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Abstract. A new multi-linear universal hash family is described. Messages are sequences over a finite
field IFq while keys are sequences over an extension field IFqn . A linear map ψ from IFqn to itself is used
to compute the output digest. Of special interest is the case q = 2. For this case, we show that there is
an efficient way to implement ψ using a tower field representation of IFqn . Such a ψ corresponds to a
word oriented LFSR. We describe a method of combining the new universal hash function and a stream
cipher with IV to obtain a MAC algorithm. Further, we extend the basic universal hash function to
an invertible blockwise universal hash function. Following the Naor-Reingold approach, this is used to
construct a tweakable enciphering scheme which uses a single layer of encryption and no finite field
multiplications. From an efficiency viewpoint, the focus of all our constructions is small hardware and
other resource constrained applications. For such platforms, our constructions compare favourably to
previous work.
Keywords: universal hash function, word oriented LFSRs, message authentication codes,
blockwise universality, tweakable enciphering schemes

1 Introduction

Universal hash functions are useful in different areas of computer science and are also important
in cryptography. These were introduced by Carter and Wegman [6] and have been extensively
studied since then. Among their many applications, one of the most important is the construction
of message authentication code (MAC) algorithms. This technique was introduced by Wegman and
Carter [28]. Previously, work on unconditionally secure authentication codes was done by Gilbert,
MacWilliams and Sloane [10]. The approach of using universal hash function for constructing MAC
algorithms was later investigated in [25, 5, 3].

1.1 Known Constructions

A well known construction1 of a multi-linear universal hash function is the following. The message
M = (M1, . . . ,Ml) and key K = (K1, . . . ,Kl) are sequences of elements over a prime field IF and the
digest is K1M1 + · · ·+KlMl which is an element over IF. The probability (over random keys) that
two distinct messages map to the same value is 1/|IF|. The map (M1, . . . ,Ml) 7→ K1M1+ · · ·+KlMl

is a multi-linear map and we will call this the multi-linear hash function.
This basic idea has been studied and extended later. Halevi and Krawczyk [13] describe an

efficient software implementation of this construction over IFq with q = 232 + 15. They also modify
the construction to align with 32-bit word boundaries and reduce the total number of modulo q

1 Attributed to Carter and Wegman [6] in [13] and to Gilbert, MacWilliams and Sloane [10] in [3].



operations. The construction UMAC [5] develops upon [13] using a nonlinear function and is one
of the fastest known constructions in software.

Shoup [25] reports implementation results for three kinds of functions over binary fields. The
first kind is polynomial evaluation. The second kind is polynomial division due to Krawczyk [17]
and is called “LFSR hashing” or cryptographic CRC. The third kind of hash function mentioned
in [25] is a generalized division hash (GDH) of which the previous two kinds can be seen as special
cases. An earlier work [16] had suggested the use of LFSRs in the construction of authentication
codes which can also be seen as universal hash functions.

Polynomial evaluation based hash functions have also been proposed over non-binary fields.
PolyR [18] is one such example. A recent proposal is Poly1305 [2], which chooses the prime carefully
so as to ensure very fast implementation in software. For GDH, and polynomial evaluation based
hash functions, the collision probability degrades with increase in message length.

There are other interesting constructions exploiting different combinatorial structures. See Stin-
son [26], Bierbrauer et al [4] and Rogaway [23].

1.2 Our Contributions

We generalize the multi-linear hash function mentioned above. The basic idea of the generalization
is the following. We work with two fields, a base field IFq and an extension IFqn , where n is a positive
integer. The message consists of elements from IFq, whereas the key consists of elements of IFqn . A
linear operator ψ from IFqn to itself is used. The contribution of l ≤ n message elements M1, . . . ,Ml

under a key K ∈ IFqn is the sum

M1K +M2ψ(K) + · · ·+Mlψ
l−1(K).

The output is an element of IFqn .
This basic idea is developed into a definition of a hash function family LH which is shown to

be universal (in fact, XOR universal). We discuss possible choices of q, n and the operator ψ. For
q = 2, one interesting option is to use a tower field representation of IF2n . The operator ψ can then
be implemented very efficiently and corresponds to what is called a word-oriented LFSR in the
stream cipher community.

We focus on the choice of q = 2 and the tower field representation of ψ. This leads to a universal
hash function with a very small hardware footprint. The design is very simple to implement in
software. Compared to previous proposals, the new construction produces the least (and optimal)
size hash digest for achieving the same collision probability. There are several ways to extend our
basic idea. Ideas based on decimation, the Toeplitz construction and multiple linear operators can
be used.

Message authentication code. Generic techniques from [5] can be used to obtain a message
authentication code (MAC) algorithm from the new universal hash function. Alternatively, we
present a simple idea of combining the new hash function and a stream cipher with IV to obtain a
MAC algorithm. Choosing a hardware efficient stream cipher (from one of the eSTREAM proposals)
leads to a design of MAC algorithm with a very small hardware footprint.

Our technique for obtaining MAC from universal hash function and stream cipher with IV is
generic. Consequently, it can also be used to combine software efficient stream ciphers with software
efficient universal hash function (such as UMAC) to obtain a software efficient MAC.



Blockwise universal hashing and strong pseudorandom permutation. The universal hash
family is used to construct an invertible and blockwise universal hash family. This kind of hash
families can be used to construct (tweakable) strong pseudorandom permutation (SPRP). A tech-
nique due to Naor and Reingold [22] is used for this purpose. We follow this strategy and design
a new SPRP called BEB. Compared to previous work, the unique feature of BEB is that it uses
a single layer of encryption and does not use any finite field multiplications. All previous works
either used two encryption layers [14, 15, 11] or used finite field multiplications [20, 27, 8, 12, 24].
Disk encryption is an important application of a tweakable SPRP. For this application, compared
to previous constructions, BEB provides a design with a very small hardware footprint using a
single encryption layer.

Focus of our work. The theoretical contribution of our work consists in designing a new universal
hash function based on elementary finite field algebra. This is of some interest in its own right. For
the practical aspect, we focus on the simplicity and small hardware size of the new algorithm.

In software, the currently fastest universal hash functions depend crucially on very fast multipli-
cation modulo 232. This includes UMAC (and its predecessor MMH) and Poly1305. Fast multiplier
circuits are present in large general purpose CPUs used in desktops, laptops and servers. As a result,
UMAC and Poly1305 are extremely fast on such processors. Our proposal with q = 2 processes one
bit at a time and even though it is quite simple, it is also slower than either of UMAC or Poly1305.

In practice, however, cryptographic algorithms are often required to be implemented on small
CPUs with 8-bit arithmetic and small memory (128 bytes, for example); on small field pro-
grammable gate arrays; or as small application-specific integrated circuit. Using multiplication
modulo 232 does not seem to be the correct approach for such platforms. The bit-at-a-time ap-
proach is more suitable. For resource constrained devices, one would like an algorithm with a small
hardware footprint. The new algorithms for the choice of q = 2 are ideal for such environments.

2 Linear Algebra Over Finite Fields

We need some elementary results on linear algebra over finite fields. The purpose of this section is
to present the basic notation as well as the results that will be required.

Let q be a prime power and IFq be the finite field of q elements. For a positive integer n, the
extension field IFqn is a vector space over IFq.

Let ψ be a linear transformation from IFqn to itself. By ψi, we denote the usual iterate of ψ,
i.e., ψ0 = id and ψi = ψi−1 ◦ψ, where id is the identity map from IFqn to itself. Let p(x) ∈ IFq[x] be
of the form p(x) = amx

m + am−1x
m−1 + · · ·+ a1x+ a0, then by p(ψ) we denote the linear operator

amψ
m + am−1ψ

m−1 + · · ·+ a1ψ+ a0id. We say that p(x) annihilates ψ, if p(ψ) = 0, i.e., p(ψ) maps
all elements of IFqn to zero. The minimum degree monic polynomial in IFq which annihilates ψ is
said to be the minimal polynomial of ψ. The notion of minimal polynomial is relative to the base
field. Suppose n1 divides n. Then IFqn1 is a subfield of IFqn and the minimal polynomial of ψ over
IFq is not the same as the minimal polynomial of ψ over IFqn1 .

If we fix a basis of IFqn over IFq, then a linear map ψ from IFqn to itself is uniquely given by
an n × n matrix A with entries from IFq. The minimal polynomial τ(x) of ψ is also the minimal
polynomial of A. Fixing a basis of IFqn over IFq allows the representation of the elements of IFqn by
n tuples over IFq, so that, with respect to this basis, we can identify IFqn with IFn

q . For two vectors



a,b ∈ IFn
q , 〈a,b〉 denotes the inner product, i.e., 〈a,b〉 =

∑n
i=1 aibi, where a = (a1, . . . , an) and

b = (b1, . . . , bn).
We will require the following results about linear maps.

Lemma 1. Let ψ be a linear map from IFqn to itself such that its minimal polynomial τ(x) in
IFq[x] is of degree n and is irreducible over IFq. Let p(x) be any polynomial in IFq[x]. If τ(x) does
not divide p(x), then p(ψ) is invertible. Equivalently, either p(ψ) = 0 or p(ψ) is invertible.

Proof: Fix a basis of IFqn over IFq and let ψ be given by a matrix A over IFq. Then the minimal
polynomial of A is τ(x) and since τ(x) is of degree n, it is also the characteristic polynomial of A.
Let the characteristic roots of A (over IFqn) be ζ1, . . . , ζn. Since τ(x) is irreducible, none of the ζis
are zero.

The matrix p(A) represents the linear map p(ψ) with respect to the previously fixed basis. The
distinct characteristic roots of p(A) are p(ζ1), . . . , p(ζn). If any of these values is 0, then from the
irreducibility of τ(x), we get that τ(x) divides p(x). Since τ(A) = 0 (because τ(x) is the minimal
polynomial of A), we have p(A) also to be zero. On the other hand, if none of the p(ζ1), . . . , p(ζn)
are zero, the matrix p(A) is non-singular and hence the transformation p(ψ) is invertible. ut

Lemma 2. Let q be a prime power, n = n1×n2 and q1 = qn1. Let ρ(α) be an irreducible polynomial
of degree n1 over IFq and IFqn1 = IFq[α]/(ρ(α)). Further, let ψ : IFq

n2
1
→ IFq

n2
1

be a linear map whose
minimal polynomial, µ(x), over IFq1 is irreducible and of degree n2. Then the minimal polynomial
of ψ over IFq is of degree n and is irreducible over IFq.

Proof: Fix a basis of IFq
n2
1

over IFq1 . Then the linear map ψ is given by an n2 × n2 matrix A with
entries from IFq1 and whose characteristic polynomial µ(x) is irreducible over IFq1 .

Following [19], let I(q, n;x) be the product of all irreducible polynomials in x of degree n over
IFq. Using [19, Theorem 3.31], we have I(qn1 , n2;x) = I(q, n1n2;x).

By definition, µ(x) divides I(qn1 , n2;x). Also, by the Cayley-Hamilton theorem, µ(A) = 0 and so
I(q, n1n2;A) = I(qn1 , n2;A) = 0. Now I(q, n1n2;x) is the product of all irreducible polynomials of
degree n = n1n2 over IFq. By Lemma 1, we have that for any irreducible polynomial P (x) of degree
n over IFq, either P (A) = 0 or P (A) is invertible. If for all irreducible factors P (x) of I(q, n;x),
we have P (A) to be invertible, then we clearly cannot have I(q, n;A) to be zero. Therefore, there
must be some irreducible factor τ(x) of I(q, n;x) such that τ(A) = 0. Since this τ(x) is a factor of
I(q, n;x), it is irreducible and of degree n. This τ(x) is then the minimal polynomial of A over IFq,
which completes our proof. ut

3 A Multi-Linear Universal Hash Function

In this section, we describe the new construction.

3.1 Hash Function Definitions

Let H = {Hk}k∈K be a keyed family of functions, where for each k ∈ K, Hk : X → Y. Here X and
Y are finite non-empty sets with |X | > |Y|. Let x and x′ be distinct elements of X . The collision
probability (over uniform random choice of k from K) of H associated with the elements x and x′

is defined to be Prk[Hk(x) = Hk(x′)]. Further, if Y is a commutative (additively written) group,



then for any fixed α ∈ Y, the differential probability (over uniform random choice of k from K)
associated with (x, x′, α) is defined to be Prk[Hk(x) − Hk(x′) = α]. The terminology of collision
probability and differential probability in the current context is from [3].

The family H is said to be ε-almost XOR universal (ε-AXU) if the differential probability for
any (x, x′, α) is bounded above by ε. The family H is said to be ε-almost universal (ε-AU) if the
collision probability for any (x, x′) is bounded above by ε. Clearly, if H is ε-AXU, then it is also
ε-AU.
H is said to be universal if it is ε-almost universal with ε = 1/|Y|. All the function families that

we define in this paper are universal. In fact, for each case, Y is a commutative group and we show
that the differential probabilities are equal to 1/|Y|.

3.2 Basic Idea

Fix a field IFq and an integer n ≥ 1. Consider the extension field IFqn . Let ψ be a linear map
from IFqn to itself such that the minimal polynomial τ(x) in IFq[x] of ψ is of degree n and is
irreducible over IFq. For each K ∈ IFqn , we define a function GK : ∪n

l=1IF
l
q → IFqn as follows. Let

a = (a1, . . . , al), for some l ∈ {1, . . . , n}. Then

GK(a) = 〈(a1, . . . , al), (K,ψ(K), . . . , ψl−1(K))〉
= a1K + a2ψ(K) + · · ·+ alψ

l−1(K).

}
(1)

In other words, GK(a) is the linear combination of (a1, . . . , al) and (K,ψ(K), . . . , ψl−1(K)). A term
of GK() is of the form aiψ

i−1(K), where ai is an element of IFq and ψi−1(K) is an element of IFqn .
The efficiency of evaluating the term aiψ

i−1(K) depends on the representation of IFqn and the
choice of the map ψ. We say more about this later.

Lemma 3. Fix an l with 1 ≤ l ≤ n. The following are true for the function defined in (1).

1. For a fixed K, the function GK restricted to inputs with l components, is a multi-linear function,
i.e., it is linear in every component of its input.

2. Fix a non-zero a ∈ IFl
q. If K is uniformly distributed over IFqn then so is GK(a).

3. Consequently, for a,a′ ∈ IFl
q, a 6= a′ and for any α ∈ IFqn, PrK [GK(a)−GK(a′) = α] = 1/qn.

Proof: It is easy to see that GK is linear for fixed K. We prove the second statement. Let a =
(a1, . . . , al) where ai ∈ IFq and define a polynomial p(x) = a1 + a2x+ · · ·+ alx

l−1. Since a is non-
zero, p(x) is also a non-zero polynomial over IFq. Also, since l ≤ n, the degree of p(x) is less than
n. Recall that the minimal polynomial τ(x) of ψ is irreducible over IFq and is of degree n. Thus,
p(x) is a non-zero polynomial which is coprime to τ(x). Using Lemma 1, we have p(ψ) to be an
invertible map from IFqn to itself. Thus, if K is randomly distributed over IFqn , so is p(ψ)(K). The
second statement now follows on noting that p(ψ)(K) = a1 + a2ψ(K) + · · ·+ alψ

l−1(K) = GK(a).
By linearity of GK , GK(a)−GK(a′) = GK(a−a′). So, the third statement follows directly from

the second statement. ut

Key Length. For GK(·), the key is K, which is an element of IFqn . In an efficient implementation
of IFqn the length of representation of K is n times the length of representation of an element of
IFq. One K can be used for messages consisting of upto n elements of IFq. Thus, the key length is as
long as the message. This feature will be true for the other hash functions that we define. Actually,
this is an inherent property of the multi-linear hash construction from Section 1.1 and is present
in other extensions of the idea, such as MMH [13] and UMAC [5].



3.3 Extending Message Length

In this and later sections, we use some terminology and notation from [5].
The function G can handle up to n elements of IFq. It is the basic building block used for

defining functions which can handle arbitrary length inputs. The idea is the following. Given m
elements of IFq, divide into (l1 + 1) groups where each of the first l1 groups has n elements and the
last group has l2 elements with 1 ≤ l2 ≤ n. To obtain the digest, apply G separately (with random
and independent keys) to each of the groups and then add together all the individual digests.

More formally, we define a function family which is parametrized as LH[q, n,m]. The domain is
∪m

i=1IF
i
q, i.e., each element of the domain consists of upto m elements of IFq; the range is IFqn . Let

t = dm/ne. Each function in LH[q, n,m] is named by an element K of IFt
qn ; a random function in

LH[q, n,m] is given by a random element of IFt
qn . We write the function indicated by K as LHK(·).

The message M consists of an l-tuple, l ≤ m, over IFq. Let l = l1n + l2, with 1 ≤ l2 ≤ n. We
consider M to be of the form (M1, . . . ,Ml1 ,Ml1+1), where M1, . . . ,Ml1 are in IFn

q and Ml1+1 is in
IFl2

q . Further, let K = (K1, . . . ,Kt) and note that t ≥ l1 + 1. Then, LHK(M) is defined as

LHK(M) = GK1(M1) +GK2(M2) + · · ·+GKl1
(Ml1) +GKl1+1

(Ml1+1). (2)

Formally, we should write LHK[q, n,m](M) instead of LHK(M), but, we prefer the second notation
as it is simpler. The parameters q, n and m will be clear from the context.

Theorem 1. For any prime power q, any positive integers n and m, the differential probabilities
of LH[q, n,m] for equal length strings are equal to q−n.

The previous multi-linear construction. We show that LH is a generalization of the con-
struction mentioned in Section 1.1. Let n = 1, then IFqn = IFq. Consider the function G. The
domain, range and the key space of G becomes IFq and the definition of G is now GK(M) = KM .
Now consider the function LH[q, 1,m]. The domain is A = ∪m

i=1IFq and the range is IFqn = IFq.
Also t = dm/ne = m and each key K = (K1, . . . ,Km) ∈ IFm

q . Then for M = (M1, . . . ,Ml),
LHK(M) = K1M1+ · · ·+KlMl. Thus, LH[q, 1,m] is the multi-linear hash function from Section 1.1.

Extensions. The basic idea of LH can be extended in several ways. One can use the idea of
decimation, the so-called Toeplitz construction or multiple linear operations. These details are
given in Section 7.

3.4 Representation of IFqn and the Linear Transformation ψ

Let IFqn be represented using a polynomial τ(x) which is irreducible over IFq. Then an element of IFqn

is given by an n-tuple of elements over IFq. Let τ(x) = xn−tn−1x
n−1−· · ·−t1x−t0 with tn−1, . . . , t0 ∈

IFq. Given an element (x0, . . . , xn−1) of IFqn , we define (y0, . . . , yn−1) = ψ(x0, . . . , xn−1) in the
following manner.

y0 = tn−1x0 + tn−2x1 + · · ·+ t0xn−1; and
yi = xi−1 for 1 ≤ i ≤ n− 1.

(3)

This provides an easy way to implement the map ψ. This is essentially a linear feedback shift
register (LFSR). See [19] for a general discussion on LFSRs.

There are two possibilities for choosing the characteristics of IFqn – characteristics 2 and charac-
teristics a prime ≈ 2w. Table 1 provides some examples. The polynomials for the non-binary primes
were generated using the PIPS server [7].



Table 1. Example parameters for LH[q, n,m]. In each case, the differential probabilities are ≈ 2−128.

q n τ(x) diff. prob.

2 128 x128 + x107 + x64 + x13 + 1 2−128

28 + 1 16 x16 + 148x7 + 50 257−16

216 + 1 8 x8 + 35035x4 + 6776 (216 + 1)−8

232 + 15 4 x4 + 173278966x+ 723447520 (232 + 15)−4

Implementation. The choices of q present different possibilities for implementing the algorithm.
Also, the extensions of LH given in Section 7 can be combined with the choices of q. These lead to
a large variety of possibilities with varying performances on different platforms. In this paper, we
have chosen to focus on LH and q = 2. The rest of the paper is based on this choice. One of the
reasons for making this choice is small hardware footprint of the resulting algorithm. At the same
time, we would like to note that other choices of q may lead to software efficient algorithms. For
example, q = 232 + 15 is suitable for CPUs supporting 32-bit multiplications while q = 28 + 1 is
suitable for CPUs supporting 8-bit multiplications. Developing these options require further work.

4 Tower Field Representation of IF2n

Suppose n = n1n2. Fix an irreducible polynomial ρ(x) of degree n1 over IF2. This gives rise to a
representation of IF2n1 as IF2[α]/(ρ(α)). Choose a monic irreducible polynomial µ(x) of degree n2

over IF2[α]/(ρ(α)). This gives a representation of IF2n as a two-part extension (IF2 → IF2n1 → IF2n).
The pair of polynomials (ρ(α), µ(x)) defines the particular representation.

Let µ(x) = xn2 − cn2−1x
n2−1 − · · · − c1x − c0 where cis are elements of IF2[α]/(ρ(α)). Using

µ(x), we define the linear map ψ as in (3) in the following manner. Given (x0, . . . , xn2−1) ∈ IFn2
2n1 ,

let (y0, . . . , yn2−1) = ψ(x0, . . . , xn2−1) where

y0 = cn2−1x0 + cn2−2x1 + · · ·+ c0xn2−1; and
yi = xi−1 for 1 ≤ i ≤ n2 − 1.

(4)

Evaluating y0 in general requires n2 multiplications over IF2n1 and is not a better option than
working directly over IF2. On the other hand, if most of the cis are either 0 or 1, then evaluating
y0 becomes much more efficient. In the best case, we will have all but one of the cis to be 0 or
1. Table 2 provides examples of tower field representations of IF2n . In all cases, only the constant
term of µ(x) is equal to α and hence (4) can be evaluated by a single multiplication by α modulo
the corresponding ρ(α). Our method of obtaining these examples is discussed in Section 4.1.

The idea of using tower fields has been used in the context of stream ciphers such as SNOW [9].
The map ψ has then been called a word oriented LFSR. Tower fields have earlier been suggested
to speed up scalar multiplication in elliptic curve cryptography. To the best of our knowledge,
however, there is no earlier reference to the use of tower fields in the context of universal hash
function construction.

Now we have a linear map ψ from IF2n to IF2n (defined via the tower field representation of
IF2n). The message a to be hashed is a bit string. Recall that the definition of GK(a) assumed
that the minimal polynomial τ(x) of the linear map ψ is in IF2[x] and is irreducible over IF2. Here,
we have defined ψ to be a map from IF(2n1 )n2 (where IF2n1 is represented by ρ(x)) to itself, whose



Table 2. Examples of IF2n represented as a tower field. In each case, µ(x) is a primitive polynomial. The differential
(and collision) probabilities are 2−n.

n1 n2 n = n1 × n2 ρ(α) µ(x)

32 2 64 α32 + α31 + α29 + α1 + 1 x2 + x+ α

16 5 80 α16 + α5 + α3 + α2 + 1 x5 + x3 + α

96 3 96 α32 + α18 + α9 + α2 + 1 x3 + x+ α

32 4 128 α32 + α18 + α6 + α5 + 1 x4 + x3 + x+ α

16 8 128 α16 + α10 + α9 + α6 + 1 x8 + x3 + x+ α

8 16 128 α8 + α7 + α3 + α2 + 1 x16 + x7 + x+ α

minimal polynomial µ(x) is in IF2n2 and is irreducible over IF2n2 . Lemma 2 assures us that the
minimal polynomial of ψ over IF2 is an irreducible polynomial of degree n as required.

4.1 Obtaining Tower Field Representations

We are interested in obtaining pairs of polynomials (ρ(α), µ(x)) where ρ(α) is a polynomial of
degree n1 over IF2 while µ(x) is a polynomial of degree n2 over IF2n1 . Further, we are interested in
the condition that only the constant term of µ(x) is properly in IF2n1 while the coefficients of all
other terms are either 0 or 1. As far as we know, there is no known characterization or algorithm
which ensures this condition. On the other hand, it is quite easy to test whether a polynomial is
irreducible (or primitive) [21]. Based on this, we used the following strategy.

Find a random irreducible polynomial ρ(α). Let b = (b1, . . . , bn2−1) be a bit string of length
n2 − 1. Define µb(x) = xn2 + bn2−1x

n2−1 + · · · + b1x + α. This µ(x) is defined over IF2n1 . For all
non-zero (2n2−1 − 1) bit strings b, check whether µb(x) is irreducible; if any one is indeed found
to be irreducible, then report it; else try with another random irreducible ρ(α). Since the number
of irreducible polynomials of a fixed degree is quite dense, this procedure succeeds withing a few
trials. As mentioned earlier, some examples are given in Table 2.

4.2 Implementation

Hardware footprint. The hardware size of the basic design is very small. Apart from the registers,
only XOR gates are required. The main focus of the choice of q = 2 and bit-by-bit processing is
small CPUs with small memory and resource constrained devices such as small FPGAs or small
ASIC structures.

Parallelism. There is a high level of parallelism in LH. Each 128-bit key block is used to process
128 bits of the message. So, separate 128-bit message blocks are processed using separate 128-bit
key blocks. Thus, each 128-bit message and key blocks can be processed independently of each
other and the final results are simply XORed together. Further, the same instruction applies to
each message and key blocks leading to a typical SIMD parallelism. Incorporating parallelism in
implementation will increase the throughput. This will also increase the size of hardware to some
extent. A designer has to strike a proper balance between these two parameters.

A Simple ‘C’ Implementation for the Case n1 = 32 and n2 = 4 in Table 2. Four 32-bit
words K0, K1, K2 and K3 constitute the 128-bit key which is to be used for processing 128 bits of



the message. The simple ‘C’ code of Figure 1 shows this computation. The macro NextState is one
application of ψ given by (4) to the key. The macro PROCESS(M,i) processes the ith (0 ≤ i ≤ 31)
bit of a 32-bit message word M in the following manner. It applies NextState to update the value
of the key words; and if the ith bit of the message is one, then XORs the current value key to the
current value of the hash result which is kept in the four 32-bit words R0, R1, R2 and R3.

Note that the code is actually very simple. No finite field or multi-precision multiplications
are required. In fact, these operations are so simple that they will be available in almost any
processor and not necessarily large CPUs. In contrast, implementation of other algorithms such
as UMAC or Poly1305 requires a carefully optimized multi-precision software library including
possible assembly language implementation. Consequently, the code sizes of such algorithms are
several orders of magnitude larger than the simple code shown in Figure 1. A drawback, however,
is that on a general purpose CPU, the speed will be slower than that of UMAC or Poly1305. This
is due to the fact that general purpose CPUs do not provide native support for cyclic shift, inner
product and other vector operations. For such CPUs, LH should be considered to provide a trade-off
between code size and complexity versus computation time.

Fig. 1. A simple ‘C’ implementation of ψ using a tower field representation of IF2128 .

const unsigned int val1[2] = {0,((1<<18)^(1<<6)^(1<<5)^1)};

const unsigned int val2[2] = {0,0xffffffff};

#define NextState { \

tmp = (K3<<1)^(val1[K3>>31])^K0^K2; \

K3=K2; K2=K1; K1=K0; K0=tmp; \

}

#define PROCESS(M,i) {\

tmp = val2[(M&(1<<i))>>i]; \

R0 = R0^(K0&tmp); R1 = R1^(K1&tmp); \

R2 = R2^(K2&tmp); R3 = R3^(K3&tmp); \

}

4.3 Tackling Variable Length Inputs

Theorem 1 ensures low differential probability only for equal length inputs. For designing a MAC
algorithm, we need to handle variable length messages. We describe how this can be done for q = 2.
For other values of q, it is possible to suitably modify the proposal.

For q = 2, the message is actually a bit string. So, there is no problem of handling partial blocks.
The basic technique for handling variable length messages is to append the binary representation
of the length to the message. In our case, this simple construction itself will ensure low differential
probability for variable length messages. But, such a simple padding rule may result in messages
which do not align properly to byte or word boundaries. So, we modify the construction so that
the padded length is a multiple of 32. (This can easily be modified to obtain a construction where
the padded length is a multiple of 8 or 16.)



We define UH[2, n] to be a family of functions. The domain of each function in the family
consists of all finite length binary strings and the range is IF2n . We have to define the key space for
the family. Recall that in our construction, we require the key to be as long as the message. Since,
each function of the family UH can handle arbitrary length messages, the key has to be a (one-way)
infinite binary string. In other words, the family UH is indexed by the set of all one-way infinite
binary strings. This, however, is only a theoretical necessity in making a consistent definition. In
practice, one will only work with a key which is only as long as the message.

Let a = (a1, . . . , al) be the message, where l ≥ 1 and each ai is a bit. Let pad(a) be the string
obtained by padding a minimum number of zeros to a so as to ensure that the length of pad(a) is
a multiple of 32. Then

UHK(a) = LHK1(pad(a)||λ64(l)). (5)

By â we will denote the binary string pad(a)||λ64(l). Here, λ64(l) is defined as follows: let y be the
minimum length binary representation of l; reverse y and pad on the left with zeros to obtain a
binary string of length 64; this is our desired λ64(l). For example, if l = 11, then λ64(11) = 0601101.
By construction, the last bit of λ(l) is always 1. K is a one-way infinite binary string while K1 is
the initial segment of K of length blklenn(|â|) bits, where blklenn(l) = n× dl/ne.

Theorem 2. Let a and a′ be two distinct binary strings having lengths l and l′ respectively with
l ≥ l′. Let K be a key for UH and set b = UHK(a) and b′ = UHK(a′). Let K1 be the initial segment
of K of length equal to blklenn(|â|) bits. Let δ be any element of IF2n. Then

Pr[UHK(a)− UHK(a′) = δ] = 1/2n.

Here the probability is over random choice of K1 (and not the whole of K).

Proof: We are given that K1 is the initial segment of K of length equal to blklenn(|â|) bits. Let
K′

1 be the initial segment of K whose length is equal to blklenn(|â′|) bits.
Let k = |â| and k′ = |â′|. By the condition of the theorem, we have k ≥ k′.
The first point to note is that if a 6= a′, then x = pad(a)||λ64(l) 6= pad(a′)||λ64(l′)||0k−k′ = x′.

(Note that x = â and x′ = â′||0k−k′ .) There are two cases to see this. If k = k′, then x 6= x′ follows
directly from a 6= a′. On the other hand, if k > k′, then the last bit of x′ is 0, where as the last bit
of x is 1 from the definition of λ64(l). Thus, x 6= x′ also holds in this case. Note that both x and
x′ have the same length.

The second point is that

UHK(a) = LHK1(x) and
UHK(a′) = LHK′

1
(pad(a′)||bin64(l′))

= LHK1(x
′).

Again this is easy to see for k = k′. If k > k′, then the padding at the end by zeros does not
affect the output of the computation of LH. Now the problem reduces to that of bounding the
differential probability of LH for equal length strings. From Theorem 1, we obtain this probability
to be 1/2n. ut



Note. Instead of using separate notations K and K1, we will use the convention that the key
K in UHK(a) is of length equal to blklenn(|â|) (instead of being an infinite length binary string).
This is consistent with the definition of UH, since the later bits of an infinite K does not affect the
computation of the hash value for a.

4.4 Comparison to Some Previously Known Universal Hash Families

The technique of polynomial evaluation based hash is different from the approach taken in this
paper. In the former, keys are short but security degrades with increase in length of the message,
while, in the latter, keys are as long as the message but collision probability is the best possible.
The proposals MMH [13] and UMAC [5] belong to the latter approach. Poly1305 [2] and PolyR [18]
belong to the former approach.

Due to the bit-at-a-time approach, software speed of LH[2, n,m] on general purpose CPUs is
not comparable to that of the above mentioned constructions. On the other hand, for resource
constrained devices which cannot support large multiplier circuits, the speed of LH[2, n,m] should
be comparable to the others. (We clarify, though, that we have not actually done any speed mea-
surements on such platforms.) For constrained environments, one clear advantage of LH[2, n,m]
is small hardware size; implementing any of UMAC, Poly1305 or PolyR will require substantially
more hardware for implementing a multiplier circuit.

The core of UMAC is the non-linear hash function NHT. Here the superscript T stands for the
Toeplitz construction and NHT is built from a non-linear hash function NH. Let M = (M1, . . . ,Ml),
l even, be the message and K = (K1, . . . ,Kn), with n ≥ l be the key. Each Mi and Kj are w-bit
integers. Then NHK(M) is computed as l/2∑

i=1

((M2i−1 +K2i−1) mod 2w) · ((M2i +K2i) mod 2w)

 mod 22w. (6)

The output is a 2w-bit integer and the collision probability is shown to be 2−w. Hence, NH is
ε-almost universal with ε = 2−w. In contrast, all the hash families defined in this paper are XOR
universal. The cost of computing NH is l/2 multiplications modulo 22w and l additions modulo 2w.
The construction NHT is an extension, which produces a digest of size 2tw; has collision probability
2−tw and the cost is tl/2 multiplications modulo 22w and l additions modulo 2w. To provide collision
probability of 2−128 with w = 32 will require a digest of 256 bits, i.e., t = 4. The cost will be 2l
multiplications modulo 264 and 4l additions modulo 232.

Shoup [25] described three methods for defining a universal hash function – polynomial evalu-
ation, division hash (earlier called “LFSR hashing” or cryptographic CRC by Krawzcyk [17]) and
generalized division hash. The third method has the first two as special cases. In GDH, the message
is a polynomial m(x) over IF2k of degree less than nl/k. The key is a random monic irreducible
polynomial τ(x) of degree l/k over IF2k . The hash value is m(x)xl/k mod τ(x). The differential
probabilities are bounded above by nl/(k2l).

If l = k, then τ(x) = x + α and the hash function evaluation reduces to computing α ·m(α)
over IF2k . This is the polynomial evaluation hash over IF2k . If k = 1, then the hash function
computation reduces to evaluating m(x)xl mod τ(x), where m(x) is a polynomial over IF2 and τ(x)
is an irreducible polynomial of degree l over IF2. The case k = 1 corresponds to Krawzcyk’s “LFSR
hashing”.



Comparing GDH with our approach, for one thing, in our case, the polynomial is part of the
specification (i.e., public) and the LFSR is repeatedly applied to the secret key. Secondly, in our
case, the collision probability for n-bit digest is 2−n whereas for GDH it is nl/(k2n), i.e., there is a
degradation in security. On the other hand, the key in our construction is as long as the message,
while in GDH it is an irreducible polynomial of degree l/k over IF2k . The key in our construction
is taken to be the output of a PRG. In contrast, for l > k, it is much more complicated to change
key in GDH, since this requires choosing a random irreducible polynomial over IF2k .

Table 3 provides the sizes of hash outputs of different schemes for obtaining a collision proba-
bility of 2−128. The table shows that LH has the smallest (and optimum) size output.

Table 3. Size of hash outputs of different schemes for attaining collision probability of 2−128. For the first row we
assume that the message consists of at most 232 128-bit blocks.

algorithm key len output sz. coll prob.

poly hash, GDH constant 160 2−128

NHT eq to msg len 256 2−128

LH eq to msg len 128 2−128

Johansson [16] had earlier suggested the use of LFSRs in the construction of authentication
codes. These can also be viewed as universal hash functions. The construction from [16] is the
following. Let IFq be the finite field of q elements. Messages, digests and keys are fixed length
sequences of length m, n and (m+n) respectively over IFq. Let K = (K1, . . . ,Km,Km+1, . . . ,Km+n)
and set Ka = (K1, . . . ,Km). Let L be an LFSR over IFq whose connection polynomial is of degree
m and is irreducible over IFq. We consider L to be the state update function of the LFSR, i.e., L
is a map from IFm

q to IFm
q . For a message M ∈ IFm

q , the digest is defined to be(
Km+1 + 〈M,Ka〉,Km+2 + 〈M,L(Ka)〉, · · · ,Km+n + 〈M,Ln−1(Ka)〉

)
. (7)

Each component is an element of IFq and hence the digest is an element of IFn
q . This construction

is different from our proposal. Below, we discuss some of the differences.

1. Our construction uses a linear map over IFqn . Implementations of this map can be done by
either an LFSR over IFq or using a tower field representation of IFqn . There is no scope of using
tower field representation in [16].

2. The length of the LFSR in [16] is equal to the length of the message, whereas in the LFSR based
implementation of our proposal, the length of the LFSR is equal to the length of the digest.

3. The work [16] does not discuss how to handle variable length messages. Since the length of
the LFSR is equal to the length of the message, tackling variable length messages will mean
using different length LFSRs for different message lengths. This makes handling variable length
messages almost impossible.

4. Suppose that the length m of the message is a multiple of the length n of the digest, i.e., n|m.
The length of the key in [16] is m+ n which means that the key is necessarily longer than the
message. For this case, in our construction, the key length is m which is shorter than the key
length used in [16].



Based on these points, it is clear that our construction is different from that of [16] and in fact,
offers several advantages over that of [16]. The only superficial similarity of [16] to our general
framework is the use of LFSRs in [16].

5 A New MAC Construction

There are two known ways to construct a MAC from a universal hash function. Both use a PRF in
conjunction with a hash function having low collision or differential probabilities. The first method,
due originally to Wegman-Carter (with later analysis by [25, 3]) is PRFKf

(Nonce)⊕HASHKh
(M).

The second method (described in [5]) is PRFKf
(HASHKh

(M),Nonce). In both cases, M is the
message; Kf is the key for the PRF and Kh is the key for the hash function. Also, the nonce
needs to be communicated from the sender to the receiver. Alternatively, this can be achieved if
the sender and receiver maintain state.

Though the second method has been proposed for UMAC, the technique described in [5] is
generic. As mentioned earlier, the core of UMAC is an almost universal hash function called NH.
The key length for NH is as long as the message length. Our construction LH has the same property
with respect to key length. In view of this, our first observation on obtaining a MAC from LH is
that this can be easily done by simply plugging LH into the generic techniques given in [5].

Alternatively, we describe a different way of combining a universal hash family with a PRF.
This technique is suited for universal hash families (like UMAC and our construction), where the
key is as long as the message. The way to tackle this is to use a PRG to generate the key. We
take this idea further. In practice, a cryptographic PRG is essentially an additive stream cipher.
Current designs of stream ciphers include an IV. For example, all the proposals of eSTREAM are
stream ciphers with IV.

The formal model of a stream cipher with IV is that of PRF. (This has been folklore in the stream
cipher community and has been formalized in [1].) The key for the stream cipher is considered to
be the key for the PRF and each function maps an IV to a keystream. We exploit this formal
connection to propose a MAC based on a universal hash function and a stream cipher with IV.

Let SCK(IV) be a stream cipher with IV; which for a fixed key K produces a “long” keystream
from a given IV. The MAC construction using UH is the following. The key for the MAC algorithm
is the key for SC. Tag generation is done as follows.

1. Let a be the message (binary string) to be hashed.
2. Let IV be a nonce.
3. Let K of length blklenn(|â|) be produced using SCK(IV).
4. The tag is UHK(a).

Though we have defined this only for UH, this can be easily changed to fit with any universal hash
family which has key to be as long as the message.

Let AdvSC(t, q) denote an adversary’s advantage in breaking SC as a PRF, where the the runtime
of the adversary is at most t and it makes at most q queries. Then the following result states the
security of the above construction.

Theorem 3. Let AdvMAC(t, q) denote the maximum advantage of an adversary in successfully forg-
ing for the above MAC algorithm. Then

AdvMAC(t, q) ≤ AdvSC(t, q) +
1
2n
.



Proof: As usual one proves the information theoretic version of this result, where the runtime is
ignored and only the number of queries made by the adversary is bounded. The proof consists of
two games. Let Xi, i = 0, 1 be the event that the forging query verifies in Game i.

Game 0. This is the usual forging game for the MAC algorithm.

Game 1. In this game, SC is not used. For each of the tag generation queries made by the adversary
A, a new random string is generated and is used as the key to hash the given message. Note that
since it is not allowed to repeat nonces (IVs), this does not lead to any inconsistency. But, the
nonce in the forging query can be same as one of the earlier nonces. So, there are two cases to
consider. If this nonce is not same, then again generate a random string of appropriate length and
run the tag verification algorithm. If, on the other hand, this nonce is equal to a previous nonce,
then the key corresponding to the previous nonce is used to run the verification algorithm for the
forging query. In both cases, the probability that the verification is successful is bounded above by
1/2n. For the first case, this follows from Theorem 1 while in the second case, this follows from
Theorem 2. So, Pr[X1] = 1/2n.

The difference between Games 0 and 1 is in the way the key strings are generated. In the first
case, this is generated using SC, while in the second case these are randomly generated. Based
on this difference, it is easy to construct an adversary B which attacks the PRF-property of SC.
Basically, B will be given an oracle which on input an IV returns a string of desired length. At the
end of the game, if the forging query made by A verifies, then B returns 1, else 0.

If the oracle is SC, then B is playing Game 0 and if the oracle is random, then B is playing
Game 1. Also, Pr[X0] = Pr[B ⇒ 1|oracle is real] and Pr[X1] = Pr[B ⇒ 1|oracle is random]. So,

AdvMAC(t, q) ≤ Pr[X0]
≤ |Pr[X0]− Pr[X1]|+ Pr[X1]
= |Pr[B ⇒ 1|oracle is real]− Pr[B ⇒ 1|oracle is random]|+ 1/2n

≤ AdvSC(q) + 1/2n.

This completes the proof. ut

Authenticated encryption (AE). Applications often need to perform both encryption and
authentication. It is possible to use SCK() for this. Basically use two IVs (as nonces), IV1 for
encryption and IV2 for authentication. Then the two operations can be done in parallel. It is
also possible to use a single IV with alternate keystream segments being used for encryption and
authentication. Which approach is preferrable may depend on the actual application.

MAC with small hardware footprint. The construction UH is based on LH which, as discussed
earlier, has a very small footprint in hardware. To obtain a MAC algorithm with a small hardware
footprint, UH should be combined with a stream cipher also having a small hardware footprint.
There are several examples of such ciphers as part of eSTREAM Phase 3, Profile 2 proposals.

Software efficient MAC. Note that our technique of combining a universal hash function with
stream cipher with IV is generic. As a result, one can combine a software efficient stream cipher
with a software efficient universal hash (such as UMAC) to obtain a MAC algorithm which is very
fast in software.



6 Blockwise Universal Hashing and Tweakable Enciphering Scheme

The notion of invertible blockwise universal hash family was considered by Naor and Reingold [22]
in the context of constructing a strong pseudorandom permutation (SPRP). Halevi [12] presented
a new construction of such a hash family and used it to construct a tweakable SPRP (also called
a tweakable enciphering scheme). These constructions are based on polynomial hashing, which
requires multiplication over IF2n .

In this section we present a new blockwise universal hash family BEB which does not require
any IF2n multiplication. Also, we show how to construct a tweakable SPRP using the blockwise
universal hash family.

We will denote the new blockwise universal hash family by BUH[2, n,m]. This is built using
LH[2, n,m]. The key for BUH consists of the key K for LH along with another element L of IF2n .
Recall that the definition of LH requires a linear map ψ from IF2n to itself and whose minimal
polynomial τ(x) over IF2 is irreducible over IF2. For, the present purpose we will assume τ(x) to be
also primitive. In fact, all the pairs (ρ(α), µ(x)) shown in Table 2 have µ(x) to be primitive and so
the corresponding τ(x) is also primitive.

The domain and range of BUH[2, n,m] consists of IFm
2n , i.e., m-tuples over IF2n . The key K also

consists of an m-tuple over IF2n . Given key (K, L) and an m-tuple (X1, . . . , Xm), the output of
BUHK,L(X1, . . . , Xm) is given by the following map.

(X1, . . . , Xm) 7→ (X1 + Y, . . . ,Xm−1 + Y, Y ) + (ψ(L), . . . , ψm−1(L), L) (8)

where Y = Xm + LHK(X1, . . . , Xm−1). (This is similar to the construction in [24].)
BUH is an invertible map and this is easy to see.

1. Suppose we are given (Y1, . . . , Ym) = BUHK,L(X1, . . . , Xm);
2. compute (A1, . . . , Am−1, Y ) = (Y1, . . . , Ym−1, Ym)− (ψ(L), . . . , ψm−1(L), L);
3. compute (X1, . . . , Xm−1, Y ) = (A1 − Y, . . . , Am−1 − Y, Y ); and
4. finally compute Xm = Y − LHK(X1, . . . , Xm−1).

The main result on BUH is the following which essentially states that the construction is blockwise
universal.

Theorem 4. Fix positive integers n and m and consider the map BUH[2, n,m]. For random choices
of K from IFm

2n and L from IF2n, and for any two m-tuples X = (X1, . . . , Xm), X′ = (X ′
1, . . . , X

′
m)

from IFm
2n, let (Y1, . . . , Ym) = BUHK,L(X1, . . . , Xm) and (Y ′

1 , . . . , Y
′
m) = BUHK,L(X ′

1, . . . , X
′
m). Let

1 ≤ i, i′ ≤ m be such that (X, i) 6= (X′, i′). Then

PrK,L[Yi = Y ′
i′ ] = 1/2n.

Proof: The proof consists of several cases.

Case 1 (i 6= i′): Without loss of generality assume that i < i′. This sub-divides into two cases.

Case 1a (1 ≤ i < i′ < m): Then

Yi − Y ′
i′ = (Xi −X ′

i′) + (Y − Y ′) + ψi(L)− ψi′(L)
= Z + ψi(L− ψi′−i(L))

where Z is independent of L. The quantity ψi(L−ψi′−i(L)) is uniformly distributed over IF2n and
so Pr[Yi − Y ′

i′ ] = 1/2n.



Case 1b (1 ≤ i < i′ = m): In this case,

Yi − Y ′
i′ = Xi + (Y − Y ′) + ψi(L)− L.

An argument as in the previous case settles this case.

Case 2 (i = i′): Then X 6= X′. Let ∆Xj = Xj −X ′
j for 1 ≤ j ≤ m. Again there are two cases.

Case 2a (1 ≤ i = i′ < m): Then using the linearity of LH, we have

Yi − Y ′
i′ = ∆Xi +∆Xm + (Y − Y ′)

= ∆Xi +∆Xm + LHK(∆X1, . . . ,∆Xm−1).

If (∆X1, . . . ,∆Xm−1) 6= (0, . . . , 0), then by Theorem 1, we have that LHK(∆X1, . . . ,∆Xm−1) is
uniformly distributed over IF2n and so PrK[LHK(∆X1, . . . ,∆Xm−1) = −(∆Xi + ∆Xm)] is 1/2n.
If on the other hand, (∆X1, . . . ,∆Xm−1) = (0, . . . , 0), then we must have ∆Xm 6= 0. But, then
Yi − Y ′

i′ = ∆Xm 6= 0.

Case 2b (1 ≤ i = i′ = m): In this case,

Yi − Y ′
i′ = ∆Xm + LHK(∆X1, . . . ,∆Xm−1)

and an argument as above settles this case. ut

6.1 Tweakable Enciphering Scheme (TES)

A tweakable SPRP is also called a TES. BUH can be used to construct a TES. The basic idea is that
of Naor and Reingold – use a layer of ECB encryption between two blockwise universal hash layers.
The ECB encryption consists of applying an n-bit block cipher EK() in parallel to the blocks, i.e.,
ECBK(X1, . . . , Xm) = (EK(X1), . . . , EK(Xm)).

First assume that there are no tweaks and messages consists of m blocks, where m is fixed.
We call the scheme BEB and the encryption and decryption algorithms for this scheme is shown in
Table 4. The notation BEB[E] denotes the mode of operation BEB instantiated by the block cipher
E. Stating and proving the security of BEB requires a rather elaborate machinery. A summary of

Table 4. Encryption and decryption using BEB. The keys consist of K as the block cipher key and (K, L) as the
hashing keys.

(PP1, . . . , PPm) = BUHK,L(P1, . . . , Pm) (CC1, . . . , CCm) = BUHK,L(C1, . . . , Cm)
(CC1, . . . , CCm) = ECBK(PP1, . . . , PPm) (PP1, . . . , PPm) = ECB−1

K (CC1, . . . , CCm)
(C1, . . . , Cm) = BUH−1

K,L(CC1, . . . , CCm) (P1, . . . , Pm) = BUH−1
K,L(PP1, . . . , PPm)

the necessary preliminaries and the security statement along with a sketch of the proof is given in
Section 6.2. The basic BEB design given in Table 4 assumes that there is no tweak and the messages
have a fixed number of blocks. These can be made flexible.



Tweakable, but fixed number of blocks. This special case is of interest, since this is required
for disk encryption. Let T be an n-bit tweak. Define L = EK(T ). With this change, the encryption
and decryption algorithms remain the same.

Tweakable and variable number of blocks. Again let T be an n-bit tweak. Define R = EK(T )
and then L = EK(R+ binn(m)), where binn(m) is the n-bit binary representation of m.

Security of the variants. The security proofs for these two variants will be a little different from
that for the simple variant. The main difference is in the combinatorial analysis. The corresponding
bound on collision probability can be shown to be 4σ2

n/2
n, where σn is the total number of n-bit

blocks (including the tweaks) provided by the adversary in all its queries.

Comparison to previous TES. The main novelty of the proposed TES in comparison to all
previous TES is that it requires a single layer of encryption and no IF2n multiplications. The
hashing layers are implemented using only LFSRs. For example, if AES-128 is used as the block
cipher, then one can use a word oriented LFSR as discussed in Section 4 to implement the hashing
layer. From a hardware point of view, this leads to a minimal overhead compared to the use of a
multiplication circuit. The trade-off is that the hashing layers require a long key K. Consider for
example, the case of disk encryption. Each sector is 512 bytes and so K is also 512 bytes long.
Thus, avoiding multiplications comes at the cost of increase in key size. Though long, the same
key will be used for all sectors, i.e., a single 512-byte key is required for the entire disk. This is a
tolerable trade-off, especially if we keep in mind that many multiplication-based TES advocate the
use of pre-computed tables to speed up the required multiplications.

Disk encryption protocol with small hardware footprint. Since BUH is built from LH, it
has a small hardware footprint as already discussed. Hardware space for a disk encryption protocol
based on BEB will be dominated by the space to implement an AES block. There is no need to
implement a multiplier circuit as required in some of the other proposals. Schemes such as EME
also require an AES block as the significant hardware component. Compared to EME, BEB uses a
single layer of encryption whereas EME uses two layers of encryption.

6.2 Security of BEB

We summarize some of the relevant preliminaries required to state the security of BEB. Details can
be found in [14] and later work. The usual approach is to consider information theoretic security,
i.e., security where the block cipher E is instantiated by a permutation chosen randomly from the
set of all permutations of {0, 1}n. This is denoted by BEB[Perm(n)], where Perm(n) denotes the
set of all permutations of {0, 1}n.

The security game assumes that an adversary A interacts with the encryption and decryption
oracles. This is denoted by AEπ ,Dπ , where Eπ (resp. ,Dπ) denotes the encryption (resp. decryption)
oracle for BEB instantiated by a random permutation π. The notation AEπ ,Dπ → 1 denotes that
the adversary finally outputs the bit 1. For proving security one considers the following advantage
of an adversary A.

Adv±rnd
BEB[Perm(n)](A) =

∣∣∣∣Pr

[
π

$← Perm(n) : AEπ ,Dπ → 1
]
− Pr

[
A$(.,.),$(.,.) → 1

]∣∣∣∣



where $(.,M) returns a random bit string of length |M |. The maximum (over all adversaries making
q queries) of this advantage is denoted by Adv±rnd

BEB[Perm(n)](q).

Theorem 5. Fix n, m and q to be positive integers. Suppose that an adversary makes a total of q
queries, where each query consists of m n-bit strings. Then

Adv±rnd
BEB[Perm(n)](q) ≤

2(qm)2

2n
.

Proof: The first assumption is that the adversary does not make any pointless queries, i.e., queries
for which it already knows the answer or for which it can easily compute the answer. This means
that it cannot repeat queries; and neither can it make an encryption query of a string which it had
earlier received as answer to a decryption query and vice versa.

The usual proof strategy is a game sequence followed by a combinatorial analysis. The quantities
Pi, Ci, PPi and CCi corresponding to the sth query will be denoted by P s

i , C
s
i , PP

s
i and CCs

i .
Details of the games are similar to previous work [14] and so we skip these. The purpose of the
sequence is to arrive at a non-interactive game, where there is no adversary. Instead a transcript of
q queries is provided, where for each query, both the plaintext and ciphertext blocks are given.

Given the transcript, for 1 ≤ s ≤ q, we define (PP s
1 , . . . , PP

s
m) = BUHK,L(P s

1 , . . . , P
s
m) and

(CCs
1 , . . . , CC

s
m) = BUHK,L(Cs

1 , . . . , C
s
m). The transcript is assumed to maximize the probability

(over random choice of the hashing keys) that two of the PP s are equal or two of the CCs are
equal. Call this event Coll. Then following the proof technique of [14], it is possible to show

Adv±rnd
BEB[Perm(n)](q) ≤ (qm)2/2n + Pr[Coll].

By the blockwise universality of BUH, we have that for (s, i) 6= (t, j), Pr[PP s
i = PP t

j ] = 1/2n

and Pr[CCs
i = CCt

j ] = 1/2n. Thus, the probability that two of the PP s are equal is at most(qm
2

)
/2n ≤ (qm)2/2n+1 and similarly for the probability that two of the CCs are equal. Combining

these bounds, we obtain the required result. ut

7 Extensions of LH

This section describes several extensions of the basic linear hash.

7.1 Decimated Linear Hash

We define a w-decimated linear hash family w-DLH[q, n,m]. The parameter w is not present in the
defintion of LH and the essential difference between LH[q, n,m] and w-DLH[q, n,m] is in the way
the message is formatted and processed. Nevertheless, the details are substantially different and so
we give the complete definition.

Fix a prime power q and positive integers n,m and w. The domain of w-DLH[q, n,m] is ∪mnw
i=1 IFi

q

and the range is IFqn . The key space is IFmw
qn .

Let M ∈ IFl
q, 1 ≤ l ≤ mnw, be a message in the domain. Let l = l1nw + l2 with 1 ≤ l2 ≤ nw

and l2 = l3w + l4 = l4(l3 + 1) + (w − l4)l3 with 1 ≤ l4 ≤ n. Given n,w and l, the integers l1, l2, l3



and l4 are fixed. The message M consists of a sequence M1, . . . ,M(l1+1)w, where

M1, . . . ,Ml1w ∈ IFn
q

Ml1w+1, . . . ,Ml1w+l4 ∈ IFl3+1
q

Ml1w+l4+1, . . . ,M(l1+1)w ∈ IFl3
q

 (9)

The key K is formatted as K = (K1,K2, . . . ,K(l1+1)w, . . . ,Kmw) where each Ki ∈ IFqn . Then,
w-DLHK(M) is defined to be

w-DLHK(M) = GK1(M1) +GK2(M2) + · · ·+GK(l1+1)w
(M(l1+1)w). (10)

The security of this construction is similar to that of Theorem 1.

Theorem 6. Let q be a prime power and n,m and w be positive integers. Then the differential
probabilities of w-DLH[q, n,m] for equal length strings are equal to q−n.

The sum on the right hand side of (10) is to be evaluated w summands at a time. So, we consider
the evaluation of GK1(M1) + · · ·+GKw(Mw). Let Mi = (Mi,1, . . . ,Mi,n). Expanding, this is equal
to

M1,1K1 + M1,2ψ(K1) + · · · + M1,nψ
n−1(K1)

M2,1K2 + M2,2ψ(K2) + · · · + M2,nψ
n−1(K2)

· · · · · · · · · · · · · · ·
Mw,1Kw + Mw,2ψ(Kw) + · · · + Mw,nψ

n−1(Kw).

 (11)

Define ψ(K1, . . . ,Kw) = (ψ(K1), . . . , ψ(Kw)). Then

GK1(M1) + · · ·+GKw(Mw) =
n∑

i=1

〈(M1,i, . . . ,Mw,i), ψi−1(K1, . . . ,Kw)〉. (12)

The advantage of the definition in (12) is that ψ can be simultaneously applied to all theK1, . . . ,Kw.

Example: To make this idea concrete, we work with q = 2 and w = 32. Each key Ki is given
by an n-bit string, i.e., Ki = (Ki,1, . . . ,Ki,n). Let ψ be realized using a binary LFSR L of length
n. For example, we can use the first row of Table 1. For 1 ≤ i ≤ n, let ki = (K1,i,K2,i, . . . ,Kw,i)
and mi = (M1,i,M2,i, . . . ,Mw,i). Each ki fits into a w-bit word. Then ψ(K1, . . . ,Kw) is found
by applying L once to (k1, . . . ,kn) which we denote by L(k1, . . . ,kn). Applying L to (k1, . . . ,kn)
means the following. Consider (k1, . . . ,kn) to be a 32× 128 matrix of bits and apply L to each row
of this matrix. The advantage is that it is possible to operate on 32-bit words at a time. So, 32
clockings of L can be completed by a single clocking of L on 32-bit words. If τ(x) is a trinomial or
a pentanomial, then L(k1, . . . ,kn) can be computed using either 2 or 4 XOR operations on w-bit
strings.

After applying L we need to compute the inner product. If a and b1, . . . ,bn are w-bit strings,
then by 〈a, (b1, . . . ,bn)〉 we denote (〈a,b1〉, . . . , 〈a,bn〉). Then,

GK1(M1) + · · ·+GKw(Mw) =
n∑

i=1

〈mi,Li−1(k1, . . . ,kn)〉.



The cost per w bits of the message is the following. A single application of L on (k1, . . . ,kn) and
the computation (in parallel) of the n inner products of w-bit strings. Essentially, we are working
in a bit-slice manner over the columns of (11). For hardware implementation, this will lead to a
significant speed-up.

This can also be useful for software implementation. Basically, the application of L will be very
efficient. However, processors do not have inner product operations as basic operations and so these
will form the main bottleneck. On the other hand, for CPUs which support vector operations, DLH
will be very fast.

7.2 The Sliding Window (Toeplitz) Construction

The differential (and hence collision) probabilities of LH and DLH are equal to q−n. By suitably
choosing q and n, this can be made as low as one desires. On the other hand, it is also possible to
introduce additional flexibility based on repeated hashing. We describe the idea for LH. A similar
variation can be suggested for DLH.

The idea is the following. Repeatedly hash the same message with independent keys and con-
catenate the output. If the message is hashed s times, then the collision probability becomes q−ns.
But, this approach requires s independent keys. The modification given in [5] is to generate s keys
using a sliding window technique. Suppose each hash call requires a key sequence of length t. We
start with a sequence of length s + t − 1 and slide (one element at a time) a window of length t
over this sequence to obtain s different keys each of length t. This is called the Toeplitz procedure
as the process can be visualized as a Toeplitz matrix. The same idea works for LH.

We define the hash function family LHT[q, n,m, s], where q, n and m are as in Section 3.3 and
s is a positive integer. The value t = dm/ne, the domain A and the details of message parsing are
the same as in Section 3.3. The range B is now an element of IFs

qn . A function in LHT[q, n,m, s] is
named by a key K = (K1, . . . ,Kt+s−1) ∈ IFt+s−1

qn . For 1 ≤ i ≤ s, let Ki = (Ki,Ki+1, . . . ,Kt+i−1).
For any M ∈ A, we define LHT

K(M) as

LHT
K(M) = (LHK1(M), . . . , LHKs(M)). (13)

Theorem 7. Let q be a prime power and n,m and s be positive integers. Then the differential
probabilities of LHT[q, n,m, s] for equal length strings are equal to q−ns.

Proof: As before, since LHT is linear, it is sufficient to show that for any non-zero M ∈ A and for
any fixed α = (α1, . . . , αs) in IFs

qn , PrK[LHT
K(M) = α] = q−ns.

Parse M as M1, . . . ,Ml1 ,Ml1+1 as in Section 3.3. Since M is non-zero, at least one of the
Mi’s will be non-zero. Let r be the maximum integer such that Mr is non-zero. The condition
LHT

K(M) = α is equivalent to

LHK1(M) = GK1(M1) + · · ·+GKr−1(Mr−1) +GKr(Mr) = α1

LHK2(M) = GK2(M1) + · · ·+GKr(Mr−1) +GKr+1(Mr) = α2
...

...
...

...
...

LHKs(M) = GKs(M1) + · · ·+GKr+s−2(Mr−1) +GKr+s−1(Mr) = αs

 (14)

By Lemma 3, each GKi(Mj) is uniformly distributed over IFqn . Also, since the Kis are independent
and Mr is non-zero,



Pr[GKr(Mr)] = Pr[GKr(Mr)|GK1(M1), . . . , GKr−1(Mr−1)];
Pr[GKr+1(Mr)] = Pr[GKr+1(Mr)|GK1(M1), . . . , GKr(Mr), GK2(M1), . . . , GKr(Mr−1)];

· · · · · · ·
Pr[GKr+s−1(Mr)] = Pr[GKr+s−1(Mr)|GK1(M1), . . . , GKr(Mr), GK2(M1), . . . , GKr+1(Mr),

. . ., GKs(M1), . . . , GKr+s−2(Mr−1)].

Using this it is easy to see that the events given by the rows of (14) are independent and that each
row holds with probability q−n. Since there are s rows, the probability that all the rows hold is
q−ns. ut

Example: Consider LHT[2, 32,m, 4], i.e., q = 2, n = 32 and s = 4. Then the output is of size
4 × 32 = 128 bits and the differential probabilities are equal to 2−128. The linear operator ψ is
implemented using an LFSR of length 32 with τ(x) = 1 + x2 + x3 + x7 + x32. For each bit of the
message, we require 4 clockings of a 32-bit LFSR. These clockings are on independent keys and can
be done in parallel. We provide some more details.

The message consists of upto m bits and t = dm/32e. The entire key sequence is K =
(K1, . . . ,Kt,Kt+1,Kt+2,Kt+3) and the four keys for the four different hash applications are

(K1, . . . ,Kt), (K2, . . . ,Kt+1), (K3, . . . ,Kt+2) and (K4, . . . ,Kt+3).

As before, let ψ(a, b, c, d) = (ψ(a), ψ(b), ψ(c), ψ(d)). Then, LHT
K(M), where M = (M1, . . . ,Ml) with

1 ≤ l ≤ m is an l-bit message, is computed as

32∑
i=1

Miψ(K1,K2,K3,K4) +
64∑

i=33

Miψ(K2,K3,K4,K5) + · · ·

Since each Mi is a bit, multiplication by Mi takes no time. The computation per message bit is the
application of ψ to the four Kis. Further, ψ is applied simultaneously to four independent keys. This
is a typical single-instruction multiple-data (SIMD) senario providing opportunities for parallelism.

For the example above, one can also consider word oriented LFSRs (see Section 4). For example,
to achieve collision probability of 2−128, one can take s = 2 and implement ψ as a linear map from
IF264 to itself by using a word oriented LFSR of length 4 over IF216 . Choice of a suitable value of s
and the implementation of ψ will depend on the application platform and the resource constraints.

7.3 Multiple Linear Operators

The function family LH as well as the extensions DLH and LHT use one linear operator ψ. In this
section, we show that this is a special case of a more general construction which uses multiple linear
operators. Using multiple linear operators does not affect (i.e., either improve of reduce) the key
size and efficiency. It does, however, provide additional flexibility.

As in the case of LH, we first define a basic hash function which works on bounded length
messages and then show how to extend it to arbitrary length messages.

Let q and n be as before. Let r ≥ 1 be a positive integer and let ψ1, . . . , ψr be linear operators
from IFqn to itself having τ1(x), . . . , τr(x) as minimal polynomials. We require these to be distinct
irreducible polynomials over IFq each having degree n. For every K = (K1, . . . ,Kr) ∈ IFr

qn , we define



a function HK : ∪nr
i=1IF

i
q → IFqn in the following manner. Let a = (a1, . . . , al) ∈ IFl

q, 1 ≤ l ≤ nr.
Then

HK(a) =
l∑

i=1

ai(ψi−1
1 (K1) + · · ·+ ψi−1

r (Kr)). (15)

The following result states the basic properties of H.

Lemma 4. Fix an l with 1 ≤ l ≤ nr. The following are true for the function H defined in (15).

1. For a fixed K, the function HK restricted to inputs with l components, is a multi-linear function,
i.e., it is linear in every component of its input.

2. Fix a non-zero a ∈ IFl
q. If K is uniformly distributed over IFr

qn then HK(a) is uniformly dis-
tributed over IFqn.

3. Consequently, for a,a′ ∈ IFl
q, 1 ≤ l ≤ nr, a 6= a′ and for any α ∈ IFqn, PrK[HK(a)−HK(a′) =

α] = 1/qn.

Proof: The multi-linear property is easy to see. Also, due to linearity, the third statement follows
directly from the second statement. So, we only have to prove the second statement. Define the
polynomial p(x) ∈ IFq[x] to be p(x) = a1x+ a2x

2 + · · ·+ alx
l. Since a is non-zero, so is p(x).

For 1 ≤ i ≤ r, let pi(x) = p(x) mod τi(x). We claim that all the pi(x) cannot be zeros. Suppose
not, then each τi(x) divides p(x) and since the τi(x)s are distinct irreducible polynomials, it follows
that, τ1(x) · · · τr(x) divides p(x). Now degree of p(x) is at most nr and the constant term of p(x)
is zero. So, we can write p(x) = xp1(x), where p1(x) is a polynomial of degree less than nr.
Since τ1(x) · · · τr(x) is co-prime to x and τ1(x) · · · τr(x) divides xp1(x), it follows that τ1(x) · · · τr(x)
divides p1(x). But, the degree of τ1(x) · · · τr(x) is nr whereas the degree of p1(x) is at most nr− 1.
Thus, we obtain a contradiction.

So, some pi(x) is non-zero. By Lemma 1, pi(ψi) is an invertible map from IFqn to itself. Since
K is uniformly distributed over IFr

qn , Ki is uniformly distributed over IFqn and so is pi(ψi)(Ki).
Further, since Kj , j 6= i, is independent of Ki, it follows that HK(a) is uniformly distributed over
IFqn . ut

Note: The functionGK (defined in Section 3.2) can ensure AXU property for equal length messages
consisting of upto n elements. On the other hand, HK ensures the AXU property for equal length
messages consisting of upto nr elements. GK uses one linear operator ψ, while HK uses r linear
operators. If r = 1, then HK reduces to GK . Thus, HK is a proper generalization of GK .

We next define a function family which is parametrized as MLH[q, n, r,m]. The domain is A =
∪m

i=1IF
i
q and the range is B = IFqn . Let t = dm/(nr)e. Each function in MLH[q, n, r,m] is named by

an element K = (K1, . . . ,Kt) with Ki ∈ IFqn ; a random function in MLH[q, n, r,m] is given by a
random K. We write the function indicated by K as MLHK(·).

The message M consists of an l-tuple, l ≤ m, of elements over IFq. Let l = l1(nr) + l2, with
1 ≤ l2 ≤ nr. We consider M to be of the form (M1, . . . ,Ml1 ,Ml1+1), where M1, . . . ,Ml1 are from
IFnr

q and Ml1+1 is in IFl2
q . Further, let K = (K1, . . . ,Ks), Ki ∈ IFr

qn , and note that s ≥ l1 +1. Then,
MLHK(M) is defined as

MLHK(M) = HK1(M1) +HK2(M2) + · · ·+HKl1
(Ml1) +HKl1+1

(Ml1+1). (16)

The proof of the next result follows from Lemma 4 in a manner similar to the way in which
Theorem 1 follows from Lemma 3.



Theorem 8. For any prime power q, positive integers n and m, the differential probabilities of
MLH[q, n, r,m] for equal length strings are equal to q−n.

8 Conclusion

We have presented a new method of constructing families of multi-linear universal hash functions
by working over a finite field IFq and its extension IFqn . Using q = 2 and a tower field representation
of IFqn , leads to an algorithm with a very small footprint in hardware and reasonable performance
in software.

A new MAC algorithm is obtained by combining the new universal hash function with a stream
cipher with IV. The basic universal hash function is extended into an invertible blockwise universal
hash function. This is then used to construct a tweakable enciphering scheme BEB which has
applications to disk encryption algorithm. The novel feature of BEB is that it uses a single layer
of encryption and no finite field multiplications. Both the MAC algorithm and BEB are well suited
for resource constrained applications.
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