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Abstract

In the problem of perfectly reliable message transmission (PRMT), a sender S and a
receiver R are connected by n bidirectional synchronous channels. A mixed adversary
A(tb,tf ,tp) with infinite computing power controls tb, tf and tp channels in Byzantine, fail-
stop and passive fashion respectively. Inspite of the presence of A(tb,tf ,tp), S wants to
reliably send a message m to R, using some protocol, without sharing any key with R
beforehand. After interacting in phases1 as per the protocol, R should output m′ = m,
without any error. In the problem of perfectly secure message transmission (PSMT),
there is an additional constraint that A(tb,tf ,tp) should not know any information about
m in information theoretic sense. The adversary can be either static2 or mobile.3

The connectivity requirement, phase complexity and communication complexity are
three important parameters of any interactive PRMT/PSMT protocol and are well stud-
ied in the literature when the channels are controlled by a static/mobile Byzantine ad-
versary. However, when the channels are controlled by mixed adversary A(tb,tf ,tp) , we
encounter several surprising consequences. In this paper, we study the problem of PRMT
and PSMT tolerating ”static/mobile mixed adversary”. We prove that even though the
connectivity requirement for PRMT is same against both static and mobile mixed adver-
sary, the lower bound on communication complexity for PRMT tolerating mobile mixed
adversary is more than its static mixed counterpart. This is interesting because against
only ”Byzantine adversary”, the connectivity requirement and the lower bound on the
communication complexity of PRMT protocols are same for both static and mobile case.
Thus our result shows that for PRMT, mobile mixed adversary is more powerful than its

∗Work supported by project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication
and Computation sponsored by Department of Information Technology, Govt. of India.

1A phase is a send from S to R or vice-versa
2A static adversary corrupts the same set of channels in each phase of the protocol. The choice of the

channel to corrupt is decided before the beginning of the protocol.
3A mobile adversary can corrupt different set of channels in different phases of the protocol.
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static counterpart. As our second contribution, we design a four phase communication
optimal PSMT protocol tolerating ”static mixed adversary”. Comparing this with the
existing three phase communication optimal PSMT protocol against ”static Byzantine
adversary”, we find that additional one phase is enough to design communication op-
timal protocol against static mixed adversary. Finally, we show that the connectivity
requirement and lower bound on communication complexity of any PSMT protocol is
same against both static and mobile mixed adversary, thus proving that mobility of the
adversary has no effect in PSMT. To show that our bound is tight, we also present a
worst case nine phase communication optimal PSMT protocol tolerating mobile mixed
adversary which is first of it’s kind. This also shows that the mobility of the adversary
does not hinder to design constant phase communication optimal PSMT protocol. In our
protocols, we have used new techniques which can be effectively used against both static
and mobile mixed adversary and are of independent interest.

Keywords: Perfect Reliability, Information Theoretic Security, Static and Mobile Mixed
Adversary.

1 Introduction

In perfectly reliable message transmission (PRMT) problem, a sender S is connected to a
receiver R in an unreliable network by n vertex disjoint paths called wires; S wishes to send
a message m chosen from a finite field F reliably to R, in a guaranteed manner (without any
error), in spite of the presence of several kinds of faults in the network. The perfectly se-
cure message transmission (PSMT) problem has an additional constraint that the adversary
should get no information about m. The faults in the network is modeled by an adversary
who controls the actions of nodes in the network in a variety of ways and have unbounded
computing power. Security against such an adversary is called information theoretic security,
which is also known as perfect security. Since the adversary has unbounded computing power,
we cannot use any cryptographic primitive, such as public key cryptography, hash function,
etc to solve PSMT problem. The PRMT and PSMT problem was first studied and solved
by Dolev et.al [6] against static Byzantine adversary. The PRMT and PSMT problems are
very important primitives in various reliable and secure distributed protocols. If S and R are
connected directly via a private and authenticated link (which is generally assumed in generic
secure multiparty protocols [2, 8, 16, 24]), reliable and secure communication is trivially guar-
anteed. However, in reality, it is not economical to directly connect every two players in the
network. Therefore such a complete network can only be virtually realized by simulating the
missing links using PRMT and PSMT protocols as primitives.

Existing Results: There are various settings in which PRMT and PSMT problem has
been studied extensively in the past (see [6, 5, 7, 17, 9, 22]). The most natural and in-
teresting question posed in the context of PRMT/PSMT are: (a) POSSIBILITY: What
is the necessary and sufficient condition that a given network should satisfy for the possi-
bility of PRMT/PSMT from S to R? (b) OPTIMALITY: Once the POSSIBILITY of a
protocol is ensured in a given network, what is the communication complexity lower bound
for any reliable/secure protocol to send a message of specific length. Moreover, how to de-
sign communication optimal PRMT/PSMT protocols which satisfies the lower bound? The
above questions can be examined in various settings. The questions in (a) and (b) have been
completely answered against static Byzantine adversarial model in [15, 19, 1, 21, 10]) and
against mobile Byzantine adversarial model in [22, 14]. In [18], the authors have partially
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answered the questions (a) and (b) against static mixed adversarial model. However, noth-
ing is known in mobile mixed adversarial model. Also in spite of being a very practical
adversarial model, mobile mixed adversary have got no exposure.

Why to Study Mixed Mobile Adversary: In a typical large network, certain nodes may
be strongly protected and few others may be moderately/weakly protected. An adversary
may only be able to failstop(/eavesdrop in) a strongly protected node, while he may affect
a weakly protected node in Byzantine fashion. Thus, we may capture the abilities of an
adversary in a more realistic manner using three parameters tb, tf , tp where tb, tf , tp are the
number of nodes under the influence of adversary in Byzantine, failstop and passive fashion
respectively. Also it is better to grade different kinds of disruption done by adversary and
consider them separately rather than treating every kind of fault as Byzantine fault as this is
an “overkill”. Also we stress that many times mobile adversary captures practical scenarios
better than static adversary. For example when S and R are engaged in interaction for a
long time, then some faults in initial phases can be fixed and in the mean time, a hacker may
attack some other nodes.

Recently in [20], the authors have studied the issues related to the possibility and
optimality of unconditional reliable message transmission4 (which is same as PRMT with
exponentially small probability of error in reliability) and unconditional secure message trans-
mission5 (which is same as PSMT with exponentially small probability of error in reliability
only), in undirected synchronous networks, tolerating static mixed adversary. However, the
techniques used in [20] cannot be used to design PRMT/PSMT protocols against static and
mobile mixed adversary.

Our Contribution: In this work, we focus our attention on PRMT/PSMT in undirected
synchronous networks against static and mobile mixed adversary. Table 1 tabulates both the
existing and proposed (in this paper) connectivity requirement and communication complex-
ity lower bound results.

Contribution 1 We provide a worst case four phase communication optimal PSMT protocol
tolerating static mixed adversary which is a first protocol of its kind. Comparing this with
the existing three phase communication optimal PSMT protocol against static Byzantine ad-
versary [15], we find that using an additional phase, we get a communication optimal PSMT
protocol against static mixed adversary.

Contribution 2 We give the characterization for the possibility of any PRMT protocol
against mobile mixed adversary and show that it is same as against static mixed adversary.
We prove lower bound on the communication complexity of any PRMT protocol against mo-
bile mixed adversary and show it is tight by designing a three phase communication optimal
PRMT protocol, whose communication complexity matches this bound. Comparing these re-
sults with existing results for PRMT against static mixed adversary, we find that though
mobility of mixed adversary has no affect on possibility of PRMT protocols, it significantly
affects its optimality. This is surprising because mobile Byzantine and static Byzan-
tine adversary has same effect in PRMT in terms of possibility [22] and optimality [14].

4In [20], the authors have termed it as probabilistic perfectly reliable message transmission (PPRMT).
5In [20], the authors have termed it as probabilistic perfectly secure message transmission (PPSMT).
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Table 1: Connectivity and Lower Bound for Communication Complexity for PRMT and
PSMT problems; Results with “*” are provided in this paper. Moreover, all the bounds are
tight. Here ` is the number of field elements in the message. The communication complexity
is in terms of field elements.

Byzantine Adversary Mixed Adversary

Static Mobile Static Mobile

PRMT; Connectivity (n) 2tb + 1 [6] 2tb + 1 [22] 2tb + tf + 1 [18] 2tb + tf + 1*

PRMT; Lower Bound Ω(`) [21, 15] Ω(`) [14] Ω
(

(n−tf )`

n−(tb+tf )

)
[18] Ω( n`

n−(tb+tf )
)*

PSMT; Connectivity (n) 2tb + 1 [6] 2tb + 1 [22] 2tb + tf + tp + 1 [18] 2tb + tf + tp + 1*

PSMT; Lower Bound Ω( n`
n−2tb

) [19] Ω( n`
n−2tb

) [19, 14] Ω( n`
n−(2tb+tf +tp)

) [18]* Ω( n`
n−(2tb+tf +tp)

)*

Contribution 3 We show that characterization for the possibility and lower bound on com-
munication complexity of PSMT protocols tolerating static mixed adversary remain unchanged
even for mobile mixed adversary. We also present a worst case nine phase communication op-
timal PSMT protocol tolerating mobile mixed adversary, which is first of it’s kind. Comparing
this with contribution 1, we conclude that mobility of adversary does not hinder the possi-
bility of designing constant phase communication optimal PSMT protocol against mixed
adversary, even though it requires slightly more number of phases.

To design our protocols, we propose new techniques, which can be effectively used against
both static and mobile mixed adversary. These techniques are completely different from the
techniques used in [20] to design PPRMT/PPSMT protocols against static mixed adversary.
We stress that our results on mixed adversary are not simple and trivial extensions of the
existing results for Byzantine adversary.

2 Definitions, Network Settings and Adversarial Model

The underlying network is a connected synchronous network represented by an undirected
graph where S and R are two nodes. A mixed adversary, with unbounded computing power,
controls at most tb, tf and tp nodes (excluding S, R) in Byzantine, fail-stop and passive
fashion respectively. Following approach of [6], we abstract the network and concentrate on
solving PRMT/PSMT problem for a single pair of processors (S, R), connected by n vertex
disjoint paths w1, w2, . . . , wn, also known as wires.6 In the worst case, if adversary controls
a single node on a wire, then out of n wires, at most tb, tf and tp wires can be under the
control of the adversary in Byzantine, failstop and passive fashion respectively.

A wire which is controlled in a failstop fashion may fail to deliver any information, but if
it delivers the information then it will be correct. However, the adversary will have no idea
about the information that passed through a wire which is controlled in failstop fashion. A
wire which is passively controlled will always deliver correct information. However, the adver-
sary will also completely know the information, which passed through a passively controlled
wire. A Byzantine corrupted wire may deliver correct information or it may deliver incor-
rect information. However, in any case, the adversary will completely know the information,

6The approach of abstracting the network as a collection of n wires is justifying using Menger’s theorem [12]
which states that a graph is c− (S,R)-connected iff S and R are connected by at least c vertex disjoint paths.
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which passed through a Byzantine corrupted wire. The mixed adversary can be static or mo-
bile. We denote the static and mobile mixed adversary byAstatic

(tb,tf ,tp) andAmobile
(tb,tf ,tp) respectively.

Scope of Astatic
(tb,tf ,tp): The static mixed adversary Astatic

(tb,tf ,tp) controls the same set of tb, tf and

tp wires among n wires, in Byzantine, fail-stop and passive fashion respectively, in different
phases of any PRMT/PSMT protocol. The set of wires which it controls is decided before
the execution of the protocol. A wire which is under the control of Astatic

(tb,tf ,tp), will remain so
throughout the protocol.

Scope of Amobile
(tb,tf ,tp): The mobile mixed adversaryAmobile

(tb,tf ,tp) controls different set of tb, tf and

tp wires among n wires, in Byzantine, fail-stop and passive fashion respectively, in different
phases of any PRMT/PSMT protocol. A wire which is controlled by Amobile

(tb,tf ,tp) in some

phase, may become free from Amobile
(tb,tf ,tp) in subsequent phase. Though Amobile

(tb,tf ,tp) controls
different set of wires in different phases of the protocol, it does not allow the adversary to
gain any information which has previously passed (in earlier phases of the protocol) through
the wires under its control in current phase. This is because the wires (and hence the nodes
along these wires) erases all the local information from its memory at the end of each phase.
Also any wire which is not under the control of the adversary in current phase will behave
correctly, irrespective of the way it behaved in earlier phases of a protocol. The adversary
can gain information from the wires in a cumulative fashion. For example, suppose during
first phase of a protocol, Amobile

(1,1,1) controls w1, w2 and w3 in Byzantine, failstop and passive
fashion respectively in a network, where S and R are connected by wires w1, w2, . . . , w5. Now
suppose during second phase, it controls w2, w4 and w5 in Byzantine, failstop and passive
fashion respectively. Then w1 and w3 will behave correctly during second phase and adversary
has no access to the information passing through them in second phase. At the end of second
phase, adversary will know the information which passed through w1 and w3 during first
phase and the information which passed through w2 and w5 during second phase.

Remark 1 A mobile adversary is different from an adaptive adversary [4], who dynamically
corrupt nodes (wires) during the protocol execution and whose choice of corrupting a wire
may depend on the data seen so far. This is so because a node (wire) which is once under
the control of adaptive adversary, will remain so throughout the protocol whereas in case of
mobile adversary, it may become free in subsequent phases of the protocol. Also, adaptive
adversary is slightly different from static adversary in the sense that static adversary decides
which wires to control before the start of the protocol. Our protocols designed against static
mixed adversary will also work against adaptive adversary without any modification.

Throughout the paper we use m to denote the message that S wants to send to R. m is a
sequence of ` field elements from a finite field F. The only restriction on F is that |F| ≥ n. We
use |m| to denote the number of field elements in m. Any information which is sent through
all the wires is said to be “broadcast”. If x is “broadcast” over at least 2tb + tf +1 wires, then
at most tf wires may fail to deliver x, where as at most tb wires may deliver incorrect x. But
at least tb + 1 wires will deliver correct x. So receiver will be able to correctly receive x by
taking majority vote. The communication complexity of any protocol is the total number of
field elements communicated by S and R in the protocol. We say that a wire is corrupted,
if the information sent over the wire is changed. A wire which is not under the control of the
adversary is said to be honest.
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Definition 1 (Optimal PRMT/PSMT (OPRMT/OPSMT) Protocol) Let N be a network,
under the influence of Astatic

(tb,tf ,tp) or Amobile
(tb,tf ,tp) and Π be a PRMT/PSMT protocol, which

sends m from S to R in N , by communicating O(b) field elements. Then Π is called
an OPRMT/OPSMT protocol if the lower bound on the communication complexity of any
PRMT/PSMT protocol in N to send m is Ω(b) field elements.

3 Coding Theory Preliminaries

In our protocols, we have used Reed-Solomon (RS) codes, which are used to reliably send
message over a noisy channel. Let Ch(tb,tf ) denote a noisy channel, where at most tf and
tb locations of a codeword can be arbitrarily erased and changed respectively during the
transmission. We call the later type of errors as Byzantine error.

Definition 2 ( [11]) For message block M = (m1 m2 . . . mk) over F, define ReedSolomon
polynomial as PM (x) = m1 + m2x + m3x

2 + . . . + mkx
k−1. Let α1, α2, ..., αn, n > k, denote

a sequence of distinct and fixed elements from F. Then vector C = (c1 c2 . . . cn) where
ci = PM (αi), 1 ≤ i ≤ n is called the Reed-Solomon codeword of size n for the message block
M . We denote the size of vector C by |C|.
The next theorem summarizes a known result related to Reed-Solomon codes.

Theorem 1 (Singleton Bound [11]) Suppose a sender has generated a RS codeword C of
size |C| = N , for a message block M of size k and sends the codeword C through Ch(tb,tf ).
Let the received codeword be C ′ of size |C ′| ≥ N − tf and different from C in at most tb
locations. Then the receiver can reconstruct the message M from C ′ iff N ≥ 2tb + tf + k.

Theorem 2 gives the number of errors which can be corrected and detected by RS codes.

Theorem 2 ([11, 5]) Let C denote the RS codeword for a message block of size k, where
|C| = n. Let the codeword be sent over Ch(tb,tf ). Let n′ denotes the size of the received
codeword C ′, where n′ ≥ n− tf . Then RS decoding can correct upto c Byzantine errors in C ′

and simultaneously detect additional d Byzantine errors in C ′ iff n′ − k ≥ 2c + d.

RS-DECODING ALGORITHM [11, 13]: Berlekamp Welch algorithm is one of the most
simple and efficient RS decoding algorithm existing in the literature. In general, we denote the
RS decoding algorithm by RS−DEC(n′, c, d, k). The algorithm takes an n′ length codeword
C ′ received through Ch(tb,tf ), where C ′ corresponds to a codeword which was encoded using
a polynomial of degree k− 1 (so the message block size is k). Let t′b ≤ tb denotes the actual
number of Byzantine errors that are present in C ′. The only information receiver knows
about t′b is that t′b ≤ tb. The variables c and d are passed as parameters to the algorithm,
where c represents the number of Byzantine errors that receiver wants to correct in C ′ and
d represents the number of additional Byzantine errors that receiver wants to detect in C ′.
The variables c and d should satisfy the relation given in Theorem 2. In addition, c + d ≤ tb.

The algorithm tries to correct at most c Byzantine errors in C ′. In addition to this, it tries
to detect at most d additional Byzantine errors (if they are present) in C ′. The algorithm
either (a) outputs a polynomial of degree k− 1, along with an error list or (b) fails to output
any polynomial of degree k − 1. The error list (if it is produced) contains at most c entries,
where each entry is a pair, indicating an error location in C ′ along with the value received at
that location in C ′. We illustrate (a) and (b) in the sequel, in the context of our PRMT and
PSMT protocols.
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Definition 3 We call an error list generated by RS−DEC algorithm as “good” if each of the
values in the error list, pointed as corrupted/modified value, is indeed corrupted. Otherwise
we call the error list as “bad”. When an error list is “bad”, it must point a correct
value in C ′ as corrupted.

We now design a single phase PRMT protocol called PRU-SP-Mixed using RS codes. In
the protocol, S and R are connected by N ≥ 2tb + tf + 1 wires, wi, 1 ≤ i ≤ N , of which at
most tb and tf wires can be under the control of a static adversary in Byzantine and fail-stop
fashion respectively (N ≥ 2tb + tf + 1 wires are necessary and sufficient for the existence of
any PRMT protocol tolerating such a static adversary [18]). The goal is to reliably send a
message m containing ` field elements from S to R.

Protocol PRU-SP-Mixed(m, `, N, tb, tf , k): Single Phase PRMT Tolerating Astatic
(tb,tf ,tp)

• S breaks up m into blocks B1,B2, . . . ,B`/k, each consisting of k field elements, where k = N−2tb−tf .
If ` is not an exact multiple of k, a default padding is used to make ` mod k = 0.

• For each block Bj, 1 ≤ j ≤ `/k of size k, S computes n length RS codeword of Bj denoted by
(cj1cj2 . . . cjN ). S sends cji, 1 ≤ j ≤ `/k along the wire wi, 1 ≤ i ≤ N . Note that the RS codeword of
all the blocks of m are computed and sent parallely by S to R in a single phase.

• R parallely receives the (possibly corrupted/erased) cji’s for all Bj’s and applies the RS decoding
algorithm to each of them and reconstructs all Bj’s. R then concatenates the Bj’s to recover the
message m.

Lemma 1 Protocol PRU-SP-Mixed correctly sends m by communicating O
(

N`
N−2tb−tf

)

field elements.

Proof: Follows from the working of the protocol and Theorem 1. 2

Protocol PRU-SP-Mixed has another important property given in the following theo-
rem.

Theorem 3 If R in advance knows the identity of α ≤ tb wires which are under the control
of Byzantine adversary, then protocol PRU-SP-Mixed can reliably send m using block size
k ≤ (N − 2tb − tf ) + α.

Proof: Since R knows α wires which are under the control of Byzantine adversary, it simply
ignores these wires and therefore the connectivity (set of active wires) reduces to N − α.
Also among the values received by R along these N − α wires, at most tb − α could be
Byzantine corrupted. Substituting these values in Theorem 1, we get k ≤ N − α − 2(tb −
α) − tf ≤ (N − 2tb − tf ) + α. Hence PRU-SP-Mixed(m, `, N, tb, tf , k) will work correctly
with k ≤ (N − 2tb − tf ) + α.

4 Existing OPSMT Protocols Tolerating Astatic
tb

and Its Limi-
tations

The existing OPSMT protocol against a tb active static Byzantine adversary Astatic
tb

works as
follows [15]: S and R are connected by n = 2tb + 1 wires, of which at most tb can be under
the control of Astatic

tb
. Essentially, S sends one random tb degree polynomial over each of the

n wires and their n values distributed over n wires. After a sequence of interaction between
S and R according to the protocol, the constant coefficients of the tb + 1 polynomials which
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are not under the control of the adversary, are established as an information theoretic secure
”one time pad” between S and R. Moreover the communication complexity of the interaction
is O(n2). Now using this one time pad, S securely sends tb + 1 = Θ(n) field elements to R
by communicating O(n2) field elements [15].

For tolerating Astatic
(tb,tf ,tp), S and R must be connected by at least n = 2tb + tf + tp + 1

wires (see Theorem 4). Now if we use the same technique of sending polynomials as well as
their values (as used in OPSMT protocol againt Astatic

tb
), S and R end up in establishing a

secure ”one time pad” of length tb +1 after communicating O(n2) field elements. The reason
is that adversary can crash tf wires and passively listen the polynomials over (tb + tp) wires.
Therefore only n− tf − tb − tp = tb + 1 polynomials will be unknown to the adversary. Since
n = 2tb+tf +tp+1, tb may not be Θ(n) and can even be a constant. Thus the resulting PSMT
protocol may send a message of very small size with very high communication complexity
of O(n2), which will not be an OPSMT protocol against Astatic

(tb,tf ,tp). In the next section, we
propose certain new protocols based on some new techniques, using which we can design
OPSMT protocols tolerating both Astatic

(tb,tf ,tp) and Amobile
(tb,tf ,tp).

5 OPSMT Tolerating Static Mixed Adversary Astatic
(tb,tf ,tp)

Here we first recall the characterization for the possibility and the lower bound on commu-
nication complexity of any multiphase PSMT protocol tolerating Astatic

(tb,tf ,tp) [18].

Theorem 4 ([18]) Any r-phase (r ≥ 2) PSMT protocol between S and R in an undirected
network N tolerating Astatic

(tb,tf ,tp) is possible iff N is (2tb + tf + tp + 1)-(S,R)-connected.

Proof: If part: We now show that if the network is not (2tb + tf + tp + 1)-(S,R)-connected,
then no PSMT protocol exists. For this, we make use of the result by Dolev et al. [6], which
states that PSMT against a static adversary who can corrupt up to any tb and tp nodes in the
network in Byzantine and passive fashion respectively, is possible if and only if the network
N is (2tb + tp + 1)-(S,R)-connected.7 Assume that a PSMT protocol Π exists in a network
N which is not (2tb + tf + tp +1)-(S,R)-connected. Consider the network N ′ that is induced
by N on deleting tf vertices from a minimal vertex cutset of N (this can be interpreted as
an adversary blocking the communication over tf vertex disjoint paths). It follows that N ′

is not a (2tb + tp + 1)-(S,R)-connected network. Evidently, if Π is a PSMT protocol on N ,
then Π′ is a PSMT protocol on N ′, where Π′ is the protocol Π restricted to the players in N ′.
But from [6], we know that Π′ exists only if the network N ′ is (2tb + tp +1)-(S,R)-connected.
Thus no such Π′ is possible and hence no protocol Π over N tolerating the original adversary
is possible.

Only If Part: Let the underlying network be (2tb + tf + tp +1)-(S,R) - connected. We design
a four phase OPSMT protocol OPSMT Πstatic

(tb,tf ,tp) tolerating Astatic
(tb,tf ,tp) in section 5. 2

7The actual expression is (ta + max(ta, te) + 1)-(S,R)-connected, where the adversary can corrupt up to
ta nodes in active (Byzantine) fashion and te nodes in passive fashion in the “containment” model, where the
set of actively corrupted nodes is a subset of the set of passively corrupted nodes or vice-versa. However, in
this paper, we assume that the set of actively corrupted nodes are disjoint from the set of passively corrupted
nodes
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Theorem 5 ([18]) Any r-phase (r ≥ 2) PSMT protocol which securely sends ` field elements
in the presence of Astatic

(tb,tf ,tp) needs to communicate Ω
(

n`
n−(2tb+tf+tp)

)
field elements, where

n ≥ 2tb + tf + tp + 1.

Proof: The proof follows by extending the entropy based argument used in [21] to prove
the lower bound on the communication complexity of any r-phase (r ≥ 2) PSMT protocol
against Astatic

tb
. 2

Let S and R be connected by n = 2tb + tf + tp + 1 wires wi, 1 ≤ i ≤ n. We design
a four phase OPSMT protocol OPSMT Πstatic

(tb,tf ,tp) which securely sends n field elements by
communicating O(n2) field elements, tolerating Astatic

(tb,tf ,tp). Comparison of this with three
phase OPSMT protocol tolerating Astatic

tb
presented in [15] shows that additional one phase is

enough to design OPSMT protocol against Astatic
(tb,tf ,tp). We first design few sub-protocols and

finally combine them to get OPSMT Πstatic
(tb,tf ,tp).

Assumption 1 In our protocols, we assume that whenever sender sends some information
to receiver through n wires, then the receiver receives information over first n− tf ≤ N ′ ≤ n
wires and the last n−N ′ fails to deliver any information to the receiver. This is without loss
of generality because receiver can always broadcast back the index of the wires over which it
has not received any information. This does not affect the communication complexity of our
protocols.

5.1 Pad Establishment Πstatic
(tb,tf ,tp)- A Conditional Single Phase PSMT Proto-

col

Suppose A and B are connected by n = 2tb + tf + tp + 1 wires under the influence of
Astatic

(tb,tf ,tp). Also A in advance knows the identity of at least tb
2 wires which are Byzantine

corrupted. We now design a single phase sub-protocol Pad Establishment Πstatic
(tb,tf ,tp) which

securely establishes a random one time pad of length n between A and B, which is information
theoretically secure from Astatic

(tb,tf ,tp).

Protocol Pad Establishment Πstatic
(tb,tf ,tp): Single Phase Protocol to Establish a One Time Pad

Computation and Communication by A
• A saves the identity of the known faulty wires in a list Lfault. According to the problem specifi-
cation, tb

2
≤ |Lfault| ≤ tb. A selects n random polynomials qj(x), 1 ≤ j ≤ n, over F, each of degree

tb − |Lfault| + tp. For each qj(x), 1 ≤ j ≤ n, A computes a RS codeword [qj1 qj2 . . . qjn] of size n, such
that qji = qj(αi), 1 ≤ i ≤ n. For 1 ≤ i ≤ n, if wire wi 6∈ Lfault, then A sends to B the values qji over wi.
Finally A broadcasts Lfault to B.

Computation by B
• B receives Lfault and neglects any information received over wi ∈ Lfault. Among the remaining wires, at
most tf wires can fail to deliver any information. Suppose B receives values over the first n′ ≥ n−|Lfault|−tf

wires. Let B receives q′ji over wi, 1 ≤ i ≤ n′. Let Q′j = [q′j1 q′j2 . . . q′jn′ ], 1 ≤ j ≤ n denote the jth received
codeword. B applies RS−DEC(n′, tb−|Lfault|, 0, tb−|Lfault|+ tp +1) algorithm to Q′j , recovers qj(x) and
hence qj(0). The n tuple q = [q1(0) q2(0) . . . qn(0)] is established correctly and securely between A and B.

Theorem 6 Pad Establishment Πstatic
(tb,tf ,tp) establishes the information theoretic secure n tu-

ple q = [q1(0) . . . qn(0)] between A and B against Astatic
(tb,tf ,tp) in single phase by communicating

O(n2) field elements.
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Proof: From Lfault, B identifies |Lfault| ≥ tb
2 Byzantine corrupted wires and neglects them.

Among the remaining wires, at most tf can fail to deliver any information. So in the worst
case n′ = 2tb + tp + 1− |Lfault|. The codeword Q′

j , 1 ≤ j ≤ n received by B, represents a RS
codeword, which is RS encoded using a polynomial of degree k − 1 = tb − |Lfault|+ tp. Also
B knows that in Q′

j , at most tb−|Lfault| values could be corrupted and tries to correct these
errors by applying RS −DEC with c = tb − |Lfault| and d = 0. Substituting the values of
n′, c, d and k in the inequality of Theorem 2, we find that RS −DEC(n′, tb − |Lfault|, 0, tb −
|Lfault| + tp + 1) will be able to correct all the tb − |Lfault| ≤ tb

2 errors in Q′
j and outputs

qj(x) correctly.
The adversary gets at most tb − |Lfault| + tp distinct points on each tb − |Lfault| + tp

degree polynomial qj(x), implying information theoretic security for each qj(0). For each
qj(x), 1 ≤ j ≤ n, A sends n − |Lfault| = O(n) values which incurs a total communication
complexity of O(n2). Also communication complexity of broadcasting Lfault is O(n2). 2

5.2 Error Identification Πstatic
(tb,tf ,tp) - A Three Phase Protocol to Identify at

least tb
2

Byzantine Corrupted Wires

As before A and B are connected by n = 2tb + tf + tp +1 wires. We now design a novel three
phase protocol Error Identification Πstatic

(tb,tf ,tp) tolerating Astatic
(tb,tf ,tp), which has the following

properties: (a) If at most tb
2 wires get Byzantine corrupted during first phase then A securely

establishes a one time pad of length n with B at the end of second phase. (b) If more than tb
2

wires get corrupted during first phase, then the pad will not be established. However, either A
comes to know the identity of at least tb

2 Byzantine corrupted wires at the end of second phase
or B comes to know the identity of at least tb

2 Byzantine corrupted wires at the end of third
phase. We now formally prove the properties of protocol Error Identification Πstatic

(tb,tf ,tp).

Theorem 7 1. If at most tb
2 Byzantine wires are corrupted during Phase I, then an n

length information theoretically secure pad p = [p1(0) p2(0) . . . pn(0)] is established
between A and B at the end of Phase II.

2. If more than tb
2 errors occurred during Phase I, then either A or B comes to know

the identity of more than tb
2 corrupted wires at the end of Phase II or Phase III

respectively.

Proof: We prove the theorem for the worst case where during Phase I, tf wires failed to
deliver any information to B. Hence B receives information over n′ = n − tf = 2tb + tp + 1
wires during first phase. Hence each of the received codewords P ′

j , 1 ≤ j ≤ n will contain
n′ = 2tb + tp + 1 values, of which at most tb could be corrupted. Also, each P ′

j is originally
RS encoded using a polynomial pj(x) of degree k− 1 = tb + tp. During Phase II, B tries to
correct at most c = tb

2 and detect additional d = 0 errors in each P ′
j by applying RS−DEC.

By substituting the values of n′, c, d and k in the inequality of Theorem 2, we find that
RS − DEC(n′, tb

2 , 0, tb + tp + 1) will be able to correct at most tb
2 errors in P ′

j and detects
additional 0 errors in P ′

j . Now we consider the following two cases:
Case I: At most tb

2 errors occurred during Phase I: In this case at most tb
2 values in

each P ′
j could be corrupted. Hence RS −DEC will successfully correct all errors in each P ′

j .
Hence B will recover each pj(x) correctly and all the error lists will be ”good”. When A gets
the error lists from B, it finds that they are ”good” and concludes that B has recovered each

10



Protocol Error Identification Πstatic
(tb,tf ,tp)

Phase I: (A to B)

• A randomly selects n polynomial p1(x), p2(x), . . . , pn(x) over F, each of degree tb + tp. For each
pj(x), 1 ≤ j ≤ n, A computes a RS codeword [pj1 pj2 . . . pjn] of size n. Over wire wi, 1 ≤ i ≤ n, A sends
the values pji.

Phase II: (B to A)

• Let B receives information over first n′ wires where n − tf ≤ n′ ≤ n. Let B receives p′ji, 1 ≤ j ≤ n over
wire wi, 1 ≤ i ≤ n′. B then forms the received codewords P ′j = [p′j1 p′j2 . . . p′jn′ ], 1 ≤ j ≤ n.

• In each P ′j , 1 ≤ j ≤ n, B assumes at most tb
2

values to be corrupted, applies RS−DEC(n′, tb
2

, 0, tb +tp +1)
algorithm to each P ′j and tries to reconstruct some polynomial p̄j(x) of degree tb + tp.

• If there exists some j ∈ {1, 2, . . . , n}, such that B fails to recover a tb + tp degree polynomial after
applying RS−DEC(n′, tb

2
, 0, tb + tp + 1) to codeword P ′j , then B broadcasts to A, “ERROR-R” signal and

received codeword P ′j , along with its index j. /* At least tb/2 + 1 Byzantine errors are present in P ′j . */

• If some polynomial of degree tb + tp is reconstructed after applying RS decoding algorithm to each of n
received codewords, then B proceeds as follows:

Let Error Listj denotes the error list obtained by applying RS decoding algorithm to P ′j . Also let Lj be
the number of pairs in Error Listj . Since RS decoding is applied to P ′j , assuming the number of
errors in P ′j to be at most tb

2
, Lj ≤ tb

2
. B broadcasts Error Listj , 1 ≤ j ≤ n to A.

Computation by A

• If A receives “ERROR-R” signal and index j along with P ′j , then A locally compares P ′j with Pj (the
original jth codeword restricted to first n′ locations), finds the identity of at least tb

2
+ 1 faulty wires which

delivered incorrect components of Pj during first phase and TERMINATES the protocol.

• If A receives n error-lists and all the n error lists are “good”, then A concludes that B has recovered each
pj(x), 1 ≤ j ≤ n correctly and the protocol terminates. Otherwise, A finds at least one j ∈ {1, 2, . . . , n},
such that Error Listj is ”bad”. If there are multiple such j’s, A randomly selects one. In this case, A
concludes that B reconstructed p̄j(x) 6= pj(x) and initiates Phase III.

Conditional Phase III: A to B
• If A has identified a j such that B has reconstructed p̄j(x) 6= pj(x), then A broadcasts to B the tuple
[pj1 pj2 . . . pjn], which is the original codeword corresponding to pj(x) (which A had sent during Phase I).
In this case, B correctly receives the actual codeword corresponding to pj(x), compares it with the codeword
P ′j (corresponding to pj(x)) which it has received during Phase I, identifies more than tb

2
faulty wires and

terminates the protocol.

pj(x) correctly. Hence the vector p = [p1(0) p2(0) . . . pn(0)] is established correctly between
A and B. The security of p follows from the fact that during Phase I, the adversary gets
at most tb + tp points (by passively listening tb + tp wires) on each pj(x) which are of degree
tb + tp, thus each pj(0) is information theoretic secure. Also notice that each of the n error
lists are ”good”, thus they leak no extra information about pj(x)’s to Astatic

(tb,tf ,tp).

Case II: More than tb
2 errors occurred during Phase I: Without loss of generality, let

pj(x) be one of the polynomials for which at least tb
2 +1 values has been corrupted by adversary

during Phase I. Thus jth received codeword P ′
j will have more than tb

2 corrupted values. So
B fails to reconstruct pj(x) correctly by applying RS −DEC(n′, tb

2 , 0, tb + tp + 1) to the P ′
j .

Now there are two possible cases:

11



1. Suppose the values in P ′
j are corrupted in such a way that RS −DEC, when applied

to P ′
j , fails to output any tb + tp degree polynomial. In this case, B knows that more

than tb
2 values in P ′

j are corrupted. So it broadcasts P ′
j to A, along with “ERROR-R”

signal and index j. Once A correctly receives these values, after local verification, A
will come to know the identity of at least tb

2 + 1 faulty wires, which delivered incorrect
values of polynomial pj(x) to B during first phase.

2. Suppose the values in P ′
j are corrupted in such a way that RS −DEC, when applied

to P ′
j , outputs a tb + tp degree polynomial p̄j(x), along with Error Listj . In this case

p̄j(x) 6= pj(x) and Error Listj is “bad” and contains a correct value in it. This is so
because pj(x) and p̄j(x) can have same value in at most tb + tp points, as they are
polynomials of degree tb + tp. So when A receives Error Listj , it concludes that more
than tb

2 wires delivered incorrect values of pj(x) to B during first phase. Hence during
third phase, A broadcasts the original codeword for pj(x) to B. B then identifies more
than tb

2 faults after local verification. 2

Theorem 8 The communication complexity of protocol Error Identification Πstatic
(tb,tf ,tp) is

O(n2tb).

Proof: During first phase, A sends a RS codeword of length n for n polynomials, thus
communicating O(n2) field elements. During the second phase, B broadcasts n error-lists,
each containing at most tb

2 pairs, thus communicating O(n2tb) field elements. Communication
complexity of third phase again is O(n2) field elements. Hence overall complexity is O(n2tb)
field elements. 2.

5.3 Reducing the Communication Complexity of Protocol Error Identification Πstatic
(tb,tf ,tp)

We now present a nice trick to reduce the communication complexity of sending n error-
lists from O(n2tb) to O(n2) in Phase II of protocol Error Identification Πstatic

(tb,tf ,tp) (pre-
viously, it has been broadcast). Let ERROR ListJ be the the error-list with maximum
number of pairs LJ , where J ∈ {1, 2, . . . , n}. If there are several error-lists with LJ pairs,
then B arbitrarily selects one. B then broadcasts only Error ListJ and sends the remain-
ing error-lists after concatenating them into a list Y and executing the protocol PRU-
SP-Mixed(Y, |Y |, n, tb, tf , LJ). A correctly receives Error ListJ and verifies whether it
is ”good” . If it is, then A concludes that B has correctly recovered pJ(x). In this case, A
also identifies LJ faulty wires from Error ListJ . Thus from Theorem 3, protocol PRU-SP-
Mixed will correctly deliver the list Y containing the remaining error-lists. On the other
hand, if A finds that Error ListJ is ”bad”, then A concludes that B has not recovered pJ(x)
correctly. In this case, A fails to know LJ faults from Error ListJ and hence can not re-
cover list Y delivered using PRU-SP-Mixed. But still A identifies one polynomial (pJ(x))
which is not received correctly by B (due to more than tb

2 errors during Phase I). Note that
while the properties of protocol Error Identification Πstatic

(tb,tf ,tp) (Theorem 7) remain intact
by incorporating these changes, the communication complexity reduces to O(n2).

Lemma 2 The above steps when incorporated in Phase II of protocol Error Identification Πstatic
(tb,tf ,tp),

reduces its communication complexity to O(n2).
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Proof: Broadcasting a single error-list (Error ListJ) requires communicating O(n2) field
elements. From Lemma 1 and Theorem 3, sending the remaining error-lists by PRU-SP-
Mixed(Y, |Y |, n, tb, tf , LJ) will require communicating O

( |Y |
LJ
∗ n

)
= O(n2) field elements

because |Y | ≤ (n− 1) ∗ (2LJ). 2

Changed Steps in Communication Efficient Error Identification Πstatic
(tb,tf ,tp)

If during Phase II, some polynomial of degree tb + tp is obtained after applying RS decoding algo-
rithm to each of the n received codewords, then B proceeds as follows:

• Let J ∈ {1, 2, . . . , n} be the index of the error-list with maximum number of pairs LJ . B concatenates all
the error-lists, except Error ListJ to form a list Y . B broadcasts Error ListJ along with its index J to A
and sends the list Y by executing the protocol PRU-SP-Mixed(Y, |Y |, n, tb, tf , LJ).

Computation by A
• A correctly receives the index J and Error ListJ . He checks whether Error ListJ is “good”. IF
YES, then A concludes that B has correctly recovered pJ(x). A also identifies LJ faulty wires from
Error ListJ and hence from Theorem 3, correctly receives Y delivered by PRU-SP-Mixed. A then
separates the individual error-lists from Y . The rest of the computation by A are now same as in protocol
Error Identification Πstatic

(tb,tf ,tp).

ELSE if Error ListJ is “bad” then A concludes that B has reconstructed p̄J(x) 6= pJ(x) and executes
conditional Phase III.

5.4 Designing Four Phase OPSMT Protocol OPSMT Πstatic
(tb,tf ,tp)

We now combine Error Identification Πstatic
(tb,tf ,tp) and Pad Establishment Πstatic

(tb,tf ,tp) to de-
sign a four phase OPSMT protocol called OPSMT Πstatic

(tb,tf ,tp) which is secure againstAstatic
(tb,tf ,tp).

In the protocol, we show, how a one time pad is established between S and R. Once S knows
that the pad is going to be established, S can blind the message by XORing it with the pad
and broadcasts the blinded message to R in the last phase of the protocol. On receiving the
blinded message, R extracts the message by XORing the blinded message with the pad.

Protocol OPSMT Πstatic
(tb,tf ,tp) - A Four Phase OPSMT Protocol Tolerating Astatic

(tb,tf ,tp)

• R and S starts executing protocol Error Identification Πstatic
(tb,tf ,tp), where Phase I is initiated by R. IF at

the end of Phase II of protocol Error Identification Πstatic
(tb,tf ,tp), pad p = [p1(0) p2(0) . . . pn(0)] is estab-

lished securely between R and S, then R terminates the protocol by broadcasting “SUCCESS-R” signal to S.

• IF at the end of Phase II of protocol Error Identification Πstatic
(tb,tf ,tp), R identifies at least tb

2
+ 1 faulty

wires, then R securely establishes a one time pad q = [q1(0) q2(0) . . . qn(0)] with S by executing protocol
Pad Establishment Πstatic

(tb,tf ,tp).

• IF at the end of Phase III of protocol Error Identification Πstatic
(tb,tf ,tp), S identifies at least tb

2
+ 1 faulty

wires, then S securely establishes a one time pad q = [q1(0) q2(0) . . . qn(0)] with R by executing protocol
Pad Establishment Πstatic

(tb,tf ,tp) and terminates the protocol.

We now prove the correctness and security of protocol OPSMT Πstatic
(tb,tf ,tp).

Theorem 9 In OPSMT Πstatic
(tb,tf ,tp), S correctly establishes a random, information theoreti-

cally secure one time pad of length n with R in at most four phases.
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Proof: In OPSMT Πstatic
(tb,tf ,tp), the sub-protocol Error Identification Πstatic

(tb,tf ,tp) terminates
in either two phases or three phases. If it terminates in two phases, then there are two
possibilities: If at the end of second phase, R concludes that the pad p is securely established
with S, then R terminates the protocol in third phase by broadcasting “SUCCESS-R” signal.
Otherwise at the end of Phase II, R will know the identity of at least tb

2 +1 faulty wires (see
Theorem 7). With this knowledge, R securely establishes the pad q with S during phase III
using sub-protocol Pad Establishment Πstatic

(tb,tf ,tp) (Theorem 6).
If Error Identification terminates in three phases, then at the end of Phase III, S

identifies at least tb
2 +1 faulty wires (Theorem 7). Now S establishes the pad q with R during

fourth phase, using Pad Establishment (see Theorem 6). The security of pad p (q) follows
from Theorem 7 (Theorem 6).

Theorem 10 Protocol OPSMT Πstatic
(tb,tf ,tp) is an OPSMT protocol communicating O(n2) field

elements.

Proof: The communication complexity follows from Lemma 2, Theorem 6 and working of the
protocol. From Theorem 5, in an n = 2tb + tf + tp + 1 connected network, any four phase
PSMT protocol has to communicate Ω(n2) field elements to securely send n field elements
against Astatic

(tb,tf ,tp). Since the communication complexity of OPSMT Πstatic
(tb,tf ,tp) is O(n2), it is

an OPSMT protocol. 2

Remark 2 Noticeably OPSMT Πstatic
(tb,tf ,tp) sends only codeword of polynomials, in contrast

to the existing protocol summarized in section 4, which sends both polynomial and its code-
word. The advantage that we get by sending only codeword is that we obtain one information
theoretic secure value per codeword (after some intermediate information exchanges and then
applying RS decoding), thus establishing a secure one time pad of size Θ(n) between S and R.
Soon, we will show that this technique can be used to design OPRMT and OPSMT protocols
even against mobile mixed adversary.

6 OPRMT Tolerating Mobile Mixed Adversary Amobile
(tb,tf ,tp)

We first recall that for the existence of any PRMT protocol tolerating Astatic
(tb,tf ,tp), the network

should be (2tb + tf + 1)-(S, R)-connected [18]. For full details see APPENDIX B. In the
presence of Amobile

(tb,tf ,tp), the necessary and sufficient condition for the existence of any PRMT
protocol between S and R is given by the following theorem.

Theorem 11 Any PRMT protocol between S and R in an undirected network N = (P, E),
tolerating a mobile mixed adversary Amobile

(tb,tf ,tp) is possible if and only if N is (2tb + tf + 1)-
(S,R)-connected.

Proof: If part: (2tb +tf +1)-(S,R)-connected network is required for the existence of PRMT
protocols against a weaker adversaryAstatic

(tb,tf ,tp) [18]. Hence it is required against more stronger

Amobile
(tb,tf ,tp) also.

Only If Part: Suppose that the network is (2tb + tf + 1)-(S, R)-connected. S broadcasts the
message over all the wires. R then recovers the message by taking the majority voting. 2

As a sufficiency proof, we specified broadcasting which is a naive protocol. It commu-
nicates n` field elements for transmitting ` elements reliably. Therefore broadcasting is not
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an efficient PRMT protocol against Amobile
(tb,tf ,tp). So, the important question here is: can we

reliably send a message containing ` field elements by communicating less than O(n`) field
elements against Amobile

(tb,tf ,tp)? We answer this question by proving the lower bound on com-

munication complexity of PRMT protocols tolerating Amobile
(tb,tf ,tp) and show that it is different

from the existing lower bound against Astatic
(tb,tf ,tp). This shows that as far as lower bound on

communication complexity of PRMT is concerned, Amobile
(tb,tf ,tp) is more powerful than Astatic

(tb,tf ,tp).

We also design a three phase OPRMT protocol tolerating Amobile
(tb,tf ,tp).

Remark 3 In [18], it is shown that any PRMT protocol in a n-(S, R)-connected network
(n ≥ 2tb + tf + 1), communicates Ω

(
(n−tf )`

n−(tb+tf )

)
field elements in order to reliably send `

field elements against Astatic
(tb,tf ,tp). If n = 2tb + tf + 1, then this it implies that any PRMT

protocol has to communicate Ω(`) field elements to reliably send a message containing ` field
elements against Astatic

(tb,tf ,tp). Moreover, in [23], the authors have shown that this bound is tight

by designing an O
(
log( tf

n−tf
)
)

phase OPRMT protocol, which sends a message of size ` field
elements by communicating O(`) field elements, where n = 2tb + tf + 1. However, we next
show that lower bound for communication complexity is different for Amobile

(tb,tf ,tp).

Theorem 12 Any PRMT protocol between S and R connected by n ≥ 2tb + tf + 1 wires
under the influence of Amobile

(tb,tf ,tp) must communicate Ω( n`
n−(tb+tf )) field elements in order to

transmit a message containing ` field elements.

Proof: We now prove the lower bound on the communication complexity of any r-phase
(r ≥ 2) PRMT protocol which sends ` field elements tolerating Amobile

(tb,tf ,tp). The proof of
the theorem is inspired by entropy based argument, used to prove the lower bound on the
communication complexity of PRMT/PSMT protocols against Astatic

tb
[21]. Before providing

the proof, we first try to quantify the reason behind different lower bound for static and
mobile mixed adversary. In static case, the lower bound is derived by assuming that both S
and R knows the set of wires which are fail-stop corrupted in advance. Hence the term (n−tf )
appears in the numerator of the lower bound expression against Astatic

(tb,tf ,tp) (see Remark 3).
This is a reasonable assumption because against static adversary, we can always strategies
protocols to remember faults caught in earlier phases and use that knowledge to amortize the
overall communication complexity and message size in later phases (the OPRMT protocol
of [23] is based on this important principle). However, protocols tolerating mobile mixed
adversary is memoryless because adversary corrupts different set of wires in different phases of
the protocol. Hence, the protocols against mobile mixed adversary cannot use the knowledge
of the faults, specially fail-stop faults, which occurred in previous phases, to amortize the
communication complexity and message size in later phases. We now present our formal
proof for this theorem.

Lemma 3 The communication complexity of any multi-phase PRMT protocol to send a mes-
sage against a mobile adversary corrupting up to b(≤ tb), F (≤ tf ) and P (≤ tb + tp) of the
wires in Byzantine, Fail-stop and passive manner respectively (in each phase of the protocol)
is not less than the share complexity (sum of the length of the shares) of distributing n shares
for the message such that any set of n− b−F shares has full information about the message.

To prove the lemma, we begin with defining a weaker version of single-phase PRMT called
PRMT with Error Detection (PRMTED). We then prove the equivalence of communication
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complexity of PRMTED protocol to send message M and the share complexity (sum of the
length of all shares) of distributing n shares for M such that any set of n − b − F correct
shares has full information about M. To prove the aforementioned statement, we show their
equivalence (Claim 4). We then show the equivalence of single-phase protocol PRMTED
and multiphase PRMT protocol in terms of communication complexity and also answer the
question: why it is weaker than multiphase PRMT protocol (Claim 6). These two equivalence
will prove the desired equivalence as stated in this lemma.

Definition 4 A single phase PRMT protocol is called PRMTED if it satisfies the following:

1. If the adversary is passive throughout the protocol then R correctly receives the message
sent by S.

2. If the adversary corrupts information over some b wires (b ≤ tb), then R detects it, and
aborts.

3. If adversary blocks some F ≤ tf wires, without doing any other corruption, then R
recovers message correctly. Else if adversary blocks more than tf wires or do some
corruption (or both), then R aborts.

Observe that PRMTED is a strictly weaker version of PRMT because a PRMT protocol not
only detects errors but also corrects them. We next show that the properties of PRMTED
protocol for sending message M is equivalent to the problem of distributing n shares for M
such that any set of n− b− F correct shares has full information about M.

Claim 1 Let Π be a PRMTED protocol tolerating an adversary that can corrupt up to any
b, F and P of the n wires connecting S and R in Byzantine, fail-stop and passive manner
respectively. In an execution of Π for sending a message M, the data si, 1 ≤ i ≤ n sent by
the S along wires wi, 1 ≤ i ≤ n form n shares for M such that any set of n − b − F correct
shares has full information about M.

Proof: We show that any set of n − b − F shares has full information about M. The proof
is by contradiction. For a set of wires A, let Message(M, A), denotes the set of messages
sent along the wires in A during the execution of PRMTED to send M. Now for any set of
C wires with |C| ≥ n − b − F , Message(M, C) should uniquely determine the message M.
If not, then there exists another message M′ such that Message(M, C) = Message(M′, C).
By definition the adversary can block all the messages sent along the F wires not in C and
change the messages along b wires not in C, such that the set of set of all messages received
by R is identical to Message(M′, C). In this case, R receives the message M ′, while S sent
M . This is a contradiction since R must detect that there has been a corruption. 2

The above claim also says that the communication complexity of PRMTED protocol to
send M is same as the share complexity (sum of the length of all shares) of distributing n
shares for a message M such that any set of n− b− F shares has full information about M.
Now we step forward to show the communication complexity of PRMTED protocol is the
lower bound on the communication complexity of any multiphase PRMT protocol against
Amobile

(tb,tf ,tp).
Before that we take a closer look at the execution of any multi-phase PRMT protocol

against Amobile
(tb,tf ,tp). S and R are modeled as polynomial time Turing machines with access to a

random tape. The number of random bits used by the S and R are bounded by a polynomial
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q(n). Let r1, r2 ∈ {0, 1}q(n) denote the contents of the random tapes of S and R respectively.
The message M is an element from the set {0, 1}p(n), where p(n) is a polynomial. A transcript
for an execution of a multiphase PRMT protocol Π is the concatenation of all the messages
sent by S and R along all the wires.

Definition 5 A passive transcript T (Π,M, r1, r2) is a transcript for the execution of the
multiphase protocol Π with M as the message to be sent, r1, r2 as the contents of the random
tapes of sender S and the receiver R and the adversary Amobile

(tb,tf ,tp) remaining passive throughout
the execution of Π. Let T (Π,M, r1, r2, wi) denote the passive transcript restricted to messages
exchanged along the wire wi. When Π,M, r1, r2 are obvious from the context, we drop them
and denote the passive transcript restricted to a wire wi by Twi. Similarly, TB denotes the
passive transcript T restricted to a set of wires in B.

Given (M, r1, r2) it is possible for S to compute T (Π,M, r1, r2) by simulating R with random
tape r2. Similarly given (M, r1, r2), R can compute T (Π,M, r1, r2) by simulating S with r1.
Note that although S and R require both r1, r2 to generate the transcript T , R requires only
r2 in order to obtain the message M from the transcript T . This is clear since R does not
have access to r1 during the execution of Π but still can retrieve the message M from the
messages exchanged.

Definition 6 A passive transcript TB, with n − F ≤ |B| ≤ n is said to be a valid fault-
free transcript with respect to R if there exists random string r2 and message M such that
protocol Π at R with r2 as the contents of the random tape and TB as the messages exchanged,
terminates by outputting the message M.

Definition 7 Two passive transcripts TB and T ′B, where n − F ≤ B ≤ n are said to be
adversely close if the two transcripts differ only on a set of wires A such that |A| ≤ b+(|B|−
(n− F )). Formally |{wi|Twi 6= T ′wi

}| ≤ b + (|B| − (n− F )).

Claim 2 Two valid fault-free transcripts TB(Π,M, r1, r2) and TB(Π,M′, r′1, r
′
2) with two dif-

ferent message inputs M,M′, cannot be adversely close to each other, where n−F ≤ B ≤ n.

Proof: Suppose two valid fault-free transcripts TB(Π,M, r1, r2) and TB(Π,M
′
, r
′
1, r

′
2) are ad-

versely close, then there is a set of wires A, |A| ≤ b + (|B| − (n − F )) such that the two
transcripts differ only on messages sent along the wires in A. Without loss of generality,
assume last b + (|B| − (n − F )) wires belong to A with A = X ◦ Y where |X| = b and
|Y | = (|B| − (n− F )). Consider the following two executions of Π where the contents of S’s
and R’s random tapes are r1, r2 respectively

• S wants to send M. S and R executes Π while the adversary stop the wires in Y to deliver
any message. As TB−Y (Π,M, r1, r2) is a valid transcript with respect to M, R terminates
with output M.

• S wants to send M. S and R executes Π. The adversary blocks messages over Y and
changes the messages along wires in X such that the view of S is TB−Y (Π,M, r1, r2) but the
view of R is TB−Y (Π,M′, r′1, r

′
2). Since TB−Y (Π,M′, r′1, r

′
2) is a valid transcript with respect

to M′, R will terminate with output M′.
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The two scenarios differ only in the adversarial behavior and in the contents of R’s random
tape. In both the scenarios S wanted to send message M. But the message received by
receiver R in the second case is an incorrect message M′. This is a contradiction because Π
is a PRMT protocol. 2

Till now, we have shown that a passive transcript over at least n − b − F wires allows
R to output M correctly. We now show how to reduce a multiphase PRMT protocol into a
single phase PRMTED protocol.

Protocol PRMTED

• S computes the passive transcript T (Π,M, r1, r2) for some random r1 and r2 and sends T (Π,M, r1, r2, wi)
to R along wire wi.

• If R does not receives information through at least n − F wires then R outputs ERROR and stop.
Otherwise, let R receives information over the set of wires B = {wi1 , wi2 , . . . , wiα} where n− F ≤ |B| ≤ n.
R concatenates the values received along these wires to obtain a transcript TB (which may be corrupted
along b wires) and does the following:

• for each M ∈ {0, 1}p(n) and r2 ∈ {0, 1}q(n) do:

If TB is a valid transcript with random tape contents r2 for message M then output M and
stop.

Output ERROR.

Claim 3 The Communication complexity of any multiphase PRMT protocol Π against Amobile
(tb,tf ,tp)

is at least the communication complexity of PRMTED protocol.

Proof: The communication complexity of any multiphase PRMT protocol Π assuming the
adversary to be passive during the complete execution, is trivially a lower bound for any
multiphase PRMT protocol with corruption in any phase. In PRMTED, S communicates
the transcript generated by him assuming adversary to be passive throughout the execution
of Π to R. It is easy to see that the cost of communicating such a transcript by PRMTED
is same as of Π with the assumption that adversary remain passive throughout the execution
of Π.

From Claim 5, we know that valid transcripts of two different messages cannot be adversely
close to each other. So irrespective of the actions of the adversary, the transcript received by
R cannot be a valid transcript for any message other than M for any value of r2. Hence if
R outputs a message M then it is the same message sent by S. 2

This completes the proof of Lemma 5. We now prove the share complexity of distributing
n shares for a message such that any set of n−b−F correct shares has full information about
the message.

Lemma 4 The share-complexity (that is sum of the length of all shares) of distributing n
shares for a message of size ` field elements from F such that any set of n − b − F correct
shares has full information about the message is Ω( n`

(n−b−F )).

Proof: Let Xi denotes the ith share. For any subset A ⊆ {1, 2 . . . n}, let XA denotes the
set of variables {Xi|i ∈ A}. Let M be a value drawn uniformly at random from Fl. Then
the message M and the shares Xi are random variables. Let H(X) for a random variable
denote its entropy. Let H(X|Y ) denotes the entropy of X conditional on Y . The conditional
entropy measures how much entropy a random variable X has remaining if we have already
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learned completely the value of a second random variable Y [3]. Since any set B consisting
of n− b−F shares has full information about M, we have H(M|XB) = 0. Since M is chosen
uniformly from F`, we have

H(M|X∅) = H(M) = ` (1)

From the chain rule of the entropy [3], for any two random variable X1, X2, we have H(X1, X2) =
H(X2) + H(X1|X2). Substituting X1 = M and X2 = XB, we get

H(M, XB) = H(XB) + H(M|XB)

From the properties of joint entropy [3], for any two variables X1, X2, we have H(X1, X2) ≥
H(X1) and H(X1, X2) ≥ H(X2). Thus, H(M, XB) ≥ H(M). Substituting in the above
equation, we get

H(M) ≤ H(XB) + H(M|XB)
≤ H(XB) + 0 because M can be known completely fromXB

Consequently, H(M) ≤ H(XB). Therefore for any set B of cardinality n− b− F , we have

H(XB) ≥ H(M) ⇒
∑

i∈B

H(Xi) ≥ H(M)

Since there are
(

n
n−b−F

)
possible subsets of cardinality n−b−F , summing the above equation

over all possible subsets of cardinality n− b− F we get
∑

B

∑

i∈B

H(Xi) ≥
(

n

n− b− F

)
H(M)

Now in all the possible
(

n
n−b−F

)
subsets of size n − b − F , each of the term H(Xi) appears(

n−1
n−b−F−1

)
times. So

(
n− 1

n− b− F − 1

) n∑

i=1

H(Xi) ≥
(

n

n− b− F

)
H(M) ⇒

n∑

i=1

H(Xi) ≥ n

n− b− F
H(M)

Since H(M) = `, we get
n∑

i=1

H(Xi) ≥ n`

n− b− F

Thus the share-complexity for any M ∈ F` is Ω
(

n`
n−b−F

)
. 2

Since b ≤ tb and F ≤ tf , Ω
(

n`
n−b−F

)
= Ω

(
n`

n−(tb+tf )

)
. Theorem 12 now follows from

Lemma 5 and Lemma 6. 2

2

We now design a three phase OPRMT protocol OPRMT Πmobile
(tb,tf ,tp), which reliably sends

a message m containing ntb (tb ≥ 1) field elements by communicating O(n2) field elements,
where n = 2tb + tf + 1. If tb = Θ(n), then the protocol sends Θ(n2) field elements by
communicating O(n2) field elements. Note that if tb = 0, then we can directly send a
message of size ` by broadcasting it over n wires, incurring a communication cost of O(n`),
which will be an OPRMT protocol (for tb = 0).
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Protocol OPRMT Πmobile
(tb,tf ,tp) - Three Phase OPRMT Protocol Tolerating Amobile

(tb,tf ,tp)

Phase I: S to R

• S divides m into blocks B1, B2, . . . , Bz, each containing 1 + tb
2

field elements. A default pad can
be used to make the size of the last block to be 1 + tb

2
. For each Bj , 1 ≤ j ≤ z, S computes a RS

codeword of size n denoted by [cj1 cj2 . . . cjn] and sends cji through wi.

Phase II: R to S: R receives information over the first n − tf ≤ n′ ≤ n wires. Through these n′ wires,
R receives the values c′ji, 1 ≤ j ≤ z, 1 ≤ i ≤ n′. Let C′j , 1 ≤ j ≤ z denotes jth received codeword where
C′j = [c′j1 c′j2 . . . c′jn′ ]. R applies RS −DEC(n′, tb

2
, tb

2
, tb

2
+ 1) algorithm to each C′j and tries to correct tb

2

errors and simultaneously detect additional tb
2

errors in C′j .

• If RS −DEC does not detects additional errors (≤ tb
2

) in any C′j , after correcting at most tb
2

errors,
then RS −DEC recovers each block Bj of m correctly. R recovers m by concatenating all Bj ’s and
broadcasts “TERMINATE” signal to S.

• If ∃J ∈ {1, 2, . . . , z}, such that RS −DEC detects additional errors in C′J , after correcting at most
tb
2

errors, then R broadcasts C′J and index J .

Phase III: S to R: If S receives “TERMINATE” signal, then he terminates the protocol. Else S does the
following:

• S receives C′J and index J . After locally comparing C′J with its corresponding original codeword CJ ,
S identifies at least tb

2
+1 wires which were Byzantine corrupted during Phase I and broadcasts their

identity to R.

Local Computation by R If during second phase, R has broadcasted C′J , then it does the following:

• R correctly receives the identity of at least tb
2

+ 1 wires, which delivered incorrect values during
Phase I. From each codeword C′j received during first phase, R removes the c′ji’s received over these
corrupted wires. R applies RS − DEC to the new C′j ’s, assuming the number of errors c (to be
corrected) to be at most tb

2
and the number of additional errors d (to be detected) to 0 and correctly

recovers all Bj ’s and hence m.

Theorem 13 Protocol OPRMT Πmobile
(tb,tf ,tp) reliably sends ntb field elements by communicat-

ing O(n2) field elements in at most three phases tolerating Amobile
(tb,tf ,tp).

Proof: In the worst case, R receives information over n′ = n−tf = 2tb+1 wires during Phase
I. Now each received codeword C ′

j is RS encoded by a polynomial of degree k − 1 = tb
2 . R

sets c = d = tb
2 (which along with the value of n′ and k, satisfies the inequality of Theorem 2)

and applies RS-DEC to C ′
j . If at most tb

2 errors occur during Phase I, then RS −DEC will
correct them (c = tb

2 ) and successfully output each Bj . Moreover R will know that it has
recovered Bj ’s correctly because RS −DEC has not detected the presence of any additional
error in C ′

j . Otherwise, there exists an J ∈ {1, 2, . . . , z}, such that RS − DEC detects
additional faults (d = tb

2 ) in C ′
J after correcting c = tb

2 errors in C ′
J and does not outputs BJ .

In this case, R broadcasts C ′
J to S, who after local verification, identifies at least tb

2 +1 faulty
wires which were Byzantine corrupted during Phase I. After knowing the identity of these
wires from S, R neglects the values in each C ′

j ’s which were received along those faulty wires
during Phase I. Now each C ′

j will be of length at least n′ = n′− tb
2 = 2tb +1− ( tb

2 ) = 3tb
2 +1

and at most tb
2 values in them could be corrupted. Substituting d = 0, c = tb

2 and values of
n′ and k in the inequality in Theorem 2, we find that RS −DEC can correct the remaining
c ≤ tb

2 errors in each C ′
j and outputs Bj ’s correctly. This proves the correctness.

During Phase I, S sends an n length codeword for each Bj of size 1 + tb
2 . So the total

communication cost of Phase I is O

(
|m|
tb
2

∗ n

)
= O(n2) because |m| = ntb. It is easy to

verify that in the remaining two phases, O(n2) field elements are communicated. Hence the
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theorem. 2

Remark 4 In [14], it is shown that against only Byzantine adversary (i.e. tf = tp = 0),
mobility of the adversary has no effect in comparison to its static counterpart in terms of
communication complexity and phase complexity of PRMT protocols. However, Remark 3
and Theorem 12 shows that in mixed adversarial model, mobile adversary is more powerful
than its static counterpart in terms of the communication complexity of PRMT protocols.

In the next section we use PRMT Πmobile
(tb,tf ,tp) as a black box to design OPSMT tolerating

Amobile
(tb,tf ,tp).

7 OPSMT Tolerating Mobile Mixed Adversary Amobile
(tb,tf ,tp)

The characterization for the possibility of any multiphase PSMT protocol tolerating Amobile
(tb,tf ,tp)

is same as the characterization for PSMT against Astatic
(tb,tf ,tp) (see Theorem 4). The fact that

Amobile
(tb,tf ,tp) is more powerful than Astatic

(tb,tf ,tp) proves the necessity of the characterization. To

prove the sufficiency, we present an OPSMT protocol in the sequel tolerating Amobile
(tb,tf ,tp).

Before that we note that the lower bound on communication complexity of PSMT protocols
against Astatic

(tb,tf ,tp) (specified in Theorem 5) holds good in case of PSMT protocols tolerating

Amobile
(tb,tf ,tp). Since Amobile

(tb,tf ,tp) can corrupt different set of wires in each phase, the protocol cannot
adapt as it finds corrupted wires; thus it can be considered to be memoryless. In general,
a mobile adversary is more powerful than static adversary. So the lower bound given in
Theorem 5 is trivially a lower bound against mobile adversary. We now show that this bound
is tight. We present a constant phase OPSMT protocol OPSMT Πmobile

(tb,tf ,tp) which securely

sends Θ(n) field elements by communicating O(n2) field elements against Amobile
(tb,tf ,tp), where S

and R are connected by n = 2tb + tf + tp + 1 wires. The protocol terminates in at most nine
phases and establishes an information theoretically secure one time pad of length either n−1
or n

2 between S and R.

Protocol OPSMT Πmobile
(tb,tf ,tp) - A Constant Phase OPSMT Protocol Tolerating Amobile

(tb,tf ,tp)

Phase I: S to R S selects n random polynomials pj(x), 1 ≤ j ≤ n over F, each of degree tb + tp, such that
pj(0) = sj . For each pj(x), S forms a RS codeword [cj1 cj2 . . . cjn] of size n and sends cji over wi, 1 ≤ i ≤ n.

Phase II: R to S R receives c′ji’s over the first n− tf ≤ n′ ≤ n wires. R applies RS−DEC(n′, tb
2

, 0, tb +

tp + 1) to the jth, 1 ≤ j ≤ n received codeword C′j = [c′j1 cj2 . . . c′jn′ ]. There are two possible cases:

1. Corresponding to each C′j , 1 ≤ j ≤ n, RS −DEC outputs some polynomial p̄j(x) of degree tb + tp,
along with error list Error Listj containing at most tb

2
pairs. R then combines only the first n

2

error lists and reliably sends them to S using three phase PRMT protocol OPRMT Πmobile
(tb,tf ,tp).

2. There exists at least one J ∈ {1, 2, . . . , n}, such that RS−DEC, when applied to C′J , fails to output
any tb + tp degree polynomial. In this case, R broadcasts C′J and its index J .

Notice that the technique proposed in section 5.3 for sending n error lists in a single phase
incurring O(n2) communication complexity, can not be adopted against mobile adversary.
This is so because the technique used the knowledge of the Byzantine corruption done in
earlier phases. However, mobile adversary can corrupt different set of wires in different
phases. So, here we use the three phase reliable protocol OPRMT Πmobile

(tb,tf ,tp) to send the
error lists in three phases with same communication complexity of O(n2). Also note that
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Execution I: Remaining Execution of OPSMT Πmobile
(tb,tf ,tp), when step 2

of Phase II has been executed

Phase III: S to R
• S correctly receives index J and codeword C′J . After locally comparing C′J with its corresponding

actual codeword CJ , S identifies at least tb
2

+ 1 wires which delivered incorrect values to R during
Phase I. S saves the identity of these wires in a list Lfault and broadcasts Lfault to R.

• S also lists all cji’s, j ∈ {1, 2, . . . , n} − {J}, sent during Phase I, over wi ∈ Lfault. S then
re-sends these (n − 1) × |Lfault| = O(ntb) values by executing the three phase PRMT protocol
OPRMT Πmobile

(tb,tf ,tp). This will occupy the next three phases. /* The re-send values are already

known to Amobile
(tb,tf ,tp) because the wires in Lfault were under the control of Amobile

(tb,tf ,tp) during Phase I.

*/

Local Computation by R (At the end of Phase V)

• After receiving list Lfault, R identifies |Lfault| > tb
2

wires which has delivered incorrect information
during Phase I. R removes from the n− 1 codewords C′j ’s, j ∈ {1, 2, . . . , n} − {J} (received during Phase
I), the values c′ji’s, which R has received along wi ∈ Lfault during Phase I. R replaces them with the
corresponding actual cji’s, which S has re-send through PRMT protocol PRMT Πmobile

(tb,tf ,tp).

• After replacement, R knows that out of the n′ values in each C′j , j ∈ {1, 2, . . . , n} − {J}, at most
tb − |Lfault| could be corrupted. R applies RS − DEC(n′, tb − |Lfault|, 0, tb + tp + 1) algorithm to these
n− 1 C′j ’s and correctly recovers pj(x)’s. The constant term of these n− 1 polynomials constitute an n− 1
length information theoretically secure pad established between S and R and the protocol terminates here.

while executing OPRMT Πmobile
(tb,tf ,tp), S and R can neglect a pre-determined set of tp wires

and run the protocol on the remaining 2tb + tf + 1 wires (the PRMT protocol requires only
2tb + tf +1 wires between S and R). This does not affects the correctness and working of the
protocol.

Theorem 14 Protocol OPSMT Πmobile
(tb,tf ,tp) correctly and securely establishes a one time pad

of length Θ(n) between S and R in at most nine phases by communicating O(n2) field elements
tolerating Amobile

(tb,tf ,tp).

Proof: We prove the theorem for the worst case where exactly tf wires (probably different
set) failed to deliver any information in each phase due to fail-stop corruption. Thus each
codeword C ′

j received during first phase will be of length n′ = n − tf = 2tb + tp + 1, which
are RS encoded using a polynomial of degree k−1 = tb+tp. Consider the following two cases:

Case I: At most tb
2 wires are Byzantine Corrupted During Phase I: In this case, the

proof is same as the proof of Case I in Theorem 7. The only difference is instead of an n length
pad, an n

2 length pad, consisting of the constant coefficients of the first n
2 polynomials will

be established between S and R. Also since n
2 error lists are sent using OPRMT Πmobile

(tb,tf ,tp),
protocol takes extra two phases and terminates in Phase V.
Case II: More than tb

2 wires are Byzantine Corrupted During Phase I: Now effect
of more than tb

2 Byzantine corruption during Phase I can be categorized into two cases.
(1) RS − DEC outputs some polynomial of degree tb + tp for each C ′

j (2) There exists
a J ∈ {1, 2, . . . , n} for which RS − DEC fails to output any polynomial. While in (1),
occurrence of more than tb

2 faults cannot be immediately detected (as RS −DEC is applied
with d = 0), in (2) it is immediately detected. Now again in (1), if more than tb

2 Byzantine
errors occurs in the codewords of only last n

2 polynomials i.e for pj(x) such that n
2 +1 ≤ j ≤ n

(this implies that at most tb
2 Byzantine errors took place in the first n

2 codewords), then the
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Execution II: Remaining Execution of OPSMT Πmobile
(tb,tf ,tp), when step 1

of Phase II has been executed
/* R has initiated three phase OPRMT − Πmobile

(tb,tf ,tp) protocol to reliably send first n
2

error lists during

Phase II. The OPRMT protocol will be over at the end of Phase IV.*/

Local Computation by S (At the end of Phase IV)

S reliably receives first n
2

error lists through OPRMT Πmobile
(tb,tf ,tp) and locally checks the status of these error

lists.

• If all error lists are “good”, then S concludes that R has correctly recovered pj(x), 1 ≤ j ≤ n
2

correctly
and an information theoretically secure pad [p1(0) p2(0) pn/2(0)] is established with R. S terminates
the protocol by broadcasting terminating signal to R. Accordingly R terminates the protocol.

• If ∃J ∈ {1, 2, . . . , n
2
}, such that Error ListJ is “bad”, then S concludes that more than tb

2
values has

been changed in J th codeword during Phase I.

Phase V: S to R (If second case happens in the above computation) S asks R to broadcast the

J th codeword as received by R during Phase I. S does this by broadcasting index J along with “ERROR”
signal.

Phase VI: R to S

On receiving “ERROR” signal and index J during Phase V, R broadcasts C′J , received during Phase I.

Phase VII: S to R
On receiving C′J , S identifies more than tb

2
wires which were Byzantine corrupted during Phase I and saves

them in a list Lfault. From here onwards the execution is similar as in Execution I. We specify only the
small differences:

• If wi ∈ Lfault, then S lists the ith component of the codewords corresponding to the last n
2

polynomials

pj(x), n/2+1 ≤ j ≤ n. S reliably re-sends these components by executing OPRMT Πmobile
(tb,tf ,tp). Recall

that in this execution sequence, R had not sent the last n
2

error lists during Phase II (step 1). The
re-send values are already known to the adversary and does not give any extra information about
pj(x), n/2 + 1 ≤ j ≤ n.

• OPRMT Πmobile
(tb,tf ,tp) terminates in Phase IX (since it takes 3 phases) and therefore at the end of

phase IX, R performs the same local computation as done in Execution I to correctly recover the
polynomials pj(x), n/2 + 1 ≤ j ≤ n to establish a pad of size n

2
. The n

2
size pad constitutes the

constant term of the recovered polynomials pj(x), n/2 + 1 ≤ j ≤ n.

proof is same as in Case I. On the other hand, if more than tb
2 faults occurs for J th codeword,

where J ∈ {1, 2, . . . , n
2 }, the proof is given below.

1. During Phase II, R reconstructs p̄J(x) 6= pJ(x), J ∈ {1, 2, . . . , n
2 }: In this case, Error−

ListJ is a “bad” error list which contain at least one correct value of original pJ(x).
Since R reliably sends back first n

2 error lists using OPRMT Πmobile
(tb,tf ,tp), S correctly

receives Error − ListJ and finds that it is ”bad”, implying that R has reconstructed
some p̄J(x) 6= pJ(x). So S asks R to broadcast the J th codeword C ′

J , as received dur-
ing Phase I. On receiving C ′

J , S compares it with its corresponding original codeword
CJ and identifies |Lfault| ≥ tb

2 + 1 wires which delivered incorrect values to R during
Phase I. Now by executing OPRMT Πmobile

(tb,tf ,tp), S re-sends the components of the last
n
2 codewords, which were sent through these corrupted wires in Phase I. S also broad-
casts the identity of these corrupted wires. Note that re-sending these values, does not
leak any additional information about the last n

2 pj(x)’s to Amobile
(tb,tf ,tp) because adversary

already came to know these values during Phase I. But now with the new values re-
ceived, R have n′ = 2tb + tp + 1 components for each of the last n

2 codewords and at
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most tb − |Lfault| ≤ tb
2 − 1 of these n′ components could be corrupted. By substituting

d = 0 and values of n′ and k = tb + tp + 1 in the inequality of Theorem 2, we find that
RS−DEC(n′, tb−|Lfault|, 0, tb + tp +1), when applied to last n

2 codewords, can correct
c ≤ tb

2 errors present in them and correctly outputs the corresponding polynomial pj(x).
R then considers the constant term of these last n

2 pj(x)’s as the secret pad established
with S. The secrecy of the pad follows from the fact that at any stage of the execution,
Amobile

(tb,tf ,tp) will not get more than tb + tp points on the last n
2 pj(x)’s, each of which are

of degree tb + tp.

2. During Phase II, R is Unable to Recover p̄J(x): In this case R broadcasts only
the J th received codeword C ′

J , from which S (after local verification) identifies at least
tb
2 +1 wires, which delivered incorrect values to R during Phase I. Now the rest of the
proof is same as in the above case. The only difference is, here a pad of length n − 1
will be established between S and R.

From Theorem 13, re-sending O(ntb) values by executing OPRMT Πmobile
(tb,tf ,tp) protocol re-

quires communicating O(n2) field elements. Also no more than O(n2) field elements are
communicated in any other phase. Hence the overall communication complexity is O(n2). 2

8 Conclusion

In this paper we have contributed significantly to the progress of the state of the art in the
problem of PRMT and PSMT. We presented a number of constant phase protocols which
are first of their kind and enjoys the property of being communication optimal against static
and mobile mixed adversary . To design the protocols, we proposed several new techniques,
which can be effectively used against both static and mobile mixed adversary. One can try
to design optimal PRMT and PSMT protocols tolerating static and mobile mixed adversary
with lesser number of phases than the ones we presented here or may try to prove exact phase
complexity of the optimal protocols.
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