
On Resettably-Sound Resettable Zero Knowledge
Arguments ?

Yi Deng and Dongdai Lin

The state key laboratory of information security,Institute of software,
Chinese Academy of sciences, Beijing, 100080, China

{ydeng,ddlin}@is.iscas.ac.cn

Abstract. We study the simultaneous resettability problem, namely whether resettably-
sound resettable ZK arguments for non-trivial languages exist (posed by Barak et al. [BGGL
FOCS’01]), in both the plain model and the bare public-key (BPK for short) model. Under
general hardness assumptions, we show:

– in the BPK model, there exist constant-round (full-fledged) resettably-sound resettable
ZK arguments for NP.
This resolves a main problem in this model that remained open since the Micali and
Reyzin’s identification of notions of soundness [MR Crypto 2001] in the BPK model.

– in the plain model, there exist constant-round (unbounded) resettably-sound class-bounded
resettable ZK (as defined by Deng and Lin in [DL Eurocrypt 2007]) arguments for NP.
This improves the previous result of Deng and Lin [Eurocrypt 2007] in that the DL
construction for class-bounded resettable ZK argument achieves only a weak notion of
resettable-soundness.

The crux of these results is a construction of constant-round instance-dependent (full-fledged)
resettably-sound resettable WI argument of knowledge (IDWIAOK for short) for any NP state-
ment of the form x0 ∈ L0 or x1 ∈ L1, a notion also introduced by Deng and Lin [Eurocrypt
2007], whose construction, however, obtains only weak resettable-soundness when x0 /∈ L0.
Our approach to the simultaneous resettability problem in the BPK model is to make a novel
use of IDWIAOK, which gives rise to an elegant structure we call Σ-puzzles. Given the fact
that all previously known resettable ZK arguments in the BPK model can be achieved in the
plain model when ignoring round complexity, we believe this approach will shed light on the
simultaneous resettability problem in the plain model.

Keywords. instance-dependent WI, simultaneous resettability, zero knowledge.

1 Introduction

For most cryptographic protocols, it is crucial for an honest party involved in multiple
executions of these protocols to refresh its randomness in each run in order to preserve
its security. A natural question, of both theoretic and practical interest, is whether it is
possible to realize some cryptographic task in such a way that honest party can use a fixed
random tape in multiple executions of the resulting protocol without sacrificing its security.
Canetti et al. [9] initiated this line of research. In particular, they investigated a central
construct in cryptography–zero knowledge proof system [20], and showed that there are
proof system for NP that can maintain zero knowledge even when honest prover uses the
same randomness tape in polynomially many executions, which gives rise to a strongest
notion of zero knowledge, i.e. resettable zero knowledge. Subsequently, in an analogous
? supported by 973 project under Grant No. 2007CB311202, and the National Natural Science Foundation

of China under Grant No. 60673069

2

fashion, Barak et al. [3] put forward the notion of resettable soundness for zero knowledge
protocol, which formalizes verfier’s security in a scenario where the verifier uses the same
randomness tape in polynomially many executions, and showed that Barak’s public-coin
zero knowledge argument of knowledge [1] can be easily transformed into a resettably-sound
zero knowledge argument of knowledge. Barak et al. also posed the following simultaneous
resettability problem [3] (Barak et al. also conjectured the answer to this problem is “yes”):

Problem 1: Do there exist resettably-sound resettable ZK arguments for non-trivial
languages?

This problem remained open even in the so-called bare public-key (BPK for short) model
— a model with very weak setup assumption which simply assumes each verifier registers
a public key in a public file before any interaction with the prover begins. This model was
also introduced by Canetti et al. [9], aiming at obtaining constant-round resettable zero
knowledge argument.

Problem 2: Do there exist resettably-sound resettable ZK arguments for non-trivial
languages in the BPK model?

We first stress that both the above two problems are for the case of argument system
(rather than proof system) and non-black box zero knowledge. Previous work [3,26] showed
that, for non-trivial language, neither resettably-sound zero knowledge proof system nor
resettably-sound black-box zero knowledge argument system exists.

Related work. The first attempt to tackle problem 1 was made very recently in [12].
Their main tools are two new instance-dependent primitives: instance-dependent verifiable
random functions (we will give more details in section 3) and resettable WI argument of
knowledge with instance-dependent weak resettable-soundness. For any NP statement of the
form x0 ∈ L0 or x1 ∈ L1, The latter one satisfies: 1) resettable witness indistinguishability
with respect to any two witnesses w0 for x0 ∈ L and w1 for x1 ∈ L; 2) Weakly resettably-
sound argument of knowledge property when x0 /∈ L. That is, the argument of knowledge
property when x0 /∈ L holds only against weak resetting attack. Deng and Lin defined two
types of resetting attack, weak resetting attack and class-bounded resetting attack, both
of which are less powerful than fully resetting attack but more powerful than bounded
resetting attack [6].

Weak resetting attack : there are a-priori bound on the number of resetting malicious party’s
distinct first messages.
Class-bounded resetting attack : there are a-priori bounds on both the number of resetting
malicious party’s distinct first messages and the number of incarnations of honest party
with which the malicious resetting party interact.

Theorem 1. [Deng and Lin [12]] Let L0 and L1 be two NP languages. If there exist
trapdoor permutations and collision-resistant hash functions, then there exists resettable
WI argument of knowledge with instance-dependent weak resettable-soundness for any NP
statement of the form x0 ∈ L0 or x1 ∈ L1.

With the above tools, Deng and Lin presented a transformation of Barak’s public-coin
bounded concurrent zero knowledge argument into an argument for NP that satisfies both
class-bounded resettable zero knowledge and weak resettable-soundness.

3

Theorem 2. [Deng and Lin [12]] If there exist trapdoor permutations and collision-
resistant hash functions, then there exist class-bounded resettable zero knowledge arguments
with weak resettable-soundness for all NP languages.

The above results hold in the plain model. Another simple but powerful model that
has often been considered for (constant-round) resettable zero knowledge arguments is the
BPK model [9], Which merely assumes each verifier deposits a public key in a public file
before any interaction with the prover begins. Shortly after its introduction, Micali and
Reyzin [22] identified four distinct notions of soundness: one time, sequential, concurrent
and resettable-soundness, each of which implies the previous one. Up to now, the strongest
notion of soundness that the known constructions for resettable ZK argument in the BPK
model achieved is the concurrent soundness [16,?,?].

Previous impossibility result [26] for resettable-soundness in the BPK model was only
for the case of black-box (resettable or not) zero knowledge argument. Arguments satisfying
both resettable ZK and resettable-soundness are not known to exist in the BPK model.

Additional motivation for our study in the BPK model. Besides problem 2 being
interesting in itself, we are also motivated by an interesting fact that all previously known
resettable ZK arguments in the BPK model can be achieved in the plain model when ignoring
round complexity. This inspires us to ask whether our feasible result in the BPK model can
be further extended to the plain model.

Our contribution. Our first contribution is to present a constant-round instance-dependent
(full-fledged) resettably-sound resettable WI argument of knowledge (IDWIAOK) for any NP
statement of the form x0 ∈ L0 or x1 ∈ L1, where L0 and L1 are NP languages. That is, we
construct an argument for a NP statement of the form x0 ∈ L0 or x1 ∈ L1 that guarantees:
1) resettable witness indistinguishability with respect to any two witnesses w0 for x0 ∈ L
and w1 for x1 ∈ L, and 2)fully resettably-sound argument of knowledge property when
x0 /∈ L, i.e. when x0 /∈ L0, argument of knowledge property holds against any malicious
prover mounting fully resetting attack. This improves the recent construction for such an
argument in which item 2) holds only against weak resetting attack.

Lemma 1. Let L0 and L1 be two NP languages. If there exist trapdoor permutations
and collision-resistant hash functions, then there exists instance-dependent resettably-sound
resettable WI argument of knowledge for any NP statement of the form x0 ∈ L0 or x1 ∈ L1.

This result is obtained by plugging a crucial InstD-VRFs-like component into the Deng
and Lin’s analogous construction [12]. An immediate consequence is a constant-round class-
bounded resettable ZK argument with (unbounded) resettable-soundness, which improves
the previous result of [12] in that the Deng and Lin’s class-bounded resettable ZK argument
achieves only weak resettable-soundness.

Theorem 3. If there exist trapdoor permutations and collision-resistant hash functions,
then there exist resettably-sound class-bounded resettable ZK arguments for NP in the
plain model.

We further investigate the simultaneous resettability problem in the BPK model. As
aforementioned, what makes this problem interesting is the fact that all previously known

4

resettable ZK arguments in the BPK model can be achieved in the plain model when ignoring
round complexity. We construct (constant-round) resettably-sound resettable ZK arguments
for NP in the BPK model. This resolves a main problem regarding resettable zero knowledge
in this model.

Theorem 4. If there exist trapdoor permutations and collision-resistant hash functions,
then there exist constant-round (full-fledged) resettably-sound resettable ZK arguments for
NP in the BPK model.

Our construction in the BPK model completely departs from the Deng and Lin’s paradigm
of constructing (restricted version of) simultaneously resettable argument that just uses (re-
stricted version of) IDWIAOK as a key generation protocol (to generate public/secret key
pair of verifier’ InstD-VRF). Instead, we have both prover and verifier use IDWIAOK to prove
that they know answers to some carefully chosen puzzles in turn, which gives rise to an el-
egant structure we call Σ-puzzles. This technique circumvents the current bottleneck (i.e.
the bounded concurrency bottleneck of Barak’s public-coin zero knowledge argument) and
then achieves full-fledged simultaneous resettability in the BPK model, and we believe it
will also shed light on the simultaneous resettability problem in the plain model.

2 Definitions

Following [12], we give formal definitions of instance-dependent resettably-sound resettable
WI argument of knowledge (in the plain model) and resettably-sound resettable ZK argu-
ment in the BPK model. Due to space limitations, we omit some related definitions here,
such as resettable zero knowledge in the plain model and some bounded versions of this
notion, and refer to [3,?] for these notions.
Notation. We abbreviate probabilistic polynomial time as PPT. A function f(n) is said
to be negligible if for every polynomial q(n) there exists an N such that for all n ≥ N ,
f(n) ≤ 1/q(n). If L is a language in NP, we define the associated relation as the relation
RL = {(x,w) |x ∈ L;w is a witness for ‘x ∈ L’}.
Resetting and class-bounded resetting attacks. We first recall resetting attack intro-
duced in [9].

Resetting attack [9]. Let p(·) be an arbitrary polynomial, and Let x = x1, · · ·, xp(n) ∈
L∩{0, 1}n be a sequence of distinct common inputs and w = w1, ···, wp(n) be a corresponding
witness sequence for x. The verifier V ∗’s resetting attack is defined by the following random
process depending on P and V . 1) Randomly pick and fix p(n) random tapes, r1, · · ·, rp(n),
resulting in p(n)2 deterministic incarnations P (i,j) = Pxi,wi,rj defined by Pxi,wi,rj (α) =
P (xi, wi, rj , α), for (i, j) ∈ {1, · · ·, p(n)} × {1, · · ·, p(n)}; 2) V ∗ is allowed to run polynomial
many sessions with the P (i,j)’s. Throughout those sessions, V ∗ is allowed to schedule all
sessions in interleaving way 1: V ∗ can send arbitrary messages to each of the P i,j , and
obtain the responses of P (i,j) to such messages immediately; 3) Once V ∗ decides it is done
interacting with the P (i,j)’s, it produces an output based on its view of the whole interaction.
We denote this output by (P (w), V ∗)(x).
1 Actually, in the resettable setting, V ∗ cannot gain more power from concurrent scheduling than from

sequential scheduling (cf. [9]).

5

Now we recall a restricted version of the resetting attack, i.e., the class-bounded resetting
attack introduced in [12]. In [12], Deng and Lin categorize all sessions between a verifier and
a fixed incarnation of prover into a class if they share the same verifier’s first message msg.
A class associated with the incarnation P (i,j) and the verifier’s first message msg is donoted
ClassP (i,j),msg. Note that it is possible that a class contains (unbounded) any polynomial
number sessions because the verifier is allowed to reset the prover.

Class-bounded resetting attack.[12] The bounded-class resetting attack is a restricted
version of resetting attack in which the malicious verifier V ∗ is allowed to interact with an
a-priori bounded number of incarnations and the number of different V ∗’s first messages
to each incarnation is also a-priori bounded. For instance, a t3-bounded-class (t be an a-
priori fixed polynomial) resetting attack is executed by V ∗ in the way as defined above,
but in which V ∗ is only allowed to interact with t2 incarnations of Pxi,wi,rj ’s, (i, j) ∈
{1, · · ·, t} × {1, · · ·, t}, and the number of different V ∗’s first messages to each incarnation
Pxi,wi,rj is a priori bounded by t, where x = x1, · · ·, xt ∈ L∩{0, 1}n is a sequence of distinct
common inputs and w = w1, · · ·, wt is a correspondingly witness sequence for x as defined
in resetting attack, r1, · · ·, rt are those provers’ random tapes. Note that this results in at
most t3 classes of sessions during the whole execution of this attack.

Definition 1. (class-bounded resettable ZK argument) Let t be a polynomial, x = x1, · ·
·, xt ∈ L ∩ {0, 1}n is a sequence of distinct common inputs and w = w1, · · ·, wt is a cor-
respondingly witness sequence for x. An interactive argument (P, V) for a language L is
said to be t3-class-bounded resettable ZK if for every every PPT adversary V ∗ mounting
t3-class-bounded resetting attack, there exists a PPT M so that (P (w), V ∗)(x) and M(x)
are computational indistinguishable.

Definition 2. (Resettable WI) Let p be an arbitrary polynomial, L0 and L1 be two (possibly
the same) NP languages. Let L = L0 ∨ L1 = {(x0, x1) : x0 ∈ L0 or x1 ∈ L1}2. An
interactive argument (P, V) for language L is said to be resettably witness indistinguishable if
for any PPT V ∗ mounting (unbounded) resetting attack, the distribution (P (w0), V ∗)(x) is
computationally indistinguishable from (P (w1), V ∗)(x), where x = x1, ···, xp, xi = (xi

0, x
i
1) ∈

L, wb = w1
b , · · ·, wp

b such that (xi
b, w

i
b) ∈ RLb

for 1 ≤ i ≤ p, b ∈ {0, 1}.
Resettably-sound argument of knowledge. Resetting attack also gives rise to the
notion of resettably-sound argument of knowledge introduced in [3].

Definition 3. (Resettably-sound argument of knowledge.) A resetting attack of a malicious
prover P ∗ on a resettable verifier V is defined by the following random process, indexed by
a security parameter n: 1) Uniformly pick and fix poly(n) random-tapes, denoted r1, · ·
·, rpoly(n), for V , resulting in deterministic incarnations V (j)(x) = Vx,rj , x ∈ {0, 1}n and
j ∈ {1, · · ·, poly(n)}, defined by Vx,rj (α) = V (x, rj , α); 2) Taking as input 1n, P ∗ is allowed
to initiate poly(n) number sessions with the V (j)(x)’s, and is allowed to schedule all sessions
in interleaving way as usual: P ∗ can send arbitrary messages to each of the V (j)(x), and
obtain the responses of V (j)(x) to such messages immediately.

We say an argument system (P, V) is a resettably-sound argument of knowledge system
if it satisfies:
2 In our applications, it is sufficient to consider only the ”OR” statements.

6

1. Resttable-completeness: Considering an arbitrary resetting attack of a PPT P ∗. If P ∗

follows the strategy of P in some sessions after selecting an incarnation V (j)(x) and
x ∈ L, then V (j)(x) rejects with negligible probability.

2. Resettably-soundness: For every weak resetting attack of a PPT P ∗, the probability
that in some sessions the corresponding V (j)(x) has accepted a false statement (x /∈ L)
is negligible.

3. Argument of knowledge: For every PPT P ∗, there exists a PPT machine E such that
for every resetting attack of P ∗, the probability that E, upon input the description of
P ∗, outputs a witness for the statement in a session is negligibly close to the probability
that P ∗ convinces V in a session.

Definition 4. (Instance-dependent resettably-sound resettable WI) Let L0 and L1 be two
(possibly the same) NP languages. Let L = L0 ∨ L1 = {(x0, x1) : x0 ∈ L0 or x1 ∈ L1}. An
interactive argument (P, V) for language L is said to be instance-dependent resettably-sound
resettable WI if it satisfies:

1. Resettable WI, as in definition 2.

2. For any statement (x0, x1) ∈ L, the resettably-sound argument of knowledge property
holds when x0 /∈ L0.

Next, following almost verbatim [22], we give the description of the BPK model and the
notions of resettable ZK and resettable-soundness therein.

The BPK Model. The bare public-key model (BPK model) assumes that: 1)A public file F
that is a collection of records, each containing a verifier’s public key, is available to the prover;
2)An (honest)prover P is an interactive deterministic polynomial-time algorithm that is
given as inputs a secret parameter 1n, a n-bit string x ∈ L, an witness w for x ∈ L, a public
file F and a random tape r; and 3)An (honest) verifier V is an interactive deterministic
polynomial-time algorithm that works in two stages. In stage one (key generation stage),
on input a security parameter 1n and a random tape r, V generates a key pair (pk, sk) and
stores pk in the file F . In stage two (proof stage), on input sk, an n-bit string x and an
random string ρ, V performs the interactive protocol with a prover, and outputs “accept
x” or “reject x”.

Definition 5. We say that the protocol < P, V > is complete for a language L in NP, if
for all n-bit string x ∈ L and any witness w such that (x,w) ∈ RL, the probability that V
interacting with P on input w, outputs “reject x” is negligible in n.

Malicious resetting provers and its attacks in the BPK model. Let s be a positive
polynomial and P ∗ be a probabilistic polynomial-time algorithm on input 1n.

A resetting attack by a s-resetting malicious prover P ∗ in the BPK model is defined
as the following process: 1) Run the key generation stage of V on input 1n and a random
string r to obtain pk and sk (P ∗ obtains pk and V stores the corresponding sk); 2) Choose
s(n) random string ρi, 1 ≤ i ≤ s(n), for V ; and 3) P ∗ interacts with oracles for the second
stage (proof stage) of the verifier, the i-th oracle having input sk, ρi.

Definition 6. (Resettable soundness in the BPK model) < P, V > satisfies resettable
soundness for an NP language L in the BPK model if for all positive polynomial s, for

7

all s-resetting malicious prover P ∗, the probability that in an execution of resetting attack,
P ∗ ever receives “accept x” for x /∈ L from any of these oracles is negligible in n

Malicious resetting verifiers and its attacks in the BPK model. Similarly, A re-
setting attack by a (s, t)-resetting malicious verifier V ∗, for any two positive polynomials
s and t, can be defined as the following process: 1) In the key generation stage, on input
1n, V ∗ receives s instances x1, ..., xs(n) ∈ L of length n each, outputs an arbitrary public
file F ; 2) Choose r1, ..., rs(n) for P uniformly at random; 2) In proof stage, V ∗ starts in
the final configuration of the key generation stage, is given oracle access to s3(n) provers,
P (xi, wi, pkj , rk, F), 1 ≤ i, j, k ≤ s(n), and then outputs its view of the interaction: its ran-
dom string and the messages received form the provers; and 3) The total number of steps
of V ∗ in both stages is at most t(n).

Definition 7. (Non-black-box resettable ZK in the BPK model) < P, V > is (non-black-
box) resettable zero knowledge for an NP language L in the BPK model if for every pair
of positive polynomials (s, t), for all (s, t)-resetting malicious verifier V ∗, there exists a
simulator S, given as input the description of V ∗, such that for every x1, ..., xs(n) ∈ L, the
following two distributions are computational distinguishable:

1. The output of V ∗ at the end of a resetting attack described above,

2. The output of S(V ∗, x1, ..., xs(n)).

3 How to Construct the Instance-Dependent Resettably-Sound
Resttable WI Argument of Knowledge

In this section we show how to construct instance-dependent (full-fledged) resettably-sound
resttable WI argument of knowledge. This establishes the Lemma 1 and yields Theorem 3.

3.1 The DL approach revisited

A crucial tool in the construction of resettable WI with instance-dependent weak resettable-
soundness in [12] is the instance-dependent verifiable random functions (InstD-VRF). Infor-
mally, an InstD-VRF is a verifiable random function [23] with a special public key, which
is generated via a (possibly interactive) protocol and contains an instance y with respect
to a specific NP language L, but the security requirements on such a function are relaxed:
the pseudorandomness property3 is required to hold only when y ∈ L and the uniqueness
property is required to hold only when y /∈ L. y is called the key instance.

This notion can be realized assuming the existence of trapdoor permutations [12]. The
construction is as follows. The querier A and the function owner B execute a key generation
protocol and produce an key instance y, then B selects a pseudorandom function f at
random and commits to the description of this function. On input a string a in the domain
of f , B returns f(a) and a witness indistinguishable proof (using, say, ZAP [14], in this
case the querier should send a setup message for ZAP in the key generation stage) in which
he proves that the function value is computed correctly or y ∈ L using the knowledge of
description of f he committed to.
3 Note that Deng and Lin demonstrate pseudorandomness in a way different from that in [23]: the guessing

machine is also provided with correctness proof for the target function value.

8

The approach to the simultaneous resettability problem suggested in [12] begins with a
transformation of resettably-sound bounded concurrent zero knowledge argument (PR, VR)
(which can be obtained from Barak’s public-coin bounded concurrent zero knowledge ar-
gument, as showed in [3]) into the so-called key instance-dependent resettably-sound class-
bounded resettable zero knowledge argument (DL KInstD ZK argument for short) (P, V)
by equipping the verifier in the former system with an InstD-VRF. The Latter argument
(P, V) satisfies only the resettable-soundness when the key instance of the InstD-VRF is
a YES instance, and satisfies only the class-bounded resettable zero knowledge when the
key instance is a NO instance. We now give an informal description of the DL KInstD ZK
argument (P, V) proposed in [12].

DL KInstD ZK Argument (P, V) for proving x ∈ L
Phase 1: the key generation protocol KGProt

V → P Generate an instance y with respect to a NP language L′ (ΠY ES and ΠNO are defined
L′), send y and a commitment c = Com(s, rs) to a random string s (description of a
pseudorandom function).

P → V Send the first message ρ for a ZAP.

Phase 2: the Modified Barak’s bounded concurrent ZK argument
P ⇒ V P and V execute the Barak’s public-coin bounded concurrent zero knowledge protocol

with the following exception: in each V ’s step, instead of sending a random string,
V computes r = fs(hist) (hist is the history of execution of this subprotocol), and
sends r plus a proof π in which he proves r is computed correctly or y ∈ L′ by using
the prover’s strategy in ZAP system. That is, V applies the InstD-VRF specified by
(PK, SK) = ((y, c, ρ), (s, rs)) to hist, and sends the outputs of InstD-VRF in each
V ’s step. In the V ’s decision step, V accepts if and only if the transcript of this
subprotocol is accepting.

Obviously, the above protocol is not “secure”: a malicious resetting verifier will extract a
witness for the statement proven when he generates a YES instance in the first step. To
obtain some kind of bounded simultaneously resettable argument, we need to find a secure
(both for the verifier and the prover in the resettable setting) way to generate the instance
y for the verifier, instead of letting the verifier itself generate y. The solution suggested
in [12] is the so-called resettable WI argument with instance-dependent weak resettable-
soundness (hereafter we call it DL WI protocol). With this argument, the DL KInstD ZK
argument can be modified into a class-bounded resettable zero knowledge arguments with
weak resettable-soundness by having the honest prover generate an NO instance y for the
verifier (which serves as the key instance for the verifier’s InstD-VRF that used in the second
phase) and use the DL WI protocol to prove that the statement x ∈ L to be proven is true
or y is a YES instance.

The construction of the DL WI protocol employs the classic 3-round WI argument
of knowledge [5] as a building block. Let (a, e, z) be the three messages exchanged in an
execution of the 3-round argument, and x0 ∈ L0 or x1 ∈ L1 be the statement to be proven.
The DL WI protocol proceeds as follows. The verifier first sends a commitment c to a seed of
a pseudorandom function and generates the query e by applying this function to the prover’s
first round message a and uses DL KInstD ZK argument to prove the query e is computed

9

correctly. In the DL KInstD ZK argument, the instance x0, serves as the key instance for a
InstD-VRF used by the verifier (the prover in the global system) in the second phase.

DL WI protocol4 (P, V) for proving x0 ∈ L0 or x1 ∈ L1

V → P Send c = Com(s).
P → V Send a, the first message of a classic 3-round WI argument.
V → P Send e = fs(x0, x1, c, a)
V ⇒ P V proves that e is computed correctly via the DL KInstD ZK protocol in which the

x0 serves as the key instance for a InstD-VRF used by P (the verifier in the second
phase of this subprotocol).

P → V Send z, the last message of a classic 3-round WI argument.
V ’s decision V accepts if only if (a, e, z) is accepting.

The DL WI protocol has been shown to be resettable WI. Furthermore, if x0 /∈ L0, it achieves
weak resettably-sound argument of knowledge property, i.e. when x0 /∈ L0, argument of
knowledge property holds only when there is a-priori bound on the number of resetting
malicious prover’s distinct first message.

For readability, we give the whole picture of DL’s approach in figure 1.

Bottleneck in achieving fully resettable-soundness when x0 /∈ L0–the bounded
concurrent zero knowledge property of Barak’s protocol We first remark that the
bottleneck for the DL WI protocol to achieve fully resettable-soundness (argument of knowl-
edge, precisely) when x0 /∈ L0 comes from the bounded concurrent zero knowledge property
of the underlying Barak’s protocol. Let (P, V) be the DL WI protocol, and the common
input are x0, x1. Considering the following malicious resetting prover strategy P ∗. Upon
receiving a specific commitment c, P ∗ sends polynomial number (not fixed in advance) of
distinct first messages a1,...,apoly(n) (ai’s are the message of the classic 3-round WI argu-
ment). After having received all challenges e1,...,epoly(n), P ∗, playing the role of verifier,
and V execute the underlying DL KInstD ZK protocol concurrently (or resettably, at P ∗’s
desire) in which V proves that all these challenges are computed correctly.

Assume the DL WI protocol (P, V) satisfies fully resettably-sound argument of knowl-
edge property when x0 /∈ L0. This means there is an extractor for P ∗ that can extract an
witness for x1 with essentially the same probability that P ∗ answers some challenge, say ei,
correctly. It seems that we can construct such an extractor: focusing on the single session
with prefix of the first three messages c, ai, ei, once received zi, the extractor rewinds to the
point just before ei was sent and resends a random e′i, then uses the simulator guaranteed
by DL KInstD ZK protocol to simulate for the false statement (i.e., “ei is correct”). For
all other sessions, the extractor plays as the honest verifier, i.e., always computes ej , j 6= i,
by applying the pseudorandom function committed in c to the history. Typically, we justify
such an extractor by setting up a hybrid argument, and in one of these hybrid chains, we
need to show that if the prover can distinguish it’s views in two specific scenarios (that are
intermediates between the real interaction and the interaction between the prover and the
extractor), we can construct a reduction algorithm, using P ∗’s code, to violate the hiding

4 In fact, the first message of the underlying DL KInstD ZK argument should be sent in the second step of
this WI protocol in order to achieve weak resettable-soundness. Here we aim at presenting the main idea
of the DL WI protocol and therefore ignore this subtle round-message arrangement.

10 � � � � � � � � � � � � � � � 	 	
 � � �
 � � � � � � �
 � � � � � � 	�� � 	 � � � �
 � �
 � � � �
 � � � � � � � 	 �
 � � � � ! �
 � �� � � � 	 � � �� � 	 � � � �
 � �
 � � � �
 � � � �� � � � 	 	
 � � � ! �
 � � � � � � 	 � � " � � � � � � � �� � 	 # � �
 " � � � 	
 � $ �
 � � % � � � � � 	� � � � 	 	
 � � �
 � � � � � � � � �

� � ! �
 � � � � � � 	&'
(� � � � 	 � � �� � ! �
 � �)� � �
 � � � �
 � � � � � � 	* �
 � �
 � � � � � � � � � � � 	 	
 � � � � �
 � � � � � � 	 � � 	 #� �
 " � � � � 	 	
 � � �
 � � � � � � � � �

+� � � � 	 � � �
 � � � � � � 	 �
 	 � � �
 � � � � � � 	 ,� � � � 	 � � �
 � � � � � � 	
Fig. 1. The approach of [12].

Starting with an observation on BGGL resettably-sound ZK argument, Deng and Lin introduced and realized
the notion of InstD-VRF, which naturally leads to an illustrative key instance-dependent resettably-sound
class-bounded resettable ZK argument, i.e. the DL KInstD ZK argument. In order to make this illustrative
argument secure against resetting adversaries in the real world, Deng and Lin introduced and realized another
new notion of resettable WI argument of knowledge with instance-dependent weak resettable-soundness, i.e.
the DL WI protocol, which uses DL KInstD ZK argument as a building block. Plugging the DL WI protocol
into DL KInstD ZK argument, we get class-bounded resettable ZK arguments with weak resttable-soundness
for NP.

property of the commitment scheme which the verifier uses to commit to the pseudorandom

11

function in the first verifier’s step. This requires the reduction algorithm itself can simulate
all unbounded concurrent (or resettable) executions of DL KInstD ZK protocol without
knowing the committed value and the randomness used in c because all statements “ei is
correct”, 1 ≤ i ≤ poly(n) are correlated: they share the same witness, i.e. the committed
value and the randomness used in the commitment c. However, the DL KInstD ZK pro-
tocol does not meet this requirement: it enjoys only class-bounded resettable (or bounded
concurrent) zero knowledge property due to that its underlying Barak’s protocol satisfies
only bounded concurrent zero knowledge.

3.2 Constructing Instance-Dependent Resettably-Sound Resettable WI
Argument of Knowledge

It seems possible to overcome the above bottleneck by adopting any one of the following
approaches:
1. construct public-coin fully concurrent zero knowledge argument. Such an argument im-

mediately enables us to construct a DL KInstD ZK protocol satisfying both fully reset-
table zero knowledge on NO key instance and resettable-soundness on YES key instance,
which meets our requirement.

2. modify the DL WI protocol in such a way that, in all sessions initiated by any resetting
prover, those statements “ei is correct”, 1 ≤ i ≤ poly(n) for the (subprotocol) DL KInstD
ZK protocol are uncorrelated. Note that in this case we do not require the underlying
DL KInstD ZK protocol to satisfy fully resettable zero knowledge to get a construction
of DL WI protocol achieving full resettably-soundness when x0 /∈ L0, instead, as we
will see, DL KInstD ZK protocol satisfying 1-class-bounded resettable zero knowledge
(when the key instance is a NO instance) is enough (because to justify soundness we
just need to focus on a single class of sessions), and this protocol can be based on the
Barak’s public-coin standalone zero knowledge (i.e. zero knowledge property holds only
in the standalone setting) argument.

The first approach raises an apparently hard problem (we do not even know whether such
an argument for non-trivial language exists or not). We adopt the second approach to
construct an instance-dependent resettably-sound resettable WI argument of knowledge for
any NP statement of the form x0 ∈ L0 or x1 ∈ L1. Our construction achieves (unbounded)
resettably-sound argument of knowledge property when x0 /∈ L0.

Our protocol is obtained by plugging an extra InstD-VRF-like component into the DL
WI protocol. In particular, we have the prover send a commitment cp to a pseudorandom
function as initial message. Upon receiving the verifier’s message cv (it’s also a commitment
to a pseudorandom function, the first message sent in the DL WI protocol), the prover
produces the message a (the first message sent in the underlying 3-round WI protocol)
using the randdomness generated by applying the pseudorandom function committed in cp

to the history so far and uses a ZAP to prove that x0 ∈ L0 or a is computed correctly. The
rest part of our protocol proceeds as the DL WI protocol.

The key idea underlying our construction is that, when x0 /∈ L0, for each verifier’s first
message cv, any cheating (resetting) prover cannot produce two different messages a and a′

(if V produces cv by applying some function to cp). On one hand, this makes all statements
(i.e., ”the challenge are computed correctly”) that the verifier need to prove in the execution

12

of DL KInstD ZK argument independent, and therefore enables us to overcome the obstacle
aforementioned and achieve (unbounded) resettably-sound argument of knowledge property.
On the other hand, this modification does not endanger the resetable WI property due to
two reasons: 1) the prover’s message a depends on cv, and for each cv, the malicious resetting
verifier is bound to one challenge; and 2) when x0 ∈ L0, we can produce the message a in
arbitrary way and use the witness for x0 ∈ L0 to give a valid correct proof. This enables us
to present a security reduction from resettable WI of our protocol to concurrent WI of the
underlying 3 round WI argument.

For this idea to work, however, the message a is required to be uniquely determined
by the randomness used in this step and the common input. We note that not all 3-round
WI arguments enjoy this property. Fortunately, the classic parallelized version of Blum’s
(WI) proof of knowledge for Hamiltonian Cycle satisfies this. The message a of the Blum’s
protocol is produced in the following way: Given the common input G, the prover chooses a
random permutation π and uses a commitment scheme Com to commit to adjacent matrix
Mπ(G) of π(G) entry by entry. For convenience we use a binary string rπ to represent the
permutation π and denote the randomness used in the commitment matrix by rM (rM can
be also viewed as a matrix in which each entry consists of a random string, and the random
string in a entry is used to commit to the value of the corresponding entry in Mrπ(G)),
therefore, we have a = Com(Mrπ(G), rM) (committing entry by entry).

The formal description of our construction appears in figure 2. We remark that the order
of messages are arranged in a delicate way in order to avoid some (minor) security problem
(see also footnote 4). Compared to DL WI protocol, the prover’s strategy of our protocol is
required to send additional messages cp, ρ

′, and τ to guarantee that any cheating (resetting)
prover cannot produce two different messages a and a′ for a verifier’s first message cv in
case x0 /∈ L0.

Before proceeding further, we present the extractor and intuition for unbounded resettable-
soundness property (when x0 /∈ L0) of our construction.

Assume P ∗ convinces an incarnation V j(x) on statement x = (x0, x1) ∈ L such that
x0 /∈ L0 with probability p in a session. We construct an extractor E as follows.

The extractor E
1. E selects a random string for P ∗.

2. E plays the role of honest verifier. Once E obtains an accepting transcript (a, e, z) of
the underlying 3 round WI argument in a session in which E emulates the incarnation
V j
W (x), E goes to the next step. Suppose the first three messages exchanged in that

session is (cp, c0), (cv, ρ
′) and (a, τ) (so e = fs(x0, x1, cp, c0, cv, ρ

′, a), cv = Comv(s, r)).

3. Assume τ∗ was the valid correctness proof for a that appeared for the first time in all
sessions with the prefix (cp, c0), (cv, ρ

′), a (note that τ∗ doesn’t necessarily equal τ , and
this possibly happens due to the resetting attack from P ∗). E rewinds P ∗ to the point
where the prefix (cp, c0), (cv, ρ

′), (a, τ∗)5 was first appeared, and then E performs in the
following way:

5 This essentially guarantees E rewinds to the point where ((cp, c0), (cv, ρ′), a), rather than
((cp, c0), (cv, ρ′), (a, τ)), first appeared. Note that the message a is uniquely determined by the history so
far, but τ is not. Also note, for an honest verifier, the message e is uniquely determined by the history
excluding τ so far, thus, in the extraction, the extractor E must send the same e in all sessions with the

13

The InstD Resettably-Sound rWI Argument of Knowledge (IDWIAOK)

Common input: two instances x0 ∈ L0 or x1 ∈ L1, a security parameter n, where L0 and L1 are NP languages.
The Prover’s private input: the witness w such that (x0, w) ∈ RL0 or (x1, w) ∈ RL1 .
Prover’s randomness: (r1

p, r2
p).

Verifier’s randomness: rv, a seed of a pseudorandom function frv

P → V P sets (s′, r′) = fr1
p
(x0, x1), computes cp = Comp(s′, r′) using a statistically-binding commitment

scheme Comp.
Using the randomness r2

p, P invokes the DL KInstD ZK argument (it is sufficient to use a KInstD
resettable ZK argument that satisfies only 1-class-bounded ZK property) in which P plays the role
of verifier, and V will prove to it that the challenge e for the underlying 3-round WI argument
is computed correctly, produces the first message c0 (i.e., the commitment to the description of
pseudorandom function) and uses instance x0 as the key instance.
Sends cp,c0;

V → P V sets (r1
v, r2

v, ρ′) = frv (x0, x1, cp, c0). Using the randomness r1
v, V selects a pseudorandom function

fs : {0, 1}≤poly(n) → {0, 1}|e| and r, computes cv = Comv(s, r) using a statistically-binding
commitment scheme Comv. ρ′ will serve as the first message of a ZAP used in next P ’s step.
Sends cv, ρ′;

P → V P reduces the instance (x0, x1) to a Hamiltonian graph G, and sets (rπ, rM) =
fs′(x0, x1, cp, c0, cv, ρ′), where rπ represents a permutation over the vertices of G, and rM is a
random string matrix as defined before.
P invokes the 3 round WI argument for Hamiltonian Cycle in which it proves G (or, equivalently,
x0 ∈ L or x1 ∈ L) has a Hamiltonian cycle, produces the first message a = Com(Mrπ(G), rM)
(where Com is also a statistically-binding commitment scheme), and uses the witness s′ and
r′ to prove that x0 ∈ L0 or there exist s′ and r′ such that cp = Comp(s′, r′) ∧ (rπ, rM) =
fs′(x0, x1, cp, c0, c, ρ

′) ∧ a = Com(Mrπ(G), rM) via a ZAP (with the first message ρ′). Let the sec-
ond message (the proof) be τ .
Sends a, τ ;

V → P V computes e = fs(x0, x1, cp, c0, cv, ρ′, a) (notice that we exclude the proof τ from the history
to which the fs is applied to generate e, and this is crucial to justify the soundness). Using the
randomness r2

v, V selects the first message ρ for a ZAP used in DL KInstD ZK argument.
Sends e, ρ;

V ⇒ P P and V continue to run DL’ KInstD ZK argument in which V proves there exist s, r such that
e = fs(x0, x1, cp, c0, c, ρ

′, a) and cv = Comv(s, r). The public key for P ’s InstD-VRF (P plays the
role of the verifier in this execution of DL KInstD ZK argument) is PK = (x0, c0, ρ) and the
corresponding secret key is the decommitment to c0.

P → V Sends the answer z to the query e according to the 3 round WI argument for Hamiltonian Cycle
if the above transcript is accepting.

V ’s Decision V accepts if only if the transcript (a, e, z) is accepting.

Fig. 2. The instance-dependent resettably-sound resettable WI argument of knowledge.

– For those sessions having the same prefix ((cp, c0), (cv, ρ
′), a) with arbitrary valid

correctness proof for a) , E chooses another query e′ 6= e randomly, and sends e′ to
P ∗, then runs the simulator guaranteed by DL KInstD ZK argument (that satisfies
only 1-class-bounded resettable zero knowledge property when the key instance is a
NO instance) and give proofs that e′ is computed correctly.
Note that all executions of DL KInstD ZK argument in those sessions having the

same first three messages (cp, c0), (cv, ρ′) and a (excluding τ), and this requires E rewinds to point where
(cp, c0), (cv, ρ′), (a, τ∗) (τ∗ as defined above), rather than ((cp, c0), (cv, ρ′), (a, τ)), first appeared.

14

same prefix ((cp, c0), (cv, ρ
′), a) fall into one class according to the terminology in

[12], that is, all these executions are carried out with the same incarnation of verifier
V j(x) under the same P ∗’s (the verifier in DL KInstD ZK argument) first message
c0 of DL KInstD ZK argument.

– For all other sessions, E acts as honest verifier.

4. E repeats the step 3 until it obtains an accepting transcript (a, e′, z′) with e 6= e′.

5. E computes the witness for x1 (note that we assume x0 /∈ L) from the two transcripts
(a, e, z) and (a, e′, z′), outputs it.

Intuition for unbounded resettable-soundness when x0 /∈ L. First of all, keep in
mind that the DL KInstD ZK argument used in our protocol depicted in fig.1 satisfies
only 1-class-bounded resettable zero knowledge property (when the key instance is a NO
instance), which can be obtained from the known Barak’s public-coin standalone zero
knowledge argument.

Note that in E’s step 3, the statements “the challenge is correct” in the two cat-
egories of sessions (i.e. sessions with prefix ((cp, c0), (cv, ρ

′), a) and sessions with prefix
((c′p, c′0), (c

′
v, ρ

′′), a′), ((cp, c0), (cv, ρ
′), a) 6= ((c′p, c′0), (c

′
v, ρ

′′), a′)), are (almost) uncorrelated:
since ((cp, c0), (cv, ρ

′), a) 6= ((c′p, c′0), (c
′
v, ρ

′′), a′)), it must be the case (cp, c0) 6= (c′p, c′0)
6, and

this leads to the pseudorandom functions committed in cv by V j(x) in these two categories
of sessions are (almost) independent and thus the statements “the challenge is correct” in
the two categories of sessions are (almost) uncorrelated.

This crucial observation enables us to employ DL KInstD ZK argument satisfying only
1-class-bounded resettable zero knowledge property (for verifier to prove “the challenge is
correct”) is that all executions of DL KInstD ZK argument in those sessions the same
prefix ((cp, c0), (cv, ρ

′), a) fall into a single class (namely, the class specified by the same
incarnation of verifier V j(x), the prover in DL KInstD ZK argument, and the same P ∗’s
(the verifier in DL KInstD ZK argument) first message c0 of DL KInstD ZK argument),
and E needs only to simulate this class of sessions and plays as honest verifier in any other
sessions (that are uncorrelated to sessions in the class which E needs to simulate) in straight
line way.

We now prove that the argument depicted in Fig.1 is an instant-dependent resettably-
sound resettable WI argument of knowledge (i.e., satisfying the definition 4). This follows
from the following two claims and establishes Lemma 1.3.

Claim 3.1 The argument depicted in Fig.1 satisfies resettable witness indeistinguisha-
bility as defined in definition 2.

proof. Let L = L0 ∨ L1 = {(x0, x1) : x0 ∈ L0 or x1 ∈ L1}, poly(·) be an arbitrary
polynomial and V ∗ be an arbitrary malicious PPT verifier strategy mounting resetting
attack. Let x = x1, · · ·, xpoly(n), xi = (xi

0, x
i
1) ∈ L, wb = w1

b , · · ·, wpoly(n)
b such that (xi

b, w
i
b) ∈

RLb
for i = 1, · · ·, poly(n), b = 0, 1. We set up hybrid experiments, in which the distribution

6 Note that for the deterministic V j(x), if (cp, c0) = (c′p, c′0), then we have (cv, ρ′) = (c′v, ρ′′). By the
fact that message a is uniquely determined by the first two round messages (for simplicity we consider
the same common input x = (x0, x1) ∈ L) when x0 /∈ L0, so if ((cp, c0), (cv, ρ′)) = ((c′p, c′0), (c

′
v, ρ′′)),

then a = a′. Thus we have ((cp, c0), (cv, ρ′), a) = ((c′p, c′0), (c
′
v, ρ′′), a′), which contradicts the condition

((cp, c0), (cv, ρ′), a) 6= ((c′p, c′0), (c
′
v, ρ′′), a′)

15

in one of the hybrids is indistinguishable from that in preceding one, to prove the Resettable
witness indistinguishability.

Hybrid 0 The distribution (P (w0), V ∗)(x) (V ∗’s view in interaction with honest prover us-
ing w0 as witnesses).

Hybrid 1 The distribution (P1,w0(w0), V ∗)(x), where P1,w0 follows the P ’s strategy except
that for every i, 1 ≤ i ≤ poly(n), P1,w0 uses the witness wi

0 for xi
0 to execute the ZAP in

P ’s second step in which it proves xi
0 ∈ L0 or the a is computed correctly (in Hybrid 1,

Hybrid 2 and Hybrid 3, we use the subscript w0 to indicate that the prover will use the
witness in the sequence w0 to execute the ZAP in its second step). Note that in Hybrid 0
the honest prover always uses the witness for the statement that a is computed correctly
to prove that xi

0 ∈ L0 or the a is computed correctly (see the protocol in figure 1). So,
we can claim that this hybrid is indistinguishable from the Hybrid 0 due to the witness
indistinguishability of the ZAP.

Hybrid 2 The distribution (P2,w0(w0), V ∗)(x), where P2,w0 follows P1,w0 ’s strategy, except
that it selects a pseudorandom function fs′′ at random (independent of fs′ that com-
mitted in its first message cp) and produces a in the P ’s second step using randomness
generated by applying this function to the history so far, and for all session shared the
same cp, P2 always use the same function fs′′ . This hybrid is indistinguishable from the
Hybrid 1 due to computationally hiding of the commitment scheme Comp.

Hybrid 3 The distribution (P2,w0(w1), V ∗)(x), where P2,w0 , given both w0 (used to execute
the ZAP in its second step) and w1, follows prover’s strategy in Hybrid 2, except that
for all i, 1 ≤ i ≤ poly(n), it uses wi

1 for xi
1 to execute the underlying 3-round WI

argument for Hamiltonian Cycle . We will show that if there is a distinguisher can tell
this hybrid and Hybrid 2, then there exists a PPT verifier strategy in concurrent model
that violates the witness indistinguishability of the underlying 3-round WI argument.
Note that witness indistinguishability is preserved in concurrent model, thus we conclude
that this hybrid is indistinguishable from the Hybrid 2. Detailed proof follows shortly.

Hybrid 4 The distribution (P3,w0(w1), V ∗)(x), where P3,w0 follows P2,w0 ’s strategy, except
that it produces a in the same way that the honest prover does, that is, in the P ’s second
step it uses randomness generated by applying fs′ that committed in its first message
cp to the history so far to produce a (still, P3,w0 uses the witness in the sequence w0 to
execute the ZAP in its second step). Again, the indistinguishability between this hybrid
and Hybrid 3 is due to computationally hiding of the commitment scheme Comp.

Hybrid 5 (P (w1), V ∗)(x). Note that the prover P in this hybrid follows the honest prover’s
strategy with the witness sequence w1, and therefore the only difference between the P ’s
strategy and the prover’s strategy P3,w0 in Hybrid 4 is that, for all i, 1 ≤ i ≤ poly(n), P
uses the witness s′ and r′ that is used in its first step to compute cp (cp = Comp(s′, r′))
to prove x0 ∈ L0 or a is computed correctly via a ZAP in its second step, while the
prover’s strategy P3,w0 in Hybrid 4 uses the witness wi

0 for xi
0. The indistinguishability

between this hybrid and Hybrid 4 is due to the same reason for the indistinguishability
between Hybrid 0 and Hybrid 1, i.e., the witness indistinguishability of the ZAP.

Let (PW, VW) be the underlying 3-round WI argument for Hamiltonian Cycle. Now we show
that Hybrid 2 is indistinguishable from Hybrid 3. Assume otherwise, there exists an al-

16

gorithm D distinguishes the two distributions ((P2,w0(w0), V ∗)(x) and ((P2,w0(w1), V ∗)(x),
then we can construct a PPT V ∗

W in concurrent model, such that two distributions (PW(w0), V ∗
W)(x)

and (PW(w1), V ∗
W)(x) are distinguishable. This contradicts the witness indistinguishability of

(PW, VW) (note that WI holds even in concurrent model, cf [17]).
V ∗
W , given (w0) as input7, incorporates V ∗ and handles V ∗’s messages as follows. 1) When

V ∗ initiates a session with incarnation P i,j
2,w0

(1 ≤ i, j ≤ poly(n)), V ∗
W computes cp and c0 as

the honest prover does, and replies with cp and c0 internally. 2) When V ∗ sends a kth new
first message (i.e., cv and ρ′) to incarnation P i,j

2,w0
(1 ≤ i, j ≤ poly(n)), V ∗

W initiates a session
with P i,jk

W (defined by P i,jk
W (α) = PW(xi, wi, rjk

, α), where xi = (xi
0, x

i
1), wi = (wi

0, w
i
1),

rjk
’s are selected independently), obtains the P i,jk

W ’s first message a, uses the witness wi
0 to

produce the proof τ that the first message a of the DL KInstD ZK argument is computed
correctly, stores a and τ and then forwards them to V ∗; 3) when V ∗ sends a query e to P i,j

2,w0

for its kth first message a, V ∗
W stores it and continues the execution of the DL KInstD ZK

argument, and once V ∗ accepts this proof, forwards the query e to P i,jk
W , stores its response

z and forwards it to V ∗. All V ∗’s repeated messages are replied with the same answer.

Noth that if V ∗ does not send different challenges to P i,j
2,w0

regarding the same P i,j
2,w0

’s
(actually produced by P i,jk

W) first message a, then V ∗
W works in concurrent model (i.e., it

holds at most one session with each incarnation P i,jk
W). Furthermore, if all incarnations of

PW use the witness sequence wb = w1
b , · · ·, wpoly(n)

b in above interaction, the V ∗’s view in the
above experiment is identical to ((P2,w0(wb), V ∗)(x) (note the fact that both P2,w0 and V ∗

W

use the same witness in the sequence w0 to produce the proof τ), and furthermore, notice
that the V ∗

W ’s view (i.e., (PW(wb), V ∗
W)(x)) is just the copy of V ∗’s view, Thus, we conclude

if D can distinguish ((P2,w0(w0), V ∗)(x) and ((P2,w0(w1), V ∗)(x), it also can distinguish
(PW(w0), V ∗

W)(x) and (PW(w1), V ∗
W)(x).

We claim the probability that V ∗
W sends different challenges to P i,jk

W ’s first message a is
negligible because the underlying DL KInstD ZK argument satisfies resettably-soundness
when x0 ∈ L, this completes the proof that Hybrid 2 is indistinguishable from Hybrid
3. ¥

Claim 3.2 When x0 /∈ L0, the argument depicted in Fig. 2 satisfies resettably-sound
argument of knowledge property as defined in definition 3.

proof. We give this proof by justifying the extractor showed in subsection 3.2. The success
of the extractor (when x0 /∈ L0) relies on this key observation: the verifier’s first message
(cv, ρ

′) will determine an unique first message a of the underlying 3-round WI argument
when x0 /∈ L0, this enables the analysis of indistinguishability between the Hybrid 1 and
the Hybrid 2 (see below).

Suppose that P ∗ convinces an incarnation V j(x) on statement x = (x0, x1) such that
x0 /∈ L with probability p in a session.

We first note that if the probability P ∗ convinces V j(x) is non-negligible, then E will
run in expected polynomial time.

7 Note that WI is required to hold against malicious verifiers that take both (w0) and (w1) as the auxiliary
input

17

In step 3, all simulated proofs fall into one class with respect to underlying the DL
KInstD ZK argument8, i.e., the class specified by the first verifier (the prover in global
system) message c0 (contained in the first prover’s message (cp, c0)) and the incarnation of
prover V j

W (x) (the verifier in global system), so the simulation will be run successful due to
the 1-class-bounded resettable ZK property of the underlying DL KInstD ZK argument.

There are two differences between P ∗’s view simulated by E in step 3 and that generated
in a real interaction: 1) e′ 6= fs(x0, x1, cp, c0, cv, ρ

′, a) in E’s step 3, 2) in sessions in which
the first three messages (excluding τ) exchanged equals (cp, c0), (cv, ρ

′), a, all proofs given
by E are simulated.

If we prove that P ∗’s view in above two scenarios are indistinguishable, then the extractor
E will extract a witness for x1 ∈ L with probability negligibly close to p. This completes
the proof.

We claim the P ∗’s view in above two scenarios are indistinguishable despite these dif-
ferences. This follows from the hybrid experiments below. It is easy to see that P ∗’s view
in one of the hybrids is indistinguishable from that in preceding one (Here we assume P ∗

only interacts with the incarnation V j(x) for simplicity. Note that different incarnations of
the verifier will choose pseudorandom functions independently).
Hybrid 0 P ∗ interacts with the incarnation V j(x).
Hybrid 1 P ∗ interacts with V1, where V1 follows the V j(x)’s strategy (computes challenges

of the underlying 3-round WI argument in honest way in all sessions) but in all those
sessions having the same first three messages (excluding τ) (cp, c0), (cv, ρ

′) and a, V1 runs
the simulator for the DL KInstD ZK argument to give proofs that the challenge in those
sessions (note that all those sessions will share the same challenge due to the way by
which the challenge is produced) are computes correctly . The P ∗’s view in this hybrid
is indistinguishable from that in Hybrid 0 due to the 1-class-bounded ZK property of
the DL KInstD ZK argument when x0 /∈ L0. Note that all simulated proofs fall into one
class with respect to underlying DL KInstD ZK argument.

Hybrid 2 P ∗ interacts with V2, where V2 follows V1’s strategy, but chooses a pseudorandom
function fs′ randomly (independent of fs, the one that V2 committed to), computes chal-
lenge e by using fs′ in all those sessions having the same first three messages (excluding
τ) (cp, c0), (cv, ρ

′) and a, and runs the simulator for the DL KInstD ZK argument to give
proofs that those queries generated by using fs′ are computes correctly. The P ∗’s view
in this hybrid is indistinguishable form that in Hybrid 1 due to the hiding property of
the statistically-binding commitment scheme Comv which V j(x) used to committed to
the description of fs. Otherwise, by setting up a standard experiment, we can use the
distinguisher to break the hiding property of Comv.
We emphasize that, in such a experiment, we need to simulate all proofs with respect
to the target commitment cv (for which we guess the value (s or s′) that is committed
to in cv), fortunately, this can be done due to the following two reasons: 1) all these
proofs fall in one class (this is crucially different from the case in [12] in which there are

8 This happened also to the extractor constructed in [12], however, it is worthy of notice that this fact
cannot help the construction of the DL WI protocol to achieve unbounded resettably-sound argument of
knowledge when x0 /∈ L because we have to simulate many other sessions (classes) related to the same
verifier’s commitment in the analysis of the extractor.

18

possibly many different classes with respect to the same target commitment, and though
the extractor presented in [12] needs only to simulate one class among those different
classes as our extractor, the analysis of their extractor requires all those different classes
can be simulated). Note that the a verifier’s first message (cv, ρ

′) will determine an
unique first message a of the underlying 3-round WI argument when x0 /∈ L0, and this
is crucial for our argument to achieve higher level of security than the one in [12]. 2)
the underlying DL KInstD ZK argument satisfies 1-class-bounded ZK property when
x0 /∈ L0.

Hybrid 3 P ∗ interacts with E in step 3. Note that the only difference between the strategy
of E in step 3 and V2 lies in the fact that in all those sessions having the same first
three messages (cp, c0), (cv, ρ

′) and a (excluding τ), E sends a random challenge e′ while
V2 computes challenge e by using fs′ . P ∗’s view in this hybrid is indistinguishable form
that in Hybrid 2 due to the pseudorandomness of fs′ . ¥

4 Proof of Theorem 1.4

The construction of IDWIAOK presented in last section yields the Theorem 1.4 immediately.
By simply replacing DL WI protocol with our IDWIAOK in the construction of DL’s class-
bounded resettable ZK argument with weak resettable-soundness presented in section 5
in [12], we get a (unbounded) resettably-sound class-bounded resettable ZK argument. In
particular, our protocol is derived from DL KInstD ZK protocol (see subsection 3.1) with
the following modification: in the phase 1 (the key generation phase), instead having the
verifier himself generate the key instance for his InstD-VRF, we have the honest prover
generate a NO key instance y for the verifier’s InstD-VRF (used in the second phase) and
use our IDWIAOK to prove that the statement x ∈ L to be proven is true or y is a YES
instance.

The reason that the resulting protocol achieves unbounded resettable-soundness is simply
due to the unbounded resettable-soundness of the IDWIAOK. The security analysis of this
protocol is essentially identical to the one of DL’s class-bounded resettable ZK argument
with weak resettable-soundness [12], and so is omitted here.

5 Σ-Puzzles: settling the simultaneous resettability problem in the
BPK Model

So far, the IDWIAOK (and the DL WI protocol) has been only used to setup a key instance
for the verifier’s InstD-VRF in the DL paradigm for simultaneously resettable argument. As
we have seen, this paradigm essentially suffers from the bounded-concurrency bottleneck of
the Barak’s public-coin argument in achieving fully resettable zero knowledge9.

This bottleneck exists even in the BPK model. Considering the following adaption of
our (unbounded) resettably-sound class-bounded resettable ZK argument (P, V) into the
BPK model: we have V register its first message as its public key. Note that this adaption
does not affect the resettable-soundness. However, the resulting protocol still fails to achieve

9 Note that our construction of IDWIAOK just shows how to avoid this bottleneck in achieving full resettable-
soundness.

19

fully resettable ZK, though it does achieve incarnation-bounded resettable ZK (i.e., there
are a-priori bound on the number of incarnations of honest prover with which the malicious
resetting verifier interact), a property stronger than class-bounded resettable ZK.

We now make a novel use of IDWIAOK, which circumvents the current technical bottle-
neck and gives rise to a elegant construction (we call it Σ-Puzzles) for full-fledged simulta-
neously resettable argument in the BPK model.

5.1 Σ-Puzzles Protocol in the BPK Model: Intuition and Subtlety

Let f : {0, 1}n → {0, 1}n be an one-way function, G : {0, 1}n → {0, 1}2n be a pseudorandom
generator. Consider the following 3 phases ”Σ-Puzzles” protocol for statement x ∈ L (|x| =
n).

A Σ-Puzzles protocol in the BPK model (informal)
Common input: x ∈ L
The public key: a puzzle β (β = f(α))
P ’s private input: a witness w for x ∈ L
V ’s private input: α, the solution to β.
P =⇒ V P chooses a random string γ of length 2n (served as a puzzle specified by G) and

sends it to V .
Using IDWIAOK, P proves that x ∈ L or he knows a solution δ to the puzzle γ, i.e.,
γ = G(δ).

V =⇒ P Using IDWIAOK, V proves that he knows a solution δ to the puzzle γ or a solution α
to the puzzle β.

P =⇒ V Using IDWIAOK, P proves that x ∈ L or he knows the solution α to the puzzle β.

As usual, We assume that the resettably-sound argument of knowledge property of every
IDWIAOK used in the above protocol depends on the first instance corresponding to the
common input.

Intuition. The above protocol seems to be both resettable ZK and resettably-sound.
To establish resettable ZK, the simulator just needs to extract the solution to puzzle β

(that serves as the public key): in every session, it generates a YES instance γ (i.e., ∃δ s.t.
γ = G(δ)) and uses δ as witness to execute the first IDWIAOK, and using the solution to
puzzle β extracted from malicious verifier as witness, it will complete the last IDWIAOK
successfully. This simulation strategy seems to work: 1) the first and the last IDWIAOK
are resettable WI; 2) the extraction can be done by using the extractor associated with
IDWIAOK (even though γ is a YES instance10) in the second phase; and 3) the puzzles (i.e.,
public keys) for which the simulator needs to extract the corresponding solutions are fixed
in advance.

To establish resettable-soundness, we can construct an algorithm B that break the one-
wayness of f in the following way: B first extracts the solution to the puzzle γ from the
10 It seems that the extractor described in last section works only in case the first instance γ is NO instance.

However, as we will see, assuming language L0 (defined by G) is a hard-to-decide, we can also do extraction
even when δ ∈ L0 in our case in which the YES instance δ is generated by the simulator (that plays the
role of verifier in second IDWIAOK). This is implied by the indistinguishability between Hybrid 2, Hybrid
3, and Hybrid 4 in the proof of Claim 5.1 presented in next section.

20

malicious resetting prover P ∗ in the first IDWIAOK, and uses this solution to complete
the second IDWIAOK, then it extracts the solution to the puzzle β in the third IDWIAOK
(i.e., finds the preimage of β). B seems to work due to the fact that the first and the last
IDWIAOK satisfy resettably-sound argument of knowledge property when x /∈ L (note that
x serves as the first instance of the common inputs for the first and the last IDWIAOK).

Subtlety. Indeed, the above intuition for resettable zero knowledge works. Using a mix
of black-box simulation strategy and non-black-box extraction strategy, combined with an
idea in [21], we can extract the answers to puzzles registered by a malicious resetting verifier
one by one, and then do simulation successfully.

However, the above intuition for resettable-soundness is problematic. Observe that in the
extraction process described in section 3, while focusing on a single “class”, the extractor
needs to simulate the honest verifier in other sessions. Thus, when a IDWIAOK is embedded
in a big argument system, a successful extraction with respect to this IDWIAOK requires:

It is easy to simulate the honest party, which acts as the verifier in this IDWIAOK, in
an executions of the big system.

This is not the case with our extraction used to justify resettable-soundness. For the
breaking algorithm B, which plays the role of the verifier in the first IDWIAOK and does
extraction in this phase, it is impossible to complete the second IDWIAOK without knowledge
of the solution to the puzzle γ11 (note that B does not know the preimage of β).

To use the malicious resetting prover P ∗’s power to invert f , the breaking algorithm
B need to simulate the verifier in all sessions initiated by P ∗. This requires B to extract
solution to every puzzle γ generated by P ∗ in every session. Note that this task cannot be
done in polynomial time even when P ∗ is a concurrent adversary due to two facts: 1) the
extraction requires rewinding; and 2) P ∗ can generate these γ’s based on transcripts of other
sessions. Similar in spirit to concurrent scheduling that causes “nest effect” in [15], we can
construct a concurrent adversary P ∗ such that B cannot do this simulation in polynomial
time.

we need some new idea to overcome the above obstacle in analysis of resettable-soundness.

A Remark on Non-Malleability. Another security concern that arises in our setting
is malleability[11]. The malicious party (prover or verifier) may be able to mount a man-
in-the-middle attack, for instance, the malicious verifier initiates two sessions scheduled in
a delicate way, and may cheat in the second IDWIAOK (in which he plays the prover) in
session two based on some information obtained from the first IDWIAOK (in which he plays
the verifier) in session one. We note that the basic 3-round WI argument—if we implement
it using some number-theoretic assumptions—is malleable as described in [2] (the authors
of [2]called it “divertible”): the man-in-the-middle can produce a first message a in a session
in which he plays the prover (the right session) based on another first message a′ he received
from another session in which he plays the verifier (the left session), and upon receiving
the challenge e in the right session, he computes a challenge e′ based on e in a specific
way. At last, once the man-in-the-middle received a accepting last message z′ in the left

11 A similar case happens to the simulator, however, as we will see in detailed proof, the simulator works
due to the fact that all puzzles registered by malicious verifier are fixed in advance.

21

session, he can produce an accepting last message z in the right session without knowing the
witness for the common input. However, this attack does not apply to our case (intuitively)
due to the fact that once a′ is sent by the honest party, the challenge e′ has already been
uniquely determined by the history of this session up to a′ (note that both Comv and Comp

are statistically-binding commitments), and the man-in-the-middle can not change it at his
desire. We will give a rigorous treatment of this problem in our security proof. (implied by
Claim 5.1 presented in next section).

We argue that in the construction of IDWIAOK does not require any underlying commit-
ment scheme to be non-malleable, and we do not claim that our IDWIAOK is non-malleable.
What we claim is that our argument in the BPK model (presented in next section)is secure
(i.e., satisfying simultaneous resettability) against any possible man-in-the-middle attack
mounted by a resetting verifier (or resetting prover).

5.2 Resettably-Sound Resettable ZK Argument in the BPK Model

We use signature to deal with the aforementioned subtlety. In the key generation stage,
we have the verifier publish a public key of a signature scheme that satisfies existential
unforgeability against adaptive chosen message attack; In proof stage, we have the verifier
prove that he knows a solution δ to the puzzle γ or a valid signature on the message (x, γ)
(x is the statement to be proven) in the second IDWIAOK, and have the prover prove that
x ∈ L or he knows a valid signature on the message (x, γ) in the third IDWIAOK. To prove
the resulting protocol enjoys resettable-soundness, we construct an algorithm that breaks
existential unforgeability of the signature scheme with probability negligibly close to the
one that the malicious resetting prover can cheat.

The crux of this idea is that the breaking algorithm needs only to focus on those sessions
with the same prover’s first message γ on input the false statement x /∈ L in which it intends
to extract a valid signature on message (x, γ), and, along with the help from signing oracle
(thus it can obtain all valid signatures on messages that does not equal (x, γ)), plays the
role of the verifier in straight line way for all other sessions. On the other hand, as we will
see, this modification does not compromise the resettable ZK property (though it increases
the running time of the simulator up to a polynomial factor) due to two facts: 1) both
the public key sequence (ver k1, ..., ver ks) and the statement sequence x1, ..., xs(n) ∈ L are
fixed in advance, and 2) all γk’s are determined only by the randomness tape of the prover,
and therefore can also be viewed as fixed in advance when all provers are assumed to be
honest in the proof of zero knowledge.

Let G : {0, 1}n → {0, 1}2n be a pseudorandom generator, and SS = (KG, Sig, V er) be
a signature scheme against adaptive chosen message attack, in which KG, Sig, and V er
denote key-generation algorithm, signing algorithm, and verifying algorithm respectively.
We depict the protocol in Fig. 2.

Hardness assumptions. Note that IDWIAOK is based on the existence of trapdoor permu-
tations and hash functions, and both the signature scheme against adaptive chosen message
attack and the pseudorandom generator can be constructed from any one-way functions. So,
the existence of trapdoor permutations and hash functions are sufficient for our resettably-
sound resettable ZK argument in the BPK model.

22

The Resettably-Sound Resttable ZK Argument (P, V) in the BPK model

Common input: x ∈ L (|x| = n), the public file F , an index i that specifies the i-th entry pki = ver ki.
P ’s private input: the witness w such that (x, w) ∈ RL.
V ’s private input: sig ki such that (sig ki, ver ki) = KG(1n), where KG is a key generation algorithm

of the signature scheme SS = (KG, Sig, V er).
P ’s randomness: (γ, rp), where γ is chosen uniformly at random and |γ| = 2n.
V ’s randomness: rv.

P −→ V P sends γ;
P =⇒ V P and V execute the IDWIAOK in which P proves that x ∈ L or there exists δ such that γ = G(δ)

by using w as witness;

In this stage, P sets r1
p = frp(x, ver ki, γ) for the random tape of the prover strategy in IDWIAOK,

and V sets r1
v = frv (x, ver ki, γ) for the random tape of the verifier’s strategy in IDWIAOK.

V =⇒ P V and P execute the IDWIAOK in which V proves that there exists δ such that γ = G(δ) or there
exists σ such that V er(ver ki, σ, (x, γ)) = 1 (i.e., σ is a valid signature on (x, γ)). In this execution
of IDWIAOK, V uses the secret key sig ki to produce a valid signature σ and uses it as witness;

In this stage, P sets r2
p = frp(x, ver ki, γ, tran1) for the random tape of the verifier’s strategy in

IDWIAOK, and V sets r2
v = frv (x, ver ki, γ, tran1) for the random tape of the prover’s strategy in

IDWIAOK, where tran1 is the transcript of execution of the first IDWIAOK.
P =⇒ V P and V execute the IDWIAOK in which P proves that x ∈ L or there exists σ such that

V er(ver ki, σ, (x, γ)) = 1 by using w as witness.

In this stage, P sets r3
p = frp(x, ver ki, γ, tran1, tran2) for the random tape of the prover’s strategy

in IDWIAOK, and V sets r3
v = frv (x, ver ki, γ, tran1, tran2) for the random tape of the prover’s

strategy in IDWIAOK, where tran2 is the transcript of execution of the second IDWIAOK.

Fig. 3. The resettably-sound resettable ZK argument for NP language L.

5.3 Analyzing our protocol

In this section, We show the protocol depicted in fig. 2. satisfies both resettably-soundness
and resettable ZK. This establishes Theorem 1.5.

Completeness is straightforward.

Resettable ZK. Let V ∗ be an (s, t)-resetting malicious verifier. Assume, in real world, On
input a fixed YES instance sequence x1, ..., xs(n) ∈ L of length n each, V ∗ generates its public
keys (ver k1, ..., ver ks), and interacts with s3(n) incarnations of prover, P (xi, wi, ver kj , rk, F),
1 ≤ i, j, k ≤ s(n), where rk’s are chosen independently and uniformly at random. With-
out loss of generality, we also assume that V ∗ sends a first message (i, j, k) to initiate a
session with incarnation P (xi, wi, ver kj , rk, F). We construct a simulator S as required by
definition 2.6.

S operates as follows. First, given a fixed YES instance sequence x1, ..., xs ∈ L of length
n each as input, S runs the key-generation phase of V ∗ to obtain the public file F consists
of s entries (ver k1, ..., ver ks).

In proof stage, Upon receiving the initiation message (i, j, k), S chooses δk randomly
and sends γk = G(δk) to V ∗, then uses δk as witness to complete the first IDWIAOK. Note
that if S manages to extract a valid signature σ(i,j,k) (under the public key ver kj) on the
message (xi, γk) (i.e., V er(ver kj , σ(i,j,k), (xi, γk)) = 1) from V ∗ in the second IDWIAOK,

23

then S can succeed in simulating the prover P (xi, wi, ver kj , rk, F) by using this valid
signature as witness in the execution of the third IDWIAOK. Note that when all common
inputs (x1, ..., xs) are YES instance, the first and the third IDWIAOK enjoy resettable WI
property.

S proceeds in sequential phases in proof stage. In each phase, S either obtains a new valid
signature or completes the whole simulations unless it detects some V ∗’s cheating behavior
(then it aborts as the honest prover). We argue that S will complete the whole simulation in
at most s3 +1 phases. Notice that both the public key sequence (ver k1, ..., ver ks) and the
statement sequence x1, ..., xs ∈ L are fixed in advance, and all γk’s are determined only by
the randomness tape of the prover. Therefore, for s3 incarnations P (xi, wi, ver kj , rk, F),
1 ≤ i, j, k ≤ s, knowledge of s3 valid signatures σ(i,j,k) enables a successful simulation.

The remaining task is to show how the simulator extract a valid signature in one phase.
Such an extraction seems a bit unusual : the simulator S needs to extract a witness in the
second IDWIAOK in which the first instance γ is a YES instance (note that S must generate
a YES instance γ to complete the first IDWIAOK), and the second IDWIAOK does NOT
guarantee such an extractor at all when the first instance γ is a YES instance! However, we
will show it is feasible to do such a extraction due to the fact γ is a hard-to-decide instance
and is generated by the prover (hence the verifier does not know the witness to γ, though
it is a YES instance).

Now we present the strategy of S in one phase. We begin with some notations and ter-
minology. Recall that a session is an interaction with an incarnation P (xi, wi, ver kj , rk, F).
Due to the resetting attack, V ∗ may initiate many (possibly incomplete) interactions with
the same incarnation P (xi, wi, ver kj , rk, F). We denote all interactions with P (xi, wi, ver kj , rk, F)
by Int(i,j,k). We say Int(i,j,k) solved if S has obtained a valid signature σ(i,j,k) (under the pub-
lic key ver kj) on the message xi, γk, otherwise we call it unsolved. A session is called solved
if it belongs to a solved Int(i,j,k) for some (i, j, k).

S in one phase
1. S selects a random tape for V ∗, and plays the role of prover. Like the honest prover,

S checks whether V ∗’s message is accepting in each step, if not, S aborts this session
immediately.

2. Throughout this phase, S adopts the following trivial strategy in every solved session:
generate a YES instance γ and complete the first IDWIAOK using γ’s witness, then play
the role of honest verifier in the second IDWIAOK and use the valid signature that S
has obtained as witness to execute the third IDWIAOK.

3. For every unsolved session, S generates a YES instance γ, completes the first IDWIAOK
using γ’s witness, and plays the role of honest verifier in the second IDWIAOK until one
session reaches the last step of the second IDWIAOK and the transcript of this session
so far is accepting.

Assume that this session belongs to interaction Int(i,j,k) (i.e., the statement proven,
the first prover’s message, and the public key are xi, γk, and ver kj respectively.).
Suppose tran and (cp, c0), (cv, ρ

′), (a, τ) are the transcript up to the end of the run of
the first IDWIAOK and the first three messages exchanged in the second IDWIAOK in
this session respectively, (a, e, z) is the accepting transcript of the underlying 3 round

24

WI argument in the second IDWIAOK, and τ∗ (not necessarily equal τ) is the valid
correctness proof (for a) that appeared for the first time in all sessions with the prefix
tran, (cp, c0), (cv, ρ

′), a.

4. Once S received the above accepting transcript (a, e, z), it rewinds to the point where
the prefix (tran, (cp, c0), (cv, ρ

′), (a, τ∗))12 (no matter what the correctness proof for a
is. We call this point rewinding point) was first appeared, and then, for the first two
IDWIAOKs in every unsolved session, S performs in the following way:

– For all those unsolved sessions in Int(i,j,k) with the prefix (tran, (cp, c0), (cv, ρ
′), a)

(we call such sessions target sessions), S chooses another query e′ 6= e randomly,
and sends e′ to V ∗ as the challenge of the underlying 3 round WI argument in the
second IDWIAOK, then runs the simulator for DL KInstD ZK argument and give
proofs that e′ is computed correctly.
Notice that all executions of DL KInstD ZK argument in target sessions fall into
one class according to the terminology in [12].

– For every other unsolved session, S, as usual, generates a YES instance γ, completes
the first IDWIAOK using γ’s witness, and plays the role of honest verifier in the
second IDWIAOK.

5. If one of those target sessions is the first one that reaches the last step of the second
IDWIAOK and the new transcript (a, e′, z′) of the underlying 3 round WI argument in
the second IDWIAOK is accepting, S halts and computes the witness σ(i,j,k) from the
two accepting transcripts (a, e, z) and (a, e′, z′), and stores it. Otherwise, S goes to step
4.

We first remark that there are two differences between the extraction strategy used by S in
step 4 and the one used by the extractor for IDWIAOK: 1) the underlying (1-class-bounded)
DL KInstD ZK argument does NOT guarantee a simulator in case γk is a YES instance
(which is the first instance of the common input for the second IDWIAOK and serves as
the key instance for the V ∗’s InstD-VRF in this DL KInstD ZK argument). This is the very
reason why IDWIAOK does not provide resettably-sound argument of knowledge property
when the first instance of the common input is a YES instance. 2) the strategy used by S
requires that in the second run (after rewinding), one of the target sessions reaches the
last step of the second IDWIAOK again before any other unsolved session reaches this step.
Note that if an unsolved non-target session reaches the this step first in the second run of
S, S will possibly get stuck: it will not be able to complete the third IDWIAOK successfully
because it knows neither the relevant valid signature nor the witness for the statement to
be proven in the global system.

Nevertheless, as mentioned, due to the fact that γk is a hard-to-decide instance and is
generated by the prover, we are able to show DL KInstD ZK argument is still simulatable in

12 As done in the extraction presented in section 3.2, see also footnote 3. Here we stress that the three
messages ((cp, c0), (cv, ρ′), a) of the second IDWIAOK will never appears in any session with different
prefix tran′ due to the way of generating random bits in each step. Note that this is crucial for justifying
our simulator S: Once the prefix tran′, (cp, c0), (cv, ρ′), a appeared in a non-target (i.e., tran′ 6= tran)
session, S is supposed to send the challenge e to V ∗ immediately, then in a target session, any different
challenge e′ 6= e resent by S will be detected by V ∗ because S is bound to send only one correct challenge
with the same history ((cp, c0), (cv, ρ′), a) of the second IDWIAOK.

25

our case. Moreover, observe that once DL KInstD ZK argument is simulatable in our case,
the requirement in item 2) can be met without causing the running time of S to increase
much.

Now we give a formal analysis of the simulator. Consider S in a specific phase. Let
A = {(Int(i′,j′,k′))|Int(i′,j′,k′) has been solved before S enters this phase.}. Let RealA be
real interactions till the point where one session (i.e. one of the target sessions as defined
in the description of S) outside A reaches the last step of the second IDWIAOK. Assume
that this session is in Int(i,j,k), i.e., the statement proven, the first prover’s message, and the
public key are xi, γk, and ver kj respectively. Let SimA

fst be the first run of S in this phase,
i.e., simulation before rewinding, and SimA

sec be the second run of S in this phase, which
consists of two parts: simulation till the rewinding point and its continuation carried out
in step 4 (after rewinding).

The resettable zero knowledge property of our protocol follows from the following three
claims.

Claim 5.1 Both SimA
fst and SimA

sec are indistinguishable from RealA.
This claim guarantees S will extract a witness to the statement “there exists δk such that

γk = G(δk) or there exists σ(i,j,k) such that V er(ver kj , σ(i,j,k), (xi, γk)) = 1” (i.e., either δk

or σ(i,j,k)) with essentially the same probability that V ∗ convinces the honest prover that
this statement is true in the second IDWIAOK in one of the target sessions.

Claim 5.2 S extracts σ(i,j,k) (rather than δk) with probability negligibly close to the proba-
bility that V ∗ gives a successful proof in the second IDWIAOK in one of the target sessions.

Claim 5.3 S halts in expected polynomial time.

proof of Claim 5.1. We mainly prove that SimA
sec is indistinguishable from RealA. The

fact that SimA
fst is indistinguishable from RealA can be easily shown in the same way and

we omit it here.
Again, we perform a hybrid argument, in which each hybrid is indistinguishable from

its preceding neighbor, to establish this claim. In what follows, interactions defined in all
hybrids are carried out till the point where one session outside A reaches the last step of
the second IDWIAOK, and the target sessions are defined as in the description of S.

Hybrid 0 RealA.
Hybrid 1 Interactions HSimA

1 between H1 and V ∗, in which H1, given all witnesses (w1, ..., ws(n))
as input, follows the honest prover strategy except that, in target sessions13, it runs
the simulator for DL KInstD ZK argument to give a proof that the challenge is correct
in the second IDWIAOK.
Due to the 1-class-bounded (as mentioned, all executions of DL KInstD ZK argument in
target sessions fall into one class) resettable ZK property of DL KInstD ZK argument

13 Actually, H1 cannot tell whether a session is a target session before a session outside A reaches the
last step of the second IDWIAOK, but this does not matter: H1 can find target sessions by following
the honest verifier strategy in all sessions outside A. Once one of these sessions reached the last step of
the second IDWIAOK (at this point target sessions are defined), then H1 rewinds and uses the strategy
defined in this hybrid in those target session. In fact, HSimA

1 is defined as the second run of H1, and this
holds for the following H2, and H3. For simplifying presentation, we ignore this problem totally.

26

when γ is a NO instance (note that all γ’s in this interactions are NO instances), HSimA
1

is indistinguishable from RealA.
Hybrid 2 Interactions HSimA

2 between H2 and V ∗, in which H2, given all witnesses (w1, ..., ws(n))
as input, follows H1’s strategy except that he sends a random challenge e′ in the second
IDWIAOK (and runs the simulator to prove that e′ is correct, as H1) in those target
sessions.
Due to the hiding property of Comv, HSimA

2 is indistinguishable from HSimA
1 .

Hybrid 3 Interactions HSimA
3 between H3 and V ∗, in which H3, given all witnesses (w1, ..., ws(n))

as input, follows the H2 strategy except that he generates a YES instance γ as its first
message in every session.
Due to the pseudorandomness of G, HSimA

3 is indistinguishable from HSimA
2 .

Hybrid 4 SimA
sec. Note that the only difference between HSimA

3 and SimA
sec is that, in SimA

sec,
S uses the witness corresponding to the second part of the statement in execution of
the first IDWIAOK and third IDWIAOK in every session.
Due to resettable WI property of these first and third IDWIAOKs, SimA

sec is indistin-
guishable from HSimA

3 . ¥
Why Claim 5.1 implies security against man-in-the-middle attack by V ∗. The
reason that our protocol is secure against man-in-the-middle attack mounted by V ∗ is that,
once V ∗ has received a first message of the underlying 3-round WI of the first or third
IDWIAOK in a session, V ∗ cannot produce challenge e for this session adaptively based on
some other session’s transcript, even in the case that S shows to V ∗ how to simulate on a
false statement “e′ is correct” in one of target sessions. This in turn is due to:

– The DL KInstD ZK argument in the second IDWIAOK (which is used by S to prove
“challenge e′ is correct”) in any target session satisfies 1-class-bounded resttable ZK
even though the key instance γk for the InstD-VRF hold by V ∗ is a YES instance. This
is implies by the indistinguishability between HSimA

3 and HSimA
2 .

– The DL KInstD ZK argument in the first or third IDWIAOK (which is used by V ∗ to
prove “challenge e is correct”) in any session satisfies resettable-soundness because all
key instances (i.e., the common inputs xi, 1 ≤ i ≤ s) for those InstD-VRFs hold by S
are YES instance. This implies the indistinguishability between SimA

sec and HSimA
3 .

proof of Claim 5.2. Consider the following two modified simulators:

Simulator S1 , given all witnesses (w1, ..., ws(n)) as input, follows S’s strategy except that it
always uses the witness for the common input of the current session (one of (w1, ..., ws(n)))
to execute the first and third IDWIAOK.

Simulator S2 , given all witnesses (w1, ..., ws(n)) as input, follows S1’s strategy except that
it generates a random string γ as its first message in every session.

It is easy to see that, except for negligible probability, S and S1 extract the same
witness for the statement “there exists δk such that γk = G(δk) or there exists σ(i,j,k) such
that V er(ver kj , σ(i,j,k), (xi, γk)) = 1”14, due to the resettable WI property of these first

14 Here all witnesses to the same instance of this statement is regarded as the same

27

and third IDWIAOKs. The same holds for S1 and S2: they will extract the same witness for
the above statement except for negligible probability, due to the pseudorandomness of G.

Note that all γs generated by S2 are NO instances except for exponentially small proba-
bility, hence S2 extracts σ(i,j,k) with the same probability that V ∗ convinces the prover that
the above statement is true in the second IDWIAOK in one of the target sessions. Thus the
claim follows. ¥

proof of Claim 5.3. We observe that if with probability p one of target sessions is the
first that reaches the last step of the second IDWIAOK and the transcript of this session (so
far) is accepting, then, after rewinding, the probability that one of the target sessions is
still the first session that reaches the last step of the second IDWIAOK is negligibly close
to p (this observation was also used in [21] and in [9]), otherwise, we can use V ∗ to break
either the computation hiding of the commitment scheme Comv or the (1-class-bounded)
resettable ZK property of DL KInstD ZK argument (this property holds even when γk is a
YES instance, see Appendix B for detailed proof).

Assume that the expected time of the interactions between S and V ∗ before rewinding is
poly(n), which is a polynomial. So if S obtained an accepting transcript of a target session
before rewinding, S will find a new valid signature during a phase in time poly(n)/p. Thus,
the expected running time of S in one phase is (1− p) · poly(n)+ p · (poly(n)/p), thus S will
complete the whole simulation in expected time (s3 + 1)[(1− p) · poly(n) + p · (poly(n)/p)],
which is a polynomial. ¥

Resettable-soundness. This property is proved by contradiction. Assume that there is a PPT
P ∗ that can cheat an honest verifier with non-negligible probability. We construct an algo-
rithm B that, having access to a signing oracle, breaks the existential unforgeability of the
signature scheme SS with non-negligible probability.

Assume in real world, on input a false statement x and a public key (ver k), P ∗ interacts
with s incarnations of verifier, V (x, sig k, ρi), 1 ≤ i ≤ s, where ρi’s are chosen independently
and uniformly at random. We denote by Intk the set of all sessions having the first P ∗’s first
message γk. Note that for two sessions having different P ∗’s first message γ, even initiated
by P ∗ with the same incarnation V (x, sig k, ρi), they look like sessions between P ∗ and
different incarnations of verifier due to the fact that V (x, sig k, ρi) applies a pseudorandom
function to history to generate randomness in each session. Assume P ∗ sends at most t
different γ’s, γ1, ..., γt. where t is a polynomial. B guesses an Intj in which P ∗ will cheat an
honest verifier. For any session in Intk, k 6= j, B, under the help from signing oracle, acts as
the honest verifier; For session in Intj , B rewinds P ∗ in the first IDWIAOK, obtains δj such
that γj = G(δj) and uses it to complete the second IDWIAOK, at last, B rewinds P ∗ in the
last IDWIAOK and will obtains a valid signature σ on new message (x, γj).

The breaking algorithm B

1. B selects a random string for P ∗, and plays the role of verifier. Like the honest verifier,
B checks whether P ∗’s message is acceptable in each step, if not, B aborts this session
immediately.

2. B uniformly chooses j from {1, ..., t}.

28

3. Throughout this breaking process, B adopts honest verifier strategy in every session in
Intk, k 6= j. In the execution of the second IDWIAOK, B obtains a valid signature on
message (x, γk) from the signing oracle, and uses it to complete the second IDWIAOK.

4. Once a session in Intj reaches the last step of the second IDWIAOK and the transcript
of this session so far is accepting, B goes to next step.

Suppose that (cp, c0), (cv, ρ
′), and (a, τ) are the first three messages exchanged in the

first IDWIAOK in this session, (a, e, z) is the accepting transcript of the underlying 3
round WI argument in the first IDWIAOK, and τ∗ (not necessarily equal τ) is the valid
correctness proof (for a) that appeared for the first time in all sessions with the prefix
tran, (cp, c0), (cv, ρ

′), a.

5. B rewinds to the point where the prefix of a session (γj , (cp, c0), (cv, ρ
′), (a, τ∗)) (As done

in the extraction presented in section 3.2, see also footnote 3.) was first sent, and then,
during the execution of the first IDWIAOK, B performs in the following way:
– For every session in Intj having the prefix (γj , (cp, c0), (cv, ρ

′), a) (no matter what
the correctness proof for a is. As before, we call such sessions target sessions), B
chooses another query e′ 6= e randomly, and sends e′ to P ∗ as the challenge of the
underlying 3 round WI argument in the first IDWIAOK, then runs the simulator for
DL KInstD ZK argument and give proofs that e′ is computed correctly15.

– For every other session in Intj , B acts as honest verifier in the first IDWIAOK.
6. If one of those target sessions is the first one that reaches the last step of the first

IDWIAOK and the new transcript (a, e′, z′) of the underlying 3 round WI argument in
the second IDWIAOK is accepting, B computes the witness δj (such that γj = G(δj))
from the two accepting transcripts (a, e, z) and (a, e′, z′), stores it, and goes to next step.
Otherwise, B goes to step 5.

7. For all sessions in Intj , B uses δj as witness to execute the second IDWIAOK, and acts
as honest verifier in the third IDWIAOK.

8. Upon receiving a complete accepting transcript of a session in Intj , B uses the same
strategy as the extractor E presented in section 3 to extract a valid signature σ on new
message (x, γj). Suppose tran, and ((cp, c0), (cv, ρ

′), (a, τ)) are the transcript before the
third IDWIAOK and the first three messages exchanges in the third IDWIAOK respec-
tively, and (a, e, z) be the accepting transcript of the underlying 3 round WI argument in
the third IDWIAOK. In particular, B rewinds to the point where (tran, (cp, c0), (cv, ρ

′), a)
was first sent, sends another query e′ 6= e and proves e′ is correct by using simulator
guaranteed by DL KInstD ZK argument, and acts as honest verifier in other sessions in
Intj except that it uses δj as witness to execute the second IDWIAOK. Once (a, e′, z′) is
obtained, B computes the witness σ on the message (x, γj) that used in the execution
of third IDWIAOK by P ∗ (note that we assume x /∈ L) from the two transcripts (a, e, z)
and (a, e′, z′), outputs it and halts.

Note that when x /∈ L, the simulation for DL KInstD ZK argument in step 5 and 8 will be
successful, moreover, by standard hybrid argument, we can conclude that whole P ∗’s view
15 Again, note that all executions of DL KInstD ZK argument in these target sessions fall into one class,

and the three messages ((cp, c0), (cv, ρ′), a) of the first IDWIAOK will never appears in any session with
different prefix γi for i 6= j due to the way of generating random bits in each step.

29

during the above breaking process is indistinguishable from the real interactions. Thus, if
P ∗ can cheat with non-negligible probability p, then B will halt in expected polynomial
time and output an signature on the message (x, γj) for which it does not query the signing
oracle with probability p/t (B guesses the correct number j with probability 1/t), which
is still a non-negligible probability. This contradicts the existential unforgeability of the
signature scheme SS.

6 Discussion

It is interesting to note that the resettable ZK property of all previous arguments in BPK
model is demonstrated via black-box simulation (in [3,13], non-black-box technique are used
only to demonstrate soundness), and, when ignoring the round complexity, all previously
known feasible results in BPK model can be achieved in the plain model by increasing the
“rewinding opportunity” for simulator (we can view the second IDWIAOK as a rewinding
opportunity for simulator). By modifying our protocol in the BPK model in the same way,
we get the following protocol.

Protocol for statement x ∈ L.

preamble
V −→ P V sends many, say m = logn, public keys ver k1, ..., ver km;
P =⇒ V P sends a random string γ.

Using IDWIAOK, P proves to V that x ∈ L or he knows δ such that γ = G(δ);
from i = 1 to m

V =⇒ P Using IDWIAOK, V proves to P that he knows δ such that γ = G(δ) or a valid
signature σi such that V er(ver ki, σi, (x, γ)) = 1;

main body
P =⇒ V Using IDWIAOK, P proves to V that x ∈ L or he knows σi such that

V er(ver ki, σi, (x, γ)) = 1 for some i ∈ {1, ..., m}.

We do not know whether the above protocol satisfy simultaneous resettability. if yes,
it seems we need a simulation strategy more sophisticated than the (black-box) simulation
strategy as described in [25].

Acknowledgements We are grateful to two anonymous referees from Crypto’08 for
their encouragement and positive comments, and thanks to all referees for their suggestions
to improve the presentation of this paper.

Yi deng thanks Ivan Visconti and Pino Persiano for many valuable discussions.

References

[1] B. Barak. How to go beyond the black-box simulation barrier. In Proc. of IEEE FOCS 2001, pp.106-115.
[2] M. Burmester, Y. Desmedt. All Languages in NP Have Divertible Zero-Knowledge Proofs and Ar-

guments Under Cryptographic Assumptions. In Advances in Cryptology-Eurocrypt’90, LNCS 473,
pp.1-10, 1991.

[3] B. Barak, O. Goldreich, S. Goldwasser, Y. Lindell. Resettably sound Zero Knowledge and its Applica-
tions. In Proc. of IEEE FOCS 2001, pp. 116-125.

30

[4] B. Barak, O. Goldreich. Universal Arguments and Their Applications. In Proc. of IEEE CCC 2002,
pp. 194-203.

[5] M. Blum. How to Prove a Theorem so No One Else can Claim It. In Proc. of ICM’86, pp. 1444-1451,
1986.

[6] B. Barak, Y. Lindell, S. Vadhan. Lower Bounds for Non-Black-Box Zero Knowledge. In Proc. of IEEE
FOCS 2003, pp.384-393

[7] M. Blum, S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo Random Bits. In
Proc. of IEEE FOCS 1982, pp. 112-117

[8] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In Proc.
of IEEE FOCS 2001, pp.136-145

[9] R. Canetti, O. Goldreich, S. Goldwasser, S. Micali. Resettable Zero Knowledge. In Proc. of ACM STOC
2000, pp.235-244

[10] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Concurrent Zero-Knowledge requires Ω(logn) rounds.
In Proc. of ACM STOC 2001, pp.570-579.

[11] D. Dolev, C. Dwork and M. Naor. Non-malleable Cryptography. SIAM J. on Computing 30(2):391-437,
2000.

[12] Yi Deng, Dongdai Lin. Instance-Dependent Verifiable Random Functions and Their Application to
Simultaneous Resettability. In Advances in Cryptology-Eurocrypt’07, LNCS4515, pp.148-168, 2007.

[13] Yi Deng, Dongdai Lin. Resettable Zero Knowledge in the Bare Public-Key Model under Standard
Assumption. Cryptology ePrint Archive, Report 2006/239.

[14] C. Dwork, M. Naor. Zaps and Their Applications. In Proc. of IEEE FOCS 2000, pp.283-293
[15] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In Proc. of ACM STOC 1998, pp.409-

418.
[16] G. Di Crescenzo, Giuseppe Persiano, Ivan Visconti. Constant Round Resettable Zero Knowledge with

Concurrent Soundness in the Bare Public-Key Model. In Advances of Cryptology-Crypto’04, Springer
LNCS3152, pp.237-253

[17] U.Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In Proc. of ACM
STOC 1990, pp.416-426.

[18] O. Goldreich. Foundation of Cryptography-Basic Tools. Cambridge University Press, 2001.
[19] O. Goldreich, S. Micali and A. Wigderson. Proofs that yield nothing but their validity or All languages

in NP have zero-knowledge proof systems. J. ACM, 38(3), pp.691-729, 1991.
[20] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM.

J. Computing, 18(1):186-208, February 1989.
[21] Y. Lindell. Bounded-Concurrent Secure Two-Party Computation Without Setup Assumptions. In Proc.

of ACM STOC’00, pp.683-692, 2003.
[22] S. Micali, L. Reyzin. Soundness in the Public-Key Model. In Advances in Cryptology-CRYPTO’01,

Springer LNCS2139, pp.542-565.
[23] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In Proc. of IEEE FOCS’99, pp.

120-130, 1999.
[24] M. Naor. Bit Commitment using Pseudorandomness. Journal of Cryptology 4(2): 151-158, 1991.
[25] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-Knowledge with Logarithmic Round Com-

plexity. Manoj Prabhakaran, Alon Rosen and Amit Sahai. Concurrent Zero-Knowledge with Logarith-
mic Round Complexity. In Proc. of IEEE FOCS’02, pp.366-375, 2002.

[26] L. Reyzin. Zero Knowledge with Public Keys. Ph.D thesis, 2001.
[27] A. Yao. Theory and Applications of Trapdoor Functions. In Proc. of IEEE FOCS’82, pp.80-91, 1982.
[28] M. Yung, Y. Zhao. Generic and practical resettable zero-knowledge in the bare public-key model. In

Advances in Cryptology-Eurocrypt’07, LNCS4515, pp.129-147, 2007.

