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ABSTRACT
In this paper, we present a new ID-based two-party authen-
ticated key exchange (AKE) protocol, which makes use of a
new technique called twin Diffie-Hellman problem proposed
by Cash, Kiltz and Shoup. We show that our scheme is
secure under bilinear Diffie-Hellman (BDH) assumption in
the enhanced Canetti-Krawczyk (eCK) model, which better
supports the adversary’s queries than previous AKE mod-
els. To the best of our knowledge, our scheme is the first
ID-based AKE protocol provably secure in eCK model.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection

General Terms
Security

Keywords
ID-based, Authenticated key exchange, BDH problem, Twin
Diffie-Hellman

1. INTRODUCTION
Authenticated key exchange is a traditional primitive of

cryptography. It enables two parties, Alice (A) and Bob
(B), to establish a shared session key via unsecured channels.
Later, the shared session key can be used to efficiently ensure
data confidentiality and integrity between A and B using
efficient symmetric encryptions and message authentication
codes.

A key exchange protocol is said to be authenticated key
exchange protocol if both parties are ensured that no other
principals aside from their intended peers may learn the es-
tablished session key. A key exchange protocol is said to
provide key confirmation, if both parties are sure that the
intended peers really hold the session key. A protocol which
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is an authenticated key exchange with key confirmation pro-
tocol is called AKC protocol.

In ID-based cryptography, a trusted key generator cen-
ter (KGC) generates the user’s private key when given the
user’s identity which is his/her public key. The ID-based
cryptography greatly simplifies the management of certifi-
cates. In ID-based AKE protocols users use the ID-based
public/private pairs to perform key exchange protocols in-
stead of using traditional PKI public/private pairs. It is de-
sirable for ID-based authenticated key exchange protocols
to possess the following attributes:

1.Known-key security : Each run of the protocol should
result in a unique secret session key. It is reasonable to
assume the adversary has the ability to learn the session keys
except for one under attack. A protocol is said to be known-
key secure if the compromise of one session key should not
compromise other session keys.

2.Forward security : If the static private key of an entity is
compromised, the adversary can arbitrarily masquerade as
that entity in future. However, we want to guarantee that
when the static private key is compromised, the adversary
can not obtain the session keys that were accepted before the
compromise. Protocols are said to provide perfect forward
security if the static private keys of all parties involved have
been compromised without compromising the previously es-
tablished session keys by these entities. There is further
notion of forward security in ID-based setting, which we call
KGC-forward security (KGC-fs). The KGC-fs means that
even the compromise of KGC master private key does not
compromise the previously established session key. How-
ever, if the adversary is actively involved with the choice of
the DH values X,Y at a session, no two-message AKE pro-
tocol can achieve forward security, according to the result
of HMQV [13]. So we define weak form of forward security
(wFS).

3.Key compromise impersonation resistance: When the
static private key of an entity, say A, is compromised, the
adversary can arbitrarily masquerade as A in future. How-
ever, we want to guarantee that in this case the adversary
cannot masquerade as another entity, say B, to communi-
cate with A.

4.Ephemeral key reveal resistance: The adversary can ob-
tain the ephemeral key of entities. Protocols are said to be
ephemeral key reveal resistance if even when the adversary
obtains the ephemeral key of entities the session key under
attack still remains secure.

Protocols for AKE have been established to be surpris-
ingly difficult to design. Bellare and Rogaway [2] firstly pro-



posed a formal security model for authentication and key
distribution. Since then, there have been several extensions
to the model [3, 1, 6]. Among them, the Canetti-Krawczyk
(CK) model [6] is regarded as possibly promising one. Choo,
Boyd and Hitchcock [10] compared the most commonly used
security models for key exchange. All these models attempt
to cover these desirable properties listed above as many as
possible.

Recently, LaMacchia, Lauter and Mityagin [15] present a
new security model for AKE protocols named eCK which
is considerably strong one. The desirable properties of eCK
model include resistance to key-compromise impersonation
(KCI), weak perfect forward security (wPFS) and resilience
to the leakage of ephemeral private keys etc. In this paper,
the eCK model is actually an slight adaption of eCK model
from PKI-based setting to ID-based setting.

1.1 Related Work
Currently, there are a great deal of ID-based authenti-

cated key exchange protocols in literature. Some of them
have been shown to be insecure or have no security proof,
others are only proven secure in weak models [18, 9, 11, 16]
(e.g. they do not fully support both the adversary’s Session-
KeyReveal and EphemeralKeyReveal queries).

Kudla and Paterson [14] propose a modular proof ap-
proach to the design of AKE protocols, which makes use of
gap assumption [17] to keep the consistency of random ora-
cle queries. While the approach is elegant and suitable for
the security analysis of many key exchange protocols, the
gap assumption may not be acceptable at all, since there
may not exist any polynomial time algorithms to construct
such a decision oracle in the real world.

Wang [19] proposes an ID-based AKE protocol with secu-
rity based on a decisional bilinear Diffe-Hellman (DBDH)
problem by using a computational oracle to support the
SessionKey Reveal queries. However, nobody knows how
to construct the computational oracle using any polynomial
algorithm in the real world.

Chen, Cheng and Smart [8] propose a new approach to
solve the reveal queries issue. Their approach incorporates
a built-in decision function in key exchange protocols. The
built-in decision function is designed to distinguish a Diffie-
Hellman (DH) triple from a random element in group G. It
is well known that in groups equipped with pairings such de-
cision problem is available. So their approach does not make
use of any oracle which may not exist in the real world. How-
ever, although their modified Bellare and Rogaway (mBR)
model fully support SessionKeyReveal queries, it does not
deal with the EphemeralKeyReveal queries.

Chow and Choo [12] propose a family of ID-based au-
thenticated key exchange protocols based on their challenge-
response signature technique. They claim that their protocol
allows SessionKeyReveal queries in all cases, and Ephemer-
alKeyReveal queries in most cases, without employing any
gap assumption. While this is certainly a contribution, as
the simulator has no peer’s static private key, their proto-
col cannot deal with the adversary’s EphemeralKeyReveal
queries to those sessions owned by the peer of Test session.
In fact, this is a main issue of security proof of authenticated
key exchange protocols. In this paper, we propose a better
solution to this issue.

We also note that recently some researchers focus on the
AKE protocols in standard model, among which, the work

proposed by Boyd et al. [5] is closely related to ours. They
propose a generic approach to the design of AKE proto-
cols based on a CCA-secure key encapsulation mechanism
(KEM) primitive. They show that the resulted protocol
is secure in CK model if the underlying KEM scheme is
CCA-secure in either the ID-based setting or the traditional
PKI-based setting. However, generally speaking, the generic
method is less efficient than ours even if we consider it in
random oracle model. A detailed comparison is deferred to
section 6.

Cash, Kiltz and Shoup [7] recently proposed a new compu-
tational problem called twin Diffie-Hellman problem, at the
heart of which is the “trapdoor test” that allows us to imple-
ment an effective decision oracle for the twin Diffie-Hellman
problem, without knowing the corresponding discrete loga-
rithm. We find that the trapdoor test technique makes it
possible to remove the gap assumption in security proof of
AKE protocols. This provides another new approach to the
design of AKE protocols without gap assumption.

1.2 Our Contributions
For the ID-based AKE protocols to better deal with Ses-

sionKeyReveal and EphemeralKeyReveal queries, most of
previous protocols base their security on gap bilinear Diffie-
Hellman (GBDH) assumption, which is a basic technique for
the simulator to keep the consistency of random oracle.

Focusing on weakening the security assumption, in this
paper using the trapdoor test technique we propose a new
ID-based two-party AKE protocol. We show that the se-
curity of our protocol is based on BDH instead of GBDH
assumption. Moreover, Our scheme is proven secure in eCK
model, which better supports SessionKeyReveal and Ephemer-
alKeyReveal queries. To the best of our knowledge, our pro-
posal is the first provably secure ID-based two-party AKE
protocol under BDH assumption in eCK model.

Compared to previous ID-based AKE protocols based on
gap assumption, our proposal has a more standard assump-
tion. On the other hand, compared to other ID-based AKE
protocols without gap assumption, our proposal has advan-
tages over them either in efficiency or in security model.

1.3 Organization
The paper is organized as follows. In section 2, we will re-

view the related building techniques. In section 3 we review
the eCK model. Then we propose our scheme in section
4. In section 5, we will give the security proof of the new
scheme in eCK model. In section 6 we compare the effi-
ciency between previous ID-based AKE protocols and ours.
Finally, concluding remarks are made in section 7.

2. PRELIMINARIES
Let the value k be the security parameter. Let G be two

cyclic groups of prime order q and P ∈ G be the generator
of group G. Define

CDH(X,Y ) := Z, where X = xP, Y = yP and Z = xyP .

CDH Assumption. For any probabilistic polynomial
time algorithm A,

Pr[A(q,G, P,X = xP, Y = yP ) = CDH(X,Y )] ≤ ε(k).

where x, y ∈ Zq and ε(k) is negligible. The probability is
taken over the coin tosses of A, the choice of q, P and the
random choices of x, y in Zq.



Let e : G×G −→ GT be a bilinear pairing, where G,GT

be two cyclic groups of prime order q and P ∈ G be the
generator of group G. Define

BDH(X,Y,W ) := Z, where X = xP, Y = yP,W = wP
and Z = e(P, P )wxy.

BDH Assumption. For any probabilistic polynomial
time algorithm A,

Pr[A(q,G,GT , P,X = xP, Y = yP,W = wP ) =
BDH(X,Y,W )] ≤ ε(k).

where x, y, z ∈ Zq, and where ε(k) is negligible. The prob-
ability is taken over the coin tosses of A, the choice of q, P
and the random choices of x, y and w in Zq.

The theorem below is a variant of trapdoor test theorem
[7]. As stated by authors of that paper, it is easy to check
that both proofs are similar, so we omitted the details. The
readers are referred to [7] for details.

Theorem 1 (Trapdoor Test [7]). Let e : G×G −→
GT be a bilinear pairing, where G,GT be two cyclic groups
of prime order q and P ∈ G be the generator of group G.
Suppose W1, r, s are mutually independent random variables
where W1 takes values in G, and each of r, s is uniformly
distributed over Zq, and define the random variable W2 :=

sP − rW1. Further, suppose that X̂, Ŷ are random variables
taking values in G and Ẑ1, Ẑ2 are random variables taking
values in GT , each of which is defined as some function of
W1 and W2. Then we have:

(i) W2 is uniformly distributed over G;
(ii) W1 and W2 are independent;
(iii) if W1 = w1P and W2 = w2P , then the probability

that the truth value of

Ẑ1
r · Ẑ2

?
= e(X̂, Ŷ )s (1)

does not agree with the truth value of

Ẑ1
?
= e(X̂, Ŷ )w1

∧
Ẑ2

?
= e(X̂, Ŷ )w2 (2)

is at most 1/q; moreover, if (2) holds, then (1) certainly
holds.

Intuitionally, theorem 1 means that the simulator can use
(1) to judge whether (2) holds (Knowing either the discrete

logarithm x̂ of X̂ or the discrete logarithm ŷ of Ŷ , the ad-
versary can compute Ẑ1, Ẑ2 itself, while the simulator can-
not). This technique is essential to implement the effective
decision oracle without knowing the corresponding discrete
logarithms w1, w2 of W1,W2.

3. SECURITY MODEL
Our basic security model is the ID-based eCK model which

is actually a slight adaption of eCK model from the tradi-
tional PKI-based setting to the ID-based setting. In particu-
lar, it covers the KGC-fs in the freshness definition. Further
details of the original eCK model can be found in [15].

Participants. We model the protocol participants as a
finite set U of fixed size with each IDi being a probabilis-
tic polynomial time (PPT ) Turing machine. Each proto-
col participant IDi ∈ U may execute a polynomial number
of protocol instances in parallel. We will refer to s-th in-
stance of principal IDi communicating with peer IDj as
Πs

i,j(i, j ∈ N) (a session).

Adversary Model. The adversary M is modeled as a
PPT Turing machine and has full control of the communi-
cation network and may eavesdrop, delay, replay, alter and
insert messages at will. We model the adversary’s capability
by providing it with oracle queries.

• EphemeralKeyReveal(Πs
i,j) The adversary obtains

the ephemeral private key of Πs
i,j . These queries are

motivated by practical scenarios, such as if session-
specific secret information is stored in insecure memory
on device or if the random number generator of the
party is corrupted.

• SessionKeyReveal(Πs
i,j) The adversary obtains the

session key for a session s of IDi, provided that the
session holds a session key.

• StaticKeyReveal(IDi) The adversary obtains the
static private key of IDi.

• KGCStaticKeyReveal The adversary obtains the
KGC master private key, the query is used to model
the KGC forward security (KGC-fs).

• EstablishParty(IDi) The query models that the ad-
versary can arbitrarily register a legal user on behalf
of the party IDi. In this way the adversary gets the
party IDi’s static private key and totally controls the
party IDi. Parties against whom the adversary does
not issue this query are called honest.

• Send(Πs
i,j ,m) The adversary sends the message m to

the session s executed by IDi communicating with IDj

and get a response according to the protocol specifica-
tion.

• Test(Πs
i,j) Only one query of this form is allowed for

the adversary. Provided that the session key is defined,
the adversary M can execute this query at any time.
Then with probability 1/2 the session key and with
probability 1/2 a uniformly chosen random value ζ ∈
{0, 1}k is returned.

Definition 1 (Matching Session). Let Πs
i,j be a com-

pleted session with public output (IDi, X, Y, IDj), where IDi

is the owner of the session, IDj is the peer, and X is IDi’s
outgoing message, Y is IDj’s outgoing message. The ses-
sion Πt

j,i is called the matching session of Πs
i,j, if Πt

j,i is
completed and its public output is (IDj , Y,X, IDi).

Definition 2 (Freshness). Let instance Πs
i,j be a com-

pleted session, which was executed by an honest party IDi

with another honest party IDj. We define Πs
i,j to be fresh

if none of the following three conditions hold:

• The adversary M reveals the session key of Πs
i,j or of

its matching session (if latter exists).

• IDj is engaged in session Πt
j,i matching to Πs

i,j and
M either reveal:

-both StaticKey of IDi and EphemeralKey of Πs
i,j;

or

-both StaticKey of IDj and EphemeralKey of Πt
j,i.

• No sessions matching to Πs
i,j exist and M either reveal:

-both StaticKey of IDi and EphemeralKey of Πs
i,j;

or

-StaticKey of IDj.



Note that the adversary can reveal static key either by Stat-
icKeyReveal queries or by KGCStaticKeyReveal query.

Definition 3 (AKE Security). As a function of the
security parameter k, we define the advantage AdvAKE

M,Σ (k)
of the PPT adversary M in attacking protocol Σ as

AdvAKE
M,Σ (k)

def
= |SuccAKE

M,Σ (k)− 1
2
|

Here SuccAKE
M,Σ is the probability that the adversary queries

Test oracle to a fresh instance Πs
i,j, outputs a bit b̂ such that

b̂ = b, where the bit b is used by the Test oracle.
We call the authenticated key exchange protocol Σ to be

AKE secure if for any PPT adversary M the function is
negligible.

The original CK model does not cover KCI attacks and the
eCK model simultaneously covers KCI attacks resistance,
weak forward secrecy and ephemeral key reveal resistance
etc. In particular, in eCK model the adversary’s ability is
extended to the extent such that the adversary is allowed
to reveal any static private key and ephemeral private key
of parties involved except for both static private key and
ephemeral private key of one of parties involved.

We note that recently Boyd et al. [5] compare these two
models. Their conclusion is that the eCK is not stronger
than the CK model. The essential difference comes from the
fact the CK model allows session state reveal queries. This
gives the adversary complete information about the state of
a given session at any entity, including all ephemeral values,
but also any other value during the computation. The eCK
model only allows the adversary to access to ephemeral val-
ues. However, we also note that the previous AKE protocols
claiming to use CK model do not allow the adversary to get
access to complete state information, e.g. HMQV.

4. AN ID-BASED AKE PROTOCOL BASED
ON BDH PROBLEM

Setup
Let the value k be the security parameter. Let e : G ×

G −→ GT be a bilinear pairing, where G,GT be two cyclic
groups of prime order q and P ∈ G be the generator of group
G. We denote by G∗ the non-identity elements set of G. Let
H1, H2 : {0, 1}∗ → G∗ and H : {0, 1}∗ → {0, 1}k be three
hash functions. We randomly pick a value z ∈ Zq and set
Z = zP . We keep z as KGC master private key and publish
params=< q,G,GT , e, k, P, Z,H1, H2, H >.

Extract
For the given string ID ∈ {0, 1}∗, KGC computes QID1 =

H1(ID), QID2 = H2(ID) and returns the corresponding pri-
vate keys dID1 = zQID1 , dID2 = zQID2 to the applicant,
where z is the KGC master private key.

Protocol description
In the protocol below, A,B are two participants.

1. A chooses an ephemeral private key x ∈ Zq at random,
computes ephemeral public key X = xP and send X
to B. Similarly, B randomly chooses y ∈ Zq, and send
Y = yP to A.

2. Upon receiving X, party B verifies that X ∈ G∗. If so,
B computes Z1 = e(X +QA1 , yZ + dB1), Z2 = e(X +
QA2 , yZ+dB2), Z3 = yX and SK = H(Z1, Z2, Z3, sid),
where sid = (X,Y,A,B). B keeps SK as the estab-
lished session key.

3. Similarly, upon receiving Y , A checks if Y ∈ G∗. If so,
A computes Z1 = e(Y +QB1 , xZ + dA1), Z2 = e(Y +
QB2 , xZ+dA2), Z3 = xY and SK = H(Z1, Z2, Z3, sid).
where sid = (X,Y,A,B). A keeps SK as the estab-
lished session key.

5. SECURITY PROOF

Theorem 2. Suppose that the BDH assumption for (G,GT ,
e, P ) holds, CDH assumption for (G, p) holds and H1, H2, H
are random oracles, then the proposed scheme in Figure 1
is a secure ID-based authenticated key exchange protocol in
eCK model.

Proof. Let k denote the security parameter. Assume that
the adversary M activates at most n(k) honest parties and
s(k) sessions in each party. Assume that the adversary suc-
ceeds with non-negligible probability in the environment de-
scribed in Section 3. Since H(·) is modeled as a random
oracle, after the adversary queries Test oracle, it has only
two possible ways to distinguish a session key from a ran-
dom string.

CASE 1 Forging attack: At some point in its run, the ad-
versary M queries H on the value (Z1, Z2, Z3, X, Y,A,B) in
the Test session owned byA communicating withB. Clearly,
in this case M computes the values Z1, Z2, Z3 itself.

CASE 2 Key-replication attack: The adversary M forces a
non-matching session to have the same session key with the
Test session. In this case, the adversary M can simply learn
the session key by querying the non-matching session.

The input to the key derivation function H(·) includes
all information contained in sid. Since two non-matching
sessions can not have same identities and same ephemeral
public keys and H is modeled as random oracle, the success
probability of key replication attack is negligible.

The rest of this section is mainly devoted to the analysis of
the CASE 1 Forging attack. In this case, according to fresh-
ness definition, We consider separately two complementary
subcases below:

CASE 1.1: No honest party owns a matching session to
the Test session.

CASE 1.2: The Test session has a matching session owned
by another honest party.

5.1 The Analysis of CASE 1.1

Consider the following two subcase:
CASE 1.1.1: At some point, the static private key owned

by the party A has been revealed by the adversary M (Note
that in this case, according to the freshness definition, M is
not permitted to reveal ephemeral private key of the Test
session).

CASE 1.1.2: The static private key owned by the party
A has never been revealed by the adversary M (Note that
in this case, according to the freshness definition, M may
reveal party A’s ephemeral private key in the Test session).

CASE 1.1.1:
In this case, following the standard approach, we will

show how to construct BDH problem solver S that uses
an adversary M who succeeds with non-negligible proba-
bility in CASE 1.1.1. The solver S is given BDH problem
instance (U = uP,Z = zP,W = wP ), where u, z, w ∈ Zq

and U,Z,W ∈ G. Its task is to compute BDH(U,Z,W ) =
e(P, P )uzw. S sets KGC master public key to be Z. With



A B
x←R Zq y ←R Zq

X = xP−−−−−→
Y = yP
←−−−−−

sid = (X,Y,A,B) sid = (X,Y,A,B)
Z1 = e(Y +QB1 , xZ + dA1) Z1 = e(X +QA1 , yZ + dB1)
Z2 = e(Y +QB2 , xZ + dA2) Z2 = e(X +QA2 , yZ + dB2)
Z3 = xY Z3 = yX
SK = H(Z1, Z2, Z3, sid) SK = H(Z1, Z2, Z3, sid)

Figure 1: An ID-based AKE protocol under BDH assumption

probability at least 1
n(k)2

, S guesses the adversary M will

select one party denoted by A as the owner of the session ŝ
and the other party denoted by B as the peer. With proba-
bility at least 1

s(k)
, S guesses the adversary M will select the

session ŝ as Test session. Furthermore, S randomly chooses
s, r ∈ Zq, assigns static public key QB1 = W1 = W,QB2 =
W2 = sP − rW for B, and random static public/private
key pairs for the remaining n(k) − 1 parties (including A).
When the adversary M activates a party whose static key S
possesses, S follows the protocol description.

The reader may wonder how the simulator respond the
adversary’s queries to these sessions owned by B without B’s
static private key. To address this issue, most of previous
AKE protocols use a additional DDH(·) oracle to keep the
consistency of random oracle queries. However, in this paper
we use the trapdoor test technique to do the same work
instead of using gap assumption. By doing this, our scheme
can be proven secure in more standard BDH assumption.
Below we discuss mainly the simulation action of simulator
S when the adversary M makes queries to party B (because
S does not know B’s static private key). Without loss of
generality, we assume that B is the responder.

• H1(IDi): S maintains an initially empty listHlist
1 with

entries of the form (IDi, li1, QIDi1). The simulator S
responds to these queries in the following way:

– If IDi is already there, then S responds with
stored value QIDi1 .

– Otherwise, if IDi = B, S randomly chooses s, r ∈
Zq, computes QB1 = W1 = W,QB2 = W2 = sP−
rW , then inserts (B,null, QB1) into the Hlist

1 and
inserts corresponding (B,null, QB2) into theHlist

2

(maintained in H2 query).

– Otherwise, S randomly chooses li1, li2 ∈ Zq, com-
putes QIDi1 = li1P,QIDi2 = li2P , inserts (IDi,
li1, QIDi1) into the Hlist

1 and inserts correspond-
ing (IDi, li2, QIDi2) into the Hlist

2 (maintained in
H2 query).

• H2(IDi): S maintains an initially empty listHlist
2 with

entries of the form (IDi, li2, QIDi2). The simulator
S responds to these queries in the same way as that
of H1(IDi). The details will be presented in the full
version.

• H(Ẑ1, Ẑ2, Ẑ3, X, Y, IDi, IDj): S maintains an initially

empty list Hlist with entries of the form (Ẑ1, Ẑ2, Ẑ3,
X, Y, IDi, IDj , h). S simulates the oracle in usual way

except for queries of the form (Ẑ1, Ẑ2, Ẑ3, X, Y, C,B),
where C is B’s peer and may not be honest. The
simulator S responds to these queries in the following
way:

– If (Ẑ1, Ẑ2, Ẑ3, X, Y, C,B) is already there, then S
responds with stored value h.

– Otherwise, S looks in Llist (maintained in the
Send query) for the entry (X,Y,C,B, ∗). If finds
it, S computes

Z̄1 = Ẑ1/(e(Y, dC1)e(X, yZ)e(QB1 , dC1))

Z̄2 = Ẑ2/(e(Y, dC2)e(X, yZ)e(QB2 , dC2))

Then S checks if Ẑ1, Ẑ2 are correctly generated by

checking (Theorem 1) Z̄1
r
Z̄2

?
= e(X,Z)s. Note

that the values Ẑ1, Ẑ2 are correctly generated iff
Ẑi = e(Y + QBi , xZ + dCi), which is equivalent
to Z̄i = e(QBi , xZ) = e(X,Z)wi(i=1,2). S also

checks Ẑ3
?
= yX.

∗ If both predicates evaluate to 1, S returns
from Llist the stored value SK to the adver-
sary M and stores the new tuple (Ẑ1, Ẑ2, Ẑ3,
X, Y, C,B, SK) in Hlist.

∗ Otherwise, S chooses h ∈ {0, 1}k at random,
sends it to the adversary M and stores the
new tuple (Ẑ1, Ẑ2, Ẑ3, X, Y, C,B, h) in Hlist.

– Otherwise (no such entries exist), S chooses h ∈
{0, 1}k at random, sends it to M and stores the

new tuple (Ẑ1, Ẑ2, Ẑ3, X, Y, C,B, h) in Hlist.

• EstablishParty(IDi): The simulator S registers the
IDi on behalf of the adversary M . Concretely, S
makes queries to H1, H2 oracle with IDi and returns
the dIDi1 = li1Z, dIDi1 = li2Z to the adversary M .

• KGCStaticKeyReveal: The simulator S fails.

• StaticKeyReveal(IDi):

– If IDi = B then simulator fails (S do not know
the corresponding static private key dB1 , dB2).

– Otherwise, S returns the corresponding static pri-
vate key dIDi1 , dIDi2 to the adversary M .

• EphemeralKeyReveal(Πs
i,j):



– If Πs
i,j is Test session, the simulator fails (The

ephemeral key of Test session cannot be revealed).

– Otherwise, S returns the stored ephemeral private
key to the adversary M .

• Send(Πs
i,j ,m): S maintains an initially empty list

Llist with entries of the form (X,Y, IDi, IDj , SK).

– If Πs
i,j is Test session, then simulator returns U

to the adversary M (We set the ephemeral public
key of Test session owned by A to be U).

– If IDi = B (For convenience, we set IDj = C
and X = m).

∗ S chooses y ←R Zq and returns Y = yP to
the adversary M .

∗ S looks inHlist for entry (∗, ∗, ∗, X, Y, C,B, ∗).
If finds it, S computes

Z̄1 = Ẑ1/(e(Y, dC1)e(X, yZ)e(QB1 , dC1))

Z̄2 = Ẑ2/(e(Y, dC2)e(X, yZ)e(QB2 , dC2))

Then S checks if Ẑ1, Ẑ2 are correctly gener-

ated by checking (Theorem 1)Z̄1
r
Z̄2

?
= e(X,Z)s.

Also, note that the values Ẑ1, Ẑ2 are correctly
generated iff Ẑi = e(Y + QBi , xZ + dCi),
which is equivalent to Z̄i = e(QBi , xZ) =

e(X,Z)wi(i=1,2). S also checks Ẑ3
?
= yX.

· If both predicates evaluates to 1, S stores
the new tuple (X,Y,C,B, h) in Llist (The
value h is from Hlist).

· Otherwise, S chooses SK ∈ {0, 1}k at
random and stores the new tuple (X,Y,C,
B, SK) in Llist.

∗ Otherwise, chooses SK ∈ {0, 1}k at random
and stores the new tuple (X,Y,C,B, SK) in
Llist.

– Otherwise (IDi 6= B), the simulator S replies ac-
cording to the protocol specification.

• SessionKeyReveal(Πs
i,j):

– If Πs
i,j is Test session, S aborts.

– Otherwise, S returns the stored value SK in Llist

to M .

• Test(Πs
i,j):

– If Πs
i,j is not Test session, S aborts.

– Otherwise, S randomly chooses ζ ∈ {0, 1}k and
returns it to the adversary M .

As the attack that adversary M mounts is Forging attack,
if M succeeds, it must have queried oracle H on the first
two inputs of this form Z∗1 = e(Y ∗ + QB1 , xZ + dA1) =
e(Y ∗ + QB1 , uZ + dA1), Z∗2 = e(Y ∗ + QB2 , xZ + dA2) =
e(Y ∗+QB2 , uZ+dA2), whereX = U is the outgoing message
of Test session by the simulator and Y ∗ is the incoming
message from the adversary M . To solve BDH(U,Z,W )
problem, for all entries in Hlist, S randomly chooses one
entry Z∗1 , Z

∗
2 and proceeds with following steps:

S computes

Z1 = Z∗1/(e(Y
∗, dA1)e(QB1 , dA1)) = e(Y ∗ +QB1 , xZ)

Z2 = Z∗2/(e(Y
∗, dA2)e(QB1 , dA2)) = e(Y ∗ +QB2 , xZ)

Then, S computes

Z̄ =
Z2

Z1
= e(QB2 −QB1 , xZ) = e(sP − rW1 −W1, xZ)

Again, S computes

(Z̄/e(X,Z)s)
−1
r+1 = e(X,Z)w1 = e(U,Z)w

This contradicts the BDH assumption.
The success probability of S is

Pr[S] ≥ 1

s(k)n(k)2t(k)
p1(k) (3)

where p1(k) is the probability of the event that CASE 1.1.1
occurs and the adversary M succeeds in this case, t(k) is the
polynomial bound on the number of distinct H calls made
by the adversary M .

CASE 1.1.2:
In this case, given BDH problem instance (U = uP,Z =

zP,W = wP ), where u, z, w ∈ Zq and U,Z,W ∈ G. The
solver S’s task is to compute BDH(U,Z,W ) = e(P, P )uzw.
S sets KGC master public key to be Z. With probability at
least 1

n(k)2
, S guesses the adversary M will select one party

denoted by A as the owner of the session ŝ and the other
party denoted by B as the peer. With probability at least

1
s(k)

, S guesses the adversary M will select the session ŝ as

Test session. The simulation performed by S is the same as
that of CASE 1.1.1. except that S assigns A′s static public
key to be QA1 = U1 = U,QA2 = U2 = s∗P − r∗U , B′s static
public key to be QB1 = W1 = W,QB2 = W2 = sP − rW
and the ephemeral public key of the Test session owned by
A to be X = gx, where x, s∗, r∗, s, r ∈R Zq. Furthermore, S
assigns random static key pairs for the remaining n(k) − 2
parties (except for A and B).

When the adversary M activates a party whose static key
S possesses, S follows the protocol description. The simu-
lation of A,B is similar to that of CASE 1.1.1 except that
the communications that the adversary activates happen be-
tween A and B (because S knows neither A’s static private
key nor B’s static private key).

Without loss of generality, we assume that B is the re-
sponder. We assume that the message X is generated by
the adversary M and Y by the simulator S being on behalf
of B. We claim that the probability that the adversary M
generates correctly these values Ẑ1 = e(X+QA1 , yZ+dB1),

Ẑ2 = e(X +QA2 , yZ + dB2) is negligible. The proof will be
presented in appendix A.

Now, having the conclusion above, S can answer the ad-
versary’s queries easily. Below we just describe S’s replies
which are different from that of CASE 1.1.1.

• H1(IDi): S maintains an initially empty listHlist
1 with

entries of the form (IDi, li1, QIDi1). S simulates the
oracle in the same way as that of CASE 1.1.1 except
for queries of the form H1(A).

– If IDi = A, S randomly chooses s∗, r∗ ∈ Zq,
computes QA1 = U,QA2 = s∗P − r∗U , then in-



serts (A,null, QA1) into the Hlist
1 and inserts cor-

responding (A,null, QA2) into the Hlist
2 (main-

tained in H2 query).

The H2(IDi) queries can be dealt with similarly.

• H(Ẑ1, Ẑ2, Ẑ3, X, Y, IDi, IDj): S maintains an initially

empty list Hlist with entries of the form (Ẑ1, Ẑ2, Ẑ3,
X, Y, IDi, IDj , h). S simulates the oracle in the same
way as that of CASE 1.1.1 except for queries of the form
(Ẑ1, Ẑ2, Ẑ3, X, Y,A,B). The simulator S responds to
these queries in the following way:

– If (Ẑ1, Ẑ2, Ẑ3, X, Y,A,B) is already there, then S
responds with stored value h.

– Otherwise, S chooses h ∈ {0, 1}k at random, sends

it to M and stores the new tuple (Ẑ1, Ẑ2, Ẑ3, X, Y,
A,B, h) in Hlist.

• Send(Πs
i,j ,m): S maintains an initially empty list

Llist with entries of the form (X,Y, IDi, IDj , SK).

– In the case that IDi = B and IDj = A (we set
X = m. The case that IDi = A and IDj = B
can be deal with similarly.)

∗ S chooses y ←R Zq and returns Y = yP to
the adversary M .

∗ S chooses simply SK ∈ {0, 1}k at random
and stores the new tuple (X,Y,A,B, SK) in
Llist.

– In the case that IDi = B and IDj = C, where S
knows C’s private key, The simulation action of
S is similar to that of CASE 1.1.1.

As the attack that adversary M mounts is Forging attack,
if M succeeds, it must have queried oracle H on the first
two inputs of this form Z∗1 = e(Y ∗ +QB1 , xZ + dA1), Z∗2 =
e(Y ∗ + QB2 , xZ + dA2), where X is the outgoing message
chosen by the simulator S and Y ∗ by the adversary. To solve
BDH(U,Z,W ) problem, for all entries in Hlist, S randomly
chooses one entry Z∗1 , Z

∗
2 and proceeds with following steps:

S computes

Z1 =
Z∗1

e(Y ∗ +QB1 , xZ)
= e(Y ∗+QB1 , dA1) = e(Y ∗+W, zU)

Z2 =

(
Z∗2

(e(Y ∗ +QB2 , xZ))e(Y ∗ + sP − rW, s∗Z)e(sZ,−r∗U)

)−1
r∗

=

(
e(Y ∗ +QB2 , dA2)

e(Y ∗ + sP − rW, s∗Z)e(sZ,−r∗U)

)−1
r∗

=

(
e(Y ∗ + sP − rW, z(s∗P − r∗U))

e(Y ∗ + sP − rW, s∗Z)e(sZ,−r∗U)

)−1
r∗

=

(
e(Y ∗ + sP − rW,−r∗zU)

e(sZ,−r∗U)

)−1
r∗

=e(Y ∗ − rW,−r∗zU)
−1
r∗

=e(Y ∗ − rW, zU)

Again, S computes(
Z1

Z2

) 1
r+1

=

(
e(Y ∗ +W, zU)

e(Y ∗ − rW, zU)

) 1
r+1

= e(W + rW, zU)
1

r+1

=e(W, zU) = e(P, P )uzw

This contradicts the BDH assumption.
The success probability of S is

Pr[S] ≥ 1

s(k)n(k)2t(k)
p2(k) (4)

where p2(k) is the probability of the event that CASE 1.1.2
occurs and the adversary M succeeds in this case, t(k) is the
polynomial bound on the number of distinct H calls made
by the adversary M .

5.2 The Analysis of CASE 1.2

In this case, according to the freshness definition, the ad-
versary M has four ways to mount the attacks.

CASE 1.2.1. The adversary M makes ephemeral key query
to both the Test session and the matching session of the Test
session (The adversary does not reveal their corresponding
static private key).

CASE 1.2.2. The adversary learns the static private key
of both the owner of Test session and its peer.

CASE 1.2.3. The adversary makes queries to the static pri-
vate key of the owner of Test session and its peer’s ephemeral
static key.

CASE 1.2.4. The adversary makes queries to the ephemeral
private key of the owner of Test session and its peer’s static
private key.

For CASE 1.2.1, given the BDH instance (U = uP,Z =
zP,W = wP ), where U,Z,W ∈ G, the task of solver S is to
solve the BDH problem. With probability at least 1

n(k)2
, S

guesses the adversary M will select one party denoted by A
as the owner of the session ŝ and the other party denoted by
B as the peer. With probability at least 1

s(k)
, S guesses the

adversary M will select the session ŝ as Test session. We as-
sume that the owner of Test session is A and owner of match-
ing session is B. S randomly chooses s, r, s∗, r∗ ∈R Zq and
sets A’s public key to be QA1 = U,QA2 = s∗P − r∗U , B’s
public key to be QB1 = W,QB2 = sP − rW . S assigns the
static public/private pairs for the remaining n(k)−2 parties.
S sets the KGC master public key to be Z. The simulation of
A and B is similar to that of CASE 1.1.2. If the adversary M
succeeds in Test session for which the exponents x, y is cho-
sen by S on behalf of A,B then M must have queried H ora-
cle with the values Z∗1 = e(Y +QB1 , xZ+dA1), Z∗2 = e(Y +
QB2 , xZ+dA2), where X,Y are generated by the simulator.
For all entries inHlist, S randomly chooses one entry Z∗1 , Z

∗
2 .

From one of these values, say Z∗1 , knowing x, y, S can com-
pute BDH(U,Z,W ) = Z∗1/(e(Y + QB1 , xZ)e(Z, yU)) =
e(QB1 , dA1) = e(W, zU) = e(P, P )wuz. This contradicts the
BDH assumption.

The success probability of S in this case is

Pr[S] ≥ 2

s(k)n(k)2t(k)
p3(k) (5)

where p3(k) is the probability of the event that CASE 1.2.1
occurs and the adversary M succeeds in this case. t(k) is the
polynomial bound on the number of distinct H calls made
by the adversary M .

For CASE 1.2.2, given the CDH instance U, V , where U, V ∈
G, we construct a solver F of CDH(U, V ) problem. With
probability at least 2

s(k)2
, F guesses that the adversary M

will select one of two sessions as Test session and other as
matching session. We assume that the owner of Test session
is A and owner of matching session is B. F sets ephemeral



public key of Test session owned by A to be U and of its
matching session to be V . F sets KGC master private key
itself and assigns all static public/private key pairs for n(k)
parties. As F knows KGC master private key and all paries’
static private key, the simulation of all queries is easy. If the
adversary M succeeds in a Test session then M must have
queried H oracle with the values Z∗3 = uV = vU . From
the value, F can directly output CDH(U, V ) = Z∗3 . This
contradicts the CDH assumption.

The success probability of F in this case is

Pr[F ] ≥ 2

s(k)2t(k)
p4(k) (6)

where p4(k) is the probability of the event that CASE 1.2.2
occurs and the adversary M succeeds in this case. t(k) is the
polynomial bound on the number of distinct H calls made
by the adversary M .

For CASE 1.2.3 and CASE 1.2.4, the simulation of A and
B is similar to that of CASE 1.1.1. The details are omitted.

Together with (3), (4) and (5), the success probability of
S is

Pr[S] ≥ maxi=1,2,3,5,6{ 1
s(k)n(k)2t(k)

pi(k)}

where p5(k), p6(k) are defined in CASE 1.2.3 and CASE 1.2.4
respectively.

The success probability of F is

Pr[F ] ≥ 2

s(k)2t(k)
p4(k) (7)

where p4(k) are defined in (6).
If the adversary M succeeds with non-negligible probabil-

ity in any case above, we can also solve the BDH or CDH
problem with non-negligible probability, which contradicts
the assumed security of BDH, CDH problem. In addition,
note that the BDH problem can be reduced to CDH prob-
lem. So we can conclude that our scheme is based its security
on BDH problem.

6. PROTOCOL COMPARISON
The Table 1 shows the comparison between ID-based two-

party AKE protocols in terms of efficiency, security model
and underlying hardness assumptions. We do not take into
account subgroup validation and off-line computation that
may be applicable.

We use the following symbols to explain the computa-
tional performance of each scheme. For simplicity, we just
consider expensive operations:

• P: pairing.

• E: exponentiation in G.

• T: exponentiation in GT .

• Enc: the encryption algorithm of KEM.

• Dec: the corresponding decryption algorithm of KEM.

We denote by ECK the enhanced Chen-Kudla protocol [8],
by EMB the enhanced McCullagh-Barreto protocol [8]. We
also denote by MBDH the modified bilinear Diffie-Hellman,
on which protocol 2 of paper [12] is based. The notation
`-BCAA1 means bilinear collision attack assumption, on
which EMB scheme is based.

As stated in the introduction, both protocol 1 and pro-
tocol 2 from [12] do not support the adversary’s Ephemer-
alKeyReveal queries to those sessions owned by the peer of
Test session, so both protocols do not achieve requirements
of CK model (the CK model allows adversaries to make
EphemeralKeyReveal queries to all session except for Test
session and its matching session). We denote by CK∗ their
security model below. BR denotes the Bellare-Rogaway
model [2], where no EphemeralKeyReveal queries are al-
lowed. Also, note that neither BR nor CK∗ models cover
KGC-fs, while our eCK model covers it. KCI denotes se-
curity against key-compromise impersonation. KGC-fs de-
notes KGC forward security.

As shown in Table 1, compared with CK and Smart schemes,
our scheme has advantages over them both in the hardness
assumption and the security model. While SCK-1 and SYL
schemes base security on BDH assumption as well, the eCK
model of our scheme is stronger than theirs BR model which
does not support EphemeralKeyReveal queries at all.

Compared with ECK and EMB, our scheme has advan-
tages both in efficiency and the security model. Also, com-
pared with Wang05, the assumption of our scheme is more
standard and the model is stronger. Compared with CC071,
CC072, our eCK model better supports EphemeralKeyRe-
veal queries than their CK∗ model, which is even weaker
than CK model.

Finally, the comparison between Boyd et al.’s protocol and
ours is a bit complicated. Since their protocol is generic, it
can be instantiated using any combination of KEM as long as
they are CCA secure. If the underlying KEM is instantiated
using any KEM scheme in standard model, obviously, our
protocol in random oracle is more efficient. On the other
hand, if the underlying KEM is instantiated using any KEM
scheme in random oracle, e.g. Boneh-Franklin encryption
scheme [4], which is CCA-secure under BDH assumption,
the operations of 1Enc+1Dec+2E need (1P+2E)+(1P+1E)
+2E=2P+5E totally while our scheme needs operations of
2P+3E.

7. CONCLUSIONS
It is well known that the ID-based authenticated key ex-

change is surprisingly difficult to design and prove. The
main issue is that without corresponding static private key,
it is difficult for the simulator to deal with SessionKeyReveal
and EphemeralKeyReveal queries. One usual approach is to
rely security proof on GBDH assumption, which is used to
keep the consistency of random oracle queries.

In this paper, based on the trapdoor test technique we
present a new provably secure ID-based AKE protocol whose
security relies on BDH instead of GBDH assumption. More-
over, Our scheme is proven secure in eCK model, which bet-
ter supports SessionKeyReveal and EphemeralKeyReveal queries.
To the best of our knowledge, our scheme is the first ID-
based AKE protocol provably secure in the eCK model.

Compared to previous ID-based AKE protocols based on
gap assumption, our proposal has a more standard assump-
tion, i.e. BDH assumption. On the other hand, compared
to other ID-based AKE protocols without gap assumption,
our proposal has advantages over them either in efficiency
or in security model.

1The assumption of this protocol depends on that of under-
lying KEM.



Protocol Efficiency Security model Assumption

CK[14] 1P+2E BR,KCI GBDH
Smart[14] 2P+2E BR,KCI GBDH
SCK-1[8] 2P+3E BR,KCI,KGC-fs BDH
SYL[8] 1P+3E BR,KCI,KGC-fs BDH
ECK[8] 3P+3E BR,KCI BDH
EMB[8] 4P+2E+1T BR,KCI `-BCAA1
Wang05[19] 1P+3E BR,KCI DBDH
CC071[12] 1P+3E CK∗,KCI BDH
CC072[12] 1P+5E CK∗,KCI,KGC-fs MBDH
Boyd et al.[5] 1Enc+1Dec+2E CK,KCI,KGC-fs *1

Our scheme 2P+3E eCK BDH

Table 1: Protocol comparison
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A
We show how to construct a BDH problem solver D if the
adversary M queries these values correctly.

From

Ẑ1 = e(X +QA1 , yZ + dB1)

and

Ẑ2 = e(X +QA2 , yZ + dB2)

D computes

Z̄1 =
Ẑ1

e(X +QA1 , yZ)
= e(X +QA1 , dB1) = e(X + U, zW )

and

Z̄2 =

(
Ẑ2

e(X +QA2 , yZ)e(X + s∗P − r∗U, sZ)e(s∗Z,−rW )

)−1
r

=

(
e(X +QA2 , dB2)

e(X + s∗P − r∗U, sZ)e(s∗Z,−rW )

)−1
r

=

(
e(X + s∗P − r∗U,−rzW )

e(s∗Z,−rW )

)−1
r

= e(X − r∗U,−rzW )
−1
r

= e(X − r∗U, zW )

Then D computes(
Z̄1

Z̄2

)r∗+1

=

(
e(X + U, zW )

e(X − r∗U, zW )

) 1
r∗+1

= e(U + r∗U, zW )
1

r∗+1

=e(U, zW ) = e(P, P )uwz

This contradicts BDH assumption.


