
A New Multi-Linear Universal Hash Family

Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
email: palash@isical.ac.in

Abstract. A new universal hash family is described. Messages are sequences over a finite field IFq

while keys are sequences over an extension field IFqn . A linear map ψ from IFqn to itself is used to
compute the output digest. Of special interest is the case q = 2. For this case, we show that there is an
efficient way to implement ψ using a tower field representation of IFqn . From a practical point of view,
the focus of our constructions is small hardware and other resource constrained applications. For such
platforms, our constructions compare favourably to previous work.
Keywords: universal hash function, tower field, message authentication code, resource
constrained devices.

1 Introduction

Universal hash functions are useful in cryptography. These were introduced by Carter and Weg-
man [7] and have been extensively studied since then. Among their many applications, one of the
most important is the construction of message authentication code (MAC) algorithms [26]. Previ-
ously, work on unconditionally secure authentication codes was done by Gilbert, MacWilliams and
Sloane [9].

A well known construction1 of a multi-linear universal hash function is the following. The
message M = (M1, . . . ,Ml) and key K = (K1, . . . ,Kl) are sequences of elements over a finite field
IF. The map

MLHash : (M1, . . . ,Ml)
K7−→ K1M1 + · · ·+KlMl (1)

is a multi-linear map and we will call this the multi-linear hash function. The probability (over
random keys) that two distinct messages map to the same value is 1/|IF|.

The basic idea of MLHash has been studied and extended later by Halevi and Krawczyk [10].
They describe an efficient software implementation of this construction over IFq with q = 232 + 15.
Modifications are made to the construction to align with 32-bit word boundaries and reduce the
total number of modulo q operations.

The goal of obtaining universal hash functions have high-speed software implementations in
general purpose computers has been pursued in several works leading to proposals such as UMAC [6],
Poly1305 [2], PolyR [17], bucket hashing [21, 12], and [22]. Design of hash functions involving linear
feedback shift registers (LFSRs) in some form has been investigated in [16, 11, 14]. In Section 7,
we provide a short survey of some of these methods. The connection of universal hash functions to
error-correcting codes was highlighted in [5]. Stinson [24] describes several methods of combining
hash function constructions.
1 This construction has been credited to Carter and Wegman [7] in [10]. Bernstein [4], mentions that this construction

appears in an earlier work by Gilbert, MacWilliams and Sloane [9]. The description in [9] was in the language of
finite geometries which according to Bernstein [4] seems to have deterred potential readers.

Our contributions. We generalize MLHash. The basic idea of the generalization is to work with
two fields, a base field IFq and an extension IFqn , where n is a positive integer. The message is
a sequence of elements from IFq, whereas the key is a sequence of elements from IFqn . A linear
operator ψ from IFqn to itself is used. The contribution of l ≤ n message elements M1, . . . ,Ml

under a key K ∈ IFqn is the sum

M1K +M2ψ(K) + · · ·+Mlψ
l−1(K).

The output is an element of IFqn .

This basic idea is developed into a definition of a hash function family LH. It is shown that
MLHash can be seen as a special case of LH. For two equal length messages M and M′ and any α ∈
IFqn , we show the probability (over the uniform random choice of key K) that LHK(M′)−LHK(M)
equals α is q−n. Using multiple hashing with s independent keys brings this down to q−ns. But,
using a previously known technique, the so-called Toeplitz method, we show that the probability
q−ns can be achieved using only a few extra key elements.

The focus of this paper is to obtain designs which are suitable for implementation in resource
constrained devices. For this goal, the choice of q = 2 is appropriate. In this case, we show that ψ can
be instantiated very efficiently using a tower field representation of IFqn . Several different designs
are discussed. The simplest design for 128-bit digests has the above probability to be 2−128; can
be implemented using only two 128-bit registers and requires only left shift and XOR operations.
This design does not require the map ψ or any finite field arithmetic. As a result, this is ideal
for environments which requires very small hardware solutions. For platforms which can support
somewhat larger hardware, we propose solutions based on suitable instantiations of ψ. Issues of
parallelism and bit slicing techniques are highlighted. The collection of designs presented here offer
a wide variety of choices to a developer of message authentication code algorithms for resource
constrained devices.

Section 7 is a rather long section which describes previous constructions of universal hash
functions. In each case, we compare to the constructions in this work especially in the context of
small-size hardware platforms. For such platforms, our conclusion is that the new constructions
compare favourably to all previously known proposals. In particular, we show the impracticality of
an LFSR based construction due to Johansson [11]. The LFSR in [11] can actually be done away
with at the cost of increasing the key length by a few extra bits. It also turns out that the previous
construction WH [15] is actually an inferior version of an earlier construction due to Winograd [27].
Winograd’s construction is described in Appendix A. This is an issue of independent interest which
is not directly related to the main focus of this work.

2 Preliminaries

2.1 Hash Function Definitions

Let H = {Hk}k∈K be a keyed family of functions, where for each k ∈ K, Hk : X → Y. Here X and
Y are finite non-empty sets with |X | > |Y|. Let x and x′ be distinct elements of X . The collision
probability (over uniform random choice of k from K) of H associated with the elements x and x′

is defined to be Prk[Hk(x) = Hk(x
′)]. Further, if Y is a commutative (additively written) group,

then for any fixed α ∈ Y, the differential probability (over uniform random choice of k from K)

2

associated with (x, x′, α) is defined to be Prk[Hk(x) − Hk(x
′) = α]. The terminology of collision

probability and differential probability in the current context is from [3].

The family H is said to be ε-almost XOR universal (ε-AXU) if the differential probability for
any (x, x′, α) is bounded above by ε. The family H is said to be ε-almost universal (ε-AU) if the
collision probability for any (x, x′) is bounded above by ε. Clearly, if H is ε-AXU, then it is also
ε-AU.

H is said to be universal if it is ε-almost universal with ε = 1/|Y|. All the function families that
we define in this paper are universal. In fact, for each case, Y is a commutative group and we show
that the differential probabilities are equal to 1/|Y|.

2.2 Some Basic Results

We need some elementary results on linear algebra over finite fields. The purpose of this section is
to present the basic notation as well as the results that will be required.

Let q be a prime power and IFq be the finite field of q elements. For a positive integer n, the
extension field IFqn is a vector space over IFq.

Let ψ be a linear transformation from IFqn to itself. By ψi, we denote the usual iterate of ψ,
i.e., ψ0 = id and ψi = ψi−1 ◦ψ, where id is the identity map from IFqn to itself. Let p(x) ∈ IFq[x] be
of the form p(x) = amx

m + am−1x
m−1 + · · ·+ a1x+ a0, then by p(ψ) we denote the linear operator

amψ
m + am−1ψ

m−1 + · · ·+ a1ψ+ a0id. We say that p(x) annihilates ψ, if p(ψ) = 0, i.e., p(ψ) maps
all elements of IFqn to zero. The minimum degree monic polynomial in IFq which annihilates ψ is
said to be the minimal polynomial of ψ. The notion of minimal polynomial is relative to the base
field. Suppose n1 divides n. Then IFqn1 is a subfield of IFqn and the minimal polynomial of ψ over
IFq is not the same as the minimal polynomial of ψ over IFqn1 .

If we fix a basis of IFqn over IFq, then a linear map ψ from IFqn to itself is uniquely given by
an n × n matrix A with entries from IFq. The minimal polynomial τ(x) of ψ is also the minimal
polynomial of A. Fixing a basis of IFqn over IFq allows the representation of the elements of IFqn by
n tuples over IFq, so that, with respect to this basis, we can identify IFqn with IFnq . For two vectors
a,b ∈ IFnq , 〈a,b〉 denotes the inner product, i.e., 〈a,b〉 =

∑n
i=1 aibi, where a = (a1, . . . , an) and

b = (b1, . . . , bn).

We will require the following results about linear maps.

Lemma 1. Let ψ be a linear map from IFqn to itself such that its minimal polynomial τ(x) in
IFq[x] is of degree n and is irreducible over IFq. Let p(x) be any polynomial in IFq[x]. If τ(x) does
not divide p(x), then p(ψ) is invertible. Equivalently, either p(ψ) = 0 or p(ψ) is invertible.

Proof: Fix a basis of IFqn over IFq and let ψ be given by a matrix A over IFq. Then the minimal
polynomial of A is τ(x) and since τ(x) is of degree n, it is also the characteristic polynomial of A.
Let the characteristic roots of A (over IFqn) be ζ1, . . . , ζn. Since τ(x) is irreducible, none of the ζis
are zero.

The matrix p(A) represents the linear map p(ψ) with respect to the previously fixed basis.
The characteristic roots of p(A) are p(ζ1), . . . , p(ζn). If any of these values is 0, then from the
irreducibility of τ(x), we get that τ(x) divides p(x). Since τ(A) = 0 (because τ(x) is the minimal
polynomial of A), we have p(A) also to be zero. On the other hand, if none of the p(ζ1), . . . , p(ζn)
are zero, the matrix p(A) is non-singular and hence the transformation p(ψ) is invertible. ut

3

Lemma 2. Let q be a prime power, n = n1 × n2 and q1 = qn1. Let ψ : IFqn2
1
→ IFqn2

1
be a linear

map whose minimal polynomial, µ(x), over IFq1 is irreducible and of degree n2. Then the minimal
polynomial of ψ over IFq is of degree n and is irreducible over IFq.

Proof: Fix a basis of IFqn2
1

over IFq1 . Then the linear map ψ is given by an n2 × n2 matrix A with

entries from IFq1 and whose characteristic polynomial µ(x) is irreducible over IFq1 .
Following [18], let I(q, n;x) be the product of all irreducible polynomials in x of degree n over

IFq. Using [18, Theorem 3.31], we have I(qn1 , n2;x) = I(q, n1n2;x).
By definition, µ(x) divides I(qn1 , n2;x). Also, by the Cayley-Hamilton theorem, µ(A) = 0 and so

I(q, n1n2;A) = I(qn1 , n2;A) = 0. Now I(q, n1n2;x) is the product of all irreducible polynomials of
degree n = n1n2 over IFq. By Lemma 1, we have that for any irreducible polynomial P (x) of degree
n over IFq, either P (A) = 0 or P (A) is invertible. If for all irreducible factors P (x) of I(q, n;x),
we have P (A) to be invertible, then we clearly cannot have I(q, n;A) to be zero. Therefore, there
must be some irreducible factor τ(x) of I(q, n;x) such that τ(A) = 0. Since this τ(x) is a factor of
I(q, n;x), it is irreducible and of degree n. This τ(x) is then the minimal polynomial of A over IFq,
which completes our proof. ut

3 Basic Construction

In this section, we describe the basic idea.
Fix a field IFq and an integer n ≥ 1. Consider the extension field IFqn . Let ψ be a linear map

from IFqn to itself such that the minimal polynomial τ(x) in IFq[x] of ψ is of degree n and is
irreducible over IFq. For each K ∈ IFqn , we define a function GK : ∪nl=1IF

l
q → IFqn as follows. Let

a = (a1, . . . , al), for some l ∈ {1, . . . , n}. Then

GK(a) = 〈(a1, . . . , al), (K,ψ(K), . . . , ψl−1(K))〉
= a1K + a2ψ(K) + · · ·+ alψ

l−1(K).

}
(2)

In other words, GK(a) is the linear combination of (a1, . . . , al) and (K,ψ(K), . . . , ψl−1(K)). A term
of GK() is of the form aiψ

i−1(K), where ai is an element of IFq and ψi−1(K) is an element of IFqn .
The efficiency of evaluating the term aiψ

i−1(K) depends on the representation of IFqn and the
choice of the map ψ. We say more about this later.

Lemma 3. Fix an l with 1 ≤ l ≤ n. The following are true for the function defined in (2).

1. For a fixed K, the function GK restricted to inputs with l components, is a multi-linear function,
i.e., it is linear in every component of its input.

2. Fix a non-zero a ∈ IFlq. If K is uniformly distributed over IFqn then so is GK(a).

3. Consequently, for a,a′ ∈ IFlq, a 6= a′ and for any α ∈ IFqn, PrK [GK(a)−GK(a′) = α] = 1/qn.

Proof: It is easy to see that GK is linear for fixed K. We prove the second statement. Let a =
(a1, . . . , al) where ai ∈ IFq and define a polynomial p(x) = a1 + a2x+ · · ·+ alx

l−1. Since a is non-
zero, p(x) is also a non-zero polynomial over IFq. Also, since l ≤ n, the degree of p(x) is less than
n. Recall that the minimal polynomial τ(x) of ψ is irreducible over IFq and is of degree n. Thus,
p(x) is a non-zero polynomial which is coprime to τ(x). Using Lemma 1, we have p(ψ) to be an
invertible map from IFqn to itself. Thus, if K is randomly distributed over IFqn , so is p(ψ)(K). The
second statement now follows on noting that p(ψ)(K) = a1 + a2ψ(K) + · · ·+ alψ

l−1(K) = GK(a).
By linearity of GK , GK(a)−GK(a′) = GK(a−a′). So, the third statement follows directly from

the second statement. ut

4

Key Length. For GK(·), the key is K, which is an element of IFqn . One K can be used for messages
consisting of upto n elements of IFq. Thus, the key length is as long as the message. This is an
inherent property of the multi-linear hash given by Equation (1) and is present in other extensions
of the idea, such as [10, 6]. As mentioned in [6], in practice, the long key will be generated using a
pseudorandom generator (PRG) from a short key.

3.1 Extending Message Length

In this and later sections, we use some terminology and notation from [6].
The function G can handle up to n elements of IFq. It is the basic building block used for

defining functions which can handle arbitrary length inputs. The idea is the following. Given m
elements of IFq, divide into (l1 + 1) groups where each of the first l1 groups has n elements and the
last group has l2 elements with 1 ≤ l2 ≤ n. To obtain the digest, apply G separately (with random
and independent keys) to each of the groups and then add together all the individual digests.

More formally, we define a function family which is parametrized as LH[q, n,m]. The domain is
∪mi=1IF

i
q, i.e., each element of the domain consists of upto m elements of IFq; the range is IFqn . Let

t = dm/ne. Each function in LH[q, n,m] is named by an element K of IFtqn ; a random function in
LH[q, n,m] is given by a random element of IFtqn . We write the function indicated by K as LHK(·).

The message M consists of an l-tuple, 1 ≤ l ≤ m, over IFq. Let l = l1n + l2, with l1 ≥ 0 and
1 ≤ l2 ≤ n. We consider M to be of the form (M1, . . . ,Ml1 ,Ml1+1), where M1, . . . ,Ml1 are in IFnq
and Ml1+1 is in IFl2q . Further, let K = (K1, . . . ,Kt) and note that t ≥ l1 + 1. Then, LHK(M) is
defined as

LHK(M) = GK1(M1) +GK2(M2) + · · ·+GKl1
(Ml1) +GKl1+1

(Ml1+1). (3)

Formally, we should write LHK[q, n,m](M) instead of LHK(M), but, we prefer the second notation
as it is simpler. The parameters q, n and m will be clear from the context.

Theorem 1. For any prime power q, any positive integers n and m, the differential probabilities
of LH[q, n,m] for equal length strings are equal to q−n.

Proof: As in Lemma 3, it is sufficient to show that for any non-zero M ∈ IFlq, 1 ≤ l ≤ m; for any
α ∈ IFqn and uniform random K, Pr[LHK(M) = α] = 1/qn.

Let Mi1 , . . . ,Mik be the non-zero blocks of M, where i1, . . . , ik are integers from the set
{1, . . . , l1 + 1}. Since M is non-zero, k ≥ 1.

Pr [LHK(M) = α] = Pr
[
GKi1

(Mi1) + · · ·+GKik
(Mik) = α

]
=

∑
γ2,...,γk

Pr
[
GKi1

(Mi1) + · · ·+GKik
(Mik) = α|Ki2 = γ2, . . . ,Kik = γk

]
×Pr [Ki2 = γ2, . . . ,Kik = γk]

=
∑

γ2,...,γk

Pr
[
GKi1

(Mi1) +Gγ2(Mi2) + · · ·+Gγk(Mik) = α
]

×Pr [Ki2 = γ2, . . . ,Kik = γk]

=
∑

γ2,...,γk

Pr
[
GKi1

(Mi1) = β
]
× Pr [Ki2 = γ2, . . . ,Kik = γk]

5

=
1

qn

∑
γ2,...,γk

Pr [Ki2 = γ2, . . . ,Kik = γk]

=
1

qn
.

The sum is over all possible choices of (γ2, . . . , γk) and β = α− (Gγ2(Mi2) + · · ·+Gγk(Mik)). The

fact that Pr
[
GKi1

(Mi1) = β
]

= 1/qn follows from Lemma 3. ut

The previous multi-linear construction. We show that LH is a generalization of MLHash
given by (1). Let n = 1, then IFqn = IFq. Consider the function G. The domain, range and the key
space of G becomes IFq and the definition of G is now GK(M) = KM . Now consider the function
LH[q, 1,m]. The domain is A = ∪mi=1IFq and the range is IFqn = IFq. Also t = dm/ne = m and each
key K = (K1, . . . ,Km) ∈ IFmq . Then for M = (M1, . . . ,Ml), LHK(M) = K1M1 + · · ·+KlMl. Thus,
LH[q, 1,m] is the multi-linear hash function MLHash in (1).

In the above, we set n = 1 and view the evaluation of GK(M) as the product KM over the field
IFq. An alternative way to see that MLHash is a special case of LH is to use a specific instantiation
of the operator ψ. Let n > 1 so that IFqn is a non-trivial extension of IFq which is represented
using an irreducible polynomial ρ(α) of degree n over IFq. Then elements of IFqn can be seen as
polynomials of degree at most (n− 1) over IFq.

Let a = (a0, . . . , an−1) be represented in IFqn by the polynomial a(α) = a0+a1α+· · ·+an−1αn−1
and let K(α) = k0 + k1α+ · · ·+ kn−1α

n−1 be another polynomial. Then(
a0 + a1α+ · · ·+ an−1α

n−1
)
×
(
k0 + k1α+ · · ·+ kn−1α

n−1
)

= a0
(
k0 + k1α+ · · ·+ kn−1α

n−1
)

+ a1α
(
k0 + k1α+ · · ·+ kn−1α

n−1
)

· · · ·+ an−1α
n−1

(
k0 + k1α+ · · ·+ kn−1α

n−1
)

=
〈

(a0, . . . , an−1), (K(α), αK(α), . . . , αn−1K(α))
〉
.

Here the multiplications by α are done modulo ρ(α). Define ψ : IFqn → IFqn as

ψ : K(α) 7→ αK(α) mod ρ(α).

Then it is easy to show that ψ is a linear map whose minimal polynomial is ρ(α). If ψ is instantiated
as this “multiply by α” map, then for K ∈ IFqn

GK(a) = 〈a, (K,ψ(K), . . . , ψn−1(K))〉
= 〈a, (K(α), αK(α), . . . , αn−1K(α))〉
= a(α)K(α) mod ρ(α).

In this case, the evaluation of GK(a) corresponds to a multiplication in the extension field IFqn .
Again, the resulting LH is the same as MLHash given by (1), where the finite field is IFqn .

In the above, the “multiply by α” is a specific instantiation of ψ. We later discuss other possible
instantiations where IFqn is seen as a tower field over IFq.

6

4 The Sliding Window (Toeplitz) Construction

The differential (and hence collision) probabilities of LH are equal to q−n. By suitably choosing q
and n, this can be made as low as one desires. On the other hand, it is also possible to introduce
additional flexibility based on repeated hashing.

The idea is the following. Repeatedly hash the same message with independent keys and con-
catenate the output. If the message is hashed s times, then the collision probability becomes q−ns.
But, this approach requires s independent keys. The modification is to generate s keys using a
sliding window technique. Suppose each hash call requires a key sequence of length t. We start with
a sequence of length t + s − 1 and slide (one element at a time) a window of length t over this
sequence to obtain s different keys each of length t. This is called the Toeplitz procedure as the
process can be visualized as a Toeplitz matrix and has been earlier used in [6, 15].

We define the hash function family LHT[q, n,m, s], where q, n and m are as in Section 3.1 and
s is a positive integer. The value t = dm/ne, the domain A and the details of message parsing are
the same as in Section 3.1. The range B is now an element of IFsqn . A function in LHT[q, n,m, s] is

named by a key K = (K1, . . . ,Kt+s−1) ∈ IFt+s−1qn . For 1 ≤ i ≤ s, let Ki = (Ki,Ki+1, . . . ,Kt+i−1).

For any M ∈ A, we define LHT
K(M) as

LHT
K(M) = (LHK1(M), . . . , LHKs(M)). (4)

Theorem 2. Let q be a prime power and n,m and s be positive integers. Then the differential
probabilities of LHT[q, n,m, s] for equal length strings are equal to q−ns.

Proof: As before, since LHT is linear, it is sufficient to show that for any non-zero M ∈ A and for
any fixed α = (α1, . . . , αs) in IFsqn , PrK[LHT

K(M) = α] = q−ns.
Parse M as M1, . . . ,Ml1 ,Ml1+1 as in Section 3.1. Since M is non-zero, at least one of the

Mi’s will be non-zero. Let r be the maximum integer such that Mr is non-zero. The condition
LHT

K(M) = α is equivalent to

LHK1(M) = GK1(M1) + · · ·+GKr−1(Mr−1) +GKr(Mr) = α1

LHK2(M) = GK2(M1) + · · ·+GKr(Mr−1) +GKr+1(Mr) = α2
...

...
...

...
...

LHKs(M) = GKs(M1) + · · ·+GKr+s−2(Mr−1) +GKr+s−1(Mr) = αs

 (5)

We consider the probability

Pr [LHK1(M) = α1, . . . , LHKs(M) = αs]

= Pr [LHK1(M) = α1]× Pr [LHK2(M) = α2|LHK1(M) = α1]

· · ·
×Pr

[
LHKs(M) = αs|LHK1(M) = α1, . . . , LHKs−1(M) = αs−1

]
.

Using Theorem 1, Pr [LHK1(M) = α1] = q−n. By Lemma 3 and the fact that Mr is non-zero,
each of GKr(Mr), GKr+1(Mr), . . . , GKr+s−1(Mr) is uniformly distributed over IFqn . Since Kr,Kr+1,
. . . ,Kr+s−1 are independent, the random variables GKr(Mr), GKr+1(Mr), . . . , GKr+s−1(Mr) are
also independent. From this it follows that each of the conditional probabilities in the above ex-
pression is also equal to q−n. This proves the result. ut

7

4.1 Toeplitz version of MLHash

By setting n = 1, the description of the Toeplitz method turns out to be a Toeplitz version of the
multi-linear hash function MLHash given by (1).

Messages are as before sequences of lengths at most m over IFq. For n = 1, the key elements Ki’s
are from the field IFqn = IFq, i.e., the key is a sequence of length (m+s−1) over IFq. For a message
M = (M1, . . . ,Ml) with l ≤ m a key K = (K1, . . . ,Kl+s−1) is used. Set Ki = (Ki, . . . ,Kl+i−1).
Then LHKi(M) is computed as follows.

LHK1(M) = M1K1 +M2K2 + · · ·+MlKl

LHK2(M) = M1K2 +M2K3 + · · ·+MlKl+1

· · · · · · ·
LHKs(M) = M1Ks +M2Ks+1 + · · ·+MlKs+l−1.

 (6)

Note that this computation does not require the map ψ at all. From Theorem 2, the differential
probabilities for this construction equals q−ns = q−s, since n = 1. One has to choose q and s
suitably to obtain a desired probability.

Case q = 2. In this case, the product MiKj is simply an AND of two bits. The computation in (6)
can be completed using the following simple algorithm which uses just two s-bit registers T and R.

T = (K1, . . . ,Ks);
if M1 = 0, then R = (0, . . . , 0); else R = T;
for i = 2 to l

T = (T� 1)⊕ (0, . . . , 0,Ks+i−1);
if (Mi = 1) then R = R⊕T;

end for;
return R.

An implementation of the above algorithm can be done using very small hardware. Apart from the
two s-bit registers, the only other operations are left shift and bitwise XOR of the two registers.
A typical value of s is 128 giving rise to a differential probability of 2−128. This is achieved using
two 128-bit registers and 128 XOR gates. To the best of our knowledge such a small size design of
universal hash function has not been done earlier.

5 Representations of IFqn and the Linear Transformation ψ

Let IFqn be represented using a polynomial τ(x) which is irreducible over IFq. Then an element of IFqn

is given by an n-tuple of elements over IFq. Let τ(x) = xn−tn−1xn−1−· · ·−t1x−t0 with tn−1, . . . , t0 ∈
IFq. Given an element (x0, . . . , xn−1) of IFqn , we define (y0, . . . , yn−1) = ψ(x0, . . . , xn−1) in the
following manner.

y0 = tn−1x0 + tn−2x1 + · · ·+ t0xn−1; and
yi = xi−1 for 1 ≤ i ≤ n− 1.

(7)

This provides an easy way to implement the map ψ. This is essentially a linear feedback shift register
(LFSR). See [18] for a general discussion on LFSRs. The “multiply-by-α” mentioned earlier can
also be seen as an LFSR map.

8

Tower field representation of ψ for the case q = 2. For the rest of the paper we will fix q = 2.
(The case of general q can be built along the lines of q = 2.) If n = 128, then one can use an LFSR
of length n to obtain a ψ having minimal polynomial x128 + x107 + x64 + x13 + 1. But, it is possible
to obtain other options for ψ by using a tower field representation of IF2n . We discuss this below.

Suppose n = n1n2. Fix an irreducible polynomial ρ(x) of degree n1 over IF2. This gives rise to
a representation of IF2n1 as IF2[α]/(ρ(α)). Choose a monic irreducible polynomial µ(x) of degree n2
over IF2[α]/(ρ(α)). This gives a representation of IF2n as a two-part extension (IF2 → IF2n1 → IF2n).
The pair of polynomials (ρ(α), µ(x)) defines the particular representation.

Let µ(x) = xn2−cn2−1x
n2−1−· · ·−c1x−c0 where cis are elements of IF2[α]/(ρ(α)). Using µ(x), we

define the linear map ψ in the following manner. Given (x0, . . . , xn2−1) ∈ IFn2
2n1 , let (y0, . . . , yn2−1) =

ψ(x0, . . . , xn2−1) where

y0 = cn2−1x0 + cn2−2x1 + · · ·+ c0xn2−1; and
yi = xi−1 for 1 ≤ i ≤ n2 − 1.

(8)

Evaluating y0 in general requires n2 multiplications over IF2n1 and is not a better option than
working directly over IF2. On the other hand, if most of the cis are either 0 or 1, then evaluating
y0 becomes much more efficient. In the best case, we will have all but one of the cis to be 0 or
1. Table 1 provides examples of tower field representations of IF2n . In all cases, only the constant
term of µ(x) is equal to α and hence (8) can be evaluated by a single multiplication by α modulo
the corresponding ρ(α).

Table 1. Examples of IF2n represented as a tower field. In each case, µ(x) is a primitive polynomial. The differential
(and collision) probabilities are 2−n.

n1 n2 n = n1 × n2 ρ(α) µ(x)

32 2 64 α32 + α31 + α29 + α1 + 1 x2 + x+ α

16 5 80 α16 + α5 + α3 + α2 + 1 x5 + x3 + α

96 3 96 α32 + α18 + α9 + α2 + 1 x3 + x+ α

32 4 128 α32 + α18 + α6 + α5 + 1 x4 + x3 + x+ α

16 8 128 α16 + α10 + α9 + α6 + 1 x8 + x3 + x+ α

8 16 128 α8 + α7 + α3 + α2 + 1 x16 + x7 + x+ α

Now we have a linear map ψ from IF2n to IF2n (defined via the tower field representation of
IF2n). The message a to be hashed is a bit string. Recall that the definition of GK(a) assumed
that the minimal polynomial τ(x) of the linear map ψ is in IF2[x] and is irreducible over IF2. Here,
we have defined ψ to be a map from IF(2n1)n2 (where IF2n1 is represented by ρ(x)) to itself, whose
minimal polynomial µ(x) is in IF2n1 [x] and is irreducible over IF2n1 . Lemma 2 assures us that the
minimal polynomial of ψ over IF2 is an irreducible polynomial of degree n as required.

5.1 Bit-Slice Computation of LH

A combination of message decimation and a bit slicing technique can be used to exploit the inherent
parallelism in the construction. To understand this, consider the definition of

LHK(M) = GK1(M1) + · · ·+GKl1
(Ml1) +GKl1+1

(Ml1+1)

9

(as given by (3)), where

GK1(M1) = M1,1K1 +M1,2ψ(K1) +M1,3ψ
2(K1) + · · ·+M1,nψ

n−1(K1)

GK2(M2) = M2,1K2 +M2,2ψ(K2) +M2,3ψ
2(K2) + · · ·+M2,nψ

n−1(K2)

GK3(M3) = M3,1K3 +M3,2ψ(K3) +M3,3ψ
2(K3) + · · ·+M3,nψ

n−1(K3)

· · · · · · ·

From this we clearly see that the rows can be computed independent of each other. This sug-
gests that we can perform the row computations in parallel. The map ψ takes an element K of
IF2n to ψ(K). Extend this to (K1, . . . ,Kw) by defining ψ(K1, . . . ,Kw) to be (ψ(K1), . . . , ψ(Kw)).
The crucial observation is that w rows of the above computation can be processed in parallel by
simultaneous application of ψ to w rows in the following manner.

K1

K2
...
Kw

 ψ→

ψ(K1)
ψ(K2)

...
ψ(Kw)

 ψ→

ψ2(K1)
ψ2(K2)

...
ψ2(Kw)

 ψ→ · · · ψ→

ψn−1(K1)
ψn−1(K2)

...
ψn−1(Kw)

Each application of ψ works in parallel on the w key blocks. In particular, the i-th bits of K1, . . . ,Kw

are processed in exactly the same manner, which gives rise to a regular bit-slice architecture.
In this architecture, nw bits are processed using (n− 1) parallel applications of ψ and n inner

product computations. As w increases, the speed of the computation increases, but, so does the
size of the hardware. Based on the available resources, a suitable value of w is to be chosen.

Consider for example n = 128 and let ψ be instantiated using a tower field representation where
n = n1 × n2 with n1 = 32 and n2 = 4. A suitable choice of ρ(α) and µ(x) for these values of n1
and n2 is given in Table 1. For this choice, each key block consists of 4 32-bit words. The w key
blocks K1, . . . ,Kw is given by 4w 32-bit words. The actual hardware implementation of ψ operating
column-wise on the w key blocks require very simple shift and XOR operations.

Choosing w = 4 requires 16 32-bit registers which would be a good choice if the requirement
is to implement on resource constrained devices. On the other hand, if sufficient hardware area is
available, then one can even choose w = 128 which will give rise to a very fast implementation.

5.2 Instances of the Toeplitz Method and Parallel Implementation

Consider the definition of LHT as given by (4).

LHT
K(M) = (LHK1(M), LHK2(M), . . . , LHKs(M)).

Here K = (K1, . . . ,Kt+s−1),

K1 = (K1,K2, . . . ,Kt−1)

K2 = (K2,K3, . . . ,Kt)

· · · · · · ·
Ks = (Ks,Ks+1, . . . ,Kt+s−1).

The message consists of l elements of IFq and is written as M = (M1,M2, . . . ,Ml1 ,Ml1+1) where
Mj = (Mj,1, . . . ,Mj,n) for 1 ≤ j ≤ l1; Ml1+1 = (Ml1+1,1, . . . ,Ml1+1,l2) and Mj,k ∈ IFq. The
definition of the numbers, s, t, n, l1, l2 are as in Section 3.1.

10

Let Vi = (Ki, ψ(Ki), . . . , ψ
n−1(Ki)) for i ≥ 1. We use the notation Vi|l2 to denote the first l2

elements of Vi. Then

GKi(Mj) =
〈

(Mj,1, . . . ,Mj,n), (Ki, ψ(Ki), . . . , ψ
n−1(Ki))

〉
= 〈Mj ,Vi〉 .

Using this notation, we can write

LHK1(M) = 〈M1,V1〉+ 〈M2,V2〉+ · · ·+ 〈Ml1 ,Vl1〉+
〈
Ml1+1,Vl1+1|l2

〉
LHK2(M) = 〈M1,V2〉+ 〈M2,V3〉+ · · ·+ 〈Ml1 ,Vl1+1〉+

〈
Ml1+1,Vl1+2|l2

〉
· · · · · · ·
LHKs(M) = 〈M1,Vs〉+ 〈M2,Vs+1〉+ · · ·+ 〈Ml1 ,Vl1+s−1〉+

〈
Ml1+1,Vl1+s|l2

〉
.

(9)

There are several things to note regarding (9).

1. For each column, the message block remains the same.
2. The V’s for the next column is obtained by shifting the previous column along with the com-

putation of one extra Vk.
3. The V’s are independent of each other and can be performed in parallel.

A simple algorithm to perform the computation is as follows. The algorithm uses R1, . . . , Rs to
store the intermediate results, where the Ri’s are elements of IFq. Also, an array W of length s is
used, where W[j] stores one of the V’s which is an element of IFnqn . For the simplicity of description
of the algorithm, we assume that l2 = n. It is easy to modify the algorithm to handle the case
where l2 < n.

W = (V1, . . . ,Vs);
for j = 1, . . . , s, Rj = 〈M1,W[j]〉;
for i = s+ 1 to l1 + s (here l is the length of the message)

compute Vi;
shift W left once;
W[s] = Vi;
for j = 1, . . . , s, Rj = Rj + 〈Mi,W[j]〉;

end for;
return (R1, . . . , Rs).

Computing Vi requires (n − 1) applications of ψ so that the total number of applications of ψ is
equal to (n − 1)(l1 + s) = l − l1 − l2 + ns. (We have assumed that l2 = n but, this is true even if
l2 < n.) Each application of ψ is on an n-bit string.

The differential probability for LHT[q, n,m, s] is q−ns. For q = 2, this is 2−ns. By suitably
choosing n and s, we can obtain configurations for different environments. For example, for obtaining
the differential probability to be 2−128 we have to set ns = 128. So (64, 2), (32, 4), (16, 8), (8, 16)
are some possible choices of (n, s). For a particular choice of n, the map ψ can be instantiated by
choosing a suitable irreducible polynomial of degree n over IF2. Alternatively, one can also use a
tower field representation to instantiate ψ. If n = 64, then one can use the first row of Table 1.

The computation of the expressions in (9) can be divided into two parts: computation of the
V’s and computation of the inner products. At a broad level, this can be considered to be a two-
stage pipeline. As mentioned earlier, the V’s are independent of each other and can be computed

11

in parallel. Suppose that w of the V’s are computed in parallel. Then the number of parallel
applications of ψ becomes (l− l1− l2 +ns)/w, i.e., the computation becomes almost w times faster.
The computed V’s are forwarded to the second stage, where the inner products are computed. The
inner products are also independent of each other and can be computed in parallel. This can be
seen as follows.

Compute V’s −→ Compute inner products

Suppose that ω of the inner products are computed in parallel. The parameters w and ω determine
the cost of the hardware and the speed of the computation. To determine proper choices of these
two values, the detailed design of the architecture is required.

6 Handling Variable Length Inputs

Theorem 1 and 2 ensure low differential probabilities only for equal length inputs. For designing a
MAC algorithm, we need to handle variable length messages. We describe how this can be done for
q = 2. For other values of q, it is possible to suitably modify the proposal.

For q = 2, the message is actually a bit string. So, there is no problem of handling partial blocks.
The basic technique for handling variable length messages is to append the binary representation of
the length to the message. In our case, a simple modification of this idea will ensure low differential
probability for variable length messages. But, such a simple padding rule may result in messages
which do not align properly to byte or word boundaries. So, we modify the construction so that
the padded length is a multiple of 32. (This can easily be modified to obtain a construction where
the padded length is a multiple of 8 or 16.)

We define UH[2, n] to be a family of functions. For each function in the family the domain is
the set of all binary strings of lengths less than 264 and the range is IF2n . Restricting the length of
strings to be hashed to be less than 264 is of no consequence for practical applications. The family
UH[2, n] is indexed by the set of all binary strings of lengths equal to 264 which form the key space
for this family. In practice, the entire key will not be required. Only the initial segment of length
approximately equal to the message will be required. We make this precise below.

Let a = (a1, . . . , al) be the message, where l ≥ 1 and each ai is a bit. Let pad(a) be the string
obtained by padding a minimum number of zeros to a so as to ensure that the length of pad(a) is
a multiple of 32. Then

UHK(a) = LHK1(pad(a)||λ64(l)). (10)

By â we will denote the binary string pad(a)||λ64(l). Here, λ64(l) is defined as follows: let y be the
minimum length binary representation of l; reverse y and pad on the left with zeros to obtain a
binary string of length 64; this is our desired λ64(l). For example, if l = 12, then the minimum
length binary representation of 12 is 1100 and λ64(12) = 0600011. By construction, the last bit of
λ(l) is always 1. K is a binary string of length 264 while K1 is the initial segment of K of length
blklenn(|â|) bits, where blklenn(l) = n× dl/ne.

Theorem 3. Let a and a′ be two distinct binary strings having lengths l and l′ respectively with
l ≥ l′. Let K be a key for UH and K1 be the initial segment of K of length equal to blklenn(|â|) bits.
Let δ be any element of IF2n. Then

Pr[UHK(a)− UHK(a′) = δ] =
1

2ns
.

12

Here the probability is over the random choice of K1 (and not the whole of K).

Proof: We are given that K1 is the initial segment of K of length equal to blklenn(|â|) bits. Let
K′1 be the initial segment of K whose length is equal to blklenn(|â′|) bits.

Let k = |â| and k′ = |â′|. By the condition of the theorem, we have k ≥ k′.
The first point to note is that if a 6= a′, then x = pad(a)||λ64(l) 6= pad(a′)||λ64(l′)||0k−k

′
= x′.

(Note that x = â and x′ = â′||0k−k′ .) There are two cases to see this. If k = k′, then x 6= x′ follows
directly from a 6= a′. On the other hand, if k > k′, then the last bit of x′ is 0, where as the last bit
of x is 1 from the definition of λ64(l). Thus, x 6= x′ also holds in this case. Note that both x and
x′ have the same length.

The second point is that

UHK(a) = LHK1(x) and

UHK(a′) = LHK′1
(pad(a′)||bin64(l′))

= LHK1(x′).

Again this is easy to see for k = k′. If k > k′, then the padding at the end by zeros does not
affect the output of the computation of LH. Now the problem reduces to that of bounding the
differential probability of LH for equal length strings. From Theorem 1, we obtain this probability
to be 1/2n. ut

Note. Instead of using separate notations K and K1, we will use the convention that the key K in
UHK(a) is of length equal to blklenn(|â|) (instead of being a binary string of length equal to 264).
This is consistent with the definition of UH, since the later bits of K do not affect the computation
of the hash value for a.

The above description defines the family UH from the family LH. In a similar manner we define
a family UHT[2, n, s] from the family LHT, i.e.,

UHT
K(a) = LHT

K1
(pad(a)||λ64(l)). (11)

The only difference is that in this case, the family UHT[2, n, s] is indexed by the set of all binary
strings of lengths equal to 264 + ns bits. Also, K1 consists of the first blklenn(|â|) + ns bits of K.
The extra ns bits corresponds to the additional s n-bit blocks required for the s-stage slide over K.

The proof of Theorem 3 essentially reduces to bounding the differential probability for LH on
equal length strings. In a similar manner, the analysis of the differential probability for UHT reduces
to bounding the differential probability for LHT on equal length strings. This gives the following
result.

Theorem 4. Let a and a′ be two distinct binary strings having lengths l and l′ respectively with
l ≥ l′. Let K be a key for UH and K1 be the initial segment of K of length equal to blklenn(|â|) +ns
bits. Let δ be any element of IF2n. Then

Pr[UHT
K(a)− UHT

K(a′) = δ] = 1/2n.

Here the probability is over the random choice of K1 (and not the whole of K).

13

7 Comparison to Previous Constructions

The focus of our construction is implementation in resource constrained devices. In this section, we
survey the previously known constructions and compare to our construction in the above context.

Polynomial evaluation based hash functions. Let M = (M1, . . . ,Ml) be a message with each
Mi in IFq. Define a polynomial pM(x) = M1 +xM2 + · · ·+xl−1Ml. Given a key K ∈ IFq, define the
hash of M under the key K as follows.

M
K7−→ pM(K).

This defines a map from l elements of IFq to a single element of IFq. The key is a single element of
IFq. Collision probabilities for this hash function can be shown to be bounded above by (l − 1)/q
using a simple argument on the number of roots of a polynomial of degree less than l. Further, the

differential probabilities for the map M
K7→ K × pM(K) can be shown to be bounded above by l/q.

Evaluating the polynomial requires (l − 1) multiplications over IFq.
In the context of authentication codes, the polynomial evaluation based hash function was

proposed by [8, 13, 25]. Subsequent works have reported fast implementations by suitably choosing
the underlying field IFq. Poly1305 [2] and PolyR [17] are two constructions which work over general
characteristic fields.

Shoup [22] described three methods for defining a universal hash function using binary extension
field arithmetic. (A specific instance of polynomial hashing over IF2128 is GCM [19].) These are
polynomial evaluation, division hash (earlier called “LFSR hashing” or cryptographic CRC by
Krawzcyk [16]) and generalized division hash (GDH). The third method has the first two as special
cases. In GDH, the message is a polynomial m(x) over IF2k of degree less than nl/k. The key is a
random monic irreducible polynomial τ(x) of degree l/k over IF2k . The hash value is m(x)xl/k mod
τ(x). The differential probabilities are bounded above by nl/(k2l).

In GDH, the message is a polynomial over IF2k , i.e., the message is broken into k-bit words. Also,
τ(x) is a polynomial of degree l/k over IF2k . The digest computation m(x)xl/k mod τ(x) is done by
successively computing the powers δi = xi mod τ(x), i = l/k, l/k + 1, . . . and multiplying with the
corresponding coefficient of m(x). Each δi is a polynomial of degree less than l/k having coefficients
from IF2k . Thus, the multiplication of a coefficient of m(x) by some δi, in general, requires l/k
multiplications over IF2k .

If l = k, then τ(x) = x + α and the hash function evaluation reduces to computing α ·m(α)
over IF2k . This is the polynomial evaluation hash over IF2k . If k = 1, then the hash function
computation reduces to evaluating m(x)xl mod τ(x), where m(x) is a polynomial over IF2 and τ(x)
is an irreducible polynomial of degree l over IF2. The case k = 1 corresponds to Krawzcyk’s “LFSR
hashing”.

Note that for l > k (and this includes Krawzcyk’s LFSR hashing), the key is a random irreducible
polynomial over IF2k . Choosing and changing a key requires running a program to find such a
polynomial. So, changing keys is a much less efficient procedure compared to the constructions
proposed in this paper.

Bernstein [4] introduced a new hash function based on polynomial evaluation. This function
modifies a previous work due to Winograd and Rabin [20]. The advantage of the new function is
that compared to the usual polynomial based hash function, it reduces the number of multiplications
by almost a factor of two. See [4] for details.

14

In polynomial based hashing (including all of the above mentioned constructions), the collision
probability degrades with the increase in the length of the message. In our constructions, an n-bit
digest provides a differential probability of 2−n. On the other hand, the key for polynomial hashing
is small, while in all approaches based on Equation (1) approach, the key is as long as the message
and has to be taken as the output of a PRG.

MMH by Halevi and Krawczyk [10]. This is an implementation of the map MLHash in (1).
The prime is chosen to be q = 232 + 15. Certain modifications are made to improve the software
performance of the map. The modified map is the following.

(M1, . . . ,Ml)
(K1,...,Kl)7−→

(((
l∑

i=1

MiKi

)
mod 264

)
mod

(
232 + 15

))
mod 232.

The digest size is 32 bits and the differential probabilities are bounded above by 1.5/230.

UMAC by Black et al [6]. The core of UMAC is a non-linear hash function NHT. Here the
superscript T stands for the Toeplitz construction and NHT is built from a non-linear hash function
NH. Let M = (M1, . . . ,Ml), l even, be the message and K = (K1, . . . ,Kn), with n ≥ l be the key.
Each Mi and Kj are w-bit integers. Then NHK(M) is computed as l/2∑

i=1

((M2i−1 +K2i−1) mod 2w) · ((M2i +K2i) mod 2w)

 mod 22w. (12)

The output is a 2w-bit integer and the collision probability is shown to be 2−w.
The cost of computing NH is l/2 multiplications modulo 22w and l additions modulo 2w. The

construction NHT is an extension, which produces a digest of size 2tw; has collision probability 2−tw

and the cost is tl/2 multiplications modulo 22w and l additions modulo 2w. To provide collision
probability of 2−128 with w = 32 will require a digest of 256 bits, i.e., t = 4. The cost will be 2l
multiplications modulo 264 and 4l additions modulo 232.

WH by Kaps et al [15]. Messages and keys are sequences of length l over IF2w , where l is assumed
to be even. Let ρ(x) be an irreducible polynomial of degree w over IF2 and let α be a root of ρ. For
a message M = (M1, . . . ,Ml) and key K = (K1, . . . ,Kl)

WHK(M) =

l/2∑
i=1

(M2i−1 +K2i−1)(M2i +K2i)α
(l/2−i)w. (13)

The authors describe the Toeplitz version of this map. This function and its Toeplitz version were
introduced get a construction which is suitable for low power devices. A detailed hardware design
along with different options is presented. In comparison with NH, it is shown in [15] that WH
requires significantly less power. This is not very surprising, since NH is based on multiplication
modulo 22w which requires more hardware area than implementing a finite field multiplier over
IF2w .

A major criticism of the map WH is that the multiplication by α(l/2−i)w is unnecessary. The
authors have actually obtained a less efficient version of Winograd’s pseudo-dot product based hash
function. In Appendix A, we discuss this hash function and its Toeplitz variant. Using Winograd’s

15

construction over IF232 will lead to a more efficient construction compared to WH. The motivation
for WH was lower power consumption in comparison to UMAC. Winograd’s construction will require
even lesser power than WH. In view of Winograd’s construction, we do not see any importance of
WH.

Requirement of a multiplier. In all of the above mentioned constructions, i.e., polynomial hash-
ing, MMH, UMAC (and WH), a multiplier is required: MMH and UMAC require integer multipliers
while WH requires a finite field multiplier. Implementing a multiplier in hardware usually requires
significant area. In contrast, we have described constructions which do not require any multipliers.
For resource constrained devices, these constructions will be preferrable.

Bucket Hashing by Rogaway [21]. The message is a sequence of length l over IF2w for some
suitably chosen word size w. The key consists of an L× l, L < l binary matrix A where each column
of A has exactly three ones. An additional requirement on the parameters is that

(L
3

)
≥ l. For a

message M, the digest is defined to be AM.

Since the matrix A is a binary matrix of a particularly simple form, the matrix-vector product
AM can be computed using a simple method which can be envisioned as throwing words into L
buckets. From a computation point of view, only XOR of w-bit words is required. For the key, it
is not required to give the entire matrix A. Since there are exactly three ones in each column, a
column is specified by three integers in the range {1, . . . , L} and so the entire matrix is specified
by 3l integers in the range {1, . . . , L}. Key size therefore is 3ldlog2 Le bits. The size of the digest
is L × w bits. Memory required for computing the hash value consists of L w-bit buckets. The
construction is reportedly very fast in software.

Collision probability is given by a complicated expression and it is mentioned in [21], that this
is about 3312 × L−6. The collision probability does not depend on the word size w. Increasing
w increases the size of the digest but does not lower the collision probability; it has the effect of
making the computation of the digest faster.

For comparison to the constructions in this work, we note the following points.

1. Obtaining a collision probability of 2−128 requires L to be about 228. The requirement of L
w-bit buckets to compute the hash value is prohibitively large.

2. Bucket hashing maps lw-bit strings to Lw-bit strings with L(L − 1)(L − 2) ≥ 6l and so, the
amount of compression is not really good. As such this map has been suggested to be used at
the first level of a multi-level hashing procedure.

3. For the constructions in this paper, the key is as long as the message (and slightly more longer
for the Toeplitz construction). In comparison, the key for bucket hashing is about 3dlog2 Le
times longer than the message.

Bucket hashing with smaller key size by Johansson [12]. Let α be an element of IF2n and
M = (M1, . . . ,Ml) be a message where Mi is a bit. Consider the map

JHα(M) : M
α7−→M1α+M2α

2 + · · ·+Mlαl.

This is a hash function which maps an l-bit string to an n-bit string and the collision probability
for this function is l/2n. Extension to the case where Mi’s are w-bit words is done as follows. Let

16

M
(j)
i be the j-th bit of Mi and M (j) be the sequence formed from the j-th bits of all the Mi’s. Let

αl = (α, α2, . . . , αl). Then the map for w-bit strings is as follows.

M
α7−→ (JHα(M (1)), . . . , JHα(M (w))).

The digest grows to wn bits but the collision probability remains the same as before, i.e., l/2n. This
seems like a bad thing to do, but, the advantage is that the computation now proceeds w times
faster.

Another extension of JH is described in [12]. The key consists of k elements of IF2n , α1, . . . , αk.
Suppose M1, . . . ,Mk are k bit strings each of length l. Then the extension, EJH is the following.

EJH : M1, . . . ,Mk
(α1,...,αk)7−→ JHα1(M1) + · · ·+ JHαk

(Mk).

The digest is n bits and the collision probability is again l/2n. Computation of the individual JH’s
can proceed in parallel. The trade-off is that the key size increases to nk bits. The case where the
Mi’s are w-bit strings can be handled in a manner similar to the one described for JH.

The core of the construction is the map JH. This is a special case of polynomial evaluation hash
function where the Mi’s are chosen to be bits instead of elements of IF2n . The advantage is that
since the Mi’s are bits, with some pre-computation, this does not require any multiplication during
the actual hash computation. As explained in [12], the computation process for JH can also be seen
as throwing words into buckets. The advantage over the method in [21] is that the key size is small.

Following the description in [12], the computation of JH requires intermediate memory to store
the buckets. This requires L arrays of length N = 2n/L each where each entry of the array is a
w-bit word. The quantity L is a parameter for the construction and determines both the size of the
intermediate storage and the speed of the hash computation. The intermediate storage requirement
is L2n/Lw bits. For the bucket hashing procedure to be reasonably fast, the value of L must be
quite small. Then for an 80-bit or 128-bit digest the intermediate storage requirement becomes
very large. For example, [12] gives l = 213, m = 80 as an example and chooses L = 4 to obtain
a speed of 8 operations per word. The memory requirement for buckets then becomes 222w bits.
An implementation which wishes to obtain the speed promised by [12] must be prepared to use
222w bits of intermediate memory. This becomes prohibitive for low memory resource constrained
devices. In general, for the construction in [12], there does not seem to be a case where high speed
hashing can be done using a small amount of memory for the buckets.

Note. Bucket hashing techniques of both Rogaway [21] and Johansson [12] are actually meant for
high-speed software implementation in general purpose computers. Apart from the different issues
mentioned above, the basic technique of throwing words into a number of buckets does not suggest
a simple systolic architecture.

LFSR based hashing by Johansson [11]. This is a suggestion for using LFSRs in the construc-
tion of authentication codes and can also be viewed as universal hash functions. The construction
from [11] is the following. Let IFq be the finite field of q elements. Messages are fixed length se-
quences of over IFq. Suppose that messages are of length m. Keys also consist of sequences of length
m over IFq while digests are sequences of length s over IFq for a suitably chosen s.

Let L be an LFSR over IFq whose connection polynomial is of degree m and is irreducible over
IFq. So, the length of the LFSR is equal to that of the message. We consider L to be the state

17

update function of the LFSR, i.e., L is a map from IFmq to IFmq . For a message M ∈ IFmq , the digest
is defined to be (

〈M,K〉, 〈M,L(K)〉, · · · , 〈M,Ls−1(K)〉
)
. (14)

Each component is an element of IFq and hence the digest is an element of IFsq. In [11], the LFSR
length is equal to the length of the message. In a related work [14], hash function construction
based on Reed-Solomon codes have been proposed. This turns out to be usual polynomial based
hashing. More specifically, the authors mention that processing a message consisting of at most 2c

elements over IF2c+d requires evaluating a polynomial of degree at most 2c over IF2c+d . They further
mention that this can be done using several LFSRs each of length c+d. Note that in this case also,
the length of the LFSR is determined by the length of the message and is in fact longer than the
length of the message.

The main difference to our construction is in the manner the LFSR is used. For example, if
q = 2, and the requirement is to hash messages of length 220 bits, then [11] requires an LFSR of
length 220. This in turn requires choosing an irreducible polynomial of length 220. A single clocking
of such a long LFSR will be quite slow in both hardware and software. (Similar criticism apply to
the suggestion in [14].) Further, [11] does not discuss how to handle variable length messages. A
difficulty in doing this is that to hash messages of different lengths one requires LFSRs of different
lengths. Again for q = 2, if the requirement is to hash messages of lengths between 210 and 220

bits, then the hash function specification has to include irreducible polynomials of all sizes between
210 and 220 (apart from other possible mechanisms to handle variable lengths). This makes the
construction completely impractical for variable length messages.

A more conceptual issue is that the LFSR map L in (14) can actually be done away with.
Consider the Toeplitz version of the multi-linear hash function as given in (6). This maps a message
M of length l, to (〈M,K1〉, . . . , 〈M,Ks〉) where Ki = (Ki, . . . ,Kl+i−1). So, by including extra s
elements of IFq as part of the key, it is possible to completely do away with the LFSR map L
in (14). For q = 2 to obtain a 128-bit digest, we need s = 128, which means that compared to the
map in (14) the key is longer by an extra 128 bits. This is a very small trade-off for eliminating
the requirement of using LFSRs of length 220 bits. We cannot think of any scenario where the hash
function from [11] would be preferable to the constructions given in this paper.

Summary. We summarise the above discussion.

1. Polynomial based hashing, Shoup’s GDH (including Krawczyk’s LFSR hashing), MMH, UMAC
and WH require multipliers. We provide multiplier-less designs. (In view of Appendix A, WH is
actually of no interest.)

2. Bucket hashing is good for fast software implementation on general purpose computers. Obtain-
ing high speed requires large intermediate storage which make them unsuitable for low-memory
devices.

3. LFSR based hashing by Johansson (and a similar suggestion in [14]) is impractical for long
and variable length messages. Further, by including a few extra bits in the key, it is possible to
obtain a significantly simpler map.

Based on the above, we can conclude that compared to known work, the constructions given in
this paper provide the most attractive options for implementing universal hash functions in resource
constrained devices. The smallest such construction is described in Section 4.1. Somewhat larger

18

and faster options are described in Sections 5.1 and 5.2. Since, in our constructions, the key is as
long as the message, practical implementation requires a PRG to generate the key. A good choice
for PRG to be used with the hash constructions in this paper would be one of the proposals in the
estream [1] portfolio focussed towards hardware implementation. Thus, our work provides the best
known designs to a developer of message authentication codes for resource constrained devices.

Acknowledgement.

We thank Kishan Chand Gupta for carefully reading the manuscript and providing useful comments.

References

1. eSTREAM, the ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/stream/.
2. Daniel J. Bernstein. The Poly1305-AES message-authentication code. In Henri Gilbert and Helena Handschuh,

editors, FSE, volume 3557 of Lecture Notes in Computer Science, pages 32–49. Springer, 2005.
3. Daniel J. Bernstein. Stronger security bounds for Wegman-Carter-Shoup authenticators. In Ronald Cramer,

editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 164–180. Springer, 2005.
4. Daniel J. Bernstein. Polynomial evaluation and message authentication, 2007. http://cr.yp.to/papers.html#

pema.
5. Jürgen Bierbrauer, Thomas Johansson, Gregory Kabatianskii, and Ben J. M. Smeets. On families of hash

functions via geometric codes and concatenation. In Stinson [23], pages 331–342.
6. John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. UMAC: Fast and secure message

authentication. In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science,
pages 216–233. Springer, 1999.

7. Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst. Sci., 18(2):143–154,
1979.

8. Bert den Boer. A simple and key-economical unconditional authentication scheme. Journal of Computer Security,
2:65–72, 1993.

9. Edgar N. Gilbert, F. Jessie MacWilliams, and Neil J. A. Sloane. Codes which detect deception. Bell System
Technical Journal, 53:405–424, 1974.

10. Shai Halevi and Hugo Krawczyk. MMH: Software message authentication in the gbit/second rates. In Eli Biham,
editor, Fast Software Encryption, volume 1267 of Lecture Notes in Computer Science, pages 172–189. Springer,
1997.

11. Thomas Johansson. A shift register construction of unconditionally secure authentication codes. Des. Codes
Cryptography, 4(1):69–81, 1994.

12. Thomas Johansson. Bucket hashing with a small key size. In EUROCRYPT, pages 149–162, 1997.
13. Thomas Johansson, Gregory Kabatianskii, and Ben J. M. Smeets. On the relation between a-codes and codes

correcting independent errors. In EUROCRYPT, pages 1–11, 1993.
14. Gregory Kabatianskii, Ben J. M. Smeets, and Thomas Johansson. On the cardinality of systematic authentication

codes via error-correcting codes. IEEE Transactions on Information Theory, 42(2):566–578, 1996.
15. Jens-Peter Kaps, Kaan Yüksel, and Berk Sunar. Energy scalable universal hashing. IEEE Trans. Computers,

54(12):1484–1495, 2005.
16. Hugo Krawczyk. LFSR-based hashing and authentication. In Yvo Desmedt, editor, CRYPTO, volume 839 of

Lecture Notes in Computer Science, pages 129–139. Springer, 1994.
17. Ted Krovetz and Phillip Rogaway. Fast universal hashing with small keys and no preprocessing: The polyr

construction. In Dongho Won, editor, ICISC, volume 2015 of Lecture Notes in Computer Science, pages 73–89.
Springer, 2000.

18. R. Lidl and H. Niederreiter. Introduction to finite fields and their applications, revised edition. Cambridge
University Press, 1994.

19. David A. McGrew and John Viega. The security and performance of the Galois/Counter Mode (GCM) of
operation. In Anne Canteaut and Kapalee Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes
in Computer Science, pages 343–355. Springer, 2004.

19

20. Michael O. Rabin and Shmuel Winograd. Fast evaluation of polynomials by rational preparation. Communications
on Pure and Applied Mathematics, 25:433–458, 1972.

21. Phillip Rogaway. Bucket hashing and its application to fast message authentication. J. Cryptology, 12(2):91–115,
1999.

22. Victor Shoup. On fast and provably secure message authentication based on universal hashing. In Neal Koblitz,
editor, CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 313–328. Springer, 1996.

23. Douglas R. Stinson, editor. Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings, volume 773 of Lecture Notes in
Computer Science. Springer, 1994.

24. Douglas R. Stinson. Universal hashing and authentication codes. Des. Codes Cryptography, 4(4):369–380, 1994.
25. Richard Taylor. An integrity check value algorithm for stream ciphers. In Stinson [23], pages 40–48.
26. Mark N. Wegman and Larry Carter. New hash functions and their use in authentication and set equality. J.

Comput. Syst. Sci., 22(3):265–279, 1981.
27. Shmuel Winograd. A new algorithm for inner product. IEEE Transactions on Computers, 17:693–694, 1968.

A Winograd’s Pseudo-Dot Product Based Hash Computation

Let M = (M1, . . . ,Ml) be the message and K = (K1, . . . ,Kl) be the key where each Mi and Kj

are elements of IFq and assume that l is even. Winograd [27] defined

PDK(M) : M
K7−→ (M1 +K1)(M2 +K2) + (M3 +K3)(M4 +K4)

+ · · ·+ (Ml−1 +Kl−1)(Ml +Kl)

}
(15)

to be the pseudo-dot product of M and K. Evaluating this expression requires l/2 multiplications
over IFq and 3l/2 additions over IFq. In comparison the GMS hash function requires l multiplications
and l additions. So, the pseudo-dot product computation trades off about l/2 multiplications for l/2
additions. In general, this is an advantage. But, over IF2, addition and multiplication are actually
the XOR and AND operation on bits and take the same time. So over IF2, there is no particular
reason to prefer PD over the function MLHash given by (1). Further, for PD there does not seem
to be any analogue of the generalisation of MLHash that we have introduced.

Winograd had introduced the pseudo-dot product to speed up matrix multiplication. As pointed
out by Bernstein [4], this idea in various forms was later used in the context of construction of hash
functions by several later authors including [10, 6]. Black et al [6] consider a modification of this
expression where the terms (Ki +Mi) are computed modulo 2w while the products and the outer
sum are computed modulo 22w where w is a suitable word size. They also consider the Toeplitz
version of their basic construction.

It is fairly easy to obtain the direct Toeplitz version of (15) over a finite field IFq. To describe
such a construction, let K = (K1, . . . ,Kl+2s−2) and Ki = (Ki, . . . ,Kl+i−1), for 1 ≤ i ≤ s. Define a
map PDT as follows.

PDT
K(M) : M

K7−→
(
PDK1(M),PDK3(M), . . . ,PDK2s−1(M)

)
. (16)

Note that in the above, each shift of the key is by two elements. This is to be contrasted with the
construction in Section 4 where the shift is by one element. (For the pseudo-dot product based
computation, shifts of even length will work, but shifts of odd length will not work.) As a result,
the total key length in this case is s elements longer than the key length required in Section 4.

It is not too difficult to show that for equal length messages the differential probabilities for
the map in (16) are q−s. The actual computation of the hash value can be done using the following

20

simple algorithm. The variables R1, . . . , Rs each can store an element of IFq. In the algorithm, the
number of arithmetic operations per message element Mi of IFq is s/2 multiplications and 3s/2
additions over IFq.

R1 = · · · = Rs = 0;
for i = 1 to l/2

for j = 1 to s
Rj = Rj + (M2i−1 +K2i+2j−3)(M2i +K2i+2j−2);

end for;
end for;
return (R1, . . . , Rs).

For the case q = 2, the above algorithm can be stated in a form which is similar to the
algorithm given in Section 4.1. The storage requirement and efficiency will be the same, but, one
small disadvantage will be that the key will be longer by an extra s bits. This is due to the fact
that in the present case the key shifts are of length two while in Section 4.1 the key shifts are of
length one.

21

