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Abstract

We study the security of the widely deployed Secure Session Layer/Transport Layer Security
(TLS) key agreement protocol. Our analysis identifies, justifies, and exploits the modularity
present in the design of the protocol: the application keys offered to higher level applications are
obtained from a master key, which in turn is derived, through interaction, from a pre-master key.

Our first contribution consists of formal models that clarify the security level enjoyed by each
of these types of keys. The models that we provide fall under well established paradigms in
defining execution, and security notions. We capture the realistic setting where only one of the
two parties involved in the execution of the protocol (namely the server) has a certified public
key, and where the same master key is used to generate multiple application keys.

The main contribution of the paper is a modular and generic proof of security for the ap-
plication keys established through the TLS protocol. We show that the transformation used by
TLS to derive master keys essentially transforms an arbitrary secure pre-master key agreement
protocol into a secure master-key agreement protocol. Similarly, the transformation used to de-
rive application keys works when applied to an arbitrary secure master-key agreement protocol.
These results are in the random oracle model. The security of the overall protocol then follows
from proofs of security for the basic pre-master key generation protocols employed by TLS.

1 Introduction

The SSL key agreement protocol, developed by Netscape, was made publicly available in 1994 [20]
and after various improvements [18] has formed the bases for the TLS protocol [16, 17] which is
nowadays ubiquitously present in secure communications over the internet. Surprisingly, despite its
practical importance, this protocol had never been analyzed using the rigorous methods of modern
cryptography. In this paper we offer one such analysis. Before describing our results and discussing
their implications we recall the structure of the TLS protocol (Figure 1). The protocol proceeds in
six phases. Through phases (1) and (2) parties confirm their willingness to engage in the protocol,
exchange, and verify the validity of their identities and public keys (it is assumed that at least one
party (the server) possess a long term public/private key pair (PKB, SKB), as well as a certificate
sigCA(PKB) issued by some certification authority CA). The next three phases, which are the focus
of this paper and are as follows.
(3) A pre-master secret s ∈ SPMS is obtained using one of a number of protocols that include RSA

based key transport and signed Diffie–Hellman key exchange (which we describe and analyze
later in the paper).

(4) The pre-master secret key s is used to derive a master secret m ∈ SMS, with m = G(s, rA, rB).
Here rA, rB are random nonces that the two parties exchange, and G is a key derivation function.
The obtained master secret key is then confirmed by using it to compute two MACs on the
transcript of the conversation which are then exchanged.

(5) In the next phase the master key m is used to obtain one or more applications keys: for
each application key, the parties exchange random nonces nA and nB and compute the shared
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application key via k = k′ || k′′ ← H(m,nA, nB). Here, H is a key derivation function. Notice,
that each application key is actually two keys, one for securing communication from the client to
the server, and one from the server to the client. This is important to prevent reflection attacks.

(6) Finally the application keys are used in an application (and we exhibit one possible use for
encrypting some arbitrary messages). We emphasise that many applications can use the same
master key by repeated application of Steps 5 and 6.

The proper use of keys in this last stage had been the object of previous studies [4, 23] and is not
part of our analysis.

client (Alice) server (Bob)
1. Client Hello Hello -

2. Certificate Transfer IDB ,PKB�
sigCA(PKB)�

3. Pre-master Secret � -

Creation s s . . . s

-

4. Generate and Confirm rA←{0, 1}t rA -

Master Secret m rB� rB←{0, 1}t

m←G(s, rA, rB) m←G(s, rA, rB)

σA←MACm(0 || τ) where σB←MACm(1 || τ)

τ is the transcript of all

previous messages.

σA -
σB�

if σB 6= MACm(1 || τ) if σA 6= MACm(0 || τ)

then abort then abort

5. Generate Application nA←{0, 1}t nA -

Keys k′ || k′′ nB� nB←{0, 1}t

k = k′ || k′′←H(m,nA, nB) k = k′ || k′′←H(m,nA, nB)

6. Application Key y′ = Ek′ (m′) y
′

- m′ = Dk′ (y′)

Usage m′′ = Dk′′ (y′′) y
′′

� y′′ = Ek′′ (m′′)

Figure 1: A general TLS like protocol

An interesting aspect of TLS is that the protocols used to obtain the pre-master secret in Step
(3) are very simplistic and on their own insecure in the terms of modern cryptography. It is the
combination of steps in (3) with those in (4) and (5) which leads (as we show in this paper) to secure
key agreement protocol in the standard sense. Broadly speaking, our goal is to derive sufficient
security conditions on the pre-master key agreement protocol which would ensure that the above
combination indeed yields a secure key-agreement protocol in a standard cryptographic sense.

We caution that in our analysis we disregard steps (1) and (2), and therefore assume an existing
PKI which authenticates all public keys in use in the system. In particular we do not take into
account any so-called PKI attacks.

Our Contribution

Models. Much of the previous work on key agreement protocols in the provable security community
has focused on defining security models and then creating protocols which meet the security goals of
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the models. In some sense, we are taking the opposite approach: we focus on a particular protocol,
namely TLS, and develop security models that capture the security levels that the various keys
derived in one execution of the protocol enjoy. The path we take is also motivated by the lack of
models that capture precisely the security of these keys.

A second important aspect of our approach is that unlike in prior work on key-agreement pro-
tocols, we do not regard the protocol as a monolithic structure. Instead, we identify the structure
described above and give security models for each of the keys that are derived in the protocol. A
benefit that follows from this modular approach is that we split the analysis of the overall protocol
to the analysis of its components, thus making the task of proving security more manageable.

We first provide a model for pre-master key agreement protocols. The model is a weakened version
of the Blake–Wilson, Johnson and Menezes (BJM) model [9]. In particular we only require that
pre-master key agreement protocols are secure in the one-way sense (the adversary cannot recover
the entire established key), and that the protocol is secure against man-in-the-middle attacks. In
addition, unlike in prior work, we model the realistic setting where only one of the parties involved
in the protocol is required to possess a certified public key.

Next, we give a security model for master-key agreement protocols which strengthens the one
described above. We still only require secrecy for keys in the one-wayness sense, but now we ask
for the protocol to also be secure against unknown-key-share attacks. In addition, we introduce
key-confirmation as a requirement for master keys.

Finally, via a further extension, we obtain a model for the security of key agreement protocols.
Our model for application key security is rather standard, and resembles the BJM model: we require
for the established key to be indistinguishable from a randomly chosen one, and we give the adversary
complete control over the network, and various corruption capabilities. Our model explicitly takes
into consideration the possibility that the same master key is used to derive multiple application
keys.
Security analysis of the TLS handshake protocol. Based on the models that we developed,
we give a security proof for the TLS handshake protocol. In particular, we analyze a version where
the MAC sent in step 4 is passed in the clear (and not encrypted under the application keys as in
full TLS.) It is intuitively clear that the security of the full TLS protocol follows from our analysis.
While a direct analysis of the latter may be desirable we choose to trade immediate applicability of
our results to full TLS for the modularity afforded by our abstraction.

Our proof is modular and generic. Specifically, we show that the protocol (Π; MKDSSL(Mac, G))
obtained by appending to an arbitrary pre-master key agreement protocol Π the flows in phase (4) of
TLS is a secure master-key agreement protocol in the sense that we define in this paper. The result
holds provided that the message authentication code used in the transformation is secure, when the
hash function in the construction is modeled as a random oracle. Similarly, we show that starting
from an arbitrary secure master-key agreement protocol Π, the protocol (Π; AKSSL(H)) obtained by
appending the flows in phase (5) of TLS is a secure application-key agreement protocol (provided
that H is modeled as a random oracle).

An important benefit of the modular approach that we employ surfaces at this stage: to conclude
the security of the overall protocol it is sufficient to show that the individual pre-master key agreement
protocols of TLS are indeed secure (in the weak sense that we put forth in this paper). The analysis
is thus more manageable, and avoids duplicating and rehashing proof ideas, which would be the case
if one was to analyze TLS in its entirety for each distinct method for establishing pre-master keys.
Impact on practice. An implication of practical consequence of our analysis concerns the use of
encryption for implementing the pre-master key agreement protocol of TLS. Currently, the RSA key
transport mode of TLS uses a randomized padding mechanism to avoid known problems with vanilla
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RSA. The original choice was the encryption scheme from PKCS-v1.0. The exact choice is historic,
but in modern terms was made to attempt to create an IND-CCA encryption scheme. It turns out
that the encryption scheme from PKCS-v1.0 is not in fact IND-CCA secure. This was exploited in the
famous reaction attack by Bleichenbacher [11] on SSL, where invalid ciphertext messages were used
to obtain pre-master secret keys. Our analysis implies that no randomized padding mechanism is
actually needed, as deterministic encryption suffices to guarantee the security of the whole protocol.

Importantly, our models do capture security against reaction attacks as long as the full behaviour
of the protocol is specified and analyzed. The key aspect is that the analysis should include the
behaviour of the parties when the messages that they receive do not follow the protocol (e.g. are
malformed). Our analysis of the premaster key agreement based on encryption schemes (e.g. that
based on RSA) considers and thus justifies the validity of the patch proposed to cope with reaction
attacks (to ensure that the execution when malformed packages are received is indistinguishable from
honest executions).

Our models can be used to explicitly capture one-way and mutual authentication via public-key
certificate information. We do not model variants of the standard TLS protocol which can include
password-based authentication or shared key-based techniques. We leave these extensions for future
work.

It is important to observe that our model does not require that the application keys satisfy a
notion of key-confirmation (as we require for the master-keys). Indeed, the TLS protocol does not
ensure this property. However, one may obtain implicit key confirmation through the use of such
keys in further applications. In some sense, this loss is a by-product of the way we have broken up
the protocol. One of our goals was to show what security properties each of the stages provides, and
therefore we modeled and analyzed the security of the application keys. However, if one considers
Stages 1-4 as the key agreement protocol, and stages 5-6 as the application where the keys are
used, then one does obtain an explicit notion of key confirmation. Hence, the loss of explicit key
confirmation in Stage 5 should not be considered a design flaw in TLS.
On the use of the random oracle model. In our proofs we assume that the key derivation
function is a random oracle, i.e. an idealized randomness extractor. As such the typical disclaimer
associated to proofs in the random oracle model certainly applies, and we caution against over
optimism in their interpretation. A natural and important question is whether a standard model
analysis is possible, ideally, assuming that the key derivation function is pseudorandom (as is the
function based on HMAC used in the current specification of TLS). Unfortunately, indirect evidence
indicates that such a result is extremely hard to obtain. As observed by Jonsson and Kaliski in their
analysis of the use RSA in TLS [21], the use of the key derivation function in TLS is akin to the use
of such functions in deriving DEM keys under the KEM/DEM paradigm [14]. It is thus likely that
a proof as above would immediately imply an efficient RSA-based encryption scheme secure in the
standard model, thus solving a long-standing open question in cryptography.

Related Work

The work which is closest with ours is the analysis of the use of RSA in TLS by Jonsson and
Kaliski [21]. They consider a very simplified security model for the master secret key, for the par-
ticular case when the protocol for premaster key is based on encryption. We share the modeling of
the key derivation function as a random oracle, and the observation that deterministic encryption
may suffice for a secure premaster key had also been made there. However, the present work uses
a far more general and modular model for key-exchange, analyzes several pre-master key agreement
protocols, including one based on DDH which is offered by TLS.
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Other analysis of the TLS protocol used Dolev-Yao models, where security of primitives is pos-
tulated, and thus no immediate guarantees are implied for the more concrete world. Such analyses
include the one carried out by Mitchel, Shmatikov, and Stern [25] using a model checker, and the
one of Paulson who used the inductive method [27]. Wagner and Schneier analyze various security
aspects of SSL 3.0 [29], but their treatment is informal. Finally, Bellare and Namprempre [4], and
Krawczyk [23] study how to correctly use the application keys derived via TLS. Their treatment is
focused exclusively on the use of keys, and not with the security of the entire key agreement protocol.

The first complexity theoretic model for key agreement was the Bellare-Rogaway (BR) model
[6, 7]. The main driving forces of this model were the works of [8, 15]. In [6] entity authentication
and authenticated key distribution are considered in the two-party symmetric key case where users are
modeled as message driven oracles. The adversary in this case acts as the communications channel
between users. To define security, the notions of an “error-free history” of [8] and of “matching
protocol runs” from [15] are made formal using the notion of a matching conversation. Various
security attributes are then included in the definition of security by allowing the adversary to make
corresponding queries such as Reveal queries. In [7] this was developed to model the three party
symmetric key case for entity authentication and key distribution.

Since the BR models there have been a number of other models proposed [9, 10, 3, 13, 5, 12, 1,
24, 28] for various applications and environments. These models can be loosely categorised into two
main groups: those that use modular and simulation based techniques [3, 13, 28], and those closer to
the original BR model that use an indistinguishability based approach [9, 10, 24]. The TLS protocol
could certainly benefit from an analysis in the simulation-based model, e.g. the one of Canetti and
Krawczyk [13]. However, under that model the DDH-based instantiation of TLS would be deemed
insecure (as the model allows revealing of ephemeral information). Hence we feel that using the older
BR-style model is more appropriate to TLS.

The models most relevant to our work are the Blake–Wilson, Johnson and Menezes (BJM) based
models [9, 10, 24]. The BJM model of [9] applied the BR model, with some modifications, to
authenticated key agreement (AK) and authenticated key agreement with key confirmation (AKC)
in the public key case. The work of [9] uses the notion of a No-Matching, first introduced in [6],
condition to define a greater separation between AK and AKC protocols and deals with Diffie–
Hellman (DH) like protocols. Following on from this [10] deals with the case of key transport using
public key encryption (PKE) and key agreement using DH key agreement with digital signatures
(DSS). In [24] a modular proof technique was used in a modified BJM model to prove security of
key agreement protocols relative to a gap assumption. Indeed, the idea of transforming a one-way
security definition into an indistinguishability definition occurs also in the generic transform proposed
by Kudla and Paterson [22, 24] and our techniques are very similar to theirs.

Paper Overview

The structure of the paper is as follows. In Section E we set the scene by giving some basic examples of
pre-master key agreement protocols. In Section 2 we recap on the execution model for key agreement
protocols. Then in Section 3 we present a security model for such pre-master key agreement protocols
and then show that the examples previously given do indeed meet our security definition. In Section
4 we present the security model for the master key agreement, and show that the TLS transform
turns a secure pre-master key agreement protocol into a secure master key-agreement protocol. We
then pass on, in Section 5, to the security definition for the derived application keys. Again we show
that the TLS transform does indeed produce a secure application key. Finally, in Section I we discuss
the secure composition of the key agreement with a confidential application.

In the appendices we present our notational conventions (Appendix A), the hard problems on
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which we base the security of our protocols (Appendix B), the security notions of various crypto-
graphic primitives we will require (Appendix C), a recap on Bellare and Rogaway’s definition of
matching conversations (Appendix D), and our security proofs (Appendix E, F, G, and H).
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2 A Generic Execution model for Two-Party Protocols

The security models that we use in this paper are based on the earlier work of Bellare et. al. [3, 5, 6, 7],
as refined by BJM [9]. In this section we give a general description of the common features of these
models, and recall some of the intuition behind them. Later, we specialise the general model for the
different tasks that we consider in the paper.
Registered and unregistered users. We model a setting with two kinds of users: registered
users (with identities in some set U) and non-registered user (with identities in some set U ′). Each
user in U ∈ U has a long-term public key PKU and a corresponding long term private key SKU .
The set U is intended to model the set of servers in the standard one-way authentication mode of
TLS. There is also a set of participant identities U ′, intended to model the users, for which each
participant does not have a long term public/private key pair.
Models for interactive protocols execution. We are concerned with two-party protocols:
interactive programs in which an initiator and a responder communicate via some communication
channel. Each of the two parties runs some reactive program: each program expects to receive a
message from the communication channel, computes a response, which he sends back on the channel.
We refer to one execution of the program for the initiator (respectively, responder) as an initiator
session (respectively, a responder session). Each party may engage in multiple, concurrent, initiator
and responder sessions.

As standard, we consider an adversary in absolute control of the communication network: the
adversary intercepts all messages sent by parties, and may respond with whatever message it wants.
This situation is captured by considering an adversary (an arbitrary probabilistic, polynomial-time
algorithm) who has access to oracles that correspond to some (initiator or responder) session of the
protocol which the oracle maintains internally. In particular, each oracle maintains an internal state
which consists of the variables of the session to which it corresponds, and additional meta-variables
used later to define security notions. In our descriptions we typically ignore the details of the local
variables of the sessions, and we omit a precise specification of how these sessions are executed. Both
notions are standard. The typical meta-variables of an oracle O include the following. Variable
τO ∈ {0, 1}∗ ∪ {⊥} that maintains the transcript of all messages sent and received by the oracle,
and occasionally, other data pertaining to the execution. Variable roleO ∈ {initiator , responder ,⊥}
records the type of session to which the oracle corresponds. Variable pidO ∈ U keeps track of the
identity of the intended partner of the session maintained by O. Variable δO indicates whether the
session had finished successfully, or unsuccessfully. We specify the values that this variable takes
later in the paper. Finally, variable γO ∈ {⊥, corrupted} records whether or not the session had been
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corrupt by the adversary.
After an initialisation phase, in which long term keys for the parties are generated the adversary

takes control of the execution which he drives forward using several types of queries. The adversary
can create a new session of user U playing the role of the initiator/responder by issuing a query
NewSession(U, role), with role ∈ {initiator, responder}. User U can be either registered or unregis-
tered. We write Πi

U for the i’th session of user i. To any oracle O the adversary can send a message
msg using the query Send(O,msg). In return the adversary receives an answers computed according
to the session maintained by O. The adversary may also corrupt oracles. Later in the paper when
we specialise the general model, we also clarify the different versions of corruptions that can occur,
and how are they handled by the oracles. The execution halts whenever the adversary decides to do
so.

To identify sessions that interact with each other we use the notion of matching conversations
intrudoced by Bellare and Rogaway (which essentially states that the inputs to one session are
outputs of the other sessions, and the other way around) [6]. We recall their definition in Appendix
D.

3 Pre-Master Key Agreement Protocols

In this section we specialise the general model described above for the case of pre-master key agree-
ment protocols, and analyze the security of the pre-master key agreement protocols used in TLS.

Security Model

As discussed in the introduction, the design of our models is guided by the security properties that the
various subprotocols of TLS satisfy. In particular, we require extremely weak security properties for
the pre-master secret key. Specifically, we demand that an adversary is not able to fully recover the
key shared between two honest parties. In its attack the adversary is allowed to adaptively corrupt
parties and obtain their long term secret key, and is allowed to check if a certain string s equals
the pre-master secret key held by some honest session. The latter capability models an extremely
limited form of reveal queries: our adversary is not allowed to obtain the pre-master secret key of
any of the sessions, but can only guess (and then check) their values.

The formal model of security for pre-master key agreement protocols extends the general model
in Section 2 and makes only mild assumptions regarding the syntax of such protocols. Specifically,
we assume that the pre-master key belongs to some space SPMS. This space is often the support
set of some mathematical structure such as a group. We require that if t is the security parameter
then #SPMS ≥ 2t. Furthermore, we assume that the initiator and responder programs use a variable
s ∈ SPMS ∪ {⊥} that stores the shared pre-master key. The corresponding variable stored by some
oracle O is sO. For pre-master secret key agreement protocols the internal variable δO stores one
of the following values: ⊥ (the session had not finished its execution), accepted-pmk (the session
had finished its execution successfully (which in particular means that sO holds some pre-master
session key in SPMS), or rejected (the session had finished its execution unsuccessfully). Unless δO =
accepted-pmk we assume sO =⊥.

The corruption capabilities of the adversary discussed above are modeled using queries Corrupt
and Check formally defined as follows. When the adversary issues a query Corrupt(U) the following
actions take place. If U ∈ U then SKU is returned to the adversary, and we say that party U had
been corrupted. In all sessions O = Πi

U for some i ∈ N the value of γO is set to corrupted and
no further interaction between these oracles and the adversaries may take place. Additionally, no
further queries NewSession(U, role) are permitted.
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When the adversary issues the query Check(O, s), for O = Πi
U , i ∈ N, U some uncorrupted party,

and s ∈ SPMS, then the answer returned to the adversary is true if δO = accepted-pmk and sO = s
and false otherwise. When a given oracle is initialized all values for the internal states are set to
⊥. At the end of a protocol, the role, partner ID, and oracle state (but not the pre-master key) are
recorded in the transcript.

The following definition captures the class of oracles which are valid targets for the attacker
using the notion of “fresh oracles”. These are uncorrupted oracles who have successfully finished
their execution, and have a known intended partner who is also not corrupted.

Definition 3.1 [Fresh Pre-Master Secret Key Oracle] A pre-master secret oracle O is said to be
fresh if all of the following conditions are satisfied:

(1) γO =⊥, (2) δO = accepted-pmk, and (3) ∃ V ∈ U such that V is uncorrupted and
pidO = V .

Security game for pre-master key agreement protocols. We define the security of a pre-
master key agreement protocol Π via the following game ExecOW-PMS

A,Π (t) between an adversary A and
a challenger C:
(1) The challenger, C, generates public/secret key pairs for each user U ∈ U (by running the

appropriate key-generation algorithm on the security parameter t), and returns the public keys
to A.

(2) Adversary A, is allowed to make as many NewSession, Send, Check, and Corrupt queries as it
likes.

(3) At some point A outputs a pair (O∗, s∗), where O∗ is some pre-master secret oracle, and s∗ ∈
SPMS.

We say the adversary A wins if its output (O∗, s∗) is such that O∗ is fresh, and s∗ = sO∗ . In this
case the output of ExecOW-PMS

Π,A (t) is set to 1. Otherwise the output of the experiment is set to 0. We
write

AdvOW-PMS
A,Π (t) = Pr[ExecOW-PMS

A,Π (t) = 1],

for the advantage of A in winning the ExecOW-PMS
A,Π (t) game. The probability is taken over all the

random coins used in the game. We deem a pre-master secret key protocol secure if the adversary is
not able to fully compute the key held by fresh oracles.

Definition 3.2 [Pre-Master Key Agreement Security] A pre-master key agreement protocol is secure
if it satisfies the following requirements:
• Correctness: If at the end of the execution of a benign adversary, who correctly relays messages,

any two oracles which have had a matching conversation hold the same pre-master key, and the
key should be distributed uniformly on the pre-master key space SPMS.

• Key Secrecy: A pre-master key agreement protocol Π satisfies OW-PMS key secrecy if for any
p.p.t. adversary A its advantage AdvOW-PMS

A,Π (t) is a negligible function.

Before proceeding, we discuss the strength of our model for the security of pre-master secret keys,
and several authentication issues.
Remark 1. Our security requirements for pre-master secret key agreement are significantly weaker
than the standard requirements for key exchange [6, 7]. In particular, we only require secrecy in the
sense of one-wayness (not in the sense of indistinguishability from a random key). Furthermore, the
corruption abilities of the adversary are severely limited: the adversary cannot obtain (or “reveal”)
pre-master secrets established by honest parties (even if these parties are not those under the attack).
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Remark 2. As a consequence of our security requirements our model may deem secure protocols
that succumb to unknown-key-share attacks [15]. In such attacks, two sessions belonging to honest
users U and V locally establish the same pre-master secret key, without intentional interaction with
each other.
Remark 3. Security under our notion does however guarantee security against man-in-the-middle
attacks: if honest parties U and V believe they interact to each other but their pre-master key(s) is
in fact shared with the adversary then this is considered security break in our model.
Remark 4. Although the resulting security notion is very weak, it turns out that it suffices to
obtain good master-key agreement protocols by appropriately designed protocols to derive such keys
(e.g. the protocol in Step 4 of the TLS protocol – Figure 1.) More importantly, the weak notion
also allows for many simple protocols to be proved secure. For example, in the next section we prove
that deterministic encryption is sufficient to construct such protocols.
Remark 5. Our model is not concerned with secure establishment of pre-master secret keys between
two unauthenticated parties (the oracle that is under attack always has pidO 6= ⊥). While, treating
this case is possible using the concept of matching conversations to pair sessions, the resulting defi-
nition would be heavier, and not particularly illuminating. Instead, we concentrate on the situation
more relevant to practice where at least one of the parties that take part in the protocol (the server)
has a certified public key.
Remark 6. As usual, our security model can be easily adapted to the random oracle model by
providing the adversary with access to the random oracle (whenever some hash function is modeled
as a RO). The same holds true for the rest of the models that we develop in this paper.

Security of the TLS Pre-Master Key Agreement Protocols

We now discuss the security of the pre-master secret key agreement protocols used in TLS.
Protocols based on public-key encryption. A natural, intuitively appealing, construction
for pre-master key agreement protocols is based on the following use of an arbitrary public-key
encryption scheme Enc. A user selects a pre-master secret key s from an appropriate space, and
sends to the server the encryption of s under the server’s public-key. The server then obtains s as
the decryption of the ciphertext that it receives. We write PMK(Enc) for the resulting protocol.

The weak security properties that we define for pre-master key agreement protocols, enable us to
show security of PMK(Enc) based on weak security requirements for Enc. Indeed, the one-wayness
type secrecy for pre-master keys translates to the one-wayness of the encryption function of Enc.
This results, perhaps surprisingly, in our analysis implying that one can avoid the use of full-fledged
IND-CCA encryption schemes in favor of the much simpler deterministic OW-CPA schemes (e.g.
textbook RSA). Of course, probabilistic encryption can also be used, but in this case we show
security of the associated pre-master secret key protocol based on OW-CCA security. We formalize
the results sketched above in Appendix E.1.

Finally, since IND-CCA implies OW-CCA, our security analysis does apply to the (correct) use of
an IND-CCA secure public key encryption scheme within the TLS protocol. In particular, when Enc
is RSA-OAEP, the pre-master secret key protocol PMK(Enc) is secure.
Signed Diffie-Hellman pre-master key agreement. The pre-master secret key in TLS can
also be produced by exchanging a Diffie-Hellman key gxy, for x and y randomly chosen by the two
participants, who also sign the relevant message flow (either gx or gy) with their long term signing
keys (the details are in Appendix E.2). It is known that on its own this protocol does not meet the
requirements of an authenticated key agreement protocol, for example see [15] for a discussion of this
protocol and various attacks on it.
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We prove however that the protocol does satisfy the security requirements that we put forth for
pre-master key agreement protocols (see Appendix E.2). The results of the following sections will
then imply that using signed Diffie-Hellman within the SSL protocol leads to a secure application
key exchange protocol.

4 Master Key Agreement Protocols

In this section we introduce a security model for master-key agreement protocols. We then show
that master key agreement protocols obtained from secure pre-master key agreement protocols via
the transformation used in TLS satisfy our notion of security.

Security Model

The security model is similar to that for pre-master key agreement protocols. We again ask for the
adversary not to be able to fully recover the master secret key of the session under attack. Moreover,
we ask for a key confirmation guarantee: if a session of some user U accepts a certain master-key
then there exists a unique session of its intended partner that had accepted the same key. In addition
to the queries previously defined for the adversary, we also let the adversary obtain the master keys
agreed in different sessions of the protocol, without corrupting the user to which this session belongs,
i.e. we allow so-called Reveal queries.

In the formal model that we give below we make the following assumptions about the syntax of
a master-key agreement protocol. We assume that the master key belongs to some space SMS for
which we require that #SMS ≥ 2t, and assume that the programs that specify a master key agreement
protocol use a variable m to store the agreed master key. For such protocols the variable δO now
takes values in {⊥, accepted -mk , reject} with the obvious meaning. Furthermore, the variable γO can
also take the value revealed to indicate that the stored master key has been given to the adversary
(see below).

In addition to the queries allowed in the experiment for pre-master key security, the adversary is
also allowed to issue queries of the form Reveal(O). This query is handled as follows: if δO =accepted-
mk then mO is returned to A and γO is set to revealed, while if δO 6=accepted-mk then the query acts
as a no-op. As before when a given oracle is initialized all values for the internal states are set to ⊥.
At the end of a protocol, the role, partner ID and oracle state (but not the master key) are recorded
in the transcript. Unless δO =accepted-mk we assume mi

U =⊥.
The definition of freshness needs to be adapted to take into account the new adversarial capabil-

ities. We call a oracle fresh if it is uncorrupted, had successfully finished its execution, its intended
partner V is uncorrupted, and none of the revealed oracles that belong to V with which O has had
a matching conversation with O. The latter condition essentially says that the adversary can issue
Reveal(Q) for any Q (including those that belong to the intended partner of O), as long as O is not
the session with which O actually interacts.

Definition 4.1 [Fresh Master Secret Oracle] A master secret oracle O is said to be fresh if all of
the following conditions hold:

(1) γO =⊥, (2) δO = accepted-mk, (3) ∃ V ∈ U such that V is uncorrupted and pidO = V ,
and

(4) No revealed oracle Πi
V has had a matching conversation with O.

Security game for master-key agreement protocols. The game ExecOW-MS
A,Π (t) for defining

the security of master-key agreement protocol Π in the presence of adversary A is similar to that for
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pre-master key, with the modification that A is also allowed to make any number of Reveal queries,
in addition to the NewSession, Send, Corrupt, Reveal, and Check queries. Here, check queries are with
respect to the master secret keys only. When the adversary stops, it outputs a pair (O∗,m∗), where
O∗ identifies one of its oracles, and m∗ is some element of SMS. We say that A wins if its output
(O∗,m∗) is such that O∗ is fresh, and m∗ = mO∗ . In this case the output of ExecOW-MS

A,Π (t) is set to
1. Otherwise the output of the experiment is set to 0. We write

AdvOW-MS
A,Π (t) = Pr[ExecOW-MS

A,Π (t) = 1]

for the advantage of A in winning the ExecOW-MS
A,Π (t) game. The probability is taken over all random

coins used in the execution.
Besides the secrecy of agreed keys (which we capture via the experiment described above), we

are also interested in the issue of key confirmation. The following definition describes a situation
where some party U had engaged in a session which terminated successfully with some party V , but
no session of V has a matching conversation with U .

Definition 4.2 [No-Matching] Let No-MatchingA,Π(t) be the event that at some point during the
execution of ExecOW-MS

A,Π (t) for two uncorrupted parties U ∈ U ∪ U ′ and V ∈ U there exists an oracle
O = Πi

U with pidO = V ∈ U , δO = accepted, and yet no oracle Πi
V has had a matching conversation

with O.

The following definition says that a protocol is a secure master-key agreement protocol if the
key established in an honest session is secret (in the one-wayness sense) and no honest party can be
coaxed into incorrectly accepting.

Definition 4.3 [Master Key Agreement Security] A master key agreement protocol is secure if it
satisfies the following requirements:
• Correctness: If at the end of the execution of a benign adversary, who correctly relays messages,

any two oracles which have had a matching conversation hold the same master key, and the key
is distributed uniformly over the master key space SMS.

• Key Secrecy: A master key agreement protocol Π satisfies OW-MS key secrecy if for any p.p.t.
adversary A, its advantage AdvOW-MS

A,Π (t) is a negligible function.
• No Matching: For any p.p.t. adversary A, the probability of No-MatchingA,Π(t) is a negligible

function.

Remark 1. Our security requirements for master secret keys are still significantly weaker than the
more standard requirements for key exchange [6, 7]. Although the adversarial powers are similar
those in existing models (e.g.[9]), we still require the adversary to recover the entire key. The weaker
requirement is motivated by our use of TLS as guide in designing the security model. In this protocol,
the master secret key is not indistinguishable from a random one since it is used to compute MACs
that are sent over the network.
Remark 2. The No Matching property that we require is essentially the one based on matching
conversations introduced by Bellare and Rogaway [6], adapted to our setting where only one of
the parties involved in the execution is required to hold a certified key (and thus have a verifiable
identity). One could potentially replace matching conversations with weaker versions of partnering,
but only at the expense of making the definitions and results less clear. Bellare and Rogaway also
show that if the No Matching property is satisfied, then agreement is injective. In our terms, with
overwhelming probability it holds that if O = Πi

U had accepted and has ΠO = V ∈ U , then there
exist precisely one session of V with which O has a matching conversation.
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Remark 3. Notice that, together, the first and third conditions in the above definitions imply a key
confirmation guarantee: if one session has accepted a certain key, then there exists a unique session
of the intended partner who has accepted the same key.
Remark 4. The addition of Reveal queries implies security against “unknown-key-share” attacks:
if parties U and V share a master-key without being aware that they interact with each other the
adversary can obtain the key of U by performing a Reveal query on the appropriate session of V ,
thus breaking security in the sense defined above.
Remark 5. Notice that an adversary against the master-secret key does not have any query that
allows it to obtain information about the pre-master secret key. This is consistent with the SSL
specification which states that the pre-master secret should be converted to the master secret im-
mediately and that the pre-master secret should be securely erased from memory. In particular this
means that the pre-master secret does not form part of the state of the master key agreement oracle,
and so it does not get written on a transcript.

Security of the TLS master-key derivation protocol

In this section we show that the master-key agreement protocol obtained from a secure pre-master
key agreement protocol by using the transformation used in TLS is secure. Let Π be an arbitrary
pre-master key agreement protocol, G a hash function, and Mac = (K,MAC, ver) a message authen-
tication code. We write (Π; MKDSSL(Mac, G)) for the master-key agreement protocol obtained by
extending Π with the master-key derivation phase of TLS that is, by appending to the message flows
of Π those in Step 4 of Figure 1. We show that starting from a secure pre-master key agreement
protocol, the above transformation yields a secure master key agreement protocol.

Theorem 4.4 Let Π be a secure pre-master agreement protocol, Mac be a secure message authen-
tication code, and G a random oracle. Then (Π; MKDSSL(Mac, G)) is a secure master-key agreement
protocol.

Proof: We need to show that (Π; MKDSSL(Mac, G)) is secure in the sense of OW-MS. We show that
if there exists an adversary A that breaks the security of the construction, then the adversary either
breaks the security of the underlying pre-master secret key protocol, or is able to recover the key
used in the MAC. More precisely (the details are given in Appendix F) let A be an adversary against
the OW-MS security of (Π; MKDSSL(Mac, G)) for which nP (resp. n′P ) is a bound on the number of
participants in U (resp. U ′) and nS is a bound on the number of sessions each participant can engage
in. Then, there exist adversaries B against the OW-PMS security of Π and C against the KR-CMA
security of Mac such that:

AdvOW-MS
A,(Π;MKDSSL(Mac,G))(t) ≤ AdvOW-PMS

B,Π (t) + (nS · (nP + n′P )) ·AdvKR-CMA
C,Mac (t).

In addition we need to show that the probability of the event No-Matching is negligible for all
adversaries. We show that a successful adversary must either break the security of the underlying
pre-master secret key, or be able to forge MACs. More precisely, for any adversary A, there exist
adversaries B against the OW-PMS security of Π and C against the UF-CMA of Mac, such that

Pr[No-MatchingA,Π(t)] <AdvOW-PMS
B,Π (t) + (nS · (nP + n′P )) ·AdvUF-CMA

C,Mac (t).

The details are given in Appendix G. The security of (Π; MKDSSL(Mac, G)) in the sense of Defini-
tion 4.3 follows from the above results.

12



5 Application Key Agreement

In this section we extend the model developed so far to deal with application keys obtained from
master-secret keys, and the analyze the security of the application keys obtained through the TLS
protocol.

Security Model

As discussed in the introduction we focus on protocols with a particular structure: first, a master-
key is agreed by the parties via some master-key agreement protocol Π, and then this key is used
as input to an application key derivation protocol, Σ. The same master-key can be used in multiple
executions of the application key protocol which can take place in parallel and concurrently.

We capture this setting by modifying the model for master-key agreement protocols as follows. We
consider two types of oracles: MK-oracles which correspond to sessions where the master secret key is
derived (i.e. sessions of protocol Π), and AK-oracles, which correspond to sessions of the application
key derivation protocol (i.e. sessions of Σ). The AK-oracles are spawned by MK-oracles who have
established a master-secret key; spawning is done at the request of the adversary. The internal
structure and behavior of MK-oracles are as defined in the previous section. To describe AK-oracles,
we again impose some syntactic restrictions on the protocols (and thus on the oracles). We require
that AK-oracle Q maintain variables τQ,mQ, roleQ, pidQ with the same roles as before. In addition,
a new variable kQ ∈ SA holds the application key obtained in the session. (Here #SA ≥ 2t, where t
is the security parameter). The state variable δQ now assumes values in {⊥, accepted-ak, rejected},
with the obvious semantics. Finally, the corruption variable δQ is either ⊥ or compromised (we
explain bellow when the latter value is set).

In addition to the powers previously granted to the adversary, now the adversary can also create
new AK-oracles by issuing queries of the form Spawn(O), with O an MK-oracle that had successfully
finished its execution. As a result, a new oracle Q = Σj

O is created (where j indicates that Q
is the j’th oracle spawned by O.) Oracle Q inherits the variables τQ, mQ, roleQ, and pidQ from
O. The adversary may also compromise AK-oracles: when a query Compromise(Q) is issued, if Q
has accepted, then kQ is returned to the adversary and δQ is set to compromised. Notice that the
Compromise queries are the analogue of Reveal queries for AK-oracles. We chose to have different
names for clarity.

The security of keys is captured via a Test query. When Test(Q) is issued, a bit b ∈ {0, 1} is
chosen at random. Then if b = 0 then kQ∗ is returned to the adversary, otherwise randomly selected
element from SA is returned to the adversary (who then has to guess b; see the game defined below).

An AK-oracle Q is a valid target for the adversary if the parent oracle of Q is fresh, Q had
finished successfully its execution, its intended partner, say V , is not corrupt, and any session of V
with which Q has a matching conversation is not compromised. Formally, we define:

Definition 5.1 [Fresh Application Key Oracle] Let O be a master key agreement oracle and Q
denote one of its children. The oracle Q is said to be fresh if the following conditions hold:

(1) O is a fresh master key agreement oracle, (2) γQ =⊥, (3) δO = accepted-ak , (4) ∃ V ∈ U
such that pidQ = V , and (5) No compromised session ΣQ′ that belongs to V has had a matching
conversation with Q.

Note that here, we are implicitly assuming that knowing a master key automatically gives the ad-
versary all derived application keys. Whilst this will not be true of all protocols which one can think
of, it is true for all application key derivation protocols that we consider here and in particular in
Stage 5 of the protocol of Figure 1.
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Security game for application-key agreement protocols. We define the security of an
application-key protocol Π; Σ via a game ExecIND-AK

A,Π;Σ (t) between an adversary A and a challenger C.
(1) C generates public-secret key pairs for each user U ∈ U , and returns the public keys to A.
(2) A is allowed to make as many NewSession, Send,Spawn, Compromise, Reveal, Check, and Corrupt,

queries as it likes throughout the game.
(3) At any point during the game adversary A makes a single Test(Q∗) query.
(4) The adversary outputs a bit b′.
We say that A wins if Q∗ is fresh at the end of the game and its output bit b is such that b = b′ (where
b is the bit internally selected during the Test query). In which case the result of ExecIND-AK

A,Π;Σ (t) is set
to 1. Otherwise the output of the experiment is set to 0. We write

AdvIND-AK
A,(Π;Σ)(t) =

∣∣∣∣Pr[ExecIND-AK
A,Π;Σ (t) = 1]− 1

2

∣∣∣∣ .
for the advantage of A in winning the ExecIND-AK

A,Π;Σ (t) game. Using this security game we can now
define the security of a application key agreement protocol.

Definition 5.2 [Application Key Agreement Security] An application key agreement protocol is
secure if it satisfies the following conditions:
• Correctness: In the presence of an adversary which faithfully relays messages, two oracles

running the protocol accept holding the same application key and session ID, and the application
key is distributed uniformly at random on the application key space.

• Key secrecy: An application key agreement protocol Π; Σ satisfies IND-AK key secrecy if for
any p.p.t. adversary A, its advantage AdvIND-AK

A,Π;Σ (t) is negligible in t.

Remark 1. The model that we develop ensures strong security guarantees for the application keys,
in the standard sense of indistinguishability against attackers with powerful corruption capabilities.
In this sense our model is close to existing ones, but has the added feature that we explicitly consider
the setting where more than one application-key can be derived from the same master key.
Remark 2. Notice that at the application key layer we do not require key confirmation anymore.
Indeed, a trivial attack on the standard notion of key confirmation can be mounted against application
keys derived using the TLS protocol. However, implicit key confirmation for application keys may
still be achieved, depending how the application key is actually used. (In Appendix I we discuss
the composition of our application key agreement protocol with specific applications, especially
confidentiality applications.)

Security of the TLS application-key derivation protocol

In this section we show that the application-key agreement protocol obtained from any secure master-
key derivation protocol, and the application-key derivation protocol of TLS (Stage 5 of Figure 1) is
secure.

For any master-key agreement protocol Π, and hash function H, we write (Π; AKSSL(H)) for
the application-key agreement protocol obtained by extending Π with the application-key derivation
protocol of TLS. Informally, this means that we derive an application key agreement protocol from
a master key agreement protocol using Stage 5 of Figure 1. We make no assumption as to whether
the master key agreement protocol itself is derived from a pre-master key agreement protocol as in
Figure 1. The following theorem says that starting with a master-key agreement protocol secure in
the sense of Definition 4.3, the above transformation yields a secure application key protocol
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Theorem 5.3 Let Π be a secure master-key agreement protocol and H a random oracle. Then
(Π; AKSSL(H)) is a secure application-key agreement protocol.

Proof: We prove that for any adversary A against IND-AK security of (Π; AKSSL(G)) there exists
an adversary against OW-MS security of Π such that

AdvIND-AK
A,(Π;AKSSL(G))(t) ≤ nA · (nP · (nP + n′P ) · nS) ·AdvOW-MS

B,Π (t).

Where nP is the number of oracles Πi
U such that U ∈ U , n′P then number of oracles Πj

V such that
V ∈ U ′, nS is the number of sessions each of these oracles can engage in and nA is a bound on the
number of application key oracles ΣO (i.e. a bound on the number of Spawn queries made by A for
any particular oracle O). See Appendix H for details.
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A Notation

A function ε(t) is said to be negligible in the parameter t if ∀ c ≥ N ∃ tc ∈ R>0 such that ∀ t >
tc, ε(t) < t−c.

If S is any set then we denote the action of sampling an element from S uniformly at random
and assigning the result to the variable x as x R←− S. If A is any algorithm then we denote the action
of running A on inputs y1, . . . , yn, with access to oracles O1(·),O2(·), and then assigning the output
to the variable x as x← AO1(·),O2(·)(y1, . . . , yn).

We write {0, 1}t for the set of binary strings of length t and {0, 1}∗ for the set of binary strings
of arbitrary length.

B Hard Problems

The main hard problems used in this work are the Diffie-Hellman related problems.

Definition B.1 [Computational Diffie-Hellman Problem] Given a group G of prime order q, the
computational Diffie-Hellman problem (CDH) in G is given ga, gb ∈ G, where g is a random generator
for G and a, b ∈ Z×q are unknown, to find gab ∈ G.

When we say that the CDH problem is hard in some group G we take this to mean that there does
not exist any known polynomial time algorithm for solving the CDH problem in G with non-negligible
probability. Related to the CDH problem is the decisional Diffie-Hellman problem (DDH) which is
given a triple (ga, gb, gc) ∈ G3, where g is some generator for G and a, b, c ∈ Z×q are unknown, to
decide if gab = gc in G or not. Related to both these problems is the gap Diffie-Hellman problem.

Definition B.2 [The Gap Diffie-Hellman problem] Given a group G of prime order q, the gap
Diffie-Hellman problem (gap-DH) in G is to solve the CDH problem in G given access to an oracle
ODDH(ga, gb, gc) that solves the DDH problem in G.

If B is an algorithm which tries to solve the gap-Diffie–Hellman problem then we define its advantage
by

Advgap-DH,G
B,G (t) = Pr

[
BODDH(·,·,·)(ga, gb) = gab | a, b R←− Z×q

]
.

C Cryptographic Primitives

In this appendix we recap on the various cryptographic constructions that we require, and the security
models associated with them that we use.

C.1 Public Key Encryption

Definition C.1 [Public Key Encryption Scheme] A public key encryption scheme Enc is given by a
triple of algorithms (G, E ,D) such that:
• G is a p.p.t. key generation algorithm: (PK,SK)←G(t). It also returns a description of the

message and ciphertext spaces, M and C.
• E is a p.p.t. or d.p.t. public key encryption algorithm: c←EPK(m; r), where m ∈M and c ∈ C.
• D is a d.p.t. public key decryption algorithm: m←DSK(c).
We require that for all public/private key pairs (PK,SK)←G(t) and allm ∈M thatDSK(EPK(m; r)) =
m.
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If E is a p.p.t. then Enc is called a probabilistic public key encryption scheme and if E is a d.p.t. then
Enc is called a deterministic public key encryption scheme.

We will be concerned with security of a public key encryption scheme in a one-way sense under
both chosen plaintext attack and chosen ciphertext attack. If B is an adversary against the OW-CPA
security of a public key encryption scheme Enc = (G, E ,D) then we define its advantage by

AdvOW-CPA
B,Enc (t) = Pr

[
B(PK, c∗) = m∗ | (PK,SK)←G(t); m∗ R←−M; c∗←EPK(m∗; r∗)

]
.

We say that a public key encryption scheme Enc is OW-CPA secure if the advantage of any polynomial
time adversary is a negligible function in t.

If we give the adversary B access to a decryption oracle OSK
D (c) that returns the decryption of

any valid c 6= c∗ under SK, then we define the advantage of B by

AdvOW-CCA
B,Enc (t) = Pr

[
BOSK
D (·)(PK, c∗) = m∗ | (PK, SK)←G(t); m∗ R←−M; c∗←EPK(m∗; r∗)

]
.

We say that a public key encryption scheme Enc is OW-CCA secure if the above advantage of any
polynomial time adversary is a negligible function in t.

These two security notions are weaker than the standard security notion for public key encryption
schemes, namely IND-CCA. For completeness we present the definition of IND-CCA security here.
We first consider the following security game ExecIND-CCA

B,Enc (t) between a challenger C and an adversary
B.
(1) The challenger C sets (PK,SK)← G(t) then gives PK, t, and a decryption oracle that uses SK

to decrypt valid ciphertexts OSK
D (·) to B.

(2) The adversary B makes as many decryption queries on ciphertexts of its choice to OSK
D and

receives the corresponding plaintexts.
(3) The adversary selects two messages m0,m1 such that |m0| = |m1| for which it wishes to be

challenged and passes these to C.
(4) The challenger C sets b R←− {0, 1} and c∗←EPK(mb; r∗) then passes c∗ to B.
(5) The adversary again makes as many decryption queries as it likes with the restriction that it

cannot make the query OSK
D (c∗).

(6) The adversary outputs a bit b∗.
We say B wins if b∗ = b. In this case the output of ExecIND-CCA

B,Enc (t) is set to 1 and otherwise set to 0.
We then define the advantage of such an adversary B by

AdvIND-CCA
B,Enc (t) = Pr

[
ExecIND-CCA

B,Enc (t) = 1
]
.

We say that a public key encryption scheme Enc is IND-CCA secure if the advantage of any polynomial
time adversary is a negligible function in t.

C.2 Digital Signatures

Definition C.2 [Public Key Signature Scheme] A public key signature scheme Sig is given by a
triple of algorithms (G, sig, ver) such that:
• G is a p.p.t. key generation algorithm: (PK, SK)←G(t).
• sig is a p.p.t. public key signature algorithm: σ←sigSK(m).
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• ver is a d.p.t. public key verification algorithm: verPK(m,σ), which returns true if the pair (m,σ)
correspond to a valid message signature pair and false otherwise.

We require that for all public/private key pairs (PK,SK)←G(t) and all m that verPK(m, sigSK(m)) =
true.

To define the security of a public key signature scheme under chosen message attack we allow
adversaries access to a signature oracle OSK

sig (m) which returns a valid message/signature pair for m
under SK. If Sig = (G, sig, ver) is a public key signature scheme and C an adversary against this
scheme in terms of strong existential forgery under adaptive chosen message attack SEF-CMA, then
we define the advantage of C by

AdvSEF-CMA
C,Sig (t) = Pr

[
verPK

(
(m, s) = CO

SK
sig (·)(PK)

)
= true | (PK, SK)←G(t)

]
.

By a strong existential forgery we mean that the message/signature pair (m, s) output by the adver-
sary, is such that the pair (m, s) has not been output by a call to OSK

sig (·).

C.3 Message Authentication Codes

Definition C.3 [Message Authentication Code] A message authentication code Mac is given by a
triple of polynomial time algorithms (K,MAC, ver) such that:
• K is a p.p.t. key generation algorithm K←K(t).
• MAC is a d.p.t. tag generation algorithm tag←MACK(M).
• ver is a d.p.t. tag verification algorithm {accept, reject}←verK(M, tag).
We require that for all K←K(t) and tag←MACK(M) that verK(M, tag) = accept.

To define the security of a message authentication code under chosen message attack we allow
adversaries access to two oracles. The first oracle is a tag generation oracle OKMAC(M) which returns
a valid tag for the message M . The second oracle is a tag verification oracle OKver(M, tag) which
returns accept if tag is a valid tag for the message M under the key K and reject otherwise.

If Mac = (K,MAC, ver) is a message authentication code, and A an adversary against Mac in
terms of recovering the underlying key using a chosen message attack (KR-CMA) then we define the
advantage of A by

AdvKR-CMA
A,Mac (t) = Pr

[
K = AOKMAC(·),OKver(·,·) | K←K(t)

]
.

The above is a non-standard security definition for a Mac, however a more standard definition is given
by an an adversary whose goal is to produce an existential forgery under chosen message attack. Let
A denote such an UF-CMA adversary then we define the advantage of A by

AdvUF-CMA
A,Mac (t) = Pr

[
verK

(
(M, tag) = AOKMAC(·),OKver(·,·)

)
= accept | K←K(t)

]
.

Note that we do not have a notion of strong or weak forgeries as we always assume that the tag
generation algorithm for Mac is always a deterministic one.

D Conversations and matching conversations

The definitions of a conversation and matching conversation given here are taken from [6]. Note,
unlike [9] we do not use the notion of matching conversation with appendix, despite us working in
the public key model.
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Definition D.1 [Conversation] For a given adversary A and a given oracle Πi
U we define its conver-

sation, CiU , to be a sequence of tuples

CiU = (t1, α1, β1), (t2, α2, β2), . . . , (tm, αm, βm)

where tm > tm−1 > · · · > t2 > t1 are time steps. A given tuple (tt, αt, βt) means that at time tt oracle
Πi
U was asked αt by the adversary and responded with βt, and that after (tm, αm, βm) the adversary

terminated without asking any further queries to that oracle.

Notice that a conversation is taken to mean a list of queries and responses of a complete execution
of the protocol for a given oracle. It only exists upon completion of that particular protocol run.
Also note it is not the same thing as a complete transcript: it does not contain information such
as the decisions reached and session ID’s. Also notice that if a given oracle Πi

U has a conversation
prefixed by (t1, λ, β1), then this oracle will have its role set as the initiator, otherwise its role is set
as responder.

We then define a matching conversation for the case of a protocol of R moves, where R is odd, as
follows (a similar definition can be given in the case of a protocol with an even number of message
flows).

Definition D.2 [Matching Conversation] Let Π be an R move pre-master key agreement protocol
where R = 2ρ− 1. Let Πi

U and Πj
V be two oracles with conversations CiU and CjV .

(1) We say that CjV is a matching conversation to CiU if there exists t0 < t1 < · · · < tR and
α1, β1, . . . , βρ−1, αρ such that CiU is prefixed by

(t0, λ, α1), (t2, β1, α2), (t4, β2, α3), . . . , (t2ρ−4, βρ−2, αρ−1), (t2ρ−2, βρ−1, αρ)

and CjV is prefixed by

(t1, α1, β1), (t3, α2, β2), (t5, α3, β3), . . . , (t2ρ−3, αρ−1, βρ−1).

(2) We say that CiU is a matching conversation to CjV if there exists t0 < t1 < · · · < tR and
α1, β1, . . . , βρ−1, αρ such that CjV is prefixed by

(t1, α1, β1), (t3, α2, β2), (t5, α3, β3), . . . , (t2ρ−3, αρ−1, βρ−1), (t2ρ−1, αρ, ∗)

and CiU is prefixed by

(t0, λ, α1), (t2, β1, α2), (t4, β2, α3), . . . , (t2ρ−2, βρ−1, αρ).

We then say that Πj
U has a matching conversation with Πi

V if the first oracle has conversation CjU ,
and the second oracle has conversation CiV , and CjV matches CiU .

E Example Pre-Master Key Agreement Sub-Protocols

In this section we present the two main pre-master key agreement sub-protocols used in the TLS
stack as examples of pre-master key agreement protocols and discuss some of the main security issues
with them. All the schemes in this section trivially satisfy the correctness requirement for pre-master
key agreement protocols, so we do not insist upon this point.
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Figure 2: Public Key Encryption Based Pre-Master Key Agreement

Alice Bob
s←SPMS; c = EPKB

(s; r)

c -

If DSKB
(c) 6∈ SPMS then s

R←− SPMS

Else s←DSKB
(c)

E.1 Pre-Master Key Agreement from Arbitrary Encryption Schemes.

Figure 2 describes a key transport mechanism using the encryption algorithm E of an arbitrary
public key encryption scheme Enc. We assume that the pre-master key space SPMS is contained in
the underlying message space M of the encryption scheme.

Here, a user selects a random pre-master key s ∈ SPMS and sends to the server the encryption of
s under the server’s public key. The server obtains s by decrypting the ciphertext that it receives.
We write PMK(Enc) for the resulting pre-master key agreement protocol.

As previously discussed, one would suspect that to obtain a secure key agreement protocol one
would need the encryption scheme used to be IND-CCA secure. The following theorems state that a
simple deterministic OW-CPA secure scheme or a probabilistic OW-CCA secure scheme suffices.

Theorem E.1 If Enc is a OW-CPA secure deterministic encryption scheme, then the pre-master
secret key agreement protocol Π = PMK(Enc) defined in Section E.1 is secure.

Proof: We prove that for any adversary A against Π = PMK(Enc) there exists an adversary B
against OW-CPA security of Enc such that:

AdvOW-PMS
A,PMK(Enc)(t) ≤

(
nP · nS · (nP + n′P )

)
·AdvOW-CPA

B,Enc (t).

where nP (resp. n′P ) is a bound on the number of participants in U (resp. U ′) and nS is a bound on
the number of sessions each participant can engage in.

Let A be an adversary against the OW-PMS security of the pre-master key transport protocol Π of
Figure 2, where the encryption scheme is OW-CPA secure. The algorithm B against the OW-CPA
security of Enc = (G, E ,D) is then constructed as follows.

The algorithm B is given as input a public key PK† and a target ciphertext, c† as part of the OW-CPA
game against Enc. Next B acts as a challenger to A in an ExecOW-PMS

A,Π (t) game. To do this B generates
nP identities U and n′P identities U ′. Then B selects an element V † ∈ U , an element U † ∈ U ∪ U ′
and an integer i† ∈ Z×nS . The public key of V † is set to be PK†. Then B runs the key generation
algorithm of the public key scheme to obtain public/private key pairs of all elements in U \ {V †}.
To finish the setup of ExecOW-PMS

A,Π (t) algorithm B calls algorithm A using this data.

Algorithm A will then start to make NewSession, Send, Corrupt and Check queries which B answers
as follows:

• If a Corrupt(U) query is made of where U = U† or U = V † then B terminates. Otherwise
B responds with the private key value (if U ∈ U) and control of all oracles belonging to the
corrupted participant U are given to A.
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• If the adversary makes a Send(O,msg) query of oracle and O = Πi†

U†
, and this oracle is not the

initiator, then algorithm B terminates, otherwise B responds to the Send query with the message
c†.

• If the adversary makes a Send(O, c) query for O = Πi
U 6= Πi†

U†
and roleO 6= initiator then B first

checks that DSKU (c) ∈ SPMS. If this is not the case then B selects sO at random from SPMS and
sets δO = accepted–pmk. Otherwise B sets sO←DSKU (c) and sets δO = accpeted–pmk.

• The Check(O, s) queries which A makes can always be answered by B since the encryption scheme
is deterministic.

If B does not terminate then eventuallyA will terminate and output a pair (O∗, s∗) = (Πi∗
U∗ , s

∗). Since
U† ∈ U ∪U ′ then with probability 1/((nP +n′P ) ·nS) we have that U∗ = U † and i∗ = i†. Furthermore,
we have that pidO∗ = V † with probability 1/nP . Due to the way B inserts c† into the message flows
of ExecOW-PMS

A,Π (t), the adversary A will be attempting to find the message behind the ciphertext c†

if and only if all 3 of these conditions hold. This happens with probablility 1/(nP · (nP + n′P ) · nS).
If, in addition to this, ExecOW-PMS

A,Π (t) = 1 then s∗ will actually be the corresponding message behind
the ciphertext c†. The algorithm B then outputs s∗ as part of the OW-CPA security game against
Enc.

Since, the simulation provided for A by B is perfect if B does not terminate, the choice of the oracle
output by A is independent of the choices of B and this provides the stated advantage.

We note that the method of agreeing pre-master secret keys given in Figure 2 and the description
of responder oracles in the above proof include the patch used to prevent the attack of Bleichenbacher
[11]. In particular, whenever a responder oracle recieves a message that does not decrypt to a valid
element of the pre-master secret key space a random element is chosen and the decision value set to
accepted–pmk. As a result the adversary will not be able to obtain any information as to whether
a given ciphertext is the encryption of a correctly formed plaintext for the underlying encryption
scheme used. We also note that the value pidO for responder oracles will always remain as ⊥ since
we only consider the case of one-way authentication here.

The next theorem captures that PMK(Enc) is secure when the encryption algorithm of Enc is a
randomized. However, in this case we require for Enc to be OW-CCA.

Theorem E.2 If Enc is a OW-CCA secure randomized encryption scheme, then PMK(Enc) is a secure
pre-master key transport protocol.

Proof: We prove that for any adversary A against PMK(Enc), there exists an adversary B against
the OW-CCA security of Enc such that

AdvOW-PMS
A,PMK(Enc)(t) ≤

(
nP · nS · (nP + n′P )

)
·AdvOW-CCA

B,Enc (t).

where, as before, nP (resp. n′P ) is a bound on the number of participants in U (resp. U ′) and nS is
a bound on the number of sessions each participant can engage in.

The proof is essentially the same as for the previous theorem. The only difference is that the
Check(O, s) queries to a given oracle are simulated either by performing a valid decryption using the
public/private key pair held by the algorithm B (in the case where the recipient is not equal to V †),
or is performed using the supplied decryption oracle (when the identity of the recipient is equal to
V †).
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E.2 Pre-Master Key Agreement Via Signed Diffie–Hellman

Let G = 〈g〉 be a finite cyclic group of prime order q in which the Diffie–Hellman problem is hard
and let Sig = (G, sig, ver) be a public key signature scheme;

We write PMK(Sig,G) for the protocol for deriving a pre-master secret via signed Diffie–Hellman
given in Figure 3. The set of pre-master keys is set to G.

Figure 3: Signed Diffie–Hellman Based Pre-Master Key Agreement

Alice Bob
a

R←− {1, . . . , q − 1}; A←ga b
R←− {1, . . . , q − 1}; B←gb

σ←sigSKB
(B)

A -
B, σ�

s = Ba s = Ab

if verPKB
(B, σ) = false

then abort

Notice that we give the protocol for the case of only one party having a public/private key pair.
The case for when both have keys is immediate. The following theorem captures the security of this
protocol.

Theorem E.3 Let G be cyclic group for which the gap-Diffie-Hellman assumption holds and let Sig
be a secure digital signature scheme. Then Π = PMK(Sig,G) is a secure pre-master key agreement
protocol.

Proof: We prove that for any adversary A against Π = PMK(Sig,G) there exists an algorithm B for
the gap-Diffie–Hellman problem in G and an adversary C against Sig such that:

AdvOW-PMS
A,PMK(Sig,G)(t) < Advgap-DH

B,G (t) + nP ·AdvSEF-CMA
C,Sig (t).

where nP denotes a bound on the number of participants in the set U .

Let A be an adversary against the OW-PMS security of the signed Diffie-Hellman pre-master key
agreement protocol Π of Figure 3. We define E to be the event that at the end of an ExecOW-PMS

A,Π (t)
game the oracle O∗ that A outputs has on its transcript an incoming message (ga, sig(ga)) that was
not output by any other oracle in the game. We then note the following

Pr[ExecOW-PMS
A,Π = 1] = Pr[ExecOW-PMS

A,Π = 1 ∩ E] + P [ExecOW-PMS
A,Π = 1 ∩ ¬E]

= Pr[ExecOW-PMS
A,Π = 1 | E] · Pr[E] + Pr[ExecOW-PMS

A,Π = 1 | ¬E] · Pr[¬E]

< Pr[ExecOW-PMS
A,Π = 1 | E] + Pr[ExecOW-PMS

A,Π = 1 | ¬E].

We next construct the two algorithms, B against the gap-DH problem and C against the SEF-CMA
of the underlying signature scheme, according to whether the event E occurs or not.

First assume the event E does not occur. Then we construct the algorithm B against the gap-DH
problem as follows. Algorithm B is given as input a security parameter t, a decisional Diffie-Hellman
oracle ODDH and an instance of the Diffie-Hellman problem (g, ga, gb) where g is a generator of some
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cyclic group G of prime order q in which the gap-Diffie-Hellman problem is computationally infeasible
and a, b ∈ Z×q are unknown to B. Next B acts as a challenger to A in an ExecOW-PMS

A,Π (t) game. To
do this B generates nP identities U and n′P identities U ′. Then B runs the key generation algorithm
of the public key signature scheme Sig with security parameter t to obtain public/private key pairs
of all elements in U . To finish the setup of ExecOW-PMS

A,Π algorithm B calls A using this data.

Algorithm A will then start to make NewSession, Send, Check and Corrupt queries which B answers
in the following way:

• If a Corrupt(U) query is made then B returns SKU .
• When A makes a Send(O,msg) query to an oracle O = Πi

U then B generates a random value
rO ∈ {1, . . . , q − 1}. If U is an initiator then B sets h = (ga)rO , otherwise B sets h = (gb)rO .

Then if U ∈ U ′ and this is the first message received by that oracle then B replies with h. If
this is not the first message then B responds with ⊥.

Otherwise, U ∈ U and B replies with (h, sigSKU (h)).
• If the adversary makes a Check(O, s) query then B obtains the Diffie–Hellman exchanges trans-

mitted to and from the oracle from the transcript and submits these, along with the value to be
checked, to the oracle ODDH. Algorithm B then relays the response of this to A.

In this way B can always answer all of the queries that A makes and will hence perfectly simulate the
environment of A. As a result, eventually A will terminate and output a pair (O∗, s∗) = (Πi∗

U∗ , s
∗).

Since we have assumed that the event E does not occur then there will be an entry of the form
(gαrO† , sigSK

V †
(gαrO† )), where α ∈ {a, b}, on the transcript of O∗ produced by some oracle O† = Πi†

V †
.

Furthermore, if we have ExecOW-PMS
A,Π (t) = 1 then

s∗ = (gab)rO∗rO† .

The algorithm B then constructs the solution to the Diffie–Hellman problem as

(s∗)1/(rO∗rO† )

and outputs this. Hence,

Advgap-DH
B,G (t) = Pr

[
ExecOW-PMS

A,Π = 1 | ¬E
]
.

Next we consider the case in which the event E does occur. In this case we construct the algorithm
C against the SEF-CMA of the signature scheme used as follows. The algorithm C is given as input
a security parameter t, a public verification key PK and a corresponding signature oracle OSK

sig .

Algorithm C acts as a challenger for A in an ExecOW-PMS
A,Π (t) game. To do this C generates nP identities

U and n′P identities U ′ and it selects an oracle U † ∈ U and sets PKU† = PK and SKU† =⊥. Then C
runs the key generation algorithm of the public key signature scheme with security parameter t to
obtain public/private key pairs of all elements U ∈ U \ {U †}. To finish the setup of ExecOW-PMS

A,Π (t)
the set of identities and public keys are passed to algorithm A.

Algorithm A will then start to make NewSession, Send, Check and Corrupt queries which C answers
in the following way:

• If a Corrupt(U) query is made and U 6= U † then C returns SKU , else if U = U † then C aborts.
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• When A makes a Send(O,msg) query to an oracle with identity not equal to U † then C responds
as in the correct execution of the protocol.

Otherwise C and selects a random x ∈ Z×q and computes gx, then calling its signature oracle
it obtains the signature on gx and replies with (gx,OSK

sig (gx)).
• If the adversary makes a Check(O, s) query then C knows the ephemeral Diffie–Hellman secret

of the queried oracle and so can compute the associated Diffie–Hellman secret and so is able to
answer the Check queries honestly.

Now if C does not abort then the environment of A is perfectly simulated and as a result eventually
A will terminate and output a pair (Πi∗

U∗ , s
∗).

If pidO∗ = U † and ExecOW-PMS
A,Π (t) = 1 then there is an entry (h, sigSK

U†
(h)) on the transcript τO∗ of

O∗ that has correctly verified under PKU† . Furthermore, since the event E has occurred, the entry
did not come from U † (i.e. it was not a message/signature pair that was output by OSK

sig ). As a result
the pair (h, sigSK

U†
(h)) is a valid forgery. Algorithm C scans τO∗ to find this pair and then uses the

pair as its output in the game against the SEF-CMA of the signature scheme. We then find, since
the choice of U∗ is outside the view of the adversary,

nP ·AdvSEF-CMA
C (t) ≥ Pr

[
ExecOW-PMS

A,Π = 1 | E
]
.

And from this the result follows, with the stated advantage statement.

E.3 Pre-Master Key Agreement from Signcryption Schemes.

In the TLS standard, when used with RSA based key transport, the mechanism used to provide
mutual authentication is for the client to sign its encryption of the pre-master secret under the
server’s public key. In essence this is using the encrypt-then-sign paradigm of creating a signcryption
scheme [2].

By combining techniques of the proofs of the previous theorems it is easy to show that one can
prove a similar security result to that above for general signcryption based key transport mechanisms,
which also shows security for the mutually authenticated versions of TLS deployed in practice.

F Proof of Theorem 4.4 Part 1

Before going into the details of the proof we give an informal description. An adversary A against a
master secret key agreement protocol can win in one of two ways:

Breaking the PMS: The adversary is able to break the pre-master secret security of the underlying
protocol, and so using a G query is able to break the master-secret security of the protocol.

Breaking the MAC: The adversary is able to, for a given message authentication code under an
unknown key, compute the key for the message authentication code.

We now formalize the proof. Let A be an adversary against the OW-MS security of the master
key agreement protocol Π′ = (Π; MKDSSL(Mac, G)). For the remainder of this section if Πi

U is a
pre-master secret oracle then we denote Πi

U
′ to be the master secret oracle corresponding to Πi

U .
We define E to be the event that A outputs an oracle Πi∗

U∗
′ and that A had, at some point

during the security game ExecOW-MS
A,Π′ , made a query to G of the form G(s, ra, rb) where s is the
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pre-master secret of Πi∗
U∗ and ra, rb are the random strings exchanged after s was agreed that are on

the transcript of Πi∗
U∗
′.

We then note the following:

Pr[ExecOW-MS
A,Π′ = 1] = Pr[ExecOW-MS

A,Π′ = 1 ∩ E] + P [ExecOW-MS
A,Π′ = 1 ∩ ¬E]

= Pr[ExecOW-MS
A,Π′ = 1 | E] · Pr[E] + Pr[ExecOW-MS

A,Π′ = 1 | ¬E] · Pr[¬E]

< Pr[ExecOW-MS
A,Π′ = 1 | E] + Pr[ExecOW-MS

A,Π′ = 1 | ¬E].

The above theorem thus follows from the following two lemmas which capture the above intuition
above.

Lemma F.1 Let Π denote a pre-master key agreement protocol and Π′ = (Π; MKDSSL(Mac, G))
the derived master key agreement protocol. Let the event E be as described above. Then if A is
an adversary against the OW-MS security of Π′ then there is an adversary B against the OW-PMS
security of Π such that

Pr[ExecOW-MS
A,Π′ = 1 | E] = AdvOW-PMS

B,Π (t).

Lemma F.2 Let Π denote a pre-master key agreement protocol and Π′ = (Π; MKDSSL(Mac, G))
the derived master key agreement protocol. Let the event E be as described above. Then if A is
an adversary against the OW-MS security of Π′ then there is an adversary C against the KR-CMA
security of the MAC such that

Pr[ExecOW-MS
A,Π′ = 1 | ¬E] ≤ ((nP + n′P ) · nS) ·AdvKR-CMA

C,Mac (t).

Proof of of lemma F.1: First assume the event E does occur. Let D be a challenger in a OW-PMS
security game ExecOW-PMS

B,Π (t) of Π against B. We then construct the adversary B against D as follows.
For a given security parameter t the challenger D generates nP identities U , n′P identities U ′ and
then obtains public keys for each element in U . Algorithm D then passes U ′∪U and the set of public
keys to B.

Algorithm B acts as a challenger in an ExecOW-MS
A,Π′ (t) game against A. In order to answer the queries

of A in a consistent manner B creates an, initially empty, list G-List. The entries of G-List are
tuples of the form (s, ra, rb,m,O) where s ∈ SPMS ∪ {⊥}, ra, rb ∈ {0, 1}t ∪ {⊥}, m ∈ SMS, and
O ∈ {Πi

U} ∪ {⊥}. To complete the setup of ExecOW-MS
A,Π′ (t) algorithm B passes U ∪ U ′ and the set of

public keys to A.

In the following we assume that the Algorithm B maintains transcripts for each oracle as part of
master secret game ExecOW-MS

A,Π′ by using copies of the transcripts from the pre-master secret game
ExecOW-PMS

B,Π (t) and appending any additional messages to this. We denote τ ′ the transcript formed
from the pre-master secret transcript τ with any additional messages appended.

We also define the GetKey algorithm as Algorithm 1.

Algorithm A will then make NewSession, Send, Corrupt, Check, Reveal and G queries as part of the
ExecOW-MS

A,Π′ (t) game which B answers as follows.

Send(O′,msg):

• This is identical to the definition of the Send queries in the actual game, except that we use the
function GetKey to answer the G queries in producing master secret keys mO′ .

Corrupt(U):
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Algorithm 1: GetKey Algorithm.
Input: A tuple (ra, rb,O)
Output: A value m ∈ SMS

if ∃ (s, ra, rb,m,O) ∈ G-List with Check(O, s) = true then1

return m;2

else if ∃ (s, ra, rb,m,⊥) ∈ G-List with Check(O, s) = true then3

replace (s, ra, rb,m,⊥) with (s, ra, rb,m,O);4

return m;5

else6

m
R←− SMS;7

add (⊥, ra, rb,m,O) to G-List;8

return m;9

• B issues a Corrupt(U) query to D to obtain SKU .
• B outputs SKU . Note that the query Corrupt(U) made by B will ensure that γO is set to corrupted

for each instance i of U .

G(s, ra, rb):

• If s, ra, rb are not such that ra, rb ∈ {0, 1}t and s ∈ SPMS then B returns ⊥.
• Else if there exists (s, ra, rb,m,O) on G-List then B replies with m.
• Else if there exists an entry (⊥, ra, rb,m,O) on G-List and Check(O, s) = true then B replaces

this entry with (s, ra, rb,m,O) and returns m.

• Else B assigns m R←− SMS, adds (s, ra, rb,m,⊥) to G-List and returns m.

Reveal(O′):

• If δO′ 6= accepted–mk then B returns ⊥.
• Else if δO′ = accepted–mk then there will be an entry (∗, ra, rb,m,O) on G-List where ra and rb

are the random strings on the transcript of O′ that were exchanged. In this case B responds with
m.

Check(O′,m):

• If δO′ 6= accepted–mk then B returns ⊥.
• Else if δO′ = accepted–mk then there will be an entry (∗, ra, rb,m∗,O) on G-List where ra and rb

are the random strings on the transcript of O′ that were exchanged. Then if m∗ = m B responds
with true and otherwise with false.

Eventually A will terminate and output a pair (O∗′,m∗). Since the event E has occurred there will
exist an entry (s∗, ra, rb,m,O∗) on G-List where s∗ is the pre-master secret of O∗. Furthermore, if
ExecOW-MS

A,Π′ (t) = 1 then O∗ will be a fresh pre-master secret orcale. To find this entry B scans the
G-List and for each entry (s, ra, rb,m,O) with O = O∗ makes a query Check(O, s) to D. If this
query returns true then B outputs (O, s) and terminates. We note that since E has occured there
will exist such and entry and so B will always terminate. Hence, if ExecOW-MS

A,Π′ (t) = 1, then B will
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win its game against D, i.e. ExecOW-PMS
B,Π (t) = 1. From this we get

Pr[ExecOW-MS
A,Π′ = 1 | E] = AdvOW-PMS

B,Π (t),

as required.

We note that, in the above proof, it may be the case that knowledge of the long term secret key
SKU of a given user U ∈ U may allow the adversary A to compute any agreed pre-master secret
keys. The adversary B is still able to answer all Send and G queries that A asks such that A cannot
tell that this is a simulation. To see why this occurs we consider the two main cases below:
• The adversary A may ask a number of Send queries to have some oracle O agree upon a master

key m with some other oracle using random values ra and rb. In this case there will be an entry
(⊥, ra, rb,m,O) on G-List resulting from B running GetKey(ra, rb,O). If the adversary then
asks a query G(s, ra, rb), where s is the correct pre-master secret computed using a Corrupt query,
B will scan G-List for entries of the form (⊥, ra, rb,m,O) and will use a Check(O, s) query to
ensure the correct value of m is returned.

• The adversary A may ask a G(s, ra, rb) query first and hence there will be an entry (s, ra, rb,m,⊥)
on G-List. If A later makes a series of Send queries that results in O agreeing upon a master
secret key using ra and rb then, as part of the GetKey algorithm, B will scan G-List for entries
of the form (s, ra, rb,m,⊥) and use a Check(O, s) query to ensure the correct value of m is agreed
by this oracle. If at any stage the adversary makes a Corrupt query the answers that B gives will
always be consistent with the value of s computed by A.

Proof of of lemma F.2: First assume the event E does not occur. We then construct the adversary
C against the one-way security of the MAC in a similar way to the the adversary B in lemma F.1.

At the start of the KR-CMA game against Mac the algorithm C is given a security parameter t and
access to a tag generation oracle OKMAC and a tag verification oracle OKver for Mac with an unknown
key K. Algorithm C then acts as a challenger in an ExecOW-MS

A,Π′ (t) game against A. To do this C sets
up the game exactly as the adversary B in lemma F.1 but with the following changes. The algorithm
C selects some master secret oracle O′U for U ∈ U ∪U ′ which it “hopes” the adversary A will output
as part of ExecOW-MS

A,Π′ (t). We let O′V denote the session oracle that O′U agrees a master secret key
with for V ∈ U ∪ U ′. To complete the setup of ExecOW-MS

A,Π′ (t) the algorithm C then calls A using the
setup data.

Algorithm A will then start to make NewSession,Send,Corrupt,Check,Reveal and G queries as part
of ExecOW-MS

A,Π′ (t) which C answers by simulating the real game execpt for the following Send queries:

• If roleO = initiator , msg = rb, and O′ is one of either O′U or O′V , then C makes a query to the
tag generation oracle to obtain a MAC tag σa for 0 || τ ′ and returns σa.

• If roleO = responder , msg = ra, and O′ is one of either O′U or O′V , then B assigns rb
R←− {0, 1}t,

makes a query to the tag generation oracle to obtain a MAC tag σb for 1 || τ ′ and returns rb.
• If roleO = initiator , msg = σb and O′ is one of either O′U or O′V , then the response is made using

the MAC verification oracle available to C.
• Else if roleO = responder , msg = σa and O′ is one of either O′U or O′V , then the response is made

using the MAC verification oracle available to C.

Also, algorithm C answers the Reveal(O′) queries of A in the standard way, except if O′ is one of
either O′U or O′V , in which case C aborts.
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Now if C does not abort then the environment of A is perfectly simulated and so A will eventually
terminate and output a pair (O∗,m∗). With probality 1/((nP + n′P ) · nS) algorithm B will have
guessed that the oracle A will output would be O∗ = O′U . In this case A will be trying to guess the
value for the unknown key used in Mac. Furthermore, if ExecOW-MS

A,Π′ (t) = 1 then m∗ = K. In this

case C outputs m∗ and otherwise outputs m R←− SMS. As a result we have

Pr[ExecOW-MS
A,Π′ = 1 | ¬E] ≤ ((nP + n′P ) · nS) ·AdvKR-CMA

C,Mac (t, qm, qv).

Which proves the Lemma1.

G Proof of Theorem 4.4 Part 2

We first give an informal description of the proof. In order to get an oracle to accept when it has
no partner this means that the adversary must have, at some point, been able to forge a MAC tag
under a given master secret m (this has to be the case since there does not exist an oracle that has
had a matching conversation so no other oracle would have produced the MAC signature that the
oracle accepted with). The adversary may have done this by either computing the master secret key
m or by forging the MAC without computing the key. If the adversary has computed the key m
then it must have done this by first computing the pre-master secret key s, since m is obtained via
the random oracle G. Based on these cases we then construct the corresponding adversaries.

We now formalize the proof. For the remainder of this section if Πi
U is a pre-master secret oracle

then we denote Πi
U
′ to be the master secret oracle corresponding to Πi

U . We let A be an adversary
against the OW-MS security of Π′ = (Π; MKDSSL(Mac, G)). Let O∗′ denote the oracle which satisfies
the No Matching condition in the ExecOW-MS

A,Π′ (t) game. We define E to be the event that A, at some
point during ExecOW-MS

A,Π′ (t), makes a query G(s∗ || r∗a || r∗b ) such that O∗′ has randomness exchanged
on its transcript of r∗a and r∗b and the pre-master secret key of O∗ is s∗.

We then have

Pr[No-MatchingA(t)] = Pr[No-MatchingA(t) ∩ E] + Pr[No-MatchingA(t) ∩ ¬E]

= Pr[No-MatchingA(t) | E] · Pr[E] + Pr[No-MatchingA(t) | ¬E] · Pr[¬E]

< Pr[No-MatchingA(t) | E] + Pr[No-MatchingA(t) | ¬E].

The theorem then follows from the following two lemmas which capture the above intuition. Due to
space reasons, their proofs are provided in the full version of the paper.

Lemma G.1 Let Π denote a pre-master key agreement protocol and Π′ = (Π; MKDSSL(Mac, G))
the derived master key agreement protocol. Let the event E be as described above. Then if A is
an adversary against the OW-MS security of Π′ then there is an adversary B against the OW-PMS
security of Π such that

Pr[No-MatchingA(t) | E] ≤ AdvOW-PMS
B,Π (t).

Lemma G.2 Let Π denote a pre-master key agreement protocol and Π′ = (Π; MKDSSL(Mac, G))
the derived master key agreement protocol. Let the event E be as described above. Then if A is
an adversary against the OW-MS security of Π′ then there is an adversary C against the UF-CMA
security of Mac such that

Pr[No-MatchingA(t) | ¬E] ≤ ((nP + n′P ) · nS) ·AdvUF-CMA
C,Mac (t, qm).

1We note that if the adversary A outputs the oracle O′V and ExecOW-MS
A,Π′ (t) = 1 then the adversary C can again win

the security game against KR-CMA. We have not included this case in order to keep the analysis simple.
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Proof of of lemma G.1: Informally this lemma corresponds to the case where the adversary A
causes the event No-MatchingA(t) to occur by first computing the pre-master secret s∗ of some fresh
oracle O∗ and then, by querying G on s∗, obtains the master secret key m∗ of O∗′ and uses this to
produce a forgery for Mac.

We first assume that the event E does occur. Let D be a challenger in an ExecOW-PMS
B,Π (t) security game

of Π against B. We then construct the adversary B against D as follows. B acts as a challenger in an
ExecOW-MS

A,Π′ (t) security game for Π′ against the adversary A. Algorithm B simulates the environment
for A and answers queries of A in exactly the same way as in lemma F.1.

Eventually A will terminate and output an oracle (not necessarily O∗) and some element of SMS.
Since the event E has occurred there will exist on the G-List some entry (s∗, r∗a, r

∗
b ,m

∗,O∗) such that
Check(O∗, s∗) = true. Furthermore, since No Matching has occured on O∗′ this means O∗ is fresh.
To find this entry B scans G-List and for each entry (s, ra, rb,m,O) queries Check(O, s). Algorithm
B then outputs (O∗, s∗) for the security game ExecOW-PMS

B,Π (t) against D. As a result we obtain

Pr[No-MatchingA(t) | E] ≤ AdvOW-PMS
B,Π (t),

as required.

Proof of of lemma G.2:

Informally, this lemma corresponds to the case where A causes a No Matching condition to occur on
an oracle O∗′ by forging a MAC tag without computing the underlying key for the Mac scheme in
use.

Recall that the event E does not occur. We then construct the adversary C against the unforgeability
security of Mac as follows. At the start of the UF-CMA game against Mac the algorithm C is given
a security parameter t, access to a tag generation oracle OKMAC(·), and tag verification oracle OKver(·)
for Mac with an unknown key K. Algorithm C then acts as a challenger in an ExecOW-MS

A,Π′ (t) game
against A. To do this C sets up the game similarly to how this was done by B in lemma F.2.

Algorithm C selects an oracle at random O∗′ as a guess for the oracle that the No-MatchingA(t)
condition will be satisfied for. Algorithm C then calls A with the setup data and begins to answer
any queries that A makes.

The adversary C then continues to simulate the responses to all queries correctly except for those
involving O∗′. In this case any Send queries that involve the computation or verification of MAC tags
are answered using the tag generation and verification oracles provided to C. Also if a Reveal(O∗′)
query is made by A then C aborts.

Eventually the adversary A will terminate and output a pair (O,m). If the event No-MatchingA(t)
has occured on O∗′ then there will be a tag and message pair (tag,msg) that is on the transcript
of O∗′ that is a valid forgery for Mac. To see why this is true we consider the case where O∗′
is an initiator (the case of a responder is similar). Here the oracle O∗′ will have at some point
recieved a random string rB as an incoming message. The adversary C will have then made a query
OKMAC(0 || τ ′), where τ ′ is the transcript of O∗′, recieved tag in response and responded to A with
this. Next the oracle will have recieved from A some other tag′ in response and C will have made
a query OKver(1 || τ ′) and recieved an answer true. Since No-MatchingA(t) has occured on O∗′ then
there will be some user V ∈ U such that pidO∗′ = V . The only oracles that possibly could have
a matching conversation with O∗′ are those that belong to V , since V would have to be on the
transcript of any oracle that does have a matching conversation with O∗′. We conclude that the way
in which No-MatchingA(t) has occured is that there is no oracle (either belonging to V or not) that
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has had a matching conversation with O∗′ (rather than some oracle not belonging to V having a
matching conversation with O∗′). This means that the adversary A must have produced tag′ itself:
no other oracle in the game ExecOW-MS

A,Π′ (t) has the same transcript as O∗′ so no other oracle would
have produced it. Since the adversary A has produced this tag (as opposed to it being obtained
from a OKMAC(·) query) and it verifies correctly with the message (1 || τ ′) it is a valid forgery of this
message.

To find this entry C scans the transcript of O∗′. Then if the role of O∗′ is the initiator C outputs
(tag, 1 || τ ′) and otherwise C outputs (tag, 0 || τ ′), where τ ′ is the transcript of O∗′, as part of the
UF-CMA game against Mac. Hence, since the adversary C correctly guesses that the oracle for which
the No-MatchingA(t) condition will be satisfied is O∗′ with probability 1/((nP +n′P ) ·nS), we obtain

Pr[No-MatchingA(t) | ¬E] ≤ ((nP + n′P ) · nS) ·AdvUF-CMA
C,Mac (t).

Which proves the Lemma.

H Proof of Theorem 5.3

That the protocol is correct in the presence of benign adversaries is clear. We sketch the rest of the
proof, as the details are modifications of the previous proofs.

To prove the advantage statement let A be an IND-AK adversary against Σ = (Π′; AKSSL(H)). In
the proof we shall model H as a random oracle. From this will shall construct an OW-MS adversary
B against the master secret key agreement protocol Π′ in a game ExecOW-MS

B,Π′ (t) as follows. The
algorithm B acts as a challenger in an ExecIND-AK

A,Σ (t) security game against A. The algorithm B
simulates H by maintaining a list, the H-list, of queries and responses to the oracle H. The input
to adversary B as part of the ExecOW-MS

B,Π′ (t) game is used to create the input to adversary A.
At the start of the game the adversary B selects an oracle O∗′ as in our other proofs, which it

“hopes” the Test query will involve a child of O∗′. The algorithm B answers A’s Check, Reveal and
Corrupt queries by passing the queries directly to the challenger of B and relaying the response back
to A. The Spawn and Send queries are handled by B in the obvious manner.

The Compromise queries, in the case where the query is made of an oracle which is not a child of
O∗′, are handled by B making an appropriate Reveal query and then using the random oracle H to
produce the required answer. In the case where the query is for a child of O∗′, in which case we are
not allowed to use the Reveal query, the adversary B simulates the output using the H-List and the
Check oracle.

At some point A will make a Test query of some oracle ΣO. If O 6= O∗′ then algorithm B aborts,
otherwise algorithm B returns a random key from the space SA to the adversary A.

Eventually A will terminate with its guess for the bit b. If ExecIND-AK
A,Σ (t) = 1 then, since H is

modelled as a random oracle, A must have queried the oracle H with the inputs corresponding to
the underlying master secret key, and message flows, of the application key oracle ΣO∗′ . In addition
the underlying master key oracle O∗′ must be fresh in the security game ExecOW-MS

B,Π′ (t).
Algorithm B then scand the H-list and checks whether the first component of the input corre-

sponds to the underlying master secret key of O∗′. It does this by calling Check for the oracle O∗′.
When it finds the correct key it outputs (O∗′,mO∗′) and terminates.

The advantage statement then follows.
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I Application Security

An application is a operation which makes use of secret keys. Different applications will clearly
have different security definitions, before focusing on confidentiality we give some general definitions
which should hold for all applications.

An application consists of a set of participants I. The adversary always has access to two queries:
• Join(I): This takes a single participant I ∈ I and produces a new oracle ΩI . The behaviour of the

ΩI oracles is dependent on the precise application. However, hidden from view of the adversary
there is also generated a secret key kI ∈ SA.

• Reveal(ΩI): This gives the adversary the value of the secret key kI . An oracle on which Reveal(ΩI)
has been performed is called a revealed oracle.

The exact properties of the ΩI oracles and the security game played by the adversary depends on
the precise application. The main application is however one of confidentiality.

I.1 Confidentiality Encryption Applications:

We follow the game from Mazare and Warinschi [26] to define security of symmetric encryption in
the presence of adaptive corruptions. For the security game the challenger selects a random bit
b ∈ {0, 1}. The adversary has access to three additional queries, in addition to the Join and Reveal
queries above;
• OE(ΩI ,m): This takes a message m and forms its encryption under the symmetric key kI . The

ciphertext is returned to the user.
• OD(ΩI , c): This takes a ciphertext c and forms its decryption under the symmetric key kI . If the

decryption algorithm returns ⊥ then so does this oracle, otherwise the message is returned.
• OLR(ΩI ,m0,m1): This query may only be called if the oracle ΩI has not been revealed, and the

reveal oracle cannot be called on ΩI if the oracle OLR(ΩI ,m0,m1) has been called for some values
of m0 and m1. The OLR(ΩI ,m0,m1) oracle takes two messages of equal length, m0 and m1, and
returns the encryption of mb under the secret key kI .

At the end of the game the adversary is required to output a bit b′, with the adversary winning the
game if b′ = b. The advantage of an adversary is defined to be

AdvA(t) =
∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

∣∣ .
In [26] this security definition is called IND-ACCCA, and it is shown that an encryption scheme
which is IND-CCA secure in the many-time setting is also secure in the above sense.

I.2 Combining Key Agreement and Applications

Having defined security for application key agreement protocols and for application protocols we
join them together to form a system protocol. Informally, for confidentiality encryption applications,
the way in which we do this is to use k′ as the encryption key and k′′ as the decryption key where
k = k′ || k′′ is the application key that a given accepted appliction key oracle Q holds and on which
the Join query was made.

The formal definition, and security game, is defined as follows: We take the set up for the
application key agreement protocols above, namely the sets U , U ′, the public/private key pairs and
the oracles Πi

U , Σj

ΠiU
etc. The set I is defined to be the set of all possible application key agreement

oracles Σj

ΠiU
.
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To define security for the whole system protocol we need to define what queries are allowed and
what adversarial goal one is trying to achieve: The queries on the Πi

U and Σj

ΠiU
are defined as in

the application key agreement game. One also defines a new query on an Q = Σj

ΠiU
oracle which

has accepted, denoted Join which returns an application oracle ΩQ, with the same application key
k as is held by the internal state of the Q oracle. If Reveal(ΩQ) is called then we also assume that
Compromise(Q) is also called, i.e. O becomes a compromised oracle.

To these queries we add the queries available in the specific application game; for example in
the encryption game we add the oracles OE(Ωi

I ,m), OD(Ωi
I ,m) and OLR(Ωi

I ,m0,m1) where OE and
OLR encrypt using k′ and OD decrypts using k′′. The security goal of the adversary is defined to be
the security goal as in the application game.

Theorem I.1 The above combination results in a secure protocol when our key agreement protocol
is combined with an ACCCA-secure encryption scheme to produce a confidentiality application.

Proof: The proof is immediate using standard game hopping. We only sketch it here.

First we move to a game in which one application key is chosen at random instead of by following the
key agreement protocol. Any adversary which can distinguish between the two games clearly breaks
the indistinguishability of the underlying application key agreement. A standard hybrid argument
then extends this to all application keys being chosen at random.

Then the game we are in is simply the security game of IND-ACCCA.

Note, that the above proof needs to be carefully applied as the encryption scheme used in the
SSL is one of MAC-then-Encrypt, which is not known in general to be IND-CCA [4, 23]. However,
for the specific MAC and encryption functions used in SSL, to perform MAC-then-Encrypt, one can
show that the resulting encryption scheme is IND-CCA, see [23] for details.
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