
An ID-based Authenticated Key Exchange

Protocol based on Bilinear Diffie-Hellman

Problem

Hai Huang and Zhenfu Cao

Department of Computer Science and Engineering, Shanghai Jiaotong University,
800 Dongchuan Road, Shanghai, 200240, People’s Republic of China

Abstract

In recent years, a great deal of ID-based authenticated key exchange protocols
have been proposed. However, many of them have been broken or have no security
proof. The main issue is that without static private key it is difficult for simula-
tor to fully support the SessionKeyReveal and EphemeralKeyReveal queries. Some
proposals which have purported to be provably secure just hold in relatively weak
model, which does not fully support above-mentioned two queries. For protocols to
be proven secure in more desirable model, people must make use of the stronger gap
[15] assumption, which means that the computational problem remains hard even
in the presence of an effective decision oracle. However, the gap assumption may
not be acceptable at all, since the decision oracle, which the proofs rely on, may not
exist in real world.

Cash, Kiltz and Shoup [14] recently proposed a new computational problem called
twin Diffie-Hellman problem, a nice feature of which not enjoyed by ordinary Diffie-
Hellman problem is that the twin Diffie-Hellman problem remains hard, even with
access to a decision oracle that recognizes solutions to the problem. At the heart of
their method is the “trapdoor test” that allows us to implement an effective decision
oracle for the twin Diffie-Hellman problem, without knowing the corresponding
discrete logarithm.

In this paper,we present a new ID-based authenticated key exchange (ID-AKE)
protocol based on the trapdoor test technique. Compared with previous ID-AKE
protocols, our proposal is based on the Bilinear Diffie-Hellman (BDH) assumption,
which is more standard than Gap Bilinear Diffie-Hellman (GBDH) assumption, on
which previous protocols are based.

Moreover, our scheme is shown to be secure in the enhanced Canetti-Krawczyk
(eCK) model, which is the currently strongest AKE security model.

Key words: ID-based, Authenticated key exchange, BDH problem, Provably
secure, Trapdoor test

Preprint submitted to Elsevier Science 18 May 2008



1 Introduction

Authenticated key exchange (AKE) is a traditional primitive of cryptography.
It enables two parties, Alice (A) and Bob (B), to establish a shared session
key via unsecured channels. Later, the shared session key can be used to
efficiently ensure data confidentiality and integrity between A and B using
efficient symmetric encryptions and message authentication codes.

In ID-based cryptography, a trusted key generator center (PKG) generates
user’s private key when given an identity. In ID-based authenticated key ex-
change, users use the ID-based public/private pairs to perform key exchange
protocols instead of PKI public/private pairs.

It is desirable for ID-based authenticated key exchange protocols to possess
the following attributes:

1.Known-key security : Each run of the protocol should result in a unique secret
session key. It is reasonable to assume the adversary has the ability to learn
the session keys except for one under attack. A protocol is said to be known-
key secure if the compromise of one session key should not compromise other
session keys.

2.Forward security : If the static private key of an entity is compromised, the
adversary can arbitrarily masquerade as that entity in future. However, we
want to guarantee that when the static private key is compromised, the ad-
versary can not obtain the session keys that were accepted before the compro-
mise. Protocols are said to provide perfect forward security if the static private
keys of all parties involved have been compromised without compromising the
previously established session keys by these entities. There is further notion
of forward security in ID-based setting, which we call PKG-forward security
(PKG-fs). The PKG means that even the compromise of PKG master private
key does not compromise the preciously established session key. However, if
the adversary is actively involved with the choice of the DH values X, Y at a
session, no two-message AKE protocol can achieve forward security, according
to the result of HMQV [6]. So we define weak from of forward security (wFS).

3.Key compromise impersonation resistance: When the static private key of
an entity, say A, is compromised, the adversary can arbitrarily masquerade as
A in future. However, we want to guarantee that in this case the adversary
cannot masquerade as another entity, say B, to communicate with A.

4.Ephemeral key reveal resistance: The adversary can obtain the ephemeral

Email addresses: chinesechess@sjtu.edu.cn (Hai Huang),
zfcao@cs.sjtu.edu.cn (Zhenfu Cao).

2



key of entities. Protocols are said to be ephemeral key reveal resistance if even
when the adversary obtains the ephemeral key of entities the session key under
attack still remains secure.

Protocols for AKE have been established to be surprisingly difficult to design.
Bellare and Rogaway [1] firstly proposed a formal security model for authen-
tication and key distribution. Since then, there have been several extensions
to the model [2–4]. Among them, the Canetti-Krawczyk (CK) model [4] is
regarded as possibly promising one. Choo, Boyd and Hitchcock [9] compared
the most commonly used security models for key exchange. All these models
attempt to cover these desirable properties listed above as much as possible.
Recently, NAXOS [10] and CMQV [11] present a new security model named
eCK which is currently strongest one. The desirable properties of eCK model
include resistance to key-compromise impersonation (KCI), weak perfect for-
ward security (wPFS) and resilience to the leakage of ephemeral private keys
etc. In this paper, the eCK model is actually an adaption of eCK model from
PKI-based setting to ID-based setting.

1.1 Related Work

In recent years, a great deal of ID-based authenticated key exchange protocols
have been proposed. Some of them have been shown to be insecure or have no
security proof, other are only proven secure in weak model, say, it does not
fully support both the adversary’s SessionKeyReveal and EphemeralKeyRe-
veal queries [7–9,16].

Kudla and Paterson in [13] propose a modular proof approach, which makes
use of gap assumption to keep the consistency of random oracle queries. While
the approach is elegant and suitable for the security analysis of many key
exchange protocols, the gap assumption may not acceptable at all, since there
may not exist any polynomial time algorithms to construct such a decision
oracle in real world.

Chen, Cheng and Smart in [12] propose a new approach to solve the reveal
queries issue. Their approach incorporates a built-in decision function in key
exchange protocols. The built-in decision function is designed to distinguish a
Diffie-Hellman (DH) triple from a random element in group G. It is well known
that in groups equipped with pairings such decision problem is available. So
their approach does not make use of any oracle which may not exist in real
world. However, although their modified Bellare and Rogaway (mBR) model
fully support SessionKeyReveal queries, it does not deal with the Ephemer-
alKeyReveal queries.

Chow and Choo in [17] propose a new ID-based authenticated key exchange

3



protocol based on their challenge-response signature technique. They claim
that their protocol allows SessionKeyReveal queries in all cases, and Ephemer-
alKeyReveal queries in most cases, without employing any gap assumption.
While this is certainly a contribution, as the simulator has no peer’s static pri-
vate key, their protocol cannot deal with the adversary’s EphemeralKeyReveal
queries to those sessions owned by the peer of Test session. In fact, this is a
main issue of authenticated key agreement protocol. In this paper, we propose
a better solution to this issue.

1.2 Our contributions

So far all ID-based authenticated key exchange protocols either base their se-
curity on GBDH assumption, which is a basic technique to deal with Session-
KeyReveal and EphemeralKeyReveal queries or are proven secure in restricted
security model, which does not fully support above-mentioned two queries.

In this paper, we present a new ID-based AKE protocol. Compared with
previous ID-AKE protocols, our proposal is based on the BDH assumption,
which is more standard than GBDH assumption, on which previous protocols
are based.

Moreover, Our scheme is proved to be secure in the currently strongest eCK
model, which is actually an adaption of eCK model from PKI-based setting
to ID-based setting.

1.3 Organization

The paper is organized as follows. In section 2, we will review the related
building techniques, for example, hardness assumption. In section 3 we review
the security model eCK. Then we propose our scheme in section 4. In section
5, we will give the security proof of the new scheme in eCK model. In section 6
we compare the efficiency between previous ones and ours. Finally, concluding
remarks are made in section 7.

2 Preliminaries

Let the value k be the security parameter. Let G be two cyclic groups of prime
order q and P ∈ G be the generator of group G. Define

CDH(X, Y ) := Z, where X = xP, Y = yP and Z = xyP .

4



CDH Assumption. For any probabilistic polynomial time algorithm A,

Pr[A(q, G, P, X = xP, Y = yP ) = CDH(X, Y )] ≤ ε(k).

where x, y ∈ Zq and ε(k) is negligible. The probability is taken over the coin
tosses of A, the choice of q, P and the random choices of x, y in Zq.

Let e : G×G −→ GT be a bilinear pairing, where G, GT be two cyclic groups
of prime order q and P ∈ G be the generator of group G. Define

BDH(X, Y, W ) := Z, where X = xP, Y = yP,W = wP and Z = e(P, P )wxy.

BDH Assumption. For any probabilistic polynomial time algorithm A,

Pr[A(q, G, GT , P, X = xP, Y = yP,W = wP ) = BDH(X, Y, W )] ≤ ε(k).

where x, y, z ∈ Zq, and where ε(k) is negligible. The probability is taken over
the coin tosses of A, the choice of q, P and the random choices of x, y and w
in Zq.

The theorem below is a variant of trapdoor test theorem [14] in ID-based
setting. As stated by authors of that paper, it is easy to check that both
proofs are similar, so we omitted the details. The readers are referred to [14].

Theorem 1 (Trapdoor Test [14]) Let e : G×G −→ GT be a bilinear pair-
ing, where G, GT be two cyclic groups of prime order q and P ∈ G be the
generator of group G. Suppose W1, r, s are mutually independent random vari-
ables where W1 takes values in G, and each of r, s is uniformly distributed over
Zq, and define the random variable W2 := sP − rW1. Further, suppose that

X̂, Ŷ are random variables taking values in G and Ẑ1, Ẑ2 are random variables
taking values in GT , each of which is defined as some function of W1 and W2.
Then we have:

(i) W2 is uniformly distributed over G;

(ii) W1 and W2 are independent;

(iii) if W1 = w1P and W2 = w2P , then the probability that the truth value of

Ẑ1
r
· Ẑ2

?
= e(X̂, Ŷ )s (1)

does not agree with the truth value of

Ẑ1
?
= e(X̂, Ŷ )w1

∧
Ẑ2

?
= e(X̂, Ŷ )w2 (2)

is at most 1/q; moreover, if (2) holds, then (1) certainly holds.

5



Intuitionally, theorem 1 means that the simulator can use (1) to judge whether
(2) holds (Knowing either the discrete logarithm x̂ of X̂ or the discrete log-
arithm ŷ of Ŷ , the adversary can compute Ẑ1, Ẑ2 itself, while the simulator
cannot). This technique is essential to implement the effective decision oracle
without knowing the corresponding discrete logarithms w1, w2 of W1, W2.

3 Security Model

Our basic security model is the eCK model in ID-based setting. Further details
of the original eCK model can be found in [10,11].

Participants. We model the protocol participants as a finite set P of fixed size
with each IDi being a probabilistic polynomial time (PPT ) Turing machine.
Each protocol participant IDi ∈ P may execute a polynomial number of
protocol instances in parallel. We will refer to s-th instance of principal IDi

communicating with peer IDj as Πs
i,j(i, j ∈ N) (a session).

Adversary Model. The adversary M is modeled as a PPT Turing machine
and has full control of the communication network and may eavesdrop, delay,
replay, alter and insert messages at will. We model the adversary’s capability
by providing it with oracle queries.

• EphemeralKeyReveal(Πs
i,j) The adversary obtains the ephemeral private

key of Πs
i,j. These queries are motivated by practical scenarios, such as if

session-specific secret information is stored in insecure memory on device or
if the random number generator of the party is corrupted.
• SessionKeyReveal(Πs

i,j) The adversary obtains the session key for a ses-
sion s of IDi, provided that the session holds a session key.
• StaticKeyReveal(IDi) The adversary obtains the static private key of

IDi.
• PKGStaticKeyReveal The adversary obtains the PKG master private

key, the query is used to model the PKG forward security (PKG-fs).
• EstablishParty(IDi) The query models that the adversary can arbitrarily

register a legal user on behalf of the party IDi. In this way the adversary
gets the party IDi’s static private key and totally controls the party IDi.
Parties against whom the adversary does not issue this query are called
honest.
• Send(Πs

i,j, m) The adversary sends the message m to the session s exe-
cuted by IDi communicating with IDj and get a response according to the
protocol specification.
• Test(Πs

i,j) Only one query of this form is allowed for the adversary. Provided
that session key is defined, the adversary M can execute this query at any
time. Then with probability 1/2 the session key and with probability 1/2 a

6



uniformly chosen random value ζ ∈ {0, 1}k is returned.

Definition 1 (Matching Session) Let Πs
i,j be a completed session with pub-

lic output (IDi, X, Y, IDj), where IDi is the owner of the session, IDj is the
peer, and X is IDi’ outgoing message, Y is IDj’ outgoing message. The ses-
sion Πt

j,i is called the matching session of Πs
i,j, if Πt

j,i is completed and its
public output is (IDj, Y, X, IDi).

Definition 2 (Freshness) Let instance Πs
i,j be a completed session, which

was executed by an honest party IDi with another honest party IDj. We define
Πs

i,j to be fresh if none of the following three conditions hold:

• The adversary M reveals the session key of Πs
i,j or of its matching session

(if latter exists).
• IDj is engaged in session Πt

j,i matching to Πs
i,j and M either reveal:

-both StaticKey of IDi and EphemeralKey of Πs
i,j; or

-both StaticKey of IDj and EphemeralKey of Πt
j,i.

• No sessions matching to Πs
i,j exist and M either reveal:

-both StaticKey of IDi and EphemeralKey of Πs
i,j; or

-StaticKey of IDj.

Note that the adversary can reveal static key either by StaticKeyReveal queries
or by PKGStaticKeyReveal query.

Definition 3 (AKE Security) . As a function of the security parameter k,
we define the advantage AdvAKE

M,Σ (k) of the PPT adversary M in attacking
protocol Σ as

AdvAKE
M,Σ (k)

def
= |SuccAKE

M,Σ (k)− 1
2
|

Here SuccAKE
M,Σ is the probability that the adversary queries Test oracle to a

fresh instance Πs
i,j, outputs a bit b̂ such that b̂ = b, where the bit b is used by

the Test oracle.

We call the authenticated key exchange protocol Σ to be AKE secure if for
any PPT adversary M the function is negligible.

4 An ID-based Authenticated Key Exchange Protocol based on
Bilinear Diffie-Hellman Problem

Setup

Let the value k be the security parameter. Let e : G×G −→ GT be a bilinear
pairing, where G, GT be two cyclic groups of prime order q and P ∈ G be the

7



generator of group G. We denote by G∗ the non-identity elements set of G.
Let H1, H2 : {0, 1}∗ → G∗ and H : {0, 1}∗ → {0, 1}k be three hash functions.
We randomly pick a value z ∈ Zq and set Z = zP . We keep z as PKG master
private key and publish params=< q, G, GT , e, k, P, Z, H1, H2, H >.

Extract

For the given string ID ∈ {0, 1}∗, PKG computes QID1 = H1(ID), QID2 =
H2(ID) and returns the corresponding private keys dID1 = zQID1 , dID2 =
zQID2 to the applicant, where z is the PKG master private key.

A B

x←R Zq y ←R Zq

X = xP−−−−−→
Y = yP←−−−−−

sid = (X, Y, A,B) sid = (X,Y, A,B)

Z1 = e(Y + QB1 , xZ + dA1) Z1 = e(X + QA1 , yZ + dB1)

Z2 = e(Y + QB2 , xZ + dA2) Z2 = e(X + QA2 , yZ + dB2)

Z3 = xY Z3 = yX

SK = H(Z1, Z2, Z3, sid) SK = H(Z1, Z2, Z3, sid)

Fig. 1. Our proposed protocol

Protocol description

In the protocol below, A, B are two participants.

(1) A chooses an ephemeral private key x ∈ Zq at random, computes ephemeral
public key X = xP and send X to B. Similarly, B randomly chooses
y ∈ Zq, and send Y = yP to A.

(2) Upon receiving X, party B verifies that X ∈ G∗. If so, B computes
Z1 = e(X + QA1 , yZ + dB1), Z2 = e(X + QA2 , yZ + dB2), Z3 = yX and
SK = H(Z1, Z2, Z3, sid), where sid = (X, Y, A,B). B keeps SK as the
established session key.

(3) Similarly, upon receiving Y , A checks if Y ∈ G∗. If so, A computes
Z1 = e(Y + QB1 , xZ + dA1), Z2 = e(Y + QB2 , xZ + dA2), Z3 = xY and
SK = H(Z1, Z2, Z3, sid). where sid = (X, Y, A,B). A keeps SK as the
established session key.

8



5 Security Proof

Theorem 2 Suppose that the BDH assumption for (G, GT , e, P ) holds, CDH
assumption for G, p holds and H1, H2, H are random oracles, then the proposed
scheme is a secure ID-based authenticated key exchange protocol in eCK model.

Proof. Let k denote the security parameter. Assume that the adversary M
activates at most n(k) honest parties and s(k) sessions in each party. Assume
that the adversary succeeds with non-negligible probability in the environment
described in Section 3. Since H(·) is modeled as a random oracle, after the
adversary queries Test oracle, it has only two possible ways to distinguish a
session key from a random string.

CASE 1 Forging attack: At some point in its run, the adversary M queries H
on the value (Z1, Z2, Z3, X, Y,A, B) in the Test session owned by A communi-
cating with B. Clearly, in this case M computes the value Z1, Z2, Z3 itself.

CASE 2 Key-replication attack: The adversary M forces a non-matching session
to have the same session key with the Test session. In this case, the adversary
M can simply learn the session key by querying the non-matching session.

The input to the key derivation function H(·) includes all information con-
tained in sid. Since two non-matching sessions can not have same identities
and same ephemeral public keys and H is modeled as random oracle, the
success probability of key replication attack is negligible.

The rest of this section is mainly devoted to the analysis of the CASE 1 Forging
attack. In this case, according to freshness definition, We consider separately
two complementary subcases below:

CASE 1.1: No honest party owns a matching session to the Test session.

CASE 1.2: The Test session has a matching session owned by another honest
party.

5.1 The analysis of CASE 1.1

Consider the following two subcase:

CASE 1.1.1: At some point, the static private key owned by the party A has
been revealed by the adversary M (Note that in this case, according to the
freshness definition, M is not permitted to reveal ephemeral private key of the
Test session).

9



CASE 1.1.2: The static private key owned by the party A has never been
revealed by the adversary M (Note that in this case, according to the freshness
definition, M may reveal party A’s ephemeral private key in the Test session).

CASE 1.1.1:

In this case, following the standard approach, we will show how to construct
BDH problem solver S that uses an adversary M who succeeds with non-
negligible probability in CASE 1.1.1. The solver S is given BDH problem
instance(U = uP, Z = zP,W = wP ), where u, z, w ∈ Zq and U,Z, W ∈ G. Its
task is to compute BDH(U,Z, W ) = e(P, P )uzw. S sets PKG master public
key to be Z. With probability at least 1

n(k)2
, S guesses the adversary M will

select one party denoted by A as the owner of the session ŝ and the other
party denoted by B as the peer. With probability at least 1

s(k)
, S guesses

the adversary M will select the session ŝ as Test session. Furthermore, S
randomly chooses s, r ∈ Zq, assigns static public key QB1 = W1 = W, QB2 =
W2 = sP − rW for B, and random static public/private key pairs for the
remaining n(k) − 1 parties (including A). When the adversary M activates
a party whose static key S possesses, S follows the protocol description. We
next discuss mainly the simulation action of S when the adversary M makes
queries to party B (because S does not know B’s static private key). Without
loss of generality, we assume that B is the responder.

-H1(IDi): S maintain an initially empty list H list
1 with entries of the form

(IDi, li1, Qi1). The simulator S responds to these queries in the following way:

• If IDi is already there, then S responds with stored value Qi1.
• Otherwise,

-If IDi = B, S randomly chooses s, r ∈ Zq, computes Qi1 = W, Qi2 =
sP −rW , then inserts (IDi, null, Qi1) into the H list

1 and inserts correspond-
ing (IDi, null, Qi2) into the H list

2 (maintained in H2 query).
-Otherwise, S randomly chooses li1, li2 ∈ Zq, computes Qi1 = li1P, Qi2 =

li2P , inserts (IDi, li1, Qi1) into the H list
1 and inserts corresponding (IDi, li2, Qi2)

into the H list
2 (maintained in H2 query).

-H2(IDi): S maintain an initially empty list H list
2 with entries of the form

(IDi, li2, Qi2). The simulator S responds to these queries in the following way:

• If IDi is already there, then S responds with stored value Qi2.
• Otherwise,

-If IDi = B, S randomly chooses s, r ∈ Zq, computes Qi1 = W, Qi2 =
sP −rW , then inserts (IDi, null, Qi2) into the H list

2 and inserts correspond-
ing (IDi, null, Qi1) into the H list

1 (maintained in H1 query).
-Otherwise, S randomly chooses li1, li2 ∈ Zq, computes Qi1 = li1P, Qi2 =

li2P , inserts (IDi, li2, Qi2) into the H list
2 and inserts corresponding (IDi, li1, Qi1)

into the H list
1 (maintained in H1 query).

10



-H(Ẑ1, Ẑ2, Ẑ3, X, Y, IDi, IDj): S maintains an initially empty list H list with

entries of the form (Ẑ1, Ẑ2, Ẑ3, X, Y, IDi, IDj, h). S simulates the oracle in

usual way except for queries of the form (Ẑ1, Ẑ2, Ẑ3, X, Y, C, B), where C is
B’ peer and may not be honest. The simulator S responds to these queries in
the following way:

• If (Ẑ1, Ẑ2, Ẑ3, X, Y, C, B) is already there, then S responds with stored value
h.
• Otherwise, S looks in Llist (maintained in the Send query) for the entry

(X, Y, C,B). If finds it, S computes

Z̄1 = Ẑ1/(e(Y, dC1)e(X, yZ)e(QB1 , dC1)) (3)

Z̄2 = Ẑ2/(e(Y, dC2)e(X, yZ)e(QB2 , dC2)) (4)

Then S checks if Ẑ1, Ẑ2 are correctly generated by computing(Theorem
1)

Z̄1
r
Z̄2

?
= e(X, Z)s (5)

Note that the values Ẑ1, Ẑ2 are correctly generated iff Ẑi = e(Y +QBi
, xZ +

dCi
), which is equivalent to Z̄i = e(QBi

, xZ) = e(X, Z)wi(i=1,2). S also
computes

Ẑ3
?
= yX (6)

-If both predicates evaluate to 1, S returns from Llist the stored value SK
to the adversary M and stores the new tuple (Ẑ1, Ẑ2, Ẑ3, X, Y, C, B, SK) in
H list.

-Otherwise, S chooses h ∈ {0, 1}k at random, sends it to the adversary
M and stores the new tuple (Ẑ1, Ẑ2, Ẑ3, X, Y, C, B, h) in H list.
• Otherwise, S chooses h ∈ {0, 1}k at random, sends it to M and stores the

new tuple (Ẑ1, Ẑ2, Ẑ3, X, Y, C, B, h) in H list.

-EstablishParty(IDi): The simulator S registers the IDi on behalf of the
adversary M . Concretely, S makes queries to H1, H2 oracle with IDi and
returns the dQIDi1

= li1Z, dQIDi1
= li2Z to the adversary M .

-PKGStaticKeyReveal: The simulator S fails.

-StaticKeyReveal(IDi):

• If IDi = B then simulator fails (S do not know the corresponding static
private key dB1 , dB2).
• Otherwise, S returns the corresponding static private key to the adversary

M .

-EphemeralKeyReveal(Πs
i,j):

• If IDi = A and Πs
i,j is Test session, the simulator fails (The ephemeral key

of Test session cannot be revealed).

11



• Otherwise, the simulator returns the stored ephemeral private key to the
adversary M .

-Send(Πs
i,j, m): S maintains an initially empty list Llist with entries of the

form (X, Y, IDi, IDj, SK).

• If IDi = A and Πs
i,j is Test session, then simulator returns U to the adversary

M (We set the ephemeral public key of Test session owned by A to be U).
• If IDi = B (For convenience, we set IDj = C and m = X).

-S chooses y ←R Zq and returns Y = yP to the adversary M .

-S looks in H list for entry (Ẑ1, Ẑ2, Ẑ3, X, Y, C, B, h). If finds it, S computes

Z̄1 = Ẑ1/(e(Y, dC1)e(X, yZ)e(QB1 , dC1)) (7)

Z̄2 = Ẑ2/(e(Y, dC2)e(X, yZ)e(QB2 , dC2)) (8)

Then S checks if Ẑ1, Ẑ2 are correctly generated by computing (Theorem 1)

Z̄1
r
Z̄2

?
= e(X, Z)s (9)

Also, note that the values Ẑ1, Ẑ2 are correctly generated iff Ẑi = e(Y +
QBi

, xZ + dCi
), which is equivalent to Z̄i = e(QBi

, xZ) = e(X, Z)wi(i=1,2).
S also computes

Ẑ3
?
= yX (10)

· If both predicates evaluates to 1, S stores the new tuple (X, Y, IDi, IDj, h)
in Llist (The value h is from H list).
·Otherwise, S chooses SK ∈ {0, 1}k at random and stores the new tuple

(X, Y, C,B, SK) in Llist.
-Otherwise, chooses SK ∈ {0, 1}k at random and stores the new tuple

(X, Y, C,B, SK) in Llist.

-SessionKeyReveal(Πs
i,j):

• If Πs
i,j is Test session, S aborts.

• Otherwise, S returns the stored value SK in Llist to M .

-Test(Πs
i,j):

• If Πs
i,j is not Test session, S aborts.

• Otherwise, S randomly chooses ζ ∈ {0, 1}k and returns it to the adversary
M .

As the attack that adversary M mounts is Forging attack, if M succeeds,
it must have queried oracle H on the first two inputs of this form Z∗

1 =
e(Y + QB1 , xZ + dA1) = e(Y + QB1 , uZ + dA1), Z∗

2 = e(Y + QB2 , xZ + dA2) =
e(Y +QB2 , uZ +dA2). To solve BDH(U,Z, W ) problem, for all entries in H list,
S randomly chooses one entry Z∗

1 , Z
∗
2 and proceeds with following steps:

12



S computes

Z1 = Z∗
1/(e(Y, dA1)e(QB1 , dA1)) = e(Y + QB1 , xZ) (11)

and
Z2 = Z∗

2/(e(Y, dA2)e(QB1 , dA2)) = e(Y + QB2 , xZ) (12)

S divide (12) by (11),

Z̄ =
Z2

Z1

= e(QB2 −QB1 , xZ) = e(sP − rW1 −W1, xZ) (13)

Again, S computes

Z = (Z̄/e(X, Z)s)
−1
r+1 = e(X, Z)w1 = e(U,Z)w (14)

This contradicts the BDH assumption.

The success probability of S is

Pr[S] ≥ 1

s(k)n(k)2t(k)
p1(k) (15)

where p1(k) is the probability of the event that CASE 1.1.1 occurs and the
adversary M succeeds in this case, t(k) is the polynomial bound on the number
of distinct H calls made by the adversary M .

CASE 1.1.2:

In this case, given BDH problem instance (U = uP, Z = zP,W = wP ),
where u, z, w ∈ Zq and U,Z, W ∈ G. The solver S’s task is to compute
BDH(U,Z, W ) = e(P, P )uzw. S sets PKG master public key to be Z. With
probability at least 1

n(k)2
, S guesses the adversary M will select one party

denoted by A as the owner of the session ŝ and the other party denoted by
B as the peer. With probability at least 1

s(k)
, S guesses the adversary M

will select the session ŝ as Test session. The simulation performed by S is
the same as that of CASE 1.1.1. except that S assigns Â′s static public key
to be QA1 = U1 = U,QA2 = U2 = s∗P − r∗U , B̂′s static public key to be
QB1 = W1 = W, QB2 = W2 = sP − rW and the ephemeral public key of the
Test session owned by A to be X = gx, where x, s∗, r∗, s, r ∈R Zq. Further-
more, S assigns random static key pairs for the remaining n(k) − 2 parties
(except for A and B).

When the adversary M activates a party whose static key S possesses, S
follows the protocol description. We next discuss the action of S when the

13



adversary M makes queries related to party A and B (because S knows neither
A’s static private key nor B’s static private key).

Without loss of generality, we assume that B is the responder. We assume that
the message X is generated by the adversary M and Y by the simulator S.
We claim below that the probability that the adversary M generates correctly
these values Ẑ1 = e(X+QA1 , yZ+dB1), Ẑ2 = e(X+QA2 , yZ+dB2) is negligible.
We show how to construct a BDH problem solver D if the adversary M queries
these values correctly.

From
Ẑ1 = e(X + QA1 , yZ + dB1) (16)

and
Ẑ2 = e(X + QA2 , yZ + dB2) (17)

D computes

Z̄1 =
Ẑ1

e(X + QA1 , yZ)
= e(X + QA1 , dB1) = e(X + U, zW ) (18)

and

Z̄2 =

(
Ẑ2

e(X + QA2 , yZ)e(X + s∗P − r∗U, sZ)e(s∗Z,−rW )

)−1
r

=

(
e(X + QA2 , dB2)

e(X + s∗P − r∗U, sZ)e(s∗Z,−rW )

)−1
r

=

(
e(X + s∗P − r∗U,−rzW )

e(s∗Z,−rW )

)−1
r

= e(X − r∗U,−rzW )
−1
r

= e(X − r∗U, zW )

D divides Z̄1 by Z̄2

Z =
Z̄1

Z̄2

=
e(X + U, zW )

e(X − r∗U, zW )
= e(U + r∗U, zW ) = e(U, zW )r∗+1 (19)

At last, from (19) D gets

Z
1

r∗+1 = e(U, zW ) = e(P, P )uwz (20)

This contradicts BDH assumption.

14



Now, having the conclusion above, we can deal with the H queries and send
queries easily.

-H1(IDi): S maintain an initially empty list H list
1 with entries of the form

(IDi, li1, Qi1). S simulates the oracle in the same way as that of CASE 1.1.1
except for queries of the form H1(A).

• If IDi = A, S randomly chooses s∗, r∗ ∈ Zq, computes Qi1 = U,Qi2 = s∗P−
r∗U , then inserts (IDi, null, Qi1) into the H list

1 and inserts corresponding
(IDi, null, Qi2) into the H list

2 (maintained in H2 query).

The H2(IDi) queries can be dealt with similarly.

-H(Ẑ1, Ẑ2, Ẑ3, X, Y, IDi, IDj): S maintains an initially empty list H list with

entries of the form (Ẑ1, Ẑ2, Ẑ3, X, Y, IDi, IDj, h). S simulates the oracle in the

same way as that of CASE 1.1.1 except for queries of the form (Ẑ1, Ẑ2, Ẑ3, X, Y,A, B).
The simulator S responds to these queries in the following way:

• If (Ẑ1, Ẑ2, Ẑ3, X, Y,A, B) is already there, then S responds with stored value
h.
• Otherwise, S chooses h ∈ {0, 1}k at random, sends it to M and stores the

new tuple (Ẑ1, Ẑ2, Ẑ3, X, Y,A, B, h) in H list.

Send(Πs
i,j, m): S maintains an initially empty list Llist with entries of the

form (X, Y, IDi, IDj, SK).

• In the case that IDi = B and IDj = A (we set m = X. The case that
IDi = A and IDj = B also can be deal with similarly.)

-S chooses y ←R Zq and returns Y = yP to the adversary M .
-S chooses simply SK ∈ {0, 1}k at random and stores the new tuple

(X, Y, A,B, SK) in Llist.
• In the case that IDi = B and IDj = C, where S knows C’s private key,

The simulation action of S is similar to that of case 1.1.1.

As the attack that adversary M mounts is Forging attack, if M succeeds,
it must have queried oracle H on the first two inputs of this form Z∗

1 =
e(Y + QB1 , xZ + dA1), Z∗

2 = e(Y + QB2 , xZ + dA2), where X is chosen by S
and Y by the adversary. To solve BDH(U,Z, W ) problem, for all entries in
H list, S randomly chooses one entry Z∗

1 , Z
∗
2 and proceeds with following steps:

S compute

Z1 =
Z∗

1

e(Y + QB1 , xZ)
= e(Y + QB1 , dA1) = e(Y + W, zU) (21)

and

15



Z2 =

(
Z∗

2

(e(Y + QB2 , xZ))e(Y + sP − rW, s∗Z)e(sZ,−r∗U)

)−1
r∗

=

(
e(Y + QB2 , dA2)

e(Y + sP − rW, s∗Z)e(sZ,−r∗U)

)−1
r∗

=

(
e(Y + sP − rW, z(s∗P − r∗U))

e(Y + sP − rW, s∗Z)e(sZ,−r∗U)

)−1
r∗

=

(
e(Y + sP − rW,−r∗zU)

e(sZ,−r∗U)

)−1
r∗

= e(Y − rW,−r∗zU)
−1
r∗

= e(Y − rW, zU)

S divide Z1 by Z2,

Z̄ =
Z1

Z2

=
e(Y + W, zU)

e(Y − rW, zU)
= e(W + rW, zU) (22)

Then, S computes

Z = Z̄
1

r+1 = e(W, zU) = e(P, P )uzw (23)

This contradicts the BDH assumption.

The success probability of S is

Pr[S] ≥ 1

s(k)n(k)2t(k)
p2(k) (24)

where p2(k) is the probability of the event that CASE 1.1.2 occurs and the
adversary M succeeds in this case, t(k) is the polynomial bound on the number
of distinct H calls made by the adversary M .

5.2 The Analysis of CASE 1.2

In this case, according to the freshness definition, the adversary M has four
ways to mount the attacks.

CASE 1.2.1. The adversary M makes ephemeral key query to both the Test
session and the matching session of the Test session (The adversary does not
reveal their corresponding static private key).

16



CASE 1.2.2. The adversary learns the static private key of both the owner of
Test session and its peer.

CASE 1.2.3. The adversary makes queries to the static private key of the owner
of Test session and its peer’s ephemeral static key.

CASE 1.2.4. The adversary makes queries to the ephemeral private key of the
owner of Test session and its peer’s static private key.

For CASE 1.2.1, given the BDH instance U,Z, W , where U,Z, W ∈ G, the task
of solver S is to solve the BDH problem. With probability at least 1

n(k)2
, S

guesses the adversary M will select one party denoted by A as the owner of the
session ŝ and the other party denoted by B as the peer. With probability at
least 1

s(k)
, S guesses the adversary M will select the session ŝ as Test session.

We assume that the owner of Test session is A and owner of matching session
is B. S randomly choose s, r, s∗, r∗ ∈R Zq and sets A’s public key to be QA1 =
U,QA2 = s∗P−r∗U , B’s public key to be QB1 = W, QB2 = sP−rW . S assigns
the static public/private pairs for the remaining n(k) − 2 parties. S sets the
PKG master public key to be Z. The simulation of A and B is similar to that
of CASE 1.1.2. If the adversary M succeeds in a Test session for which the
exponents x, y is chosen by S on behalf of A,B then M must has queried H
oracle with the values Z∗

1 = e(Y +QB1 , xZ +dA1), Z∗
2 = e(Y +QB2 , xZ +dA2).

For all entries in H list, S randomly chooses one entry Z∗
1 , Z

∗
2 . From one of these

values, say Z∗
1 , knowing x, y, S can compute BDH(U,Z, W ) = Z∗

1/(e(Y +
QB1 , xZ)e(Z, yU)) = e(QB1 , dA1) = e(W, zU) = e(P, P )wuz. This contradicts
the BDH assumption.

The success probability of S in this case is

Pr[S] ≥ 2

s(k)n(k)2t(k)
p3(k) (25)

where p3(k) is the probability of the event that CASE 1.2.1 occurs and the
adversary M succeeds in this case. t(k) is the polynomial bound on the number
of distinct H calls made by the adversary M .

For CASE 1.2.2, given the CDH instance U, V , where U, V ∈ G, we construct
a solver F of CDH(U, V ) problem. With probability at least 2

s(k)2
, F guesses

that the adversary M will select one of two sessions as Test session and other
as matching session. We assume that the owner of Test session is A and owner
of matching session is B. F sets ephemeral public key of Test session owned by
A to be U and of its matching session to be V . F sets PKG master private key
itself and assign all static public/private key pairs for n(k) parties. As F knows
PKC master private key and all paries’ static private key, the simulation of
all queries is easy. If the adversary M succeeds in a Test session then M must
has queried H oracle with the values Z∗

3 = uV = vU . From the value, F can

17



directly output CDH(U, V ) = Z∗
3 . This contradicts the CDH assumption.

The success probability of F in this case is

Pr[F ] ≥ 2

s(k)2t(k)
p4(k) (26)

where p4(k) is the probability of the event that CASE 1.2.2 occurs and the
adversary M succeeds in this case. t(k) is the polynomial bound on the number
of distinct H calls made by the adversary M .

For CASE 1.2.3 and CASE 1.2.4, the simulation of A and B is similar to that
of CASE 1.1.1. The details are omitted.

Together with (15), (24) and (25), the success probability of S is

Pr[S] ≥ maxi=1,2,3,5,6{ 1
s(k)n(k)2t(k)

pi(k)}

where p5(k), p6(k) are defined in CASE 1.2.3 and CASE 1.2.4 respectively.

The success probability of F is

Pr[F ] ≥ 2

s(k)2t(k)
p4(k) (27)

where p4(k) are defined in (26).

If the adversary M succeeds with non-negligible probability in any case above,
we can also solve the BDH or CDH problem with non-negligible probability,
which contradicts the assumed security of BDH, CDH problem. In addition,
note that the BDH problem can be reduced to CDH problem. So we can
conclude that our scheme is based its security on BDH problem.

6 Protocol Comparison

The table 1 shows the comparison between ID-based AKE protocols in terms
of efficiency, security model and underlying hardness assumptions. We do not
take into account subgroup validation and off-line computation that may be
applicable.

We use the following symbols to explain the computational performance of
each scheme. For simplicity, we just consider expensive operations:

-P: pairing.

18



-E: exponentiation in G.
-T: exponentiation in GT .

We denote by ECK the enhanced Chen-Kudla protocol [12], by EMB the
enhanced McCullagh-Barreto protocol [12]. We also denote by MBDH the
Modified Bilinear Diffie-Hellman, on which protocol 2 of paper [17] is based.
The notation `-BCAA1 means Bilinear Collision Attack Assumption, on which
EMB scheme is based.

As stated in the introduction, both protocol 1 and protocol 2 from [17] does not
support the adversary’s EphemeralKeyReveal queries to those sessions owned
by the peer of Test session, so both protocols does not achieve requirements of
CK model (The CK model allows adversaries to make EphemeralKeyReveal
queries to all session except for Test session and its matching session). We
denote by CK∗ their security model below. The mBR model does not cover
EphemeralKeyReveal queries at all. Also, note that neither mBR nor CK∗

models cover PKG-fs, while our eCK model covers it. If we want those pro-
tocols proven secure in two models above to be PKG-fs, extra computation
must be added.

Protocol Efficiency Security model Assumption

CK[13] 1P+2E mBR GBDH

Smart[13] 2P+2E mBR GBDH

SCK-1[12] 2P+3E mBR,PKG-fs BDH

SYL[12] 1P+3E mBR,PKG-fs BDH

ECK[12] 3P+3E mBR BDH

EMB[12] 4P+2E+1T mBR `-BCAA1

CC071[17] 1P+3E CK∗,KCI BDH

CC072[17] 1P+5E CK∗,KCI,PKG-fs MBDH

Our scheme 2P+3E eCK BDH

Table 1: protocol comparison

As shown in table 1 above, compared with all previous ID-based AKE proto-
cols, the security model of our protocol is strongest. Meanwhile, Our protocol
has a security proof under BDH assumption, which is more standard than
GBDH assumption.

19



7 Conclusion

It is well known that the ID-based authenticated key exchange is surprisingly
difficult to design and prove. The main issue is that without corresponding
static private key, it is difficult for the simulator to deal with SessionKeyReveal
or EphemeralKeyReveal queries.

One approach is to rely security proof on GBDH assumption. Another ap-
proach is to prove security in weaker model, which does not fully support
above-mentioned two queries.

In this paper, we present a new ID-based AKE protocol. As compared with
previous ID-AKE protocols, our proposal is based on the BDH assumption,
which is more standard than GBDH assumption, on which previous protocols
are based.

Moreover, The eCK model is the currently strongest security model which
better supports SessionKeyReveal or EphemeralKeyReveal queries. To the
best of our knowledge, our scheme is the first ID-based AKE protocol provably
secure in the eCK model.

References

[1] M.Bellare, P.Rogaway, Entity authentication and key distribution, Advances in
Cryptology-CRYPTO’93, volume 773 of Lecture Notes in Computer Science,
pages 232-249. Springer, 1993.

[2] Mihir Bellare, Phillip Rogaway, Provably Secure Session Key Distribution:
The Three Party Case, In Proceedings of the Twenty-Seventh Annual ACM
Symposium on Theory of Computing (STOC95), pages 57-66. ACM Press, 1995.

[3] Mihir Bellare, David Pointcheval, and Phillip Rogaway, Authenticated Key
Exchange Secure Against Dictionary Attacks, In Advances in Cryptology-
EUROCRYPT’00, volume 1807 of Lecture Notes in Computer Science, pages
139-155. Springer, May 2000.

[4] Ran Canetti and Hugo Krawczyk, Analysis of Key-Exchange Protocols
and Their Use for Building Secure Channels, In Advances in Cryptology-
EUROCRYPT’01, volume 2045 of Lecture Notes in Computer Science, pages
453-474. Springer, 2001.

[5] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock, Examining
Indistinguishability-Based Proof Models for Key Establishment Protocols, In
Advances in Cryptology-ASIACRYPT’05, volume 3788 of Lecture Notes in
Computer Science, pages 585-604. Springer, 2005.

20



[6] Hugo Krawczyk,HMQV: A High-Performance Secure Diffie-Hellman Protocol.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546-566. Springer,
Heidelberg (2005).

[7] N.P. Smart. An identity based authenticated key agreement protocol based on
the Weil pairing. Electronics Letters, 38, 630-632, 2002.

[8] L. Chen and C. Kudla. Identity based authenticated key agreement from
pairings. In IEEE Computer Security Foundations Workshop, 219-233, 2003.
The modified version of this paper is available at Cryptology ePrint Archive,
Report 2002/184.

[9] K. Choo, C. Boyd and Y. Hitchcock. On session key construction in
provably-secure key establishment protocols: revisiting Chen Kudla (2003)
and McCullagh Barreto (2005) ID-based protocols. Cryptology ePrint Archive,
Report 2005/206. Also available at the Proceedings of Mycrypt 2005, Springer-
Verlag LNCS 3715, 116-131, 2005.

[10] B.LaMacchia,K.Lauter,A.Mityagin, Stronger Security of Authenticated Key
Exchange, avaliable at http://eprint.iacr.org/2006/073.

[11] B.Ustaoglu, Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS, available at http://eprint.iacr.org/2007/123.

[12] L.Chen, Z.Cheng and N.P. Smart, Identity-based Key Agreement Protocols
From Pairings, available at http://eprint.iacr.org/2006/119.

[13] C. Kudla and K. Paterson. Modular security proofs for key agreement protocols.
In Advances in Cryptology -Asiacrypt 2005, Springer-Verlag LNCS 3788, 549-
565, 2005.

[14] D.Cash,E.Kiltz,V.Shoup, The Twin Diffie-Hellman Problem and Applications,
Advances in Cryptlogy-EUROCRYPT 2008, Full version available at
http://eprint.iacr.org/2008/067.

[15] T.Okamoto and D.Pointcheval, The Gap-Problems: A new class of problems
for the security of cryptographic schems, Public Key Cryptography-
PKC2001,LNCS 1992(2001),104-118.

[16] N. McCullagh and P.S.L.M. Barreto. A new two-party identity-based
authenticated key agreement. In Topics in Cryptology-CT-RSA 2005, Springer-
Verlag LNCS 3376, 262-274, 2005.

[17] S.S.M.Chow and K.R.Choo. Strongly-Secure Identity-Based Key Agreement
and Anonymous Extension. Information Security, Volume 4779/2007,Springer
Berlin Heidelberg,203-220, 2007. Cryptology ePrint Archive, Report 2007/018.
Full version of this paper (2007).

21


