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Abstract. In this paper we revisit Wiener’s method (IEEE-IT, 1990) of continued fraction (CF) to
find new weaknesses in RSA. We consider RSA with n = pq, q < p < 2q, public encryption exponent e
and private decryption exponent d. Our motivation is to find out when RSA is insecure given d is O(nδ),
where we are mostly interested in the range 0.3 ≤ δ ≤ 0.5. We use both the upper and lower bounds
on φ(n) and then try to find out what are the cases when t

d
is a convergent in the CF expression

of e

n− 3√
2

√
n+1

. First we show that the RSA keys are weak when d = nδ and δ < 3
4
− γ − τ , where

2q − p = nγ and τ is a small value based on certain parameters. This presents additional results over
the work of de Weger (AAECC 2002). Further we show that, the RSA keys are weak when d < 1

2
nδ

and e is O(n
3
2−2δ) for δ ≤ 1

2
. Using similar idea we also present new results over the work of Blomer

and May (PKC 2004).
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1 Introduction

RSA [14] is one of the most popular cryptosystems in the history of cryptology. Here, we use
the standard notations in RSA as follows:

– primes p, q, with q < p < 2q;
– n = pq, φ(n) = (p− 1)(q − 1);

– p− q = nβ where n
1
4 < nβ < n

1
2√
2
;

– e, d are such that ed = 1 + tφ(n), t ≥ 1;
– n, e are available in public and the message M is encrypted as C = M e mod n;
– the secret key d is required to decrypt the message as M = Cd mod n.

In this paper we exploit the Wiener’s method [20] of continued fraction (CF) to find new
weaknesses in RSA (see [15] for Legendre’s theorem related to CF expression). Wiener [20]
showed that if d < 1

3
n0.25, then | e

n
− t

d
| < 1

2d2 and t
d

(which in turn reveals p, q) could be
estimated in poly(log n) time from the CF expression of the publicly available quantity e

n
.

From ed = 1 + tφ(n), it is easy to see that e
φ(n)

− t
d

= 1
dφ(n)

, i.e., e
φ(n)

− t
d

< 1
2d2 whenever

2d < φ(n). Thus a good estimation of φ(n) can be of use while exploiting CF expression.
It is known that for q < p < 2q, n − 3√

2

√
n + 1 < φ(n) < n − 2

√
n + 1. In [22, Section 4],

Wiener’s attack [20] has been extended estimating φ(n) as n − 2
√

n + 1. In our approach,
both side of the bound of φ(n) is exploited to get the results.

Lots of weaknesses of RSA have been identified in past three decades, but still RSA can
be securely used with proper precautions as a public key cryptosystem. The security of RSA



depends on the hardness of factorization. Let us now briefly discuss some weaknesses of
RSA. RSA is found to be weak when the prime factors of either p− 1 or q− 1 are small [13].
Similarly, RSA is weak too when the prime factors of either p + 1 or q + 1 are small [21].
In [10], it has been pointed out that short public exponents may cause weakness if same
message is broadcast to many parties. An outstanding survey on the attacks on RSA is
available in [4]. For very recent results on RSA one may refer to [7, 12, 9] and the references
therein.

In this paper we study the weaknesses of RSA when the secret decryption exponent
d is upper bounded. The pioneering work in this area [20] uses Continued Fraction (CF)
expression for the attack. In the seminal work in [6], important results have been shown
regarding small solutions to polynomial equations that in turn show vulnerabilities of low
exponent RSA. In [5], the method of [6] has been exploited to show that RSA is insecure
if d < n0.292. The results from [6] have been used along with the results of [20] in many
papers [5, 22, 2, 11] to get the weaknesses when d is less than nδ.

In this paper, we like to find out how the idea of CF expression from [20] can be exploited
to find weaknesses of RSA when d is small. Note that here we do not use the ideas of [6]
directly and the development in that area [7, 12, 9] at all. In [22, Section 4], some extension
of the work [20] has been mentioned and it has also been noted that similar extension will
work on the results of [19]. The result of [19] works for d with a few more bits longer than

n
1
4 . In [8], an extension of Legendre’s result has been studied to get more weak keys in the

direction of [19]. However, we find that new weak keys of RSA can be identified using the
CF technique. These weak keys have not been explored in the literature before to the best
of our knowledge.

In [20], it has been shown that RSA is not secure when d < 1
3
n0.25 as under this condition,

| e
n
− t

d
| < 1

2d2 and t
d

can be found in the CF expression of e
n
. The knowledge of d helps in

getting p, q immediately. In [18], a negative result has been identified that Wiener’s attack

will work with negligible success for d > n
1
4 . Thus there is a deep interest to find out cases

where the Wiener’s strategy [20] can be extended to get more weak keys.

One may easily check that e
φ(n)

> t
d

and e
n

< t
d
. In [20], φ(n) has been approximated

by n to get the results. A better result has been obtained in [22, Section 4] where φ(n) is
approximated by n− 2

√
n + 1. It has been shown that | e

n−2
√

n+1
− t

d
| < 1

2d2 when δ < 3
4
− β,

where p − q = nβ and d = nδ. Note that, for β = 1
2
, the result of [22] gives similar bound

on d as in [20], which is of the order n
1
4 . The improvement is obtained when β decreases.

Only at β = 1
4
, d becomes of the order of n

1
2 . In [22, Section 5, 6], the attack of [5] has been

extended considering the value of β, where p− q = nβ. Instead of considering p− q = nβ, we
here consider 2q− p = nγ to get additional results. These results are presented in Section 2.

Further, instead of relating nβ, 1
4
≤ β ≤ 1

2
, with d = nδ, we put the constraint on e. We

find that RSA is insecure when d is of the order of nδ for δ ≤ 0.5. The constraint in our case
is on the public exponent e, which is related to the difference of the primes. We show that

our attack works when e ≤ 2n1−2δ− n
n−A+1

n
n−B

− n
n−A+1

, which can be estimated as O(n1.5−2δ) in general.

Here A =
√

n2β + 4n and B = 3√
2

√
n. The conservative upper bound on e, i.e., O(n1.5−2δ),



ignores the term n2β in A and thus the difference between the two primes does not come
into the picture for the attack in general. These results are presented in Section 2.

In [2], it has been shown that p, q can be found in polynomial time for every n, e satisfying

ex+y = 0 mod φ(n), with x ≤ 1
3
n

1
4 and |y| = O(n− 3

4 ex); further some extensions considering
the difference p− q have also been considered. The work of [2] also uses the result of [6] as
well as the idea of CF expression [20] in their proof. We also provide additional result over [2]
using the lower bound of φ(n). This is presented in Section 3.

We here highlight the contribution of this paper with enumeration of the cases where we
find new weak keys of RSA considering the CF expression of e

n− 3√
2

√
n+1

.

1. d = nδ and δ < 3
4
− γ − τ , where 2q − p = nγ and τ is a small value based on certain

parameters.
2. d < 1

2
nδ and e is O(n

3
2
−2δ) for δ ≤ 1

2
.

3. ex + y = mφ(n) for m > 0, x ≤ 7
4
n

1
4 , |y| ≤ cn− 3

4 ex, c ≤ 1 and p− q ≥ cn
1
2 .

4. ex + y = mφ(n), for m > 0, 0 < x ≤
√

3
4l

√
φ(n)

e
n

3
4

2q−p
for some positive integer l based on

certain parameters and |y| ≤ 2q−p

φ(n)n
1
4
ex.

Before proceeding further, let us explain the Continued Fraction (CF) expression. We
follow the material from [17, Chapter 5] for this. Given a positive rational number a

b
, a finite

CF expression of a
b

can be written as q1 + 1
q2+ 1

q3+...+ 1
qm

or in short [q1, q2, q3, . . . qm]. As an

example, take the rational number 34
99

. One can write this as follows in the CF expression:
34
99

= 0 + 1
99
34

= 0 + 1
2+ 31

34

= 0 + 1
2+ 1

34
31

= 0 + 1
2+ 1

1+ 3
31

= 0 + 1
2+ 1

1+ 1
31
3

= 0 + 1
2+ 1

1+ 1

10+1
3

, and in short

[0, 2, 1, 10, 3]. Consider a subsequence of [0, 2, 1, 10, 3] as [0, 2, 1]. Note that 0+ 1
2+ 1

1

= 1
3

= 33
99

,

which is very close to 34
99

, i.e., a subsequence of CF will give an approximation of the rational
number. Given that a, b are t bit integers, the CF expression [q1, q2, q3, . . . , qm] of a

b
can be

found in O(poly(t)) time and can be stored in O(poly(t)) space. Any initial subsequence
of [q1, q2, q3, . . . , qm], i.e, [q1, q2, q3, . . . , qr], where 1 ≤ r ≤ m is called the convergent of
[q1, q2, q3, . . . , qm]. As example, [0, 2, 1] is a convergent of [0, 2, 1, 10, 3], i.e., 1

3
= 33

99
is a

convergent of 34
99

. Also note that if the subsequence has a 1 at the end then that may also
written by adding the 1 to the previous integer and removing the 1. That is, both [0, 2, 1]
and [0, 3] provides the same rational number.

2 New Weak Keys I

It is known that if p− q < n
1
4 [16] (see also [22, Section 3]), then RSA is weak by Fermat’s

factorization technique. Thus we are interested in the range n
1
4 < p− q <

√
n√
2

only.

Proposition 1. Let p, q be of same bit size, i.e., q < p < 2q. Then φ(n) > n−B +1, where

B = 3√
2

√
n. Further, if p − q = nβ where n

1
4 < nβ < n

1
2√
2
, then φ(n) = n − A + 1, where

A =
√

n2β + 4n.



Proof. Since (p − 2q)(2p − q) < 0, we have n − 3√
2

√
n + 1 < φ(n). Also, as p − q = nβ, we

have p2 − nβp − n = 0, putting q = n
p
. Thus p =

nβ+
√

n2β+4n

2
. So we get p + q = p + n

p
=

nβ+
√

n2β+4n

2
+ 2n

nβ+
√

n2β+4n
=
√

n2β + 4n. Then φ(n) = n− (p + q) + 1 = n− A + 1. ut

In [22], it has been identified that if p − q = nβ, then RSA is weak for d = nδ when
δ < 3

4
− β. In such a case t

d
could be found as a convergent in the CF expression of e

n−2
√

n+1
.

Thus the result works better when p, q are close. As example, if p − q = n
1
4
+ε, then δ is

bounded by 1
2
− ε. As example, for ε = 0.05, RSA becomes insecure if d = n0.44 < n0.45.

However, this improvement is not significant when p− q is O(n0.5). We present the following
approach when p− q is large, which gives 2q − p is small.

Proposition 2. Let l be a positive integer. For q > 2l+2
4l+1

p, | 3√
2

√
n− (p + q)| < l(2q−p)2

( 3√
2
+2)

√
n
.

Proof. We have 1
l
( 3√

2

√
n−(p+q))( 3√

2

√
n+(p+q)) < (2q−p)2 iff ((4l+1)q−(2l+2)p)(2q−p) >

0. As (2q − p) > 0, we need (4l + 1)q − (2l + 2)p > 0. Thus, q > 2l+2
4l+1

p.

Hence, | 3√
2

√
n− (p + q)| < l(2q−p)2

3√
2

√
n+(p+q)

.

As 2
√

n < p + q < 3√
2

√
n, we have, | 3√

2

√
n− (p + q)| < l(2q−p)2

3√
2

√
n+2

√
n
, which gives

| 3√
2

√
n− (p + q)| < l(2q−p)2

( 3√
2
+2)

√
n
. ut

As example, for l = 15, we get q > 32
61

p. If l becomes larger then the constraint on q will
almost reach the constraint that q > 1

2
p.

Theorem 1. Let l be a positive integer, q > 2l+2
4l+1

p, 2q − p = nγ and d = nδ. Then n can be

factored in O(poly(log(n))) time when δ < 3
4
− γ − τ , where 2τ > (log 4l

3√
2
+2

) 1
log n

.

Proof. Let 2q − p = nγ. Then
| 3√

2

√
n− (p + q)| < ln2γ

( 3√
2
+2)

√
n
.

i.e., |φ(n)− n− 1 + 3√
2

√
n| < ln2γ

( 3√
2
+2)

√
n
.

Now, | e
n− 3√

2

√
n+1

− t
d
|

≤ | e
n− 3√

2

√
n+1

− e
φ(n)

|+ | e
φ(n)

− t
d
|

=
e|φ(n)−(n− 3√

2

√
n+1)|

φ(n)(n− 3√
2

√
n+1)

+ 1
dφ(n)

<
e ln2γ

( 3√
2
+2)

√
n

φ(n)(n− 3√
2
+1)

+ 1
dφ(n)

< ln2γ

( 3√
2
+2)

√
n(n− 3√

2
+1)

+ 1
dφ(n)

.

Assume, n− 3√
2

√
n + 1 > 3

4
n and n > 8d. Putting d = nδ, we get

| e
n− 3√

2

√
n+1

− t
d
|



< ln2γ

( 3√
2
+2)

√
n 3

4
n

+ 4
3nd

=
4l
3

n2γ− 3
2

( 3√
2
+2)

+ 4
3nd

<
4l
3

n2γ− 3
2

( 3√
2
+2)

+ 1
6n2δ .

Now,
4l
3

n2γ− 3
2

(2+ 3√
2
)

< 1
3
n2γ− 3

2
+2τ , for 2τ > (log 4l

3√
2
+2

) 1
log n

So we get, | e
n− 3√

2

√
n+1

− t
d
| < 1

3
n2γ− 3

2
+2τ + 1

6n2δ .

Thus, | e
n− 3√

2

√
n+1

− t
d
| < 1

2d2 , when 2γ − 3
2

+ 2τ < −2δ, i.e., δ < 3
4
− γ − τ .

In such a case, t
d

is a convergent of the CF expression of e
n− 3√

2+1

√
n
, and we can find it in

O(poly(log(n))) time. ut

In the above case, we consider the bound on 2q − p to extend the limit of d beyond n0.3.
The result of [22, Section 4] concentrated on the case when p− q is bounded. On the other
hand, our result does not consider the bound on p− q and it works when 2q− p is bounded.

For practical implication, we work with primes p, q ≥ 10160, i.e., n ≥ 10320. It is clear that
our attack will work better compared to existing works when p, q are away (i.e., p is close

to 2q) with the bound q < p < 2q. However, the experiments when 2q − p < n
1
4 may not

be of interest as in that case the factorization can be done in polynomial time similar to the
argument of Fermat’s factorization strategy [16] (see also [22, Section 3]). Thus we consider

the scenario when 2q − p > n
1
3 . Below we present a practical example. All the examples in

this paper involving large integers are implemented in LINUX environment using C with
GMP.

Example 1. We choose a random prime q ∈ [10160, 10161]. Then we choose a random prime

p, such that 2q − p > n
1
3 . In this example, n0.346 < 2q − p < n0.347. We then choose the first

d greater than or equal to nδ for δ ≥ 1
3

such that d is coprime to φ(n). In such a case if e is
in our prescribed limit then our attack succeeds.

We consider p, q respectively as
21324001236937503289167797884050805700247663179258767913123369490683298611013542

482710293984079429269505393966895473715804331857655334272013326966301014512312663

and
10662000618468751644583898942025402850123831589629883956561684745341649305506771

241355146992039714634752696983447736857902165928827667136006663483150507256156183,
which gives n as

22735651437645608514540764369949778526757596419266441470601561865911392077051606

87637281365780266996051653514381053312820085562581879941697100892461092791463814

72361264666736466411449942059568093916061632275622633234439324940363916123064654

025553033995485190281219787597633737574334427577414563344330427377471759256645329.
Note that 2q − p > n

1
3 .

One can check that φ(n) is



22735651437645608514540764369949778526757596419266441470601561865911392077051606

87637281365780266996051653514381053312820085562581879941697100892461092791463814

40375262811330211477698245233491885365690137506733981364754270704338968206544340

301487593019366046376961696647290527000627929790931561936310436928020237488176484.
In Theorem 1, we require q > 2l+2

4l+1
p. Here this is satisfied for l = 1050. Also we have

2τ > (log 4l
3√
2
+2

) 1
log n

, and it is enough to take τ = 5
64

= 0.078125 in this case. Taking

γ = 0.347 and τ = 0.078125, we get δ < 3
4
− γ − τ = 0.324875. Thus, in this case for any

d < n0.324875, RSA will be insecure.
Now take n0.32 < d < n0.324875. We consider d =

44138452180807132553854898960195837050529634687636859759755568727353610483058810

149497334438480706535427 (a 104 digit number).
The corresponding e is

85356738187677927267094758044990579754357485762742350715347494115752841684037367

61958050516985955514963349897936619515552408960795697318670660889152163280842447

75560973766638533120643123534024611720642739938697649334533161511773864127534483

56073872108358709307048969215446586611896268736369229047317637983628682308907311.
The value of t is

16570953848141161450099797936855484729106684488828631895806571167212612482288825

100679308747791603915419.
Here t

d
could be found in the CF expression (see Appendix A) of e

n−d 3√
2

√
ne+1

. The | mark

in the CF expression of e
n−d 3√

2

√
ne+1

points the termination of the subsequence for the CF

expression of t
d
).

In fact, Theorem 1 presents a sufficient condition on d when RSA will be weak. In
Example 2, it is shown that even for some d, greater than the bound in Theorem 1, RSA
can be insecure based on some condition on e. Example 2 shows that there exists some d
even greater than n

1
3 when RSA is insecure. That is presented in Section 2.2, where we try

to remove the constraint on the difference between the primes; instead an upper bound on e
is considered.

2.1 Extension using the idea of Boneh-Durfee [5]

In this section, we follow the idea of [5, Section 4]. Similar idea of [1] can also be applied.
This idea has been used in [22, Section 5] when p− q is bounded. We use similar idea when
2q − p is bounded.

Let d = nδ. Using the idea of [5], we show that, RSA is insecure if δ < 4γ+5
6
−
√

(4γ+5)(4γ−1)

3
.

We assume e = n as for e < n one can get better upper bound on δ [5, Page 9].
We have ed = 1+ tφ(n) = 1+ t(n+1− p− q) = 1+ t(n+1− 3√

2

√
n− (p+ q− 3√

2

√
n)) =

1 + x(A + y), where x = t < d = nδ , A = n + 1 − 3√
2

√
n y = −(p + q − 3√

2

√
n). Now,

|y| < (2q−p)2l

( 3√
2
+2)

√
n
. Considering l

( 3√
2
+2)

< 1 (i.e., l ≤ 4) and using e = n, we have, x < eδ,

|y| < e2γ− 1
2 .



We have to find x0, y0 such that 1+x0(A+y0) ≡ 0 mod e, where |x0| < eδ and |y0| < e2γ− 1
2 .

Let X = eδ, Y = e2γ− 1
2 . Note that we consider the same X as in [5, Section 4], but our Y is

generalized as Y has been taken as e
1
2 in [5, Section 4].

One may refer to [5, Section 4] for detx = em(m+1)(m+2)/3Xm(m+1)(m+2)/3Y m(m+1)(m+2)/6

and dety = etm(m+1)/2X tm(m+1)/2Y t(m+1)(m+t+1)/2. Plugging in the values of X and Y (note

that our Y is different than [5, Section 4]), we obtain, detx = em3( 1
4
+ δ+γ

3
)+o(m3), dety =

etm2( 1
4
+ δ

2
+γ) + t2m(γ − 1

4
) + o(tm2). Now det(L) = detxdety and we need to satisfy det(L) <

emw. Note that w = (m + 1)(m + 2)/2 + t(m + 1), the dimension of L. To satisfy det(L) <
emw, we need m3(1

4
+ δ+γ

3
) + tm2(1

4
+ δ

2
+ γ) + t2m(γ − 1

4
) < (tm + m2

2
)m. This leads to

m2(−1
4

+ δ
3

+ γ
3
) + tm(−3

4
+ δ

2
+ γ) + t2(γ − 1

4
) < 0. After fixing an m, the left hand side is

minimized at t =
3
4
− δ

2
−γ

2γ− 1
2

. Substituting this, 16γ2 + 8γ − 15 + (16γ + 20)δ− 12δ2 < 0. Hence,

δ < 4γ+5
6

−
√

(4γ+5)(4γ−1)

3
.

Similar to the idea in [5, Section 4], if the smallest two elements of the reduced basis out
of the LLL algorithm are algebraically independent, then we will get x0, y0 correctly which
will in turn provide the factorization of n.

One may note that the upper bound of δ here as δ < 4γ+5
6
−
√

(4γ+5)(4γ−1)

3
is greater than

the upper bound δ < 3
4
− γ − τ in Theorem 1 given 0 ≤ γ ≤ 1

2
.

2.2 RSA is weak when ed2 is O(n
3
2 ) and d is O(n

1
2 )

Lemma 1. Let 2d < nδ, where 0 < δ ≤ 1
2
. Let A, B be as in Proposition 1. Then for

e ≤ 2n1−2δ− n
n−A+1

n
n−B

− n
n−A+1

, it is possible to get z1

z2
such that

1. e
n

z1

z2
− t

d
< 1

2d2 when n
n−B+1

≤ z1

z2
< 2

e
n1−2δ + n

e
e−1

n−A+1
and

2. t
d
− e

n
z1

z2
< 1

2d2 when n
n−B+1

− 2
e
n1−2δ < z1

z2
≤ n

e
e−1

n−A+1
.

Proof. As we have e
n

< t
d
, there are two cases with the condition z1

z2
> 1.

1. t
d
− e

n
≥ 1

2d2 but 0 ≤ e
n

z1

z2
− t

d
< 1

2d2 .

2. t
d
− e

n
≥ 1

2d2 but 0 ≤ t
d
− e

n
z1

z2
< 1

2d2 .

Case 1. The condition here is: t
d
− e

n
≥ 1

2d2 but 0 ≤ e
n

z1

z2
− t

d
< 1

2d2 .

Thus, we have to satisfy 0 ≤ edz1−tnz2

ndz2
< 1

2d2 , i.e., 0 ≤ z1+z1tφ(n)−tnz2

nz2
< 1

2d
.

Let 2d < nδ, for δ > 0. Then 0 ≤ z1+z1tφ(n)−tnz2

nz2
< 1

nδ implies 0 ≤ z1+z1tφ(n)−tnz2

nz2
< 1

2d
.

So we need to estimate z1

z2
considering 0 ≤ z1+z1tφ(n)−tnz2

nz2
< 1

nδ .

Now 0 ≤ z1+z1tφ(n)−tnz2

nz2
< 1

nδ iff

0 ≤ z1

z2
(1 + tφ(n))− tn < n1−δ iff

tn ≤ z1

z2
(1 + tφ(n)) < n1−δ + tn iff

tn
1+tφ(n)

≤ z1

z2
< n1−δ+tn

1+tφ(n)
if

n
φ(n)

≤ z1

z2
< n1−δ+tn

ed
if



n
n−B+1

≤ z1

z2
< 2

e
n1−2δ + n

e
e−1

n−A+1
, following

(i) Proposition 1,

(ii) 1
d

> 2
nδ ⇒ n1−δ

ed
> 2

e
n1−2δ, and

(iii) ed = 1 + tφ(n) ⇒ t
d

=
e− 1

d

φ(n)
⇒ t

d
> e−1

n−A+1
.

To have an z1

z2
, we need n

n−B+1
< 2

e
n1−2δ + n

e
e−1

n−A+1
.

For the guarantee of getting a rational z1

z2
in the interval [ n

n−B+1
, 2

e
n1−2δ + n

e
e−1

n−A+1
), one

may choose n
n−dBe+1

. Clearly, n
n−B+1

< n
n−dBe+1

< n
n−(B+1)+1

= n
n−B

. Thus,

n

n−B
≤ 2

e
n1−2δ +

n

e

e− 1

n− A + 1
(1)

need to be satisfied. This gives, e ≤ 2n1−2δ− n
n−A+1

n
n−B

− n
n−A+1

.

Case 2. The condition here is: t
d
− e

n
≥ 1

2d2 but 0 ≤ t
d
− e

n
z1

z2
< 1

2d2 . With similar analysis,

we get n
n−B+1

− 2
e
n1−2δ < z1

z2
≤ n

e
e−1

n−A+1
, which again gives the same upper bound for e. ut

Theorem 2. Consider the interval I such that I = ( n
n−B+1

− 2
e
n1−2δ, 2

e
n1−2δ + n

e
e−1

n−A+1
). Let

2d < nδ, where 0 < δ ≤ 1
2
. Then for e ≤ 2n1−2δ− n

n−A+1
n

n−B
− n

n−A+1
, and z1

z2
∈ I, | e

n
z1

z2
− t

d
| < 1

2d2 .

Proof. From Lemma 1 we get that | e
n

z1

z2
− t

d
| < 1

2d2 for the intervals n
n−B+1

≤ z1

z2
< 2

e
n1−2δ +

n
e

e−1
n−A+1

and n
n−B+1

− 2
e
n1−2δ < z1

z2
≤ n

e
e−1

n−A+1
.

Since, n
n−B+1

− 2
e
n1−2δ < n

e
e−1

n−A+1
< n

n−B+1
≤ z1

z2
< 2

e
n1−2δ + n

e
e−1

n−A+1
, it is enough to

have z1

z2
in the interval I = ( n

n−B+1
− 2

e
n1−2δ, 2

e
n1−2δ + n

e
e−1

n−A+1
) to get | e

n
z1

z2
− t

d
| < 1

2d2 for

2n1−δ ≤ e <
2n1−2δ− n

n−A+1
n

n−B
− n

n−A+1
. ut

Corollary 1. Let 2d < nδ, where 0 < δ ≤ 1
2

and e ≤ 2n1−2δ− n
n−A+1

n
n−B

− n
n−A+1

. Then n can be factored

in poly(log n) time.

Proof. The proof follows from Lemma 1 as n
n−B+1

< e
n−dBe+1

< 2
e
n1−2δ + n

e
e−1

n−A+1
. Then t

d

will be found in the CF expression of e
n

z1

z2
when z1

z2
= n

n−dBe+1
. Thus t

d
will be found in the

CF expression of e
n−dBe+1

. ut

Below we present the summarized result which is a conservative one as the upper bound
of e is underestimated. This result is general as it does not require the parameter β for the
proof, where p− q = nβ.

Theorem 3. Let n = pq, where p, q are primes such that q < p < 2q. Then n can be factored
in poly(log n) time from the knowledge of n, e when d < 1

2
nδ and e is O(n

3
2
−2δ) for δ ≤ 1

2
.

Proof. We have, e ≤ 2n1−2δ− n
n−A+1

n
n−B

− n
n−A+1

=

(
2n−2δ(n−A+1)−1

)
(n−B)

B−A+1
, and this increases as A increases.

Also the lower bound of A is 2
√

n, when n2β is neglected. Thus, e ≤
2n1−2δ− n

n−2
√

n+1
n

n− 3√
2

√
n
− n

n−2
√

n+1

and

this is O(n
3
2
−2δ). ut



Theorem 3 shows that n can be factorized from the knowledge of e (d not known) when

ed2 is O(n
3
2 ) and d is O(n

1
2 ). We like to point out an important result [3, Theorem 2]

that should be stated in this context, where it has been shown that for ed ≤ n
3
2 , with the

knowledge of e, d, the integer n can be factorized in O(log2 n) time.
The results given in Theorems 2, 3 do not put any constraint on the difference of the

primes to get a better bound on d, but the constraint is imposed on e. When d < 1
2
nδ, then

with increase in the value of δ, the value of e becomes upper bounded by
2n1−2δ− n

n−A+1
n

n−B
− n

n−A+1
.

In [22, Section 4], CF expression of only a specific value e
n−2

√
n+1

has been exploited to get
t
d
. Thus compared to our case, z1

z2
is approximated by n

n−2
√

n+1
in [22, Section 4]. Considering

Lemma 1, if n
n−2

√
n+1

< n
n−B+1

− 2
e
n1−2δ, then the approach of [22] may not be used to get

the primes, but our method will work.
The exact algorithm for our proposed attack is as follows.

Input: n, e.
1. Compute the CF expression of e

n− 3√
2

√
n+1

.

2. For every convergent t1
d1

of the expression above

if the roots of x2 − (n + 1− ed1−1
t1

)x + n = 0 are positive integers less than n

then return the roots as p, q;
3. Return (“failure”);

Our conservative estimate shows that the RSA keys are weak when d < 1
2
nδ and e is

O(n
3
2
−2δ). For example, considering δ = 0.3, 0.4, 0.45, 0.5, e is bounded by O(n0.9), O(n0.7),

O(n0.6), O(n0.5) respectively.
However, we like to point out that this is a conservative estimate and actually the upper

bound of e is much better. We have e ≤ 2n1−2δ− n
n−A+1

n
n−B

− n
n−A+1

and the attack works for 2d < nδ. Thus

the attack will work when e ≤
2n

(2d+1)2
− n

n−A+1
n

n−B
− n

n−A+1
, taking nδ = 2d + 1.

Example 2. Refer to p, q of Example 1. We consider d > n
1
3 , which is

61033620665104690038995387156383867652322226123296685389723133974030185448442674

868648018282242385291158493 (a 107 digit number).
The corresponding e is

25607033747060878831948100960748852360251160751444254452928522143254801167421362

25513157990007523683535328276512015218416342340790451266270568113742588904059135

27886609642186978739480642254815290198948110261414415071190855304065173317461587

21915217732030040350902165668813353187518059414604660250990538671831828340253.

Note that, we need to check e ≤
2n

(2d+1)2
− n

n−A+1
n

n−B
− n

n−A+1
, taking nδ = 2d + 1 and the value of

2n
(2d+1)2

− n
n−A+1

n
n−B

− n
n−A+1

is
27752782508386083340303355961072715172277767233940251957583970436546175777700818

56675682093198406639915452074782714666722078006681946847644066862508400946540480



95827016310551668690003344650119766151234642917503628367993036711112155600249171

85825054382213277788613476097469191917984761625407135710311167590281574778653,
which is greater than e indeed.
The value of t is

68741816717370170354202102752220123637844118401098843309845021703266783780777797

01089832928385613474642.
Here t

d
could be found in the CF expression (see Appendix A) of e

n−d 3√
2

√
ne+1

. The | mark

in the CF expression of e
n−d 3√

2

√
ne+1

points the termination of the subsequence for the CF

expression of t
d
).

One may check that t
d

will not be found in the continued fraction expression of e
n

(Weiner’s
result [20]) or e

n−2
√

n+1
(Weger’s result [22, Section 4]) in Example 2.

In [22, Sections 5, 6], the approach of [5] has been used to slightly improve the bounds
of [22, Sections 4]. The improvement in that case is not evident when p− q approaches

√
n

and it does not cover our results. In Example 2, n0.4995 < p−q < n0.4996. Thus, for p−q = nβ,

β > 0.4995. For β = 0.4995, we get δ < 1 −
√

2β − 1
2

= 0.2936. Thus the method of [22,

Section 6] will work for d < n0.2936. Our example considers d > n
1
3 and hence not contained

in the weak keys presented in [22, Section 6].

Remark 1. We also present Example 3 in Appendix A to show the effects of the upper bound
on d in Theorem 1 as well as the upper bounds on d, e in Theorem 2. Note that

“d of Example 1” < “d of Example 3” < “d of Example 2”.
For the “d of Example 3”, t

d
cannot be found in the CF expression of e

n−d 3√
2

√
ne+1

. The

“d of Example 3” does not satisfy the condition given in Theorem 1. On the other hand,
though “d of Example 3” < “d of Example 2”, the bound on e is not satisfied in Example 3.

One may note that in Example 3, the CF expression of t
d

does not match only in only
three places at the end with the initial subsequence of the CF expression of e

n−d 3√
2

√
ne+1

.

Thus, the idea of search in the line of [19] will actually provide the exact result with some
extra effort.

3 New Weak Keys II

Let us restate the result of [2, Theorem 2], where it was proved that p, q can be found in

polynomial time for every n, e satisfying ex + y = 0 mod φ(n), with x ≤ 1
3
n

1
4 and |y| =

O(n− 3
4 ex).

Consider that ex + y ≡ 0 mod φ(n) and the interest is on the nontrivial cases. Thus

ex+y = k(n−p−q+1). This gives e
n
− k

x
= −k(p+q−1)+y

nx
. If | e

n
− k

x
| = |k(p+q−1)+y

nx
| < 1

2x2 , then
the fraction k

x
appears among the convergents of e

n
. Thus one needs to find out the conditions

such that |k(p + q− 1) + y| < n
2x

is satisfied. Calculation shows that for |y| = O(n− 3
4 ex), one

gets x ≤ 1
3
n

1
4 .



Note that instead of trying to find k
x

among the convergents of e
n
, a better attempt will

be to find k
x

among the convergents of e
φ′(n)

, where φ′(n) is a better estimate than n for φ(n).

Following the idea of [22], φ′(n) has been taken as n−b2
√

nc (i.e., the upper bound of φ(n))
and the CF expression of e

n−b2
√

nc has been considered to estimate k
x

in [2, Section 4]. It has

been proved in [2, Theorem 4, Section 4] that p, q can be found in polynomial time for every

n, e satisfying ex + y = 0 mod φ(n), with x ≤ 1
3

√
φ(n)

e
n

3
4

p−q
and |y| ≤ p−q

φ(n)n
1
4
ex.

As we have done in the previous section, instead of considering the CF expression of
e

n−b2
√

nc , we consider the CF expression of e
n−d 3√

2

√
ne+1

to get additional results.

Lemma 2. Let ex + y = kφ(n) for k > 0. Then | e
n− 3√

2

√
n+1

− k
x
| < 1

2x2 for x ≤ 7
4
n

1
4 when

|y| ≤ cn− 3
4 ex, where c ≤ 1 and p− q ≥ cn

1
2 .

Proof. Let us list the following observations.

1. From Proposition 1, we have n− 3√
2

√
n+1 < φ(n) < n−2

√
n+1, which gives, (2− 3√

2
)
√

n <

p+q− 3√
2

√
n < 0. Thus, |(2− 3√

2
)
√

n| > |p+q− 3√
2

√
n|, i.e., ( 3√

2
−2)

√
n > |p+q− 3√

2

√
n|.

2. Also note that |y| ≤ cn− 3
4 ex, which gives |y| < xn

1
4 as e < n and c ≤ 1.

3. From [2, Proof of Theorem 2], 3
4

ex
φ(n)

≤ k ≤ 5
4

ex
φ(n)

.

Now, e
n− 3√

2

√
n+1

− k
x

=
k(−p−q+ 3√

2

√
n)−y

x(n− 3√
2

√
n+1)

.

This gives, | e
n− 3√

2

√
n+1

− k
x
| <

k(( 3√
2
−2)

√
n)+|y|

x(n− 3√
2

√
n+1)

using item 1.

Now,
k(( 3√

2
−2)

√
n)+|y|

x(n− 3√
2

√
n+1)

< 1
2x2

if
5
4

ex
φ(n)

(( 3√
2
−2)

√
n)+xn

1
4

x(n− 3√
2

√
n+1)

< 1
2x2 (using items 2, 3)

if
5
4
x(( 3√

2
−2)

√
n)+xn

1
4

x(n− 3√
2

√
n+1)

< 1
2x2 (as e

φ(n)
< 1)

iff
5
4
(( 3√

2
−2)

√
n)+n

1
4

(n− 3√
2

√
n+1)

< 1
2x2

if
5
4
×0.13

√
n

(n− 3√
2

√
n+1)

< 1
2x2 (as 3√

2
− 2 < 0.13 and 5

4
( 3√

2
− 2)

√
n) + n

1
4 < 5

4
× 0.13

√
n for large n)

iff 5
2
× 0.13x2 <

√
n + 1√

n
− 3√

2

if x2 < 3.076
√

n, for large n

if x ≤ 1.75n
1
4 . ut

This shows that the class of weak keys identified in [2, Theorem 2] can be extended by
21
4
, i.e., by more than 5 times.

In the improved result of [2, Theorem 4, Section 4], it has been shown that p, q can
be found in polynomial time for every n, e satisfying ex + y = 0 mod φ(n), with 0 < x ≤



1
3

√
φ(n)

e
n

3
4

p−q
and |y| ≤ p−q

φ(n)n
1
4
ex. Our result in Lemma 2 provides new weak keys which are

not covered by the result of [2, Theorem 4, Section 4] in certain cases as follows.

Let p − q = c
√

n. As, q < p < 2q, we have p − q <
√

n
2
. Thus, c < 1√

2
. In [2, Theorem

4, Section 4], it is given that x ≤ 1
3

√
φ(n)

e
n

3
4

p−q
. Putting p− q = c

√
n, we find x ≤ 1

3c

√
φ(n)

e
n

1
4 .

Thus our result in Lemma 2 provides extra weak keys than [2, Theorem 4, Section 4] when

1

3c

√
φ(n)

e
n

1
4 <

7

4
n

1
4 ,

which is true for e
φ(n)

>
(

4
21c

)2
. As e < φ(n), 4

21c
< 1, which gives c > 4

21
. Thus the result our

Lemma 2 presents new weak keys over In [2, Theorem 4, Section 4] when
e

φ(n)
>

(
4

21c

)2
for 4

21
< c < 1√

2
.

Next we use our idea of considering 2q−p (as presented in Proposition 2) instead of p−q.

Theorem 4. Let l be a positive integer such that l >
2( 3√

2
+2)

3√
2
−2ε

, where ε > 2q−p

φ(n)n
1
4
. Let q >

2l+2
4l+1

p. Suppose e satisfies the equation ex + y = kφ(n), for k > 0. Then n can be factored in

O(poly(log(n))) time when 0 < x ≤
√

3
4l

√
φ(n)

e
n

3
4

2q−p
and |y| ≤ 2q−p

φ(n)n
1
4
ex.

Proof. We have k = ex+y
φ(n)

. Using the bound on |y|, we get k ≤ ex
φ(n)

(
1 + 2q−p

φ(n)n
1
4

)
.

Now, | e
n− 3√

2

√
n+1

− k
x
|

=
|ex−k(n− 3√

2

√
n+1)|

x(n− 3√
2

√
n+1)

=
|k( 3√

2

√
n−p−q)−y|

x(n− 3√
2

√
n+1)

(putting ex = −y + kφ(n))

≤
|k( 3√

2

√
n−p−q)|+|y|

x(n− 3√
2

√
n+1)

<
( ex

φ(n)

(
1+ 2q−p

φ(n)n
1
4

)
)(

l(2q−p)2

( 3√
2
+2)

√
n

)+ 2q−p

φ(n)n
1
4

ex

x(n− 3√
2

√
n+1)

(putting the upper bound on k, using | 3√
2

√
n− (p +

q)| < l(2q−p)2

( 3√
2
+2)

√
n

from Proposition 2 and the upper bound of y)

=
( e

φ(n)

(
1+ 2q−p

φ(n)n
1
4

)
)(

l(2q−p)2

( 3√
2
+2)

√
n

)+ 2q−p

φ(n)n
1
4

e

(n− 3√
2

√
n+1)

=

e
φ(n)

(
(1+ 2q−p

φ(n)n
1
4

)(
l(2q−p)2

( 3√
2
+2)

√
n

)+ 2q−p

n
1
4

)
(n− 3√

2

√
n+1)

≤
e

φ(n)

(
l(2q−p)2

2
√

n

)
(n− 3√

2

√
n+1)

, because of the following.



Let X = 2q−p

n
1
4

. Thus, (1+ 2q−p

φ(n)n
1
4
)( l(2q−p)2

( 3√
2
+2)

√
n
)+ 2q−p

n
1
4

= (1+ X
φ(n)

)( lX2

3√
2
+2

+X) < (1+ε)( lX2

3√
2
+2

+

X) < l
2
X2 if l >

2( 3√
2
+2)

3√
2
−2ε

, when ε > X
φ(n)

, a very small quantity of O(n− 3
4 ). This is because,

the numerator 2q − p is O(n
1
2 ) and the denominator contains n

1
4 φ(n), where φ(n) is O(n).

Now assume n− 3√
2

√
n > 3

4
n. So we have | e

n− 3√
2

√
n+1

− k
x
| <

e
φ(n)

(
l(2q−p)2

2
√

n

)
3
4
n

.

Thus, | e
n− 3√

2

√
n+1

− k
x
| < 1

2x2

if
e

φ(n)

(
l(2q−p)2

2
√

n

)
3
4
n

≤ 1
2x2

iff 0 < 2x2 ≤ φ(n)
e

3
2
n

3
2

l(2q−p)2

iff 0 < x ≤
√

3
4l

√
φ(n)

e
n

3
4

2q−p
.

Given, | e
n− 3√

2

√
n+1

− k
x
| < 1

2x2 , n can be factorized using [2, Algorithm Generalized Wiener

Attack II]. ut

Note that [2, Algorithm Generalized Wiener Attack II] uses Coppersmith’s [6] which is
actually a probabilistic polynomial time algorithm, though in practice it works very well.

We have l >
2( 3√

2
+2)

3√
2
−2ε

. Now,
2( 3√

2
+2)

3√
2

= 3.88561808316412673173. Since 2ε is very small,

one may assume l = 4 as a specific value. In such a case,
√

3
4l

> 2
5

> 1
3
, when q > 10

17
p.

The result of [2, Theorem 4, Section 4] states that p, q can be found in polynomial time

for every n, e satisfying ex+y = 0 mod φ(n), with 0 < x ≤ 1
3

√
φ(n)

e
n

3
4

p−q
and |y| ≤ p−q

φ(n)n
1
4
ex. In

our result p− q is replaced by 2q−p. Thus the results of this section presents new weak keys
other than those presented in [2]. The result of [2, Theorem 4, Section 4] works efficiently
when p−q is upper bounded and our work gives better results when 2q−p is upper bounded.

To estimate the number of weak keys in our approach, we use the following existing
result.

Lemma 3. [2, Lemma 6] Let f(n, e), g(n, e) be functions such that f 2(n, e)g(n, e) < φ(n),

f(n, e) ≥ 2 and g(n, e) ≤ f(n, e). The number of public keys e ∈ Z∗
φ(n), e ≥ φ(n)

4
that satisfy

an equation ex + y = 0 mod φ(n) for x ≤ f(n, e) and |y| ≤ g(n, e)x is at least

f 2(n, e)g(n, e)

8 log log2(n2)
−O(f 2(n, e)nε),

where ε > 0 is arbitrarily small for n suitably large.

Now we present our estimate using similar analysis as in [2, Theorem 7]. First let us
present the definition of the class of weak keys as presented in [2, Definition 5].

Definition 1. Let C be a class of RSA public keys (n, e). The size of the class C is defined
by sizeC(n) = |{e ∈ Z ∗φn |(n, e) ∈ C|. C is called weak if



1. sizeC(n) = Ω(nγ) for some γ > 0.
2. There exists a probabilistic algorithm which on every input (n, e) ∈ C outputs the factor-

ization of n in O(poly(log n)) time.

Theorem 5. Let 2q − p = n
1
4
+γ with 0 < γ ≤ 1

4
. Further, let C be the weak class that is

given by the public key tuples (n, e) defined in the Theorem 4 with the additional restrictions

that e ∈ Z∗
φ(n) and e ≥ φ(n)

4
. Then sizeC(n) = Ω( n1−γ

log log2(n2)
).

Proof. Here f(n, e) =
√

3
4l

√
φ(n)

e
n

3
4

2q−p
, and g(n, e) = 2q−p

φ(n)n
1
4
e. Clearly f(n, e) ≥ 2. Also,

f 2(n, e)g(n, e) = 3
4l

n
5
4

2q−p
< φ(n) since 2q − p > n

1
4 .

Again g(n, e) ≤ f(n, e) as (2q − p)2 ≤
√

3
4l

√
φ(n)

e
nφ(n). Hence, we can apply Lemma 1.

Since g(n, e) = Ω(nγ), the term
f 2(n, e)g(n, e)

8loglog2(n2)

dominates the error term O(f 2(n, e)nε). Using f 2(n, e)g(n, e) = Ω( n
5
4

2q−p
) and 2q− p = n

1
4
+γ,

we get the estimate. ut

4 Conclusion

In this paper we study the well known method of Continued Fraction (CF) expression to
demonstrate new weak keys of RSA. The idea is to factorize n using the knowledge of e and
some estimate of φ(n). One may note that in most of the cases t

d
can be found in the CF

expression of e
φ(n)

. This idea was first proposed in [20], where the CF expression e
n

has been

used to estimate t
d
, i.e., n has been used as an estimate of φ(n). Later to that, n− 2

√
n + 1

(an upper bound of φ(n)) has been used as an estimate of φ(n) in many works, e.g., [22, 2].
In this paper we have studied both the upper and lower bounds of φ(n) carefully and used
n − 3√

2

√
n + 1 (a lower bound of φ(n)) as an estimate of φ(n). We extensively study the

cases when t
d

can be found in the CF expression of e
n− 3√

2

√
n+1

. Our results provide new weak

keys over the work of [22, 2] and to the best of our knowledge the weak keys identified in our
paper have not been presented earlier.
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Appendix A

Example 1 The CF expression of e
n−d 3√

2

√
ne+1

is as follows.

0, 2, 1, 1, 1, 35, 1, 1, 1, 1, 4, 1, 1, 2, 11, 1, 3, 1, 1, 3, 2, 8, 30, 1, 1, 1, 16, 1, 1, 1, 1, 7, 1, 5, 1, 2, 1, 1, 1, 2,

1, 3, 1, 1, 1, 1, 2, 4, 2, 5, 1, 6, 1, 1, 1, 5, 4, 31, 7, 4, 1, 5, 5, 3, 1, 145, 1, 54, 5, 1, 4, 3, 2, 18, 1, 1, 1, 2, 1, 3,

3, 11, 6, 1, 1, 1, 1, 27, 4, 2, 1, 5, 1, 1, 3, 1, 11, 4, 3, 10, 1, 2, 1, 2, 3, 8, 1, 1, 1, 2, 1, 7, 1, 2, 3, 4, 1, 6, 3, 1,

4, 1, 8, 621, 1, 4, 2, 11, 1, 1, 35, 1, 113, 7, 1, 13, 1, 2, 1, 20, 1, 2, 6, 2, 1, 5, 3, 4, 1, 2, 17, 3, 2, 3, 3, 1, 1, 1, 2, 4,

1, 22, 1, 1, 4, 1, 1, 4, 1, 1, 3, 3, 1, 150, 4, 1, 1, 4, 2, 1, 1, 1, 9, 6, 1, 1, 1, 8, 1, 1, 30, 26, 1, 1, 1, 1, 9, 1, 6, 3,

3, 12, 1, 1, 1, 2, 2, 1, 14, 1, 3, 7, 1, 2, 1 |, 1242, 1, 1, 1, 2, 1, 4, 5, 12, 1, 1, 4, 13, 5, 4, 10, 1, 1, 1, 12, 1, 30, 2, 65, 10,

1, 2, 3, 1, 6, 1, 1, 15, 14, 6, 2, 9, 3, 2, 13, 2, 10, 1, 7, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 17, 1,4, 1, 33, 1, 2, 5, 5,

26, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 48, 1, 1, 136, 1, 17, 1, 3, 1, 9, 6, 14, 1, 24, 2, 4, 31, 2, 2, 1, 1, 2, 2,

1, 3, 1, 2, 2, 1, 1, 1, 10, 1, 20, 7, 12, 3, 6, 1, 2, 5, 5, 1, 2, 5, 1, 1, 1, 3, 3, 1, 11, 8, 3, 2, 1, 75, 1, 1, 34, 1, 1, 3,

7, 2, 1, 2, 7, 1, 5, 1, 5, 1, 1, 16, 1, 1, 4, 2, 14, 1, 2, 8, 6, 6, 1, 1, 5, 1, 1, 2, 1, 1, 2, 523, 4, 1, 6, 1, 1, 2, 1, 4,

2, 1, 1, 1, 1, 2, 2, 11, 7, 1, 2, 28, 21, 1, 8, 11, 3, 1, 18, 1, 2, 1, 47, 1, 5, 1, 10, 2, 9, 1, 2, 3, 18, 1, 2, 1, 2, 7, 1, 6,

5, 3, 3, 14, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 2, 2, 3, 3, 4, 1, 1, 2, 1, 4, 2, 1, 1, 3, 3, 1, 2, 1, 1, 1, 11, 1, 3, 1, 257, 2,

3, 5, 2, 1, 10, 1, 2, 2, 1, 1, 7, 1, 1, 2, 1, 4, 1, 10, 8, 3, 5, 1, 3, 1, 5, 1, 1, 1, 2, 4, 4, 2, 45, 1, 2, 60, 3, 1, 1, 1,

1, 5, 4, 3, 1, 2, 1, 1, 1, 15, 4, 2, 1, 1, 1, 1, 1, 1, 20, 3, 1, 4, 1, 1, 7, 3, 1, 4, 1, 1, 2, 5, 1, 3, 1, 2, 1, 1, 1, 1,



1, 28, 3, 49, 9, 9, 13, 7, 4, 3, 5, 2, 17, 1, 8, 1, 2, 2, 4, 5, 1, 1, 5, 1, 94, 1, 6, 1, 3, 1, 2, 1, 1, 12, 6, 1, 2, 1, 114, 2,

2, 24, 2, 3, 155, 1, 7, 1, 2, 1, 2, 19, 1, 9, 1, 6, 1, 3, 1, 1, 1, 1, 2, 2, 6, 1, 4, 1, 1, 5, 1, 2, 6, 1, 4, 1, 8, 1, 1, 1,

2, 84, 3.

The CF expression of t
d

is as follows.

0, 2, 1, 1, 1, 35, 1, 1, 1, 1, 4, 1, 1, 2, 11, 1, 3, 1, 1, 3, 2, 8, 30, 1, 1, 1, 16, 1, 1, 1, 1, 7, 1, 5, 1, 2, 1, 1, 1, 2,

1, 3, 1, 1, 1, 1, 2, 4, 2, 5, 1, 6, 1, 1, 1, 5, 4, 31, 7, 4, 1, 5, 5, 3, 1, 145, 1, 54, 5, 1, 4, 3, 2, 18, 1, 1, 1, 2, 1, 3,

3, 11, 6, 1, 1, 1, 1, 27, 4, 2, 1, 5, 1, 1, 3, 1, 11, 4, 3, 10, 1, 2, 1, 2, 3, 8, 1, 1, 1, 2, 1, 7, 1, 2, 3, 4, 1, 6, 3, 1,

4, 1, 8, 621, 1, 4, 2, 11, 1, 1, 35, 1, 113, 7, 1, 13, 1, 2, 1, 20, 1, 2, 6, 2, 1, 5, 3, 4, 1, 2, 17, 3, 2, 3, 3, 1, 1, 1, 2, 4,

1, 22, 1, 1, 4, 1, 1, 4, 1, 1, 3, 3, 1, 150, 4, 1, 1, 4, 2, 1, 1, 1, 9, 6, 1, 1, 1, 8, 1, 1, 30, 26, 1, 1, 1, 1, 9, 1, 6, 3,

3, 12, 1, 1, 1, 2, 2, 1, 14, 1, 3, 7, 1, 3.

Example 2 The CF expression of e
n−d 3√

2

√
ne+1

is as follows.

0, 8878, 1, 2, 14, 12, 1, 1, 1, 3, 18, 1, 54, 2, 7, 10, 1, 2, 4124, 1, 1, 1, 168, 22, 9, 3, 1, 1, 8, 1, 2, 1, 1, 4, 2, 2, 1, 1, 4, 3,

1, 1, 1, 9, 2, 1, 1, 1, 206, 1, 11, 1, 9, 4, 39, 3, 1, 86, 1, 2, 1, 6, 1, 1, 2, 5, 4, 3, 1, 6, 1, 4, 1, 6, 1, 2, 2, 4, 8, 7,

1, 24, 1, 1, 2, 17, 1, 165, 1, 1, 16, 1, 2, 17, 9, 1, 3, 5, 2, 1, 3, 1, 2, 5, 1, 2, 3, 2, 4, 2, 22, 2, 4, 1, 1, 2, 4, 1, 3, 1,

2, 1, 131, 1, 2, 22, 5, 11, 1, 4, 14, 2, 2, 2, 10, 1, 2, 2, 1, 3, 1, 3, 1, 17, 1, 1, 2, 1, 3, 10, 1, 1, 1, 4, 1, 11, 1, 1, 1, 2,

69, 2, 1, 1, 1, 168, 3, 1, 1, 2, 4, 4, 1, 1, 53, 1, 15, 18, 6, 2, 3, 2, 1, 2, 4, 1, 23, 1, 4 |, 1, 1, 28, 2, 1, 1, 1, 1, 1, 1, 1,

2, 2, 3, 1, 2, 1, 3, 5, 3, 28, 1, 2, 2, 2, 2, 7, 4, 1, 1, 1, 1, 1, 6, 2, 3, 3, 47, 1, 1, 4, 2, 1, 1, 2, 1, 30, 4, 1, 1, 315,

1, 3, 30, 2, 1, 4, 1, 21, 1, 10, 1, 2, 1, 5, 9, 1, 26, 1, 1, 1, 4, 1, 5, 2, 457, 1, 1, 13, 9, 25, 2, 3, 1, 92, 1, 1, 3, 1, 2, 4,

158, 3, 4, 6, 2, 22, 1, 5, 1, 1, 1, 2, 4, 1, 1, 2, 6, 4, 2, 5, 2, 1, 1, 16, 47, 4, 1, 1, 2, 1, 2, 1, 1, 2, 3, 2, 3, 12, 7, 2,

2, 1, 5, 2, 1, 1, 1, 3, 1, 15, 1, 1, 1, 1, 1, 1, 7, 1, 101, 2, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 3, 4, 1, 9, 2, 1, 228, 1, 1,

3, 1, 2, 3, 7, 1, 1, 1, 12, 1, 2, 2, 10, 3, 2, 1, 14, 5, 2, 2, 1, 32, 1, 59, 2, 110, 1, 9, 1, 7, 9, 1, 7, 2, 1, 2, 1, 3, 5, 1,

1, 1, 1, 3, 8, 2, 2, 1, 2, 6, 1, 3, 7, 1, 7, 1, 1, 1, 10, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 3, 3, 18, 3, 3, 1, 1, 1, 1, 8,

1, 3, 1, 1, 6, 4, 9, 1, 3, 5, 1, 1, 3, 26, 38, 3, 6, 2, 2, 1, 1, 14, 1, 4, 1, 1, 3, 4, 1, 4, 1, 2, 2, 2, 1, 3, 15, 4, 1, 2,

1, 1, 6, 2, 1, 1, 1, 6, 11, 15, 1, 7, 3, 1, 1, 1, 3, 1, 1, 1, 11, 1, 1, 1, 5, 1, 5, 1, 1, 1, 9, 1, 1, 6, 25, 2, 2, 6, 2, 7,

4, 3, 1, 1, 1, 3, 2, 1, 6, 14, 2, 1, 1, 1, 2, 1, 6, 1, 17, 1, 1, 1, 18, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 2, 34, 2, 3, 30, 1, 3,

2, 4, 1, 2, 1, 2, 1, 3, 1, 5, 1, 2, 1, 1, 1, 7, 1, 4, 6, 3, 5, 2, 2, 4, 2, 1, 10, 2, 1, 6, 1, 5, 1, 1, 11, 1, 6, 28, 1, 2,

9, 1, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 3, 4, 1, 1, 17, 1, 1, 4, 2, 7, 6, 6, 3, 4, 2, 14, 1, 6, 1, 2.

The CF expression of t
d

is as follows.

0, 8878, 1, 2, 14, 12, 1, 1, 1, 3, 18, 1, 54, 2, 7, 10, 1, 2, 4124, 1, 1, 1, 168, 22, 9, 3, 1, 1, 8, 1, 2, 1, 1, 4, 2, 2, 1, 1, 4, 3,

1, 1, 1, 9, 2, 1, 1, 1, 206, 1, 11, 1, 9, 4, 39, 3, 1, 86, 1, 2, 1, 6, 1, 1, 2, 5, 4, 3, 1, 6, 1, 4, 1, 6, 1, 2, 2, 4, 8, 7,

1, 24, 1, 1, 2, 17, 1, 165, 1, 1, 16, 1, 2, 17, 9, 1, 3, 5, 2, 1, 3, 1, 2, 5, 1, 2, 3, 2, 4, 2, 22, 2, 4, 1, 1, 2, 4, 1, 3, 1,

2, 1, 131, 1, 2, 22, 5, 11, 1, 4, 14, 2, 2, 2, 10, 1, 2, 2, 1, 3, 1, 3, 1, 17, 1, 1, 2, 1, 3, 10, 1, 1, 1, 4, 1, 11, 1, 1, 1, 2,

69, 2, 1, 1, 1, 168, 3, 1, 1, 2, 4, 4, 1, 1, 53, 1, 15, 18, 6, 2, 3, 2, 1, 2, 4, 1, 23, 1, 4.

Example 3. Refer to p, q of Example 1.

We consider d > n
1
3 . Let d =

61033620665104690038995387156383867652322226123296685389723133974030185448442674

868648018282242385291149523 (a 107 digit number).

The corresponding e is

50540840993586746176600277435717647268345032073616659706674487447082243977918413

69230468320247447700980725776203252713926251719762610251531355631225052032958925



15721185756124886461821221336089046395014548367690311088585379161620308946520609

52054971519354961768941803469478934733847712332990457645725177388815967595164763 .

Now the value of
2n

(2d+1)2
− n

n−A+1
n

n−B
− n

n−A+1
is

27752782508386083340303355961072715172277767233940251957583970436546175777700818

56675682093198406639916267829956297391155579729307540645697606925067924255151889

80660932268183968356467852982743493427983896661042498000474961761359348086394693

97989358459219665226578434492825190314230927017627756077533311413417373451513,
which is smaller than e.
The value of t is

13567636387098752787725975030066552194109294975540802943145816240544873199851054

057524379767989315810471872.
The CF expression of e

n−d 3√
2

√
ne+1

is as follows.

0, 4, 2, 163, 49, 1, 6, 10, 74, 1, 3, 2, 12, 1, 3, 1, 4, 1, 1, 1, 1, 2, 1, 1 ,4, 1, 2, 42, 21, 1, 1, 9, 2, 3, 1, 3, 1, 6, 1, 1,

2, 3, 19, 1, 2, 1, 2, 1, 7, 1, 35, 1, 11, 3, 14, 1, 2, 1, 3, 188, 1, 3, 5, 3, 1, 3, 1, 26, 2, 2, 1, 1, 1, 9, 1, 1, 3, 1, 4, 1,

1, 1, 3, 3, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 11, 5, 2, 1, 7, 2, 1, 6, 3, 1, 3, 7, 1, 1, 1, 3, 1, 8, 9, 3, 5, 1, 4, 2, 1, 16,

1, 1, 1, 5, 2, 4, 1, 2, 1, 5, 1, 12, 2, 3, 2, 21, 2, 1, 6, 2, 3, 2, 1, 11, 1, 2, 1, 8, 1, 1, 2, 5, 1, 4, 4, 20, 2, 2, 22, 3,

2, 1, 2, 9, 6, 1, 1, 2, 3, 1, 1, 2, 1, 1, 15, 15, 1, 4, 1, 7, 1, 1, 1, 1, 1, 1, 5, 1, 2, 1, 1, 7, 7, 1, 2, 2, 7, 2, 11, 6,

1, 2, 223, 2, 4, 5, 1, 1, 9, 3, 3, 2, 1, 1, 5, 1, 3, 5, 1, 1, 1, 2, 26, 1, 1, 7, 10, 2, 1, 7, 4, 7, 1, 1, 5, 1, 4, 2, 2, 2,

3, 1, 5, 2, 1, 1, 2, 1, 1, 6, 6, 1, 10, 1, 33, 1, 6, 1, 3, 1, 2, 1, 2, 1, 1, 11, 3, 2, 8, 1, 29, 3, 2, 2, 36, 1, 5, 1, 2, 10,

9, 1, 4, 1, 9, 3, 1, 22, 4, 6, 10, 1, 1, 5, 10, 234, 1, 3, 13, 4, 9, 2, 1, 1, 2, 2, 1, 14, 1, 1, 2, 1, 1, 2, 5, 4, 1, 5, 1, 1,

4, 1, 62, 4, 8, 1, 8, 47, 10, 3, 2, 3, 7, 2, 2, 1, 2, 1, 1, 20, 1, 1, 1, 19, 440, 3, 3, 1, 6, 1, 2, 3, 2, 1, 3, 1, 1, 3, 1, 1,

48, 6, 2, 15, 21, 1, 4, 2, 3, 4, 234, 19, 50, 2, 18, 1, 3, 2, 2, 3, 3, 4, 1, 1, 5, 9, 7, 1, 3, 1, 1, 3, 1, 8, 1, 6, 2, 1, 24, 2,

14, 1, 6, 2, 2, 4, 6, 2, 1, 6, 7, 16, 3, 4, 8, 1, 1, 1, 3, 1, 2, 2, 1, 8, 1, 2, 2, 2, 1, 2, 1, 1, 4, 5, 1, 5, 1, 1, 14, 1,

1, 78, 2, 1, 2, 3, 3, 1, 1, 2, 4, 16, 1, 1, 1, 1, 1, 1, 1, 6, 2, 76, 2, 1, 2, 2, 2, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 6, 1, 1,

1, 1, 5, 1, 29, 1, 40, 2, 1, 1, 7, 1, 3, 1, 4, 1, 5, 1, 4, 2, 1, 3, 1, 1, 2, 1, 15, 2, 9, 2, 1, 15, 1, 3, 2, 1, 1, 2, 9, 1,

2, 27, 2, 2, 1, 2, 3, 5, 3, 1, 4, 4, 1, 1, 1, 1, 7, 2, 5, 1, 1, 8, 2, 3, 1, 2, 1, 2, 1, 1, 1, 1, 1, 36, 1, 1, 3, 16, 1, 1,

1, 1, 1, 6, 1, 1, 3, 1, 6, 2, 1, 1, 3, 5, 53, 3, 2, 2, 3, 4, 1, 3, 1, 1, 1, 1, 9, 1, 2, 9, 3, 1, 5, 1, 1, 1, 39, 3, 1, 1,

1, 2, 1, 18, 1, 1, 2, 1, 2, 4, 1, 1, 1, 1, 6, 1, 2, 1, 1, 4, 1, 1, 1, 4, 2, 30, 1, 3, 1, 18, 9, 1, 1, 1, 1, 31, 2, 44, 3117868, 11,

1, 3.
The CF expression of t

d
is as follows.

0, 4, 2, 163, 49, 1, 6, 10, 74, 1, 3, 2, 12, 1, 3, 1, 4, 1, 1, 1, 1, 2, 1, 1, 4, 1, 2, 42, 21, 1, 1, 9, 2, 3, 1, 3, 1, 6, 1, 1,

2, 3, 19, 1, 2, 1, 2, 1, 7, 1, 35, 1, 11, 3, 14, 1, 2, 1, 3, 188, 1, 3, 5, 3, 1, 3, 1, 26, 2, 2, 1, 1, 1, 9, 1, 1, 3, 1, 4, 1,

1, 1, 3, 3, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 11, 5, 2, 1, 7, 2, 1, 6, 3, 1, 3, 7, 1, 1, 1, 3, 1, 8, 9, 3, 5, 1, 4, 2, 1, 16,

1, 1, 1, 5, 2, 4, 1, 2, 1, 5, 1, 12, 2, 3, 2, 21, 2, 1, 6, 2, 3, 2, 1, 11, 1, 2, 1, 8, 1, 1, 2, 5, 1, 4, 4, 20, 2, 2, 22, 3,

2, 1, 2, 9, 6, 1, 1, 2, 3, 1, 1, 2, 1, 1, 15, 15, 1, 4, 1, 7, 1, 1, 1, 1, 1, 1, 5, 1, 2, 1, 1, 7, 7, 1, 2, 2, 7, 2, 11, 6,

1, 2, 223, 2, 4, 5, 1, 1, 9, 3, 3, 2, 1, 1, 5, 2, 2, 10.
Note that the CF expression of t

d
could not be found (last three places do not match) in

the CF expression of e
n−d 3√

2

√
ne+1

.


