Qex(?’texp + tsig) + QSe(gtexp + tsig)y

and z = min{gse + Gex, |Clients| - [Servers|}, and a similar bound exists for Adviasia k.

B.3 Case 4: Attacking a server instance, second factor uncompro-
mised

This case addresses impersonation of the client when the session being attacked is a server
instance and the second factor remains uncompromised.

The modifier M first uniformly at randomly guesses U* €g Servers and U™* € Clients as
its guess of who the adversary A will end up attacking. The event that the modifier correctly
guesses these values is GuessSC which has the same probability as GuessCS.

For this case, we assume that no CorruptRey;ppak query is issued against M: this case models
client impersonation in the second factor, which is why this query is not allowed.

The modifier M does the following to convert an MFPAK adversary A into a PAK adversary
A*.

24

Password and response preparation. For each (C,S) € Clients x Servers, M sets

pweo s €r Passwords and (V, W) & Gen(1%), and constructs the corresponding pwg[C]. In
particular, M sets v* = Hy (U™, U*, pwy r«) and 7" = (y*)~1. For each (C,S) € (Clients x
Servers) \ {(U"*,U*)}, M sets rec, s €r Responses. Of all the password and response values, only
reys« u+ remains unknown to M at this point.

Instantiation of PAK simulator. M instantiates the PAK simulator Spax with the fol-
lowing random oracles: Hf = Hy, HX({(C,S,m,Y),0,7") = H5((C, S,m-~*,Y), 0,4, 7") || Hs({C, S, m-
v, Y), 0.4, 7"), and H} ((C,S,m,Y),0,7") = H,((C,S,m~*,Y),0,7*,7’), for £ =7,8. These
‘starred’ functions are independent random oracles if the component unstarred functions are.

The above construction is possible since v* and v'* are fixed and known to M because of the
guesses made at the beginning of this case.

M’s handling of A’s queries. The modifier M performs the following modifications to
the queries of A.

CorruptPWC(C, S): Return pwg g. (b) Set
CorruptPWS(S, C): Return pwg[C]. A
CorruptRe(C, S): Abort; this query cannot oc- i = substring (k)
cur in this case. R !
_ a’ = substring, (k)
Test(U, 4): f—d eV
LU =U™ 5 = Signy ((C, S,m,Y)) .

Send a Testpak (U, i) query to simulator
Spak and return the result to A.

2. U #£U™
Abort; if this query occurs, then M’s Send(U, i, M)
guess of U* at the beginning of this case
was incorrect.

(¢) Return (C,m, Y, k,a, V" K s) to A.

If M is not a valid protocol message in a mean-
ingful sequence, then abort as would be done

Reveal(U, 1): in MFPAK.
1. UU=U*or U =U": 1. If M = (“tart”,S) and (U,S) #
Send a Revealpak(U,i) query to PAK (U™, U*):
simulator Spak and return the result to Perform CLIENTACTIONOyppak and re-
A. turn (U, m).
2. Otherwise: 2. If M = (“start”,S) and (U,S) =
Return sk for instance H?. (U™, U*):
Execute(C, 14,5, j): (a) Send a Sendpak(U,1i,(“start”,S))

query to Spak and receive (U, m).

1. If (C,8) # (U, U"):
M performs Executemppak(C,i,S,7)
with all the values it has and returns (¢) Return (U, 7).
the transcript.

(b) Set m =m -~+* and store.

) 3. M= (C,m)and (C,U) # (U™*,U*):
2. If (C,8) = (U™, U"): Perform SERVERACTION]yppak and re-
M will use the PAK simulator Spak to turn (Y, k,a, V").
help construct a full transcript by per-

forming the following sequence of opera- 4. If M = (C,m) and (C,U) = (U™, U"):

tions: (a) Set m =m - 7" and store.
(a) Send an Executepak(C,i,S,j) query (b) Send a Sendpak (U, i, (C 7)) query
to Spak and receive (C,m,Y, k, k'). to Spak and receive (Y, k).

25

(c) Set (c) Set § = Sign,((U*,U* m,Y))

A . where m is the value generated in

{43 = substring, (k) step 2.

a/ = substring, (k) (d) Return (K, 3).

~ 7 /

t=a oV 7.0 M = (K,s) and (U,U") £ (U*,U"™),
(d) Return <Yl;; a, v where U’ is the partner of U:

e Perform SERVERACTION3 .

5.1 M = (VkaV" and (U,U) # cron MEPAK
(U"™,U*), where U’ is the partner of U: 8. If M = (K',s) and (U,U") = (U*,U"),
Perform CLIENTACTION2yvrpak and re- where U’ is the partner of U:
turn (K, s). (a) Abort if —Verifyy, (U™, U* i, Y), s)

6. f M = (Y,k,a,V") and (U,U’) = where 1 is the value generated in
(U"™,U*), where U’ is the partner of U: step 4.

(a) Setd =a® V' and k =k || a. (b) Send a Sendpax (U, i, (k') query to
(b) Send a Sendpax (U, 4, (Y, k)) query to SPAK-
Spak and receive (k') or abort.

Differences from MFPAK simulator. We must now analyze the differences between a
true MFPAK simulator and the view presented to the MFPAK adversary A by the modifier M.

First we note that the distributions of generated passwords and responses exactly match
the MFPAK specifications. Furthermore, all the generated passwords exactly match the PAK
specifications.

Next, we note that M’s handling of A’s queries precisely matches what an MFPAK simulator
would do except in a small number of cases. The messages received from and forwarded from the
use of the PAK simulator Spak can by inspection be seen to match what the MFPAK simulator
would do because Spaxk is using the specially-constructed random oracles H*. The differences
between M and what a true MFPAK simulator would do are as follows:

e CorruptRe(C, S):
The modifier M aborts here, while a true MFPAK simulator should not. However, if this
query did occur, then no session could be fresh in the second factor.

o Test(U,:) when U # U*:
The modifier M aborts here, while a true MFPAK simulator should not. If M correctly
guessed U* at the beginning of this case, then these queries would never occur, for if they
did then the session in which a Test query is directed to IIY " would not be fresh.

In particular, we note that, when the event GuessSC occurs, the handling of A’s Execute and
Send queries exactly matches the behaviour and distributions of a true MFPAK simulator.

Result for case 4. Let U* € Servers, U"* € Clients and let E3 be (as before) the event that
no CorruptReyppak query occurs. If event Eg occurs, then the session involving U™, U* in Spak
is fresh if and only if the corresponding session in M is fresh in the second factor. Thus, if event
E3 occurs and event GuessSC occurs, then, whenever A wins against M, A* wins against Spak-
Therefore,

ake-f2

PT(SUCCM (ta Gses Gex; Qro>|E3 A GuessSC) < Pr(succ%lj\e}((t/7 Gses Qex Q:o)) ,

where ql{o S 2Qro +1+4z+ qux + 5(]sea tl S t+z- tGen + texp + Qex(?’texp + tsig) + QSe(?)texp + tsig)a
and z = min{gse + gex, |Clients| - |Servers|}. Moreover,

Pr(Succifima k (£, Gses Gex Gro) |Es A GuessSC) = Pr(Sucche® (¢, gse, Gex, Gro)|E3 A GuessSC) .

Combining these two expressions yields the following result:

26

Lemma 4 Let U* € Servers, U™ € Clients, and suppose that no CorruptReyppax query occurs
(which is event Ez). Let A be an adversary that runs in time t and makes at most gse and qex
queries of type Send and Execute, respectively, and at most q,, random oracle queries. Then

Pr(Succhifiia (4)|Es A GuessSC) < Pr(Succiii (¥, dse, doxs o))

where q:o < 2¢o+ 1+ 4z + 6Gex + 5¢se t <t+ 2 tGen + texp + Qex(?’texp + tsig) + QSe(gtexp + tsig)y

and z = min{gse + Gex, |Clients| - [Servers|}, and a similar bound exists for Adv§aa k.

C Example instantiation

By careful accounting of the constants in our various lemmas and in the proofs for PAK [Mac02]
Theorem 6.9] and PAK-Z+ [GMRO05, Theorem 5.1], we can restate our overall result in Theo-
rem [l| more precisely as follows.

Theorem 4 Let G be a finite cyclic group generated by g and let S be a signature scheme with
security parameter k. Let A be an adversary that runs in time t and makes at most qse and
Qex queries of type Send and Execute, respectively, and at most q., queries to the random oracle.
Then MFPAK is a secure multi-factor password-authenticated key exchange protocol, with

. 164, . 444,
Ad ake-f1 A < se _|_ d Ad ake-2 A < se ’
Varpak (A) < |Passwords| eoan Virpak (A) < |Responses| ¢
where € = 8qseAdvg{};(t/,qﬁg) + 6gseSuccg’ M (', gse) + 5(qse+qe‘)|(g“’+q”+q”) and 6 = |Clients| -

\Servers|, for t'=1t+ (Z + 8(%{2 + Gse + Qex))texp; q.io = 2qro + 42 + 6qex + 5Gse, and z = maX{QSe +
Qex, |Clients| - |Servers|}; similar bounds exist for Advyppak (A).

To give an example instantiation, we have to pick appropriate values for the various param-
eters in the statement of the theorem. We choose

|Clients| = 2'° |Servers| = 2°
Gse = 210 Jex = 220 Gro = 240
t=2% texp = 2%
= exp = .

With this choice of parameters, we find that z = 220, ¢/ = 241 ¢/ = 2105 and ¢ = 213 .

AdVCGdE(Ql%7 282) 4213, Succglj};cma(21057 210) + %.
We want € < 22°. To achieve this, we need |Passwords| = |Responses| = 2°9, which, on the

author’s keyboard with 94 distinct printable characters on it, is achieved by having passwords
and responses as strings of length 9.

Furthermore, we need 2'3 - Advg};(2105,282) < 2720213 . Succg (2199, 219) < 2726, and
|G| > 290, We assume that the the best technique for solving CDH is to find discrete logarithms
and that, for an n-bit elliptic curve group, it takes 2"/2 time to find discrete logarithms (as
in [BCCT06]); in other words, Advz;d’g(t,l) < \/% Noting that Adv&d’};(t,q) < quvgi’}gl(t, 1),
we need |G| > (2392822105)2 = 2452; iy other words, we need a 452-bit elliptic curve group.
Furthermore, need 2% - Succg’*"*(2'9%,221) < 272% which is again satisfied by ECDSA with a
452-bit elliptic curve group. Finally, we can instantiate the hash function with SHA-512.

The security reduction in our theorem is not tight, meaning that in the formal security
argument there is a gap between the hardness of solving the underlying cryptography problem
and the hardness of breaking our protocol. The example instantiation above provides a elliptic
curve group size (452 bits) that follows from the values in the formal security arguments, but
is substantially larger than one might hope to use in a real-world protocol (where a 160-bit or
256-bit curve might be desirable). MFPAK instantiated with a smaller curve size may still be
secure and indeed has no obvious weakness, but the formal security argument does not make

27

any meaningful statement about the hardness of breaking our protocol with the smaller group
size]

3Interpretations of formal security arguments are the main subject of [KM07] and [KM06).

28

	Introduction
	Security for multi-factor protocols
	Formal security model

	MFPAK: a multi-factor password-authenticated key exchange protocol
	Ingredients
	Protocol specification

	Formal security analysis
	Case 1: Attacking a client instance, first factor uncompromised
	Overall result

	Conclusion and future work
	References
	Other protocols
	PAK
	PAK-Z+

	Remainder of cases in formal analysis
	Case 2: Attacking a server instance, first factor uncompromised
	Case 3: Attacking a client instance, second factor uncompromised
	Case 4: Attacking a server instance, second factor uncompromised

	Example instantiation

