
On CCA1-Security of Elgamal And Damg̊ard Cryptosystems

Helger Lipmaa

University College London, UK

Abstract. Denote by XY [i] the assumption that the adversary, given a non-adaptive oracle access
to the Y oracle with i free variables cannot break the assumption X. We show that Elgamal is
CCA1-secure under the DDHCDH[1] assumption. We then give a simple proof that the Damg̊ard
cryptosystem is CCA1-secure under the DDHDDH[2] assumption, where the proof uses a recent
trapdoor test trick by Cash, Kiltz and Shoup.
Keywords. CCA1-security, Damg̊ard cryptosystem, DDH, Elgamal cryptosystem.

1 Introduction

While the Elgamal cryptosystem [Elg85] is one of the best-known public-key cryptosystems,
results on its security have been slow to come. Only in 1998, it was proven that Elgamal is CPA-
secure [TY98]. On the other hand, it is clearly not CCA2-secure because it is homomorphic.
However, not much is known about its CCA1-security.

Denote by XY [i] the assumption that the adversary, given a non-adaptive oracle access to
the Y oracle with i free variables cannot break the assumption X. We show that Elgamal is
CCA1-secure under the DDHCDH[1] assumption. We also give an opposite result, showing that if
Elgamal is CCA1-secure then the DDHCDH[1] assumption holds. In some sense, this result just
states that Elgamal is CCA1-secure iff it is CCA1-secure, but it serves as an introduction to the
second main result. Moreover, this is the weakest assumption up to know under which Elgamal
has been proven CCA1-secure.

In 1991, Damg̊ard proposed the Damg̊ard cryptosystem [Dam91] and proved it to be
CCA1-secure under a knowledge-of-the-exponent assumption. Only recently it was shown that
Damg̊ard is CCA1-secure under a more standard but still relatively strong DDHDDH[2] assump-
tion [Gjø06]. We first give a simple proof that Damg̊ard is CCA1-secure iff the 2DDH2CDH[1]

assumption holds, where both 2DDH and 2CDH are related to recent assumptions by Cash, Kiltz
and Shoup [CKS08]. We also show that one can derive the 2DDH2CDH[1] assumption under the
more traditional DDHDDH[2] assumption. Finally, we give a simple direct proof that Damg̊ard
is CCA-1 secure under the DDHDDH[2] assumption. Our security proof is considerably simpler
than the proof given in [Gjø06] that used a sequence of several games. Our proof uses a simple
reduction.

In addition, we conjecture that DDHCDH[2] is a stronger assumption than DDHDDH[1], which
on the other hand is a stronger assumption than 2DDH2CDH[1], which is a stronger assumption
than DDH. That is, we prove that:

Elgamal-CCA1 = DDHCDH[2] ≥ DDHDDH[1] ≥ 2DDH2CDH[1] = Damg̊ard-CCA1 ≥ DDH ,

and we conjecture that one can replace ≥ always with a >.

2 Preliminaries

2.1 Assumptions

Denote cdh(g, gx, gy) := gxy, ddh(g, gx, gy, gz) := [gz =? cdh(g, gx, gy)], 2cdh(g, gx1 , gx2 , gy) :=
(gx1y, gx2y).

2 Helger Lipmaa

Definition 1 (CDH game). Fix a group G = 〈g〉 of order q. The CDH game is defined as
follows:

Setup phase. Challenger sets sk← Zq, pk← gsk. He sends pk to the adversary A.
Challenge phase. Challenger sets bA ← {0, 1}, ŷ ← Zq, ĥ← gŷ. Challenger sends ĥ to A.
Guess phase. A returns a group element ĥA ∈ G. Adversary wins if ĥA = cdh(g, pk, ĥ), i.e.,

if ĥA = pkŷ.

Group G is a (τ, ε)-CDH group if for any adversary A working in time τ ,
Pr[A wins in the CDH game] ≤ 1

q + ε.

Definition 2 (DDH game). Fix a group G = 〈g〉 of order q. The DDH game is defined as
follows:

Setup phase. Challenger sets sk← Zq, pk← gsk. He sends pk to the adversary A.
Challenge phase. Challenger sets bA ← {0, 1}, ŷ, ẑ ← Zq, ĥ1 ← gŷ, and ĥ2 ← gẑ if bA = 0

and ĥ2 = cdh(g, pk, ĥ1) = pkŷ if bA = 1. Challenger sends (ĥ1, ĥ2) to A.
Guess phase. A returns a bit bA ∈ {0, 1}. Adversary wins if b′A = ddh(g, pk, ĥ1, ĥ2), i.e., if

b′A = bA.

Group G is a (τ, ε)-DDH group if for any adversary A working in time τ ,
Pr[A wins in the DDH game] ≤ 1

2 + ε.

Based on arbitrary assumptions X = X(x1, . . . , xm) and Y = Y (y1, . . . , yn) we define a new
assumption XY [i]. In the XY [i] game, adversary has oracle access to an oracle solving assumption
Y with parameters yj , and she has to break a random instance of the X assumption with
parameters xi. In addition, the queries are restricted so that only i last variables (yn−i+1, . . . , yn)
in any query are chosen by the adversary, while other variables (y1, . . . , yn−i) must coincide with
the first variables (x1, . . . , xn−i) of the instance of X assumption she is trying to solve. For the
sake of clarity, we now give a concrete definition of the DDHDDH[2] game.

Definition 3 (DDHDDH[2] game). Fix a group G = 〈g〉 of order q. The DDHDDH[2] game is
defined as follows:

Setup phase. Challenger sets sk← Zq, pk← gsk. He sends pk to adversary.
Query phase. Adversary has an access to oracle ddh(g, pk, ·, ·).
Challenge phase. Challenger sets bA ← {0, 1}, ŷ, ẑ ← Zq, ĥ1 ← gŷ, and ĥ2 ← gẑ if bA = 0

and ĥ2 = cdh(g, pk, ĥ1) = pkŷ if bA = 1. Challenger sends (ĥ1, ĥ2) to adversary.
Guess phase. Adversary returns a bit b′A ∈ {0, 1}. Adversary wins if b′A = bA, i.e., if b′A =

ddh(g, pk, ĥ1, ĥ2).

Group G is a (τ, ε)-DDHDDH[2] group if for any adversary A working in time τ ,
Pr[A wins in the DDHDDH[2] game] ≤ 1

2 + ε.

Clearly, XY [i] becomes stronger if either X becomes stronger, Y becomes weaker or i becomes
larger. The gap DH assumption of [OP01] is equal to CDHDDH[3]. The strong DH assumption
of [ABR01] is slightly different, giving first access to ĥ1 and the oracle ddh(g, ·, ·, sk), and then
asking to compute cdh(g, pk, ĥ1).

On CCA1-Security of Elgamal And Damg̊ard Cryptosystems 3

2.2 Cryptosystems

A public-key cryptosystem Π is a triple of efficient algorithms (G, E ,D), where G(1k) out-
puts a key pair (sk, pk), Epk(m; r) returns a ciphertext and Dsk(c) returns a plaintext, so that
Dsk(Epk(m; r)) = m for any (sk, pk) ∈ G(1k). Here, k is a security parameter that we will just
handle as a constant.

Definition 4. Fix a group G = 〈g〉 of order q. The Elgamal cryptosystem [Elg85] is defined as
follows:

Key generation G(1k). Select a random sk← Zq, set pk← gsk. Publish pk.
Encryption Epk(m; ·). Select a random r ← Zq, set Epk(m; r) := (m · pkr, gr).
Decryption Dsk(c). Parse c = (c1, c2), return ⊥ if ci 6∈ G. Return m := c1/c

sk
2 .

Definition 5. Fix a group G = 〈g〉 of order q. The Damg̊ard cryptosystem [Dam91] is defined
as follows:

Key generation G(1k). Select random sk1, sk2 ← Zq, set pk1 ← gsk1 , pk2 ← gsk2. Publish
pk = (pk1, pk2), set sk = (sk1, sk2).

Encryption Epk(m; ·). Select a random r ← Zq, set Epk(m; r) := (m · pkr
1, pkr

2, g
r).

Decryption Dsk(c). Parse c = (c1, c2, c3), return ⊥ if ci 6∈ G. Return ⊥ if c2 6= csk2
3 . Return

m := c1/c
sk1
3 .

Definition 6. Let Π = (G, E ,D) be a public-key cryptosystem. The CCA1-game is defined as
follows:

Setup phase. Challenger chooses (pk = gsk, sk)← G(1k) and sends pk to adversary.
Query phase. Adversary has access to oracle O(·) such that O(c) = Dsk(c).
Challenge phase. Adversary submits (m0,m1) to challenger, who picks a random bit b ←
{0, 1} and a random r ← Zq, and returns Epk(mb; r).

Guess phase. Adversary returns a bit bA ∈ {0, 1}. Adversary wins if bA = b.

Public-key cryptosystem is (τ, γ, ε)-CCA1-secure if for any adversary A working in time τ and
making γ queries, Pr[A wins] ≤ 1

2 + ε. A (τ, 0, ε)-CCA1-secure cryptosystem is also said to be
(τ, ε)-CPA-secure.

Damg̊ard’s cryptosystem was proven to be CCA1-secure under the DDHDDH[2] assumption
in [Gjø06]. Elgamal’s cryptosystem is known to be CPA-secure but not known to be CCA1-
secure for γ = poly(k).

3 CCA1-Security of ElGamal

To prove the security of ElGamal we need the next assumption (see the end of the section for
discussion). As seen from the security proof, this assumption in some sense just asserts that
Elgamal is CCA1-secure.

Definition 7 (DDHCDH[1] game). Fix a group G = 〈g〉 of order q. The DDHCDH[1] game is
defined as follows:

Setup phase. Challenger sets sk← Zq, pk← gsk. He sends pk to adversary A.
Query phase. A has access to oracle cdh(g, pk, ·), i.e., cdh(g, pk, h) := hsk.
Challenge phase. Challenger sets bA ← {0, 1}, ŷ, ẑ ← Zq, ĥ1 ← gŷ, and ĥ2 ← gẑ if bA = 0

and ĥ2 = cdh(g, pk, ĥ1) = pkŷ if bA = 1. Challenger sends (ĥ1, ĥ2) to A.

4 Helger Lipmaa

Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA, i.e., if bA = ddh(g, pk, ĥ1, ĥ2).

Group G is a (τ, γ, ε)-DDHCDH[1] group if for any adversary A working in time τ and making
γ queries, Pr[A wins in the DDHCDH[1] game] ≤ 1

2 + ε.

Theorem 1 (DDHCDH[1] ⇒ Elgamal-CCA1). Assume that G = 〈g〉 is a (τ, γ, ε)-DDHCDH[1]

group. Then ElGamal is (τ − γ · (τcdh + small) − small, γ, ε/2)-CCA1-secure where τcdh is the
working time of the cdh(g, pk, ·) oracle.

Proof. Assume A is an adversary who can (τ, γ, ε)-break the CCA1-security of Elgamal with
probability ε and in time τ , making γ queries. Construct the next adversary B who aims to
break DDHCDH[1]:

– Challenger generates new keypair (sk, pk← gsk) and sends pk to B. B forwards pk to A.
– In the query phase, whenever A asks a decryption query (c1, c2), B rejects if either c1 or c2

is not a valid group element. Otherwise B asks a CDH query c ← cdh(g, pk, c2). B returns
c1/c.

– In the challenge phase, whenever A gives a pair (m̂0, m̂1) of equal-length messages, B asks
his challenge from the challenger. The challenger sets bB ← {0, 1}, ŷ, ẑ ← Zq, ĥ2 ← gŷ. If
bB = 0 then he sets ĥ1 ← gẑ, otherwise ĥ1 ← pkŷ. B picks a random bit bA ← {0, 1} and
sends (mbA · h1, h2) to A. A returns a bit b′A. If b′A = bA then B returns b′B = 1, otherwise
B returns b′B = 0.

Now, Pr[B wins in the DDHCDH[1] game] = Pr[b′B = bB] = Pr[A wins|bB = 1] Pr[bB = 1] +
Pr[A wins|bB = 0] Pr[bB = 0] = ε/2+0/2 = ε/2. Clearly B works in time τB = γ ·(τcdh +small)+
small + τ . ut

Theorem 2 (Elgamal-CCA1⇒ DDHCDH[1]). Assume that ElGamal is (τ, γ, ε)-CCA1-secure.
Then G = 〈g〉 is a (τ − γ · (τcdh + small)− small, γ, ε)-DDHCDH[1] group, where τD is the working
time of the D oracle.

Proof. Assume A is an adversary who can (τ, γ, ε)-break the DDHCDH[1] assumption in group
G . Construct the next adversary B who aims to break the CCA1-security of Elgamal:

– Challenger generates new keypair (sk, pk← gsk) and sends pk to B. B forwards pk to A.
– In the query phase, whenever A asks a cdh(g, pk, ·) query h, B asks a decryption query (1, h),

and receives back c← 1/hsk. B then returns 1/c.
– In the challenge phase, whenever A asks for a challenge, B sends his challenge (m̂0, m̂1)←

(g, 1) to challenger. Challenger pick a random bit bB ← {0, 1} and a random r̂ ← Zq, and
sends (ĉ1, ĉ2) ← (g1−bB · pkr̂, gr̂) to B. B forwards (ĉ2, ĉ1) to A, who returns a guess b′A. B
returns b′B ← b′A to challenger.

Now, Pr[B wins] = Pr[b′B = bB] = Pr[A wins] = ε. Clearly B works in time τB = γ · (τD +
small) + small + τ . ut

Discussion. The DDHCDH[1] assumption is a direct opposite of the well-known StrongCDH
assumption [OP01] where one has initial access to the DDH oracle and then has to compute
CDH. Thus, DDHCDH[1] is strictly stronger than the StrongDH assumption. However, it is not
clear if this assumption is actually stronger than the DDH assumption itself.

In the DDHCDH[1]-game the adversary can always submit pk to the oracle and obtain gsk2
,

and recursively gski
for polynomially many values i. This means that in some sense we can also

assume that in the challenge phase those values are given for the adversary for free (though
their number should be included in the number of made queries).

On CCA1-Security of Elgamal And Damg̊ard Cryptosystems 5

4 CCA1-Security of Damg̊ard

Denote 2ddh(g, gx1 , gx2 , gy, gz1 , gz2) := [(gz1 , gz2) =? 2cdh(g, gx1 , gx2 , gy)] [CKS08].
The next assumption basically states that Damg̊ard is CCA1-secure.

Definition 8 (2DDH2CDH[1] game). Fix a group G = 〈g〉 of order q. The 2DDH2CDH[1] game
is defined as follows:

Setup phase. Challenger sets sk1, sk2 ← Zq, pk1 ← gsk1, pk2 ← gsk2. He sends pk← (pk1, pk2)
to adversary and sets sk← (sk1, sk2).

Query phase. Adversary has access to oracle O(·, ·) such that: O(h2, h3) computes (z1, z2)←
2cdh(g, pk1, pk2, h3). If z2 6= h2, it returns ⊥, otherwise it returns z1.

Challenge phase. Challenger sets bA ← {0, 1}, ŷ, ẑ ← Zq, ĥ3 ← gŷ. If bA = 0 then ĥ2 =
cdh(g, pk2, ĥ3) and ĥ1 ← G. If bA = 1 then (ĥ1, ĥ2) ← 2cdh(g, pk1, pk2, ĥ3). Challenger
sends (ĥ1, ĥ2, ĥ3) to adversary.

Guess phase. Adversary returns a bit b′A ∈ {0, 1}. Adversary wins if b′A = bA.

Group G is a (τ, γ, ε)-2DDH2CDH[1] group if for any adversary A working in time τ and making
γ queries, Pr[A wins] ≤ 1

2 + ε.

Theorem 3 (2DDH2CDH[1] ⇒ Damg̊ard-CCA1). Assume that G = 〈g〉 is a (τ, γ, ε)-
2DDH2CDH[1] group. Then Damg̊ard is (τ − γ · (τddh + small)− small, γ, ε/2)-CCA1-secure where
τ2cdh is the working time of the 2cdh(g, pk1, pk2, ·) oracle.

Proof. Assume A is an adversary who can (τ, γ, ε)-break the CCA1-security of Elgamal with
probability ε and in time τ , making γ queries. Construct the next adversary B who aims to
break 2DDH2CDH[1]:

– Challenger generates new sk ← (sk1, sk2), pk1 ← gsk1 , pk2 ← gsk2 and sends pk to B. B
forwards pk = (pk1, pk2) to A.

– In the query phase, whenever A asks a decryption query (c1, c2, c3), B rejects if either c1, c2
or c3 is not a valid group element. Otherwise B makes a O(c3, c2) query. B receives a c such
that c = ⊥, if c2 6= csk2

3 , and c = csk1
3 otherwise. B returns ⊥ in the first case, and c1/c in

the second case.
– In the challenge phase, whenever A submits her challenge (m̂0, m̂1), B asks the challenger

for his challenge. The challenger sets bB ← {0, 1}, ŷ, ẑ ← Zq, ĥ3 ← gŷ, ĥ2 ← pkŷ
2. If bB = 0

then he sets ĥ1 ← gẑ, otherwise ĥ1 ← pkŷ
1. B picks a random bit bA ← {0, 1} and sends

(m̂bA · ĥ1, ĥ2, ĥ3) to A. A returns a bit b′A. If b′A = bA then B returns b′B = 1, otherwise B
returns b′B = 0.

Now, Pr[B wins] = Pr[b′B = bB] = Pr[A wins|bB = 1] Pr[bB = 1] + Pr[A wins|bB = 0] Pr[bB =
0] = ε/2 + 0/2 = ε/2. Clearly B works in time τB = sk · (τ2cdh + small) + small + τ . ut

Theorem 4 (Damg̊ard-CCA1 ⇒ 2DDH2CDH[1]). Fix a group G = 〈g〉 of order q. Assume
that Damg̊ard is (τ, γ, ε)-CCA1-secure. Then G is a (τ−γ ·(τD+small)−small, γ, ε)-2DDH2CDH[1]

group, where τD is the working time of the D oracle.

Proof. Assume A is an adversary who can (τ, γ, ε)-break the 2DDH2CDH[1] property. Construct
the next adversary B who aims to break the CCA1-security of the Damg̊ard cryptosystem:

– Challenger generates new sk ← (sk1, sk2), pk1 ← gsk1 , pk2 ← gsk2 and sends pk to B. B
forwards pk = (pk1, pk2) to A.

6 Helger Lipmaa

– In the query phase, whenever A asks a O query (h2, h3), B makes a decryption query
(1, h2, h3), and receives back either ⊥ or m← 1/hsk2

3 . B returns ⊥ in the first case, and 1/m
in the second case.

– In the challenge phase, whenever A asks for a challenge, B sends his challenge (m̂0, m̂1)←
(g, 1) to the challenger. Challenger picks a random bit bB ← {0, 1} and a random r̂ ← Zq,
and sends (ĉ1, ĉ2, ĉ3))← (g1−bB · pkr̂

1, pkr̂
2, g

r̂) to B. B forwards (ĉ1, ĉ2, ĉ3) to A, who returns
a guess b′A.

– In the guess phase, B returns b′B ← b′A to challenger.

Now, Pr[B wins] = Pr[b′B = bB] = Pr[A wins] = ε. Clearly B works in time τB = sk · (τD +
small) + small + τ . ut

Theorem 5 (DDHDDH[2] ⇒ 2DDH2CDH[1]). Any (τ, γ, ε)-DDHDDH[2] group G = 〈g〉 is also a
(τ−γ ·(τcdh +small)−small, γ, ε)-2DDH2DDH[2], where τcdh is the working time of the cdh(g, pk, ·)
oracle.

Proof. We use the trapdoor test trick from [CKS08].
Fix a group G = 〈g〉 of order q. Assume A is an adversary who can (τ, γ, ε)-break the

2DDH2CDH[1]-property. Construct the next adversary B who aims to break DDHDDH[2] in the
same group:

– Challenger generates new (sk, pk ← gsk) and sends pk to B. B sets pk1 ← pk, r, s ← Zq,
pk2 ← gu/pkv

1. Thus pk2 = gsk2 for sk2 = u− v · sk1. He forwards pk = (pk1, pk2) to A.
– In the query phase, whenever A asks an O query (h1, h2), B makes a ddh(g, pk1, h3, h2)

query. If this query returns 0, B rejects. Otherwise, B computes z2 ← hu
3/h

v
2 and outputs z2.

Note that in this case z2 = hu
3/h

v
2 = hu

3/h
v·sk1
3 = hsk2

3 and thus A gets the correct output.
– In the challenge phase, if A asks for a challenge then B asks for a challenge. Challenger sets
bB ← {0, 1}, ŷ, ẑ ← Zq, ĥ3 ← gŷ. If bB = 0 then he sets ĥ1 ← gẑ and ĥ2 ← gẑ, otherwise
(ĥ1, ĥ2) ← (pkŷ

1, pkŷ
2). B sets ĥ1 ← ĥu

3/ĥ
v
2. B sends (ĥ1, ĥ3) to A. A returns a bit b′A. B

returns b′B = b′A to the challenger.

Clearly, B wins iff A wins. ut

Corollary 1 (DDHDDH[2] ⇒Damg̊ard-CCA1). Assume thatG = 〈g〉 is a (τ, γ, ε)-DDHDDH[2]

group. Then the Damg̊ard cryptosystem is (τ−γ ·(τcdh +small)−small, γ, ε)-CCA1-secure, where
τcdh is the working time of the cdh(g, pk, ·) oracle.

By following a very similar proof, a variant of the Damg̊ard cryptosystem where the decryp-
tion, given an invalid ciphertext, returns a random plaintext instead of ⊥, is secure under the
DDH assumption.

Direct Proof of DDHDDH[2] ⇒ Damg̊ard-CCA1. Finally, we give a direct proof of Cor. 1.

Theorem 6 (DDHDDH[2] ⇒ Damg̊ard-CCA1). Assume that G = 〈g〉 is a (τ, γ, ε)-DDHDDH[2]

group. Then Damg̊ard is (τ − γ · (τddh + small) − small, γ, ε/2)-CCA1-secure where τddh is the
working time of the ddh(g, pk, ·, ·) oracle.

Proof. Assume A is an adversary who can (τ, γ, ε)-break the CCA1-security of Damg̊ard with
probability ε and in time τ , making γ queries. The proof again uses the trapdoor trick
of [CKS08]. Construct the next adversary B who aims to break DDHDDH[2]:

On CCA1-Security of Elgamal And Damg̊ard Cryptosystems 7

– Challenger generates new (sk, pk ← gsk) and sends pk to B. B sets pk2 ← pk, and pk1 ←
gu/pkv

2 for random u, v ∈ Zq. Thus pk1 = gsk1 for sk1 = u−v·sk2. He forwards pk = (pk1, pk2)
to A.

– In the query phase, whenever A asks a decryption query (c1, c2, c3), B rejects if either c1,
c2 or c3 is not a valid group element. Otherwise B makes a ddh(g, pk2, c3, c2) query. If this
query returns 0, B rejects. Otherwise, B computes c ← cu3/c

v
2 and outputs c1/c. Note that

c = cu3/c
v
2 = cu3/c

v·sk2
3 = cu−v·sk2

3 = csk1
3 .

– In the challenge phase, whenever A submits her challenge (m̂0, m̂1), B asks the challenger
for his challenge. The challenger sets bB ← {0, 1}, ŷ, ẑ ← Zq, ĥ3 ← gŷ. If bB = 0 then he sets
ĥ2 ← gẑ, otherwise ĥ2 ← pkŷ

2. B sets ĥ1 ← ĥu
3/ĥ

v
2. Note that if bB = 0 then ĥ1 = guŷ−vẑ is

completely random, and if bB = 1 then ĥ1 = ĥu
3/pkvŷ

2 = ĥu−v·sk2
3 = ĥsk1

3 . B picks a random
bit bA ← {0, 1} and sends (m̂bA · ĥ1, ĥ2, ĥ3) to A. A returns a bit b′A. If b′A = bA then B
returns b′B = 1, otherwise B returns b′B = 0.

Now, Pr[B wins] = Pr[b′B = bB] = Pr[A wins|bB = 1] Pr[bB = 1] + Pr[A wins|bB = 0] Pr[bB =
0] = ε/2 + 0/2 = ε/2. Clearly B works in time τB := sk · (τddh + small) + small + τ . ut

Acknowledgments. We thank Eike Kiltz for discussions.

References

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The Oracle Diffie-Hellman Assumptions and an
Analysis of DHIES. In David Naccache, editor, Topics in Cryptology - CT-RSA 2001, The Cryptog-
rapher’s Track at RSA Conference 2001, volume 2020 of Lecture Notes in Computer Science, pages
143–158, San Francisco, CA, USA, April 8–12, 2001. Springer-Verlag.

[CKS08] David Cash, Eike Kiltz, and Victor Shoup. The Twin Diffie-Hellman Problem and Applications. In Nigel
Smart, editor, Advances in Cryptology — EUROCRYPT 2008, volume ? of Lecture Notes in Computer
Science, pages ?–?, Istanbul, Turkey, April 13–17, 2008. Springer-Verlag.

[Dam91] Ivan Damg̊ard. Towards Practical Public Key Systems Secure Against Chosen Ciphertext Attacks. In
Joan Feigenbaum, editor, Advances in Cryptology—CRYPTO ’91, volume 576 of Lecture Notes in Com-
puter Science, pages 445–456, Santa Barbara, California, USA, August 11–15, 1991. Springer-Verlag,
1992.

[Elg85] Taher Elgamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472, 1985.

[Gjø06] Kristian Gjøsteen. A New Security Proof for Damg̊ard’s ElGamal. In David Pointcheval, editor, Topics
in Cryptology - CT-RSA 2006, The Cryptographers’ Track at the RSA Conference 2006, volume 3860
of Lecture Notes in Computer Science, pages 150–158, San Jose, CA, USA, February 13–17, 2006.
Springer-Verlag.

[OP01] Tatsuaki Okamoto and David Pointcheval. The Gap-Problems: A New Class of Problems for the Security
of Cryptographic Schemes. In Kwangjo Kim, editor, Public Key Cryptography 2001, volume 1992 of
Lecture Notes in Computer Science, pages 104–118, Cheju Island, Korea, February 13–15, 2001. Springer-
Verlag.

[TY98] Yannis Tsiounis and Moti Yung. On the Security of ElGamal-Based Encryption. In Hideki Imai and
Yuliang Zheng, editors, Public Key Cryptography 1998, volume 1431 of Lecture Notes in Computer
Science, pages 117–134, Pacifico Yokohama, Japan, 5–6 February 1998. Springer-Verlag.

