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Abstract

In this paper, we present algorithms for implementation of the GHS attack to Elliptic
curve cryptosystems (ECC). In particular, we consider two large classes of elliptic curves
over cubic extension fields of odd characteristics which have weak covering curves against
GHS attack, whose existence have been shown recently [16][17][18]. We show an algorithm
to find definition equation of the covering curve and an algorithm to transfer DLP of the
elliptic curve to Jacobian of the covering curve. An algorithm to test if the covering curve
is hyperelliptic is also shown in the appendix.

keywords Elliptic curve cryptosystems, Discrete logarithm problem, GHS attack

1 Introduction

Elliptic curve cryptosystems (ECC) are known as one of the most secure cryptosystems.
In particular, it has the same level of security as RSA and ElGamal cryptosystems by
using much shorter key length. This is also desirable in implementation of compact
and low cost cryptosystems. Against algebraic curve based cryptosystems, square root
attacks are known such as the baby-step giant-step attack, Pollard’s rho and lambda
algorithms. Recently, index calculus attacks have been proposed for hyperelliptic curves

*Graduate School of Science and Engineering, Course of Information and System Engineering, Chuo Univer-
sity, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

TDepartment of Mathematics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-
ku, Tokyo 112-8551, Japan

tDepartment of Information and System Engineering, Faculty of Science and Engineering, Chuo University,
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan



of genera larger than 3 by Gaudry, Nagao, Gaudry-Theriault-Thome-Diem[1],[2],[3]and
non-hyperelliptic curves of geneus larger than or equal to 3 by Diem[4].

A relatively new attack called GHS attack, which is based on the idea of Weil descent
suggested by Frey[5], was proposed by Gaudry, Hess, and Smart in 2000 [6]. The GHS
attack transfer the discrete logarithm problem (DLP) in the group of rational points of
an elliptic curve E over an extension kg of a finite field k to the DLP in the Jacobian
variety of a new curve C' of higher genus over the smaller definition field k.

The GHS attack has been already under extensive research. However, although theo-
retically interesting, its analysis seemed nontrivial[7],[8],[9],[10],[11],[12],[13],[14],[15]. The
classes of the weak elliptic curves or curves for which the GHS attack efficiently works
have not been fully understand, Besides, it seemed that the class of curves subjected to
the GHS attack must be of special properties therefore the number of such curves will
not be very large. Recently it is shown explicitly the existence of certain large classes of
elliptic and hyperelliptic curves which are weak against GHS[16],[17],[18].

As we know that in modern cryptography, the most efficient and reliable approach
for security analysis of a particular cryptosystem is, particularly if the security is not
theoretically provable, to apply every possible attack to it in order to find its weak points.
Only systems which have resisted all such attacks can be trusted in practical usage. Thus
it is important and interesting to implement GHS attack to these weak curves.

A GHS attack consists of three parts: to find the curve C/k from E/kg; to transfer
the discrete logarithm on E/k4 to the Jacobian J(C')/k; then apply an index calculus
algorithm to solve the discret logarithm in J(C)/k. As to the first part, it seemed to
be nontrival to find the definition equation of a weak curve E/k4. For the second parts,
although a general strategy using norm-conorm map is well known, efficient and explict
implementation algorithm seemed still unavailable and also nontrivial.

In this paper we show explicit procedures for the first two parts of GHS attack against
two large classes of the elliptic curves over cubic extension fields of odd characteristics.
These two classes, called Type I and Type II curves have been obtained in [16][17][18],
both of them have non-hyperelliptic covering curves of genus three, which are subjected
to the Diem’s double-large-prime attack. We show an algorithm to explicitly construct
these covering curve over k from the elliptic curves over the cubic extension of k with
odd characteristics. Then an algorithm is shown to map the rational point on the elliptic
curve to the divisor of the covering curve, in order to transfer the DLP. In appendex, we
also show an algorithm to test if a Type I or II curve is hyperellipic. These algorithms
are implemented and examples are shown.

2 Weak Covering C' over k3, chark =# 2

Let k = F, be a finite field of odd characteristic, and kg = F ja.

We consider the GHS attack against an algebraic curve Cy/kq with genus go = g(Cp).
A special case is when gy = 1 and Cy = E/kg is an elliptic curve.

Assume that there exists an algebraic curve C'/k such that

w/kq: C — Cp (1)



is a covering defined over kg, which induces the map
7 [kq : Jac(C) — Jac(Ch). (2)
Assume the restriction of 7, onto k
Re(my)/k : Jac(C) — Rey, /1(Jac(Co)) (3)

defines an isogeny over k. Then C' has genus g(C) = dgo. Here, Rey,/x(Jac(Cp)) is the
Weil restriction of Jac(Cp) with respect to extension field kgq/k.

Assume gop =1, d = 3, char(k) # 2.

According to [16][17][18], the elliptic curves Cp which have weak covering C' as genus
three nonhyperelliptic curves can be divided into two types.

Co/ks : y* = (z — a)(z — a)(z — B)(x — B9) (4)
Type L: «, ﬁ € kS\kv #{O[, O‘qvﬂa Bq} =4 (5)
Type II : o € ke\(ka Uks), B8=a? (6)

These elliptic curves can be transformed to the following Legandre canonical forms:

e TypeI:
(8 —a?)(8? - a)
Co/ks: yv* =a(z —1)(x—A), A= (3 —a)(89— ad) @
o Type II:
Co/ks : y? = Nke/ks(ﬂ —afz(z —1)(x—N), A= N /ks (Zﬁ:g) (8)

And #{\} ~ %q?’.

The discrete logarithm on Cy/k3 has a complexity of O(¢*/?3) against the Pollard’s rho
method. On the other hand, apply Diem’s algorithm to nonhyperellitic C', the complexity
of discrete logarithm reduces to O(q).

In particular, define
! —a
o= ( ) ) A (9)

_ qa _l+q
A = ( pratal —ao ) (10)
1 —H

B = "A%A A. (11)

According to Lemma 3, 1,2 [16], the neccesary and sufficient condition for Cy to be Type
I is that the quadratic equation

B-f=p (12)



has a solution f.
Besides, the covering curve C of such a curve Cj is hyperelliptic if and only if

B=A-a, A e GLy(k), TrA = 0. (13)

Here A - o denotes a PG Loy action:

a b aoc+b
A.-(C d)’ A‘a'_coz—i—d (14)

Hereafter we assume that o and 3 do not satisfy the condition (13). Then, the curve C
is a nonhyperelliptic curve over k of genus three. We show in the appendix an algorithm
to test if C' is hyperelliptic.

In this paper, we show following two algorithms:

(i) how to construst the curve C'/k, or to find the definition equation explicitly from
the given curve Cy/ky.

(ii) how to transfer from the DLP over Cy/kq to the DLP over J(C/k).

3 How to construct C/k from Cy/ky

Assume C' is a nonhyperelliptic curve of genus dgg = 3. Thus, its canonical embedding is
a quartic curve in P2. Let o be a gth power Frobenius map and o satisfies

W)=Y aa' +— lx)=> a%%"  ("l(z) € kqlz]). (15)
=1 =1

The embedding map is
cC — P? (16)
P o (w(P): “W(P) %(P)) (17)

where w = d?x and its conjugates generate the first cohomology group

HO(C/k3aQ1) = <w> JW, 7 w>' (18)
We use hereafter the correspondence
we— Z. (19)

w— X, ‘we—Y,

The Galois action on HY(C/ks, Q') is a cyclic shift.
Now we consider the automorphism group of the first coholomogy group

Aut(H(C ks, QY) = {id, ¢, "0, 7 ¢}. (20)



The idenfity on H(C/ks, Q') is

id :

N
[ 1]
N~

The bi-elliptic involution is to change the signs of both Y and Z

X X
o : Y — -Y . (22)
7 — —Z

Then the bi-elliptic involusion under Galois action has the following form.

X — =X
“p:L Y +— Y (23)
J — -7

The bi-elliptic involusion under action of o2 has the following form.

, X — =X
To: ¢ Y — Y (24)
7 — A

3.1 Definition equation of C/k3

The quartic curve C/ks has its definition equation invariant under Gal(ks/k), thus in the
following symmetric form.

Clks = aX*+a%Y*+ a?’ 74
+bX3Y +bY3Z + 07 23X
+eX3Z + YV3X + I Z3Y
+dX2V? + d9Y2Z% + 47 72 X2
+eX?Y 7 + eIXY2Z + T XY 2% = 0. (25)
Since the definition equation of C' is invarinat under the action of automorphisms of
Aut(HO(C,QY)),
C=C+¢(C)+76(C) + 7 $(C).

On the other hand, since ¢, ?¢, ”2¢) change the signs of two variables, the terms with
odd degrees of variables are cancelled each other.

Thus the equation of the curve C'/k3 is in the following form.

Clks: aX*+a9Y* + a2 + bX2Y2 + b1YV222 + 07 Z2X2 =0.  a,beks (26)



3.2 Evaluation of ¢ and b

To find the coefficients a and b in (26), we subsitute into it X = d—;, Y = g‘—g, 7 = (i—”"y.
Since

1 (z — a®)(z — B7)
y? Ny /i ((x — @) (z — B))’

1 (z — o) (z - B)

("y)? Nia/i((z — ) (z — B))’

we substitute these into (26) to obtain

Trg, i(a(z — a® )2 (z — B7)2) + Trpy i (b(z — a)(x — a®)(z — B)(x — 7)) =0.  (27)

3.2.1 Typel

From expansion of (27) we can express the coefficients of each x' as
zt: Tr(a) + Tr(b) (28)
2 —2Tr(a(a? + B7)) — Tr(b(a + B+ o + B7)) (29)
2% TI‘(CL(Oé2q2 + 4aq25q2 + ﬁqu)) + Tl“(b{aq2+1 + (a+ quz)(ﬁ + ﬁq2) + 5q2+1})(30)
z: —2Tr(a(a®” B + a® B27)) — Te(b{a® (B + 67) + 87 a+aT)}) (31
1: Tr(aa2q252q2) + Tr(baq2+1[3q2+1) (32)

which are identically zeros.
In order to calculate a, b explicitly, we express a,b € k3 on a k-basis of k3.

a = ag+ aje + aze® (ag, ay, as € k) (33)
b =bg + bie + bae® (bg, by, by € k) (34)

where € generates k3 = k(e).
Belows, we express the coefficients of ? in (27) in terms of a;, b;.
First, in the coefficient of 2%, Tr(a) is given by

Tr(a) = 3ag+ Tr(e)a; + Tr(e?)as. (35)
Similarly,

Tr(b) = 3bg + Tr(e)by + Tr(e*)by. (36)



Next, in the coefficient of 23, Tr(a(a?” + 37°)) is given by

Tr(a(a? + 7))
= (o + BT ) (ap + are + aze?)
o+ B)(ag + a1l + aze®®) + (a + B9 (ag + are?” + aze®d’)
= Tr(a+ B)ag+ Tr((a + Be)a + Tr((a + )€V as. (37)

Tr(b(a + B+ o + 7°)) is given by

Tr(b(a+ B+ a? + qu)) (38)
= (a4 B+a% + BT)(by + bre + bae?) + (0 + B + o+ B)(by + bre? + bye)

T + 87+ al + 57 (b + bre?” + by
— Tr(a?+ 87+ a+ B)bo + Tr((af + B9+ a + B)eDby + Tr((a + B9 + a + 8)e2)bs.

In the coefficient of 22, T1r(a(042‘12 + 4oﬂzﬂq2 + ﬂqu)) is given by

Tr(a(a?” + 407 BT 4 320°))
= Tr(a® +4af + 6%ag + Tr((a? + 4aB + f*)eV)ay + Tr((a? + 4aB + 3%)e*!)az(39)

and Tr(b{a®*+ + (a+a®)(B+ 47) + BT F1}) is given by

Te(b{a™ ! + (a+a®)(G+67) + 5771}
= Tr(a® + (af + )87+ B) + 677 )bo + Tr({a®™" + (a? + @) (87 + B) + 47" }e?)by
+Tr({a?™ + (af + @)(B7 + §) + BT }e2)bs. (40)

In the coefficient of z, Tr(a(a?’ 89" + a4° 324%)) is given by

Tr(a(@®” 57 +a §0))
= Tr(a?B + af?)ag + Tr((?8 + af)el)ar + Tr((?B + af?)e*)as. (41)
and Tr(b{a?" (8 + A7) + BT (o + a?)}) is given by

Tr(b{a? (5 +57) + 57 (@ +aT)})
= Tr(a?f(a+ B) + af(a? + £7))by + Tr({a?p (o + B) + af(a? + ) }e?)by
+Tr({a?B%(a + B) + aB(al + 1) }29)bs. (42)

In the constant term of (27), Tr(aa2?"3%7) is given by
Tr(aa2q2ﬂ2q2) = Tr(a?6%)ag + Tr(a?B%e)ay + Tr(a?F%€*)as. (43)
and Tr(bad"t137°+1) is given by

Tr(baq2+1ﬁq2+1) — T‘I‘(O&q+1ﬁq+l)b0—|—T1”(Oﬂ+1ﬂq+1eq)b1+Tr((JéQ+1ﬂq+162q)b2. (44)

7



Combining the above equations yields the following system of simultaneous linear
equations.

3ap + Tr(e)ay + Tr(e?)as + 3by + Tr(e)by + Tr(e?)bgy =0

2Tr(a + B)ap + 2Tr((a + B)e?)ar + 2Tr((a + B)e*)as
+Tr(ad 4 B9+ a + B)bg + Tr((a? + B9 + o+ B)e?)by + Tr((ad + B + a + £)e?9)by = 0

Tr(a? 4 4aB + %)ag + Tr((a? + 4aB + 2)e?)ay + Tr((a? + 4a8 + $%)e2)ay
+Tr(a®* + (o + a)(67 + 5) + 07" bo + Tr({a?™ + (a + )(8 + B) + 577 }en)by
+Tr({a®™! + (a? 4 a)(B7+ B) + BTH1}e)by = 0

2Tr(a?8 + aB?)ap + 2Tr((a?B + af?)e?)ay + 2Tr((a?8 + af?)e??)as
+Tr(a?B%(a + B) + aB(a? + )b + Tr({a?B8%(a + B) + aB(a? + B) }e?)by
+Tr({a?B9(a + B) + af(a? + 39)}e2)by = 0

Tr(a?B%)ag + Tr(a?B%e9)ar + Tr(a?B%€*?)ay
+Tr(ad1 39T by + Tr(adt1 397 ed)by + Tr(adt1 39H129)by = 0

From the equation (26), we can assume ag = 1. Accordingly, the above simultaneous linear
equations can be written as

di1 diz diz dig dis ay e1
do1 doy dog dag dos as ()
d31 ds32 dsz d3q dss bo | =1 es |- (45)
dar dyo dyz dyg  dss by eq
ds1 ds2 ds3 dsq dss b2 es

where d;; are the coefficients of a1, az, by, b1, b2 in each equation. e; the negations of
the coefficients of ag.

Thus a1, as, by, b1, bs can be obtained by solution of the above linear equation given
a, B and e.

3.2.2 Typell

For Type II curves, the equation (27) have coefficents of z* as follows.
First, the coefficient of z? is

Tr(a) + Tr(b) = 3ag + Tr(e)ar + Tr(e*)az + 3by + Tr(e)by + Tr(e?)by = 0.  (46)



Next, the coefficent of 22 is as follows:
2Tr(a(a? + 7)) + Tr(b(a+ B+ af + 7))
= 2T (Tryg ay (@))ao + 2Tr(Tryg j, (@) e?)ar + 2Tr(Tryg g, ()€Y ay
Tr({Tryg ks (@)} + Trgg /i, () )bo + Tr( [{Trke/kg(a)}q + Trkg/k;;(a)} e?)b1

Tr([{Trgg /s ()} + Tryg /i, ()] €29)b2
_— (47)

+ o+

The coefficient of 22 is
Tr(a(a® + 402 87 + 32)) + Tr(b{a” ! + (a+ o) (B + %) + 571}
= Tr({Trgg i, (@)} + 2Ny sk, (@) a0 + Tr([{ Trgg i, (@)} + 2N i, ()] €9
+ T ( |:Trk6/k‘3 (@)? + 2Ngy iy (04)] €)az
T ({ Trgg /iy ()} 4 {Nig /0y (@)} + Nigg s (@) bo
T ([{Trgg iy ()} + {Nig 71, (@) 39+ Nigg /s ()] €01
Tr([{Trgg s (@) 17+ {Nigg /s ()39 4 Nigg /5 ()] €292

_|_

(07

I
o
—~
IS
o
SN—

The coefficient of z is
2Tx(a(0® A7 + o 30°)) + Tr(b{a® (B + A7) + B (a + a”)})
= 2Tr(Trpg /hy () Npg iy (@) ao + 2T (Trg sy () Nigg /1 () €)@y
+2Tr(Tryg /iy ()N /1 () 2D

+Tr(Trk6/k3 <a>{Nk6/k3( )}q + {Trks/kg (Oé)} Nk6/k3 (a))b
AT ([ Trgg /iy () { N s (@)} 4 { T iy (@) } N g /1y () | €)1
+Tr([Tryg g () { Nigg /1y (@)} 4 {Trg iy (@)} N 71 ()] €292

= 0. (49)

The constant term of (27) for Type II curves is

Tr(aa2q 52(1 )+ Tr(bozqzﬂﬁq +1)
= Tr({Ng/ks (@)}*)ao + Tr({Nyg iy (@) }2e?)ar + Tr({ Ny iy (@) }2e*)az

T ({Ngg 7k (@)} b0 + Tr({Nig iy (@)1 €)1 + Tr({Npg iy (@)} )by
_— (50)

Then one can also build and solve a system of simultaneous linear equations, as in the
case of Type I, in a1, as, by, b1, bo.
Hereafter, we assume that a,b are known.



3.3 Definition equation of C/k

Notice that X, Y, Z correspond to a basis w, “w, %" w of H(C/ks, ). Since C is defined
over k, the next step is to find a basis of HY(C/k, Q).

The necessary and sufficient condition for {wy,ws, w3} to be such a basis, i.e. H°(C/k, Q') =
(w1, wa,ws) is

w = w1 + (5&12 + 1/)&)3, 3’77 57 ¢ S k3 (51)
v o909

st. det(U) # 0. where U:=| ¢ 1 o7 |. (52)
A U

We will use the following correspondence.
w1 <« g’ w9 — g, QJ3 — Z (53)
Then X, Y, Z are expressed as

X =z + 0y + vz
Y =59z + 8%y + ¢z : (54)
Z=1Tz+6Ty+¢7z

or

X
Y | =U
A

(55)

(ISINES

Given v, ¢, 1, one substitutes (54) into (26) to obtain a definition equation of the
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curve C'/k as
Clk: Tr(ay? + by?772)z?
+Tr(4av?s + {2997269 + 29°7T15}b) 2%y
+Tr(day* + {29927 + 292 p}b)z®z
FTe(6a7202 + {12620 + 72457 4 dyTH10+11p) 122
+Tr(12a7%6v + {22697 + 41507 + 24%954) + 47q+16q1/1}b)§2g§
Te(6a720? + {72020 + 7202 4 40 1o 11p) 2222
Tr(4dayd® + {2¢969%2 + 2762711 b) 2y
Tr(12a70%) + {2976%7 + 4987197 + 4995771 + 296299 }b)zy’2
Tr(12a76¢° + {27969% + 29607 4 499607 + 4y 6999 1 b) 2y 2>
Tr(4ayy® 4+ {2997 + 2>+ 1b) 22
+Tr(ad* + b5212)y*

+ +

+ o+ o+

+Tr(4ad®y + {26927 4 262 1 }b)y 2
+Tr(6a521/}2 + {62¢2q + 52(1,‘!)2 4 45q+1wq+l}b)72§2
+Tr(4adyp® + {26972 + 20021 }b)y2?
+Tr(ap" + by?1+2)21
— 0. (56)
3.4 Find a basis of H’(C/k,Q!) to determine v, § and
In this section, we give explicitly a basis of H°(C/k, ') and determine v, § and 1.
Define
wi = wot ‘w+ Tw (57)
wy = ew+e€? w4+ i a (58)
wy = w4207y, (59)
Then
x X
y |=v| v | (60)
z A4
The Vandermonde’s matrix
1 1 1
V=| ¢ ¢ & (61)
2 e 2
has its determinant as
det(V) = N(e — €?) = (e — e?)(e? — 7’ )(e” — €) = N(e — €?) # 0 (62)



then {w;} is a basis of H*(C/k,Q'). We can take U = V! or

X z
Y | =U| vy (63)
Z z
and the inverse matrix can be expressed by
v 0
v=vi=| 4 s g | (64)
’}/q2 5(]2 qu?
Thus, one has
€20°+a _ a*+2q €24 _ 20° €@’ _ a
= =" —andp= ——. 65
7 det(Vy det(vy Y= G (65)

Now we have a,b, x,y,z and v, d,v explicitly thus the definition equation of C'/k.

4 Transfer DLP from Cy/ks to C'/k

The transfer of DLP from Cy/kq to C'/k was known to use norm-conorm map. However,
this map seemed not given explicitly and not trivial. Here we use language of divisors
instead of function fields to give an explicit map from Jac(Cp/k3) to Jac(C/k).

The transfer map consists of a trace and a pullback map.

Denote by 7* the pullback map induced by the cover map = /k3: C — Cy. i.e.,

7w Jac(Co/ks) — Jac(C/ks) (66)
P—-Py — Dp—Dp,
where P — Py is a divisor of Jac(Cy/k3) and Dp = ) . e;Q; a divisor of Jac(C/k3) s.t.
m(Q;) = P, e; is the ramification index at Q);.
This map corresponds to the conorm map of the function fields.
Denote the trace map of divisor groups (Here it is not as before on ks/k but on the
divisor group)
Tri, /i 0 Jac(C/ks) —  Jac(C/k) (67)
Dp — Dp+°Dp+ UzDP
which corresponds to the norm map of the function fields.

Then the transfer map is a homomorphism defined by the composition of 7* with the
trace map

X = Trp, o7 2 Jac(Co/k3) — Jac(C/k). (68)

12



Given Py, P», two points on Cy such that P» € (P1), the elliptic curve discrete loga-
rithm problem is to find an integer A s.t. P» = AP;. Since the group of points on Cj and
the group Jac(Cp) are isomorphic, we can transfer from P» = AP} to

(P2 = Poo) = APt = Poo) (69)

on Jac(Cp) where Py is the point at infinity.
Finally, the homomorphism x transfers the above discrete logarithm to the discret
logarithm on Jac(C/k) which is to find A such that

(X (P2) = x(Pxo)) = Ax(P1) — x(Pxo))- (70)

So, it suffices to find .
In fact, m can be factored into

7/ks = m 0o (71)

where 7 /ks is the map from C/ks defined by (26) to Cy and my/ks is an isomorphism
from C/ks defined by the equation (56) of C'/k to C/ks defined by (26) which can be
represented by (63) where the matrix U is known.

We find 7 as follows.

Let s, t be s = X, t = £ then (26) becomes

C: a+als’ +alt + bs® + b2 + b7 12 = 0. (72)
Additionally let u, v be u = s2, v = t? then (72) becomes
a+ a®? + a®v® + bu + bluv + b4 v =0 (73)
which can be identified with P!(k3), while C is its (2, 2)-covering.

Below, we first consiter Type I case.

4.1 Typel

Since (73) is a genus zero curve, we choose the point on it ug = (a8)~"+L, vy = (aB)~7" 4
when x = 0.

Then a point (u,v) of (73) are uniquely determined by a line which has slope [ and
passes through the point (ug,vo) = ((a8) L, (a8)~7"+49) and the point (u, v).

The equation of the line is

v— (af) "I T = I(u— (af) T ). (74)

The slope [ can be written as
v — (ag)—qurq

e

13



G-a)z-8) _ (@—a)—p)
(c—af)@—p7) " (@ —ar)@— 57

Substituting u = into (74), the denominator

of [ becomes

{1-(aB) "’ + (—a— B+ aB T + o CH B

_ —¢*+1
u (048) e (J} _ aq2)(:c _ qu) (76)
The numerator of [ becomes
o (af)-te = (L= (@B) THe?+(—at — 4ol am T HGYe

(o — o)z — B7)

In the sequal,

. {1- (ag)—q%rq}x + (—al — 39 + QiB=T+a 4 a—q%q/gq) 78)
1= (@f) et (ca - B+af T L ameHg)

Define G11, Gi2, Ga1, G2z € k3

Gy = 1—(aB) e (79)
G = —al— 74+ Ip~0+ 4 o T30 (80)
Go = 1—(af) T+ (81)
Go = —a—f+af T 4o CHg (82)
Then [ can be expressed by x under the action of the matrix G.
G11 Giz >
l=G-z st. G:= € GLa(k3). 83
(G a2 ) eca) (53)
In particular, = is now the image of [ under action of G~
_ Gl — Gio
r = G ll=—2—"= 84
—Go1l+ Gn (84)
Now we have expressed x by [, to find 71 next we try to express x by X,Y, Z directly.
Substituting s = X’ t= X into [, one has

22— (ap)
L= Y2 — (af)-@H1X2’ (85)

Therefore

G272 — Goa(af) T HIX2 — G1oY? + Gra(af) T 1 X2

=Gl = |
’ ~G21Z? + Go1(af) "0 H1X2 + G Y2 — Gri(af) ¢ 1 X2

(86)
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To find y, one can use the definition equation of Type I curve Cy : 3? = (z — a)(x —

af)(z = B)(x — 07),
(z — a)(x = a®)(z = B)(x — (7)

S = st. (87)
7Yy
Then N )
s
(z —a)(z —a9)(z - f)(z — B9)
To find Ny, /,(y), use the definition of Cy again
Niy/k(W?) = Nigu(@ — a)* Ny ju(z — 8)%. (89)
Now Ny, /x(y) is expressed by z as
Nis/k(y) = £Npy i (2 — )Ny (2 = B). (90)
Hence, y can be written as
y = Est(e—a”)(x—p") (91)
and we use y = st(z — a4’ )(z — $7°) hereafter.
Similar to x, y can also be expressed by X, Y, Z.
y = stz —a®)(@—p7) (92)
YZ
= Sple—aT)(@—p7).

From the coordinates z, y of the affice curve Cj, one can obtain projective coordinates
of Cy as follows.

. . €2
First, denote x as a fraction x = — where z1 denotes the numerator and x5 the
1
denomenator.

Then =z, y, z can be expressed as

_r2 Y2 [xy  g2) (T2 g -
m—xl,y—X2<Il a><xl gr ), z=1 (93)

Thus one obtains the projective coordinates of Cy as
_ 2 _ 42 _ ad? o 2y2
x=mxe X", y=YZ(xg —a? x1)(xey — 0T x1), z=21"X". (94)
Now m; can be expressed as

m: C — (Cy
(X7 Y? Z) = (w7 y? Z)

such that
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z = {—(aB) 220G + (aB) 2CHIG Gy + (0f) X GGy — (a8) T2 MG Gan ) XO
+H2(aB) T GG — (f) TG G — (af) T G 12Go1 } XY
H— () TG 1Gor — (af) T LG 12Go + 2(af) T TG Gaa} X122 — G11 G2 XY
+(G11G22 + G12G21) XY Z? — Gy G X*Z*, (95)

y = {(@B) TG+ (af) (T + 7)G11Gra — 2(aB) TG Gy
—(aﬁ)_2q2+q+l(0ﬂ2 + 5q2)G11022 + (aﬁ)_2q2+2G122 - (aﬁ)_2q2+q+1(0¢q2 + qu)Gme
—2(a/3)72q2+q+1G12G22 + (Oéﬂ)fqgﬁquZ + (Ofﬂ)72q2+2q(@q2 + ﬂqQ)G21G22
+(aﬁ)_2q2+2‘1G222}X4YZ
+{-2aB8G3, — 2(aB) T (@ + BT)G11G2 + 2(aB)1G11Gar + (aB) T T (a? + B7)G11Gas
—2(aB) G + (aB) Tl + BT)G1aGar + 2(aB) T TG G0} X2Y 3 Z
+{208G11Ga1 + (aB) T (a? + BT)G11Gaz + (aB) " (a? + ) G12Ga
+2(aB) T G12Gas — 2(aB)1Ga 2 — 2(afB) T Ul + BT )G Gas — 2(af) T TGV X2Y 73
—|—{(a,8)q2G112 + (04(12 + 5q2)G11G12 +G12?}Y°Z
—{2(a5)q2GllG21 + (Oéq2 + ﬁqz)GnGm + (Oéq2 + ﬁq2)G12G21 +2G19G} Y3 73
H{(aB)T G + (a7 + B7)G1 Gy + G®}Y 25, (96)

z = {(aB)2 G2 - 2(af) 2 TG Gy + (af) Gy 2} XO
+‘{*2(@5)_(]2+1G112 + 2(aﬂ)_q2+qG11G21}X4Y2
+{2(aB) TG Gay — 2(af) " TIG 2} XA 22
+G112 X2V — 2G 1 G XY 2 22 + G X2 72, (97)

4.2 Type Il

Calculation for Type II curves is similar to Type I, what we need is to confirm that (86),
(92) are defined over k3.
For (86), first the entries of the matrix G, G11, G12, G21, G2z become

G = 1= {Nygspy (@)} (98)
Grz = —{Trkypuy (@)} + {Nigjay (@)} { Ty iy ()} (99)
Go1 = 1 —{Nyg/k, (a)}_q2+1 (100)
Gao = —Trpg iy () + Ny iy (@) { Ty iy (@)} (101)

Thus x can be expressed as,

T = GnZ® — GQQ{Nke/ks(O‘)}fq2+qX2 - GpY?+ G12{Nks/k3(oé)}*q2+1X2 (102)
 —G21Z2 + Gy {Nyy iy ()} P HIX2 + G11Y2 — Gy {Npg iy (@)}~ HX2
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which has only ks-coefficients.
Next, (92) becomes,

v o= alo—a®)@— 57 (103)

- %@2 — { Ty iy ()} + { Ny iy ()}

which is also ks-coefficients. Thus we are done.

5 Computer experiments

The computation environment as follows.
e OS: Windows XP Professional SP2
e CPU: Pentium4 3.2GHz
e Memory: 1.5GB
e Programming language: Magma ver.2.13-14

We start from an elliptic curve E in Legandre form and a base point Pg of E. Pg
and its m-multiple m P are mapped to a point P and mP on an elliptic curve Cy which
is isomorphic to E. Then we find x(P) and x(mP) in Jac(C).

5.1 Typel

q = 1152921504606851053, k =F,, ks = k[z]/(z> = 2), e €kyst. 3 —2=0
A = 685592167687491848€> + 685592167687491847¢ + 3

The elliptic curve FE is in projective Legandre form.

Elks: y?z=x(x — 2)(x — \2)

5.1.1 Test of Type I curves
Let a =€+ 1, then
4 - < ajy  ar >
a G2
a1 = 238798614356861922¢ + 457061445124994566

685592167687491848¢> 4 685592167687491847¢ + 1152921504606851052
1, a2 = 924390782044353769¢ + 457061445124994564

a2

a1

17



b1 b1
B =
( ba1  boo >

bii = 262+ e+ 477597228713723848

bis = 1152921504606851050€% 4 1152921504606851050€ + 1152921504606851044
boy = €4 e+ 1152921504606851052

by = 1152921504606851051€> + 1152921504606851052¢ + 477597228713723844

The quadratic equation by 2% + (ba — by1)x — bia = 0 has two solutions:
{62 + 2e 4+ 1, 733677321113450670€> 4 524055229366750479¢ + 209622091746700193}
Therefore, E is Type I. Take (3 = €2 4 2¢ + 1 = a?, we know that E is ks-isomorphic to
Co/ks: y*2* = (z — az)(z — a%2)(z — B2)(x — B%2).

In fact, to test of Type I curves, we chosen A = 2, ..., 10001, the average time to test
each curve is 0.0356858 second. Among these curves, 5018 are Type 1.

5.1.2 Finding definition equation of covering curve C'/k

The covering C/k of Cy/ks is found using the algorithm shown in the section 4.

C/k : 9971450589670646512%y + 5885864651238773402° 2
9071311233267196372°y” + 8967167258053285972°y2
9737492909756914112%2% + 1024819115206089825zy"
280456204442426083zy>z + 318544658202842297xy 2>
108887030990647043922% + 973749290975691411y*
294293232561938670y° 2 + 1120895907256660746y 2
537516640893478926y2" + 9750510906658652912* = 0

+ + + + + +

To find the C/k from E takes 0.500 seconds, where 0.063 second is used to test if E is
Type I, the rest 0.437 is used to build C/k.
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5.1.3 Transfer of DLP
The isomorphism from E to Cy, ¢ : E — (Y is,

vt B —
(x:y:2z) — (2o, Yy : 2Cy)

(364080906763379389¢? + 963836771592621382¢ + 45113745901700524) 2>
(697163568297605614€> 4- 434818842429256188¢ 4 651968585745464837) 22
(111016546300925012162 + 159411805327734998¢ + 1139314830835562614)22,
(10327651625130523562 + 814915306056127686¢ + 861572657639767622)yz,
(88343671321325024562 + 38740486277729303€ + 1108413203079573589):62
(61404587463225689962 + 476034365815665715¢ + 725151688441932395)x2
( )

ro, =

+ o+

YCo

2C)

+
4+ (1080996664374642930€% 4 29168798634607191€ + 130243006693127807) 2>

The inverse ma Lig

pL
L_11 C(] - F

(x:y:2) — (zg:YyE:2E)
TEp = (22853072256249728362 + 924390782044353770€ + 228530722562497284)1‘2
+ (46732933691935920562 + 218262830768132642¢ + 1152921504606851049)x 2
+ (46732933691935920562 + 249066506151226564€ + 685592167687491850)22,
yp = (1098530568356793848¢> 4 364091151918511417€ + 156909573516618064)y 2,

zp = x°+ (218262830768132643¢ + 1152921504606851051)z2
4+ (685592167687491847€¢> + 934658673838718410¢ + 1)22.
For an example, take a base point on F
E>Pp = (326484750616207568¢* 4 398950984132538563¢ + 1105635074365709877
155216221479156187€% + 496624914529310471€ + 708459555015860335 : 1)

has a prime order 383123885216476279036490868125406665879768163968774759
Under the isomorphism ¢, Pg is mapped to P = +(Pg) on Cj.

P = (38258354984063352862 + 1049745021810473522¢ + 527223886793925136
297304679459601150€% 4 626540460794459518¢ 4 906489884274840212 : 1)

From P one obtaines Dp and x(P) as follows:

Dp=Q1+Q2
q = 712456629299217053¢> + 953676660329800786¢ + 707524424701837646
g = 666557349447958527 2 + 352353429259986813¢ + 1073895093206451353
qs = 805061362249374584¢> + 1042799979746437227¢ + 880598497458186947
qs = 527740077639497471¢> + 947552956030900685¢ + 390269122338929978

Q1 = (q1: q: 1)eC/ks, Q2=(q3: qu: 1) e C/ks3
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X(P)=Dp+7Dp+7 Dp

Dp = “Qi1+7Q, “Dp=""Q1+7 Q2

Q1 = (7 @?: 1), 7Qy = (37 : u7: 1)

2 2 2 2 2 2
Q1 = (@ @t 1), 7 Q2= (37 qu? 1 1).

The time needs to calculate from Py to x(P) is 17.578 seconds.
Now let

m = 323265910321268664514129224009489670151908972955376519.

E > mPg = (792310221862816838¢> + 180893695299760122¢ + 952490131358998041
669346193997384009¢% 4 488209130112427093¢ + 787028498315590410 : 1).

This mPg is also mapped to Cyp > mP = «(mPg),

mP = (306607799499267855¢> + 445518833785785499¢ + 141583952331989134
585481570718467983€> 4 205882509018091440¢ 4 573359644129055255 : 1)

One then from mP calculates D,,p and x(mP) as follows.

Dpp = Q1+ Q2

@ = 1062802094539799458¢> 4 296237055839945308¢ + 1057758671244525799
¢ = 344189168181796656¢> + 529982675029763103¢ + 1134629167237810190
g3 = 666903385786606500€% + 44288219254827598¢ + 362073667770795536

@ = 8690116147489311€% + 330243703134573774€ + 1048131323955608138

Q1 = (@1: q2: 1) € CJks, Qa=1(q3: qu: 1) € C/ks

X(mp) = Dyp +7Dypp + U2DmP

2 2 2
“Dpp = “Q1+7Q2, " Dpmp=7Q1+7 Q2
Q= (7 ?: 1), Qo = (q37: q47: 1)
2 2 2 2 2 2
Q1 = (7 T 1), 7Qa= (g7 : @u? 1)

The time taken from mPg to calculate x(mP) is 9.859 seconds.
In fact, given {2°Pg|0 < i < 999}, the average time to calculate x(2°P) is 17.8545
seconds.
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5.2 Typell

Assume
k=T, q=1152921504606850871
klz] > a(z)= 2>+ 9435508578264456581% + 1018916892242739535:x
+  475736851389393367
ks = k[z]/(a(z)), Ye € k3 s.t.ale) =0
k3] b(z) = 22 + (595455718590278195€% + 926100813892756385¢

508785546940475093)x + 463189347482206220¢> + 936329421988414364¢
172788951250122324
ke = ks[x]/(b(x)), 377 € kg s.t. b(n) =0

+ 4w

a=n+e f=a’

Suppose one has three isomorphic elliptic curves:
Co/ks : 922% = (z— az)(z — a%2)(z — B2)(z — B%%)

ol — «
Ey\/ks vz = N ks (6 —ax(x—z)(x — Az), A= Nie ks <oﬂ—ﬂ>

) 9 B B B ol — o
E/ks : yz=x(r—2)(x - Az), A= Ng/p, (aq—ﬁ>

5.2.1 Find definition equation of the covering curve C/k

Using the algorithm in the section 4, one find the definition equation of C'//k as follows.

C/k : 261966538672930061z" + 7195206328192884172%y
7112061237507516372° 2 + 5560611888918646032>y>
31160528287760988z°yz + 775851849086806382>2>
982040544271606073zy" + 8607801413500833612y>z
853202732103761301zy2? + 953674572673705028x2>
1020431679265907920y" + 609659296596817935y° 2
954717973652630225y%2> + 717468332466366860y 2"
10231608690858229392* = 0

+ o+ 4+ + +

_l’_

Calculation of C'/k takes 0.500 second.
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5.2.2 Transfer of DLP
We first find the isomorphism from E to E\, £ : E — FE) as follows.

& F

— E/\
(x:y:2) —

$Eh :yﬂh :ZEA)

(
rp, = (50839431 1291495279¢? + 644802231052062119¢ + 115125795437003532),
YE, = (177549366635458744€? + 533904715816049699¢ + 115337281084752855)y,
zp, = (50839431 1291495279¢ + 644802231052062119¢ + 115125795437003532)
Its inverse map &
&' Ey - E
(x:y:2) — (rg:yg:zp)
rp = (953930729849692988¢% + 810853815288336082¢ + 251110930387145558),
yp = (1138672552244146500€> 4 82385099258240519¢ + 13496951135910011)y,
2z = (953930729849692988¢> 4 810853815288336082¢ + 251110930387145558)

Next we calculate the isomorphism from E) to Cy, 7: E\ — Cj as follows.

T fgx
(x:y:2)

$CO

Co

11

(Tco  Yay * 2¢y)

(5108347127428822216 %f45940969942361154964*472370343629151306)x z
(234716058225017546 + 309377569878570651¢ 4 7799912042878324)xy 2
(9310764505047984626 +—5257434543217735256%—30041499258217822)xz
(9778185145575292656 +—76550624235729418564—252827041845239982)yz
(10003701125658547536 +—32820971416392236064—293352898935549091)
(11027685826953954666 +—80165681137078838264—1017012503317150212)
(1623973202421071526 +—55960491134889241764—312861297828079035)$ z
(

(

(

(

(

(

(

+ o+ o+ o+

YCo

558782202587610802¢% 4 590994009401290871¢ 4+ 1152361677914957201) 2>
11735802911250877€> + 731149537242710761€ + 3899956021439162)y° 2
764240535732840601¢> %—87562629494731435364—1076372293311177227)
48504428759686342¢> + 341476326696745685¢ + 96595209872171953) 23
1105978292961847363¢> %—5341663648497095696%71137321680521094223)x z
700411960197286424¢> %—3967395443913758736%—141613337225890943)xz
1019981124724128614€> 4 858207083874918419¢ + 885871207426547152) 23

+ o+ o+ + o+

ZCO

+ +
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The inverse map 7! is

1 Co

(x:y:2)

TE,

Ey

1l

(T, YE, * 2B))

(1180317244173094346 + 350724518050046294¢ + 1076063691653845190)2:2 2
(670405242279340424€> + 845948962475385428¢ + 764269400807635885)2:2>
(118031724417309434€> 4 350724518050046294¢ + 1076063691653845190)yz
(33504438785859910€ + 683030287832610661¢ + 617705016327370265) "
(916858055772232003€ 4 451472468506758283¢ + 153715625906011362)
(294627282375680470€> 4 920917626394396329¢ + 13034806790794087)z% 2
(

(

(

(

(

+ 4+ +

YE,

916858055772232003¢? + 451472468506758283¢ + 153715625906011362)xy2
410075187838725568¢> + 280227746762147164€ + 841519322959781078):Uz
482516262327510447€> + 306972542131465443¢ + 388652103799214986)yz
574942304842369359¢% 4 1073906081772340197¢ + 240967744611792259) ,
979613630890391737€> 4 873389934362453645¢ + 48321338448744427)2°

+ o+ o+ o+ o+

2B, =
For an example, a base point on F is chosen as

E>Pp = (832338441672439527¢* + 369146262528272140¢ + 788595051686438200
916492546448194121€% 4 805387000881236587¢ + 244343815529721159 : 1)

Pr has a prime order : ord(Pg) = 383123885216476097596869443538990953306902164540505859.
This base point is mapped by &, T to a point on Cj.
First, Pg is mapped to Ey 5 Pg, = {(Pg) as follows.

Pg, = (832338441672439527¢2 + 369146262528272140¢ + 788595051686438200
418553404991940047€> + 588606626377609234¢ + 1115855807315016888 : 1)

Next, it is mapped to Cy 2 P = 7(Pg, )

P = (1003935588241243168¢* + 895066217057986955¢ + 382773722993550439
678187206200284353¢> 4 191639213584321008¢ 4 673955618306920562 : 1)

Now we find Dp and x(P) as follows.

Dp =Q1+ Q2
qQ = 1117937506258149424€> + 644917233207069268¢ + 165251471146963260
qQp = 403047038883440000¢ + 653044510390728782¢ + 817374729039765305
q3 = 994819008370064408¢ + 979271450995116569¢ + 737452330843672573
qq = 154176739126340404€> + 1152026966659272902¢ + 1072497119895785670

Q1 = (q1: q: 1)eC/ks, Q2=(q3: qu: 1) e C/ks3
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X(P)=Dp+7Dp+7 Dp

“Dp = Q1+ 7Qq, “Dp=""Q1+7 Qs
Q= (7 1), Qo= (q37: q47: 1)

2 2 2 2 2 2
Q1 = (7 @t 1), Q2= (3" : @u? : 1)

To calculte x(P) from Pg takes 21.062 seconds.
Now take m = 182096100370109847529739170552459116709626522690507709, m Pg, is

E > mPg = (522521730599820536¢> + 443211485181667680¢ + 408033332463290588
191091537075096495¢? + 622369471011935091¢ + 865873192897372210 : 1)

mPg is also mapped first to Ey > mPg, = {(mPg),

mPg, = (52252173059982053662 + 443211485181667680€ + 408033332463290588
872463812381179496€> 4 234010666736627778¢ 4 346552211766968750 : 1)

It is then mapped to Cp > mP = 7(mPg, ):

mP = (457134269332727797¢* 4 1093275824725039274¢ 4 664447513560384851
955617022224051997€> 4 777335844438891994¢ 4 420110831598890971 : 1)

From mP, one can find D,,p and x(mP) as follows.

Dpp=Q1+ Q2

g1 = 30078314732782878¢* + 988992501393194153€ + 673404688332712109
g2 = 1148714815680333640¢> + 423917326839288390¢ + 503765461488992377
g3 = T34788579677917913€> + 68926008534553154¢ + 77740516941101348

@ = T750968410676713515¢2 + 683426730428696431€ + 823046869633863637

Q1 = (q: q: 1)eClks, Q2=1(q3: q4: 1) € C/ks3
X(mP) = Dpp +7Dypp + OszP
“Dpp = “Q14°Qz " Dpp="Q1 47 Qs

Q1 = (7 @7: 1), Q2= (37 qu?: 1)
2 2 2 2 2 2
Q1 = (@7 @t 1), T Q= (37 : @ : 1)

Calculations from mPg to x(mP) take 11.281 seconds.
In fact, given {2'Pg|0 < i < 999}, the average time to find x(2!P) is 23.155937
seconds.
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6

Conclusion

We shown two algorithms to implement the GHS attack against elliptic curve cryptosys-
tems over cubic extension fields of odd characteristics and the results of the computer
simulation. The first algorithm is to build definition equation of the nonhyperelliptic cov-
ering C'/k of the elliptic curve Cy/ks. The second algorithm transfers explicitly the DLP
over Cy/k to the DLP over Jac(C/k). These DLP over Jac(C/k) can be solved using
Diem’s double-large-prime algorithm.
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Appendix: On condition (13) of hyperellipticity

Type I

b
By (13), 8 =A -a = aai—d (a, b, ¢, d € k). Combining with TrA = 0, one has the
ca
following variation of the condition (13)

C is hyperelliptic <= f=A4-a, Aec GLy(k), TrA=0 (104)
<= Either (i) or (ii) is true.
3 _ a b _ o —aatb gy
(1)A—(O a),ﬁ—A a=2"=—a-b,
or a+f=-V¢ek (105)

(i) A= < 1 _ba> f=A a= 00t
. . .. ac+b
In particular, the condition (ii) means (= , OT
a—a
af—(a+pla—b = 0 (106)

Sine any element | € k3 can be expressed on a basis {1, €, €?} as

l=lg+lLe+1le® Iy L, laek

assume
a = oo+ ae+ ae, (107)
B = Po+Pie+ Pac’ (108)
Then
af = (ap)o+ (af)ic + (af)2e” (109)
—(a+Ba = —(ao+ fo)a— (a1 + fi)ac — (az + fo)ac’ (110)
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(106) becomes

af —(a+B)a—1>b
{(aB)o — (a0 + Bo)a — b} + {(aB)1 — (a1 + Bi)a}te + {(afB)2 — (a2 + Ba)a}e’
=0 (111)

Therefore condition (ii) can be replaced by existance of solutions in the following linear
equations in a, b

0

—(ap + Bo)a—b+ (af)o =
0 (112)
0

—(a1 + B1)a+ (af)1
—(a2 + B2)a + (af)2

When one wishes to find a nonhyperelliptic curve, the condition (13) has to be avoided.
Therefore neither (i) nor (ii) should hold for o and 3. This means

O a+B¢k (113)

- —(ag+ Bo)a—b+ (aB)o =0

(i)  The system of equations ¢ —(a1 + f1)a+ (af)1 =0 (114)
—(a2 + B2)a+ (af)2 =0

has no solution.

—(ag+ o) -1 —(ao+fo) -1 —(aB)o
B:=| —(a1+p61) 0 , B = —(c1+3) 0 —(afn (115)
—(ag+p2) 0O —(a2+B2) 0 —(ap)2

Define

(ii) holds if and only if rank B # rank B’.

In other words, to obtain a nonhyperelliptic covering curve C'/k, one only needs to
choose a and (3 such that o + 3 ¢ k and rank B # rank B'.

Type 11

For Type 1II case, since a + 3 = Try, /i, (), a8 = Ny, (), (i) and (ii) in Type I can be
replaced by

6 Trkﬁ/ks () ¢ k
o —{ Tk ks (@) oa — b+ {Npgpy (@) }o =0
(ii)  the system of equations ~{Trpg jos (@) }1@ + {Npg js (@) }1 =0

_{Trka/kg (CJL)}QCL + {Nke/k3 (Oé)}g =0
has no solutions.
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Define

~{Trgg /iy (@) o —1 ATk ks (@)}o =1 —{Nyg/us (@) }o
Bi=| ATrpems(@h 0 |, Bi= | —{Trggpma(@)hr 0 —{Nygpmy(@)h
~A{Trpg /s (@)}2 0 ~ATrpgms(@) 2 0 —{Npg/py (@) J2
(116)
then (ii) holds if and only if rank B # rank B'.
Thus, to obtain a nonhyperelliptic covering for a Type II curve, one needs to choose

« and 3 such that Try, k(o) ¢ k and rank B # rank B'.
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