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Abstract. In ATC 2007, an identity-based signcryption scheme for mul-
tiple receivers was proposed by Zhang et al. They prove confidentiality
of their scheme and also claim unforgeability without any proof. In this
paper, we show that their signcryption scheme is insecure by demon-
strating a universal forgeability attack — anyone can generate a valid
signcrypted ciphertext on any message on behalf of any legal user for any
set of legal receivers without knowing the secret keys of the legal users.
Further, we propose a corrected version of their scheme and formally
prove its security (confidentiality and unforgeability) under the existing
security model for signcryption. We also analyze the efficiency of the
corrected scheme by comparing it with existing signcryption schemes for
multiple receivers.
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1 Introduction

Encryption and signatures are basic cryptographic tools offered by public key
cryptography for achieving privacy and authenticity. Both primitives are used in
a number of high level protocols. There are scenarios where properties of both
primitives are needed. The most common example is secure emailing, where
the messages should be encrypted and signed to provide confidentiality and
authentication. For achieving this, encryption schemes and signature schemes
can be combined to meet the requirements. This was shown to be complex by An
et al. in [17]. Signcryption, introduced by Zheng in 1997 [2], is a cryptographic
primitive that offers confidentiality and unforgeability simultaneously similar
to the sign-then-encrypt technique, but with lesser computational complexity
and lower communication cost. This has made signcryption a suitable primitive
for applications that require secure and authenticated message delivery, where
devices have limited resources. After Zheng’s work, a number of signcryption
schemes were proposed ([4], [19], [20], [21], [11], [10], [22]). The security notion
for signcryption was first formally defined in 2002 by Baek et al. in [18]. This



was similar to the notion of semantic security against adaptive chosen ciphertext
attack and existential unforgeability against adaptive chosen message attack.

The concept of an Identity based (ID-based) cryptosystem was introduced by
Shamir [24] in 1984. The distinguishing characteristic of ID-based cryptography
is the ability to use any string as a public key. In particular, this string maybe the
email address, telephone number, or any publicly available parameter of an indi-
vidual that is unique to that individual.The corresponding private key can only
be derived by a trusted Private Key Generator (PKG) who keeps a master se-
cret which is involved in the said derivation. An ID-based cryptosystem removes
the need for senders to look up the receiver’s public key before sending out an
encrypted message. It provides a more convenient alternative to conventional
public key infrastructure.

ID-based signcryption schemes achieve the functionality of signcryption with
the added advantage that ID-based cryptography provides. In [8], Malone-Lee
gave the first ID-based signcryption scheme. Later it was found that Malone-
Lee’s scheme was not semantically secure. Since then, quite a few ID-based
signcryption schemes have been proposed ([9], [22], [10], [23], [12]). To date,
some of the most efficient ID-based signcryption schemes are that of Chen et al.
[12], and Barreto et al. [23]

The objective of a multi-receiver ID-based signcryption scheme is to efficiently
broadcast a single confidential ciphertext to different receivers while achieving
the security properties of authenticity and unforgeability. In practice, broad-
casting a message to multiple users in a secure and authenticated manner is an
important facility for a group of people who are jointly working on the same
project to communicate with one another. We point out that there are only two
multi-receiver ID-based signcryption schemes ([1] and [15]) till date.

Our Contribution. We show that the signcryption scheme of Zhang et al. [1] is
insecure with respect to unforgeability by demonstrating an attack which shows
that any legal user of the system can generate a signcrypted ciphertext on any
message on behalf of any other legal user for any set of receivers without knowing
the secret key of any other legal users. Further, we propose a corrected version
of their scheme and prove its security (confidentiality and unforgeability) under
the existing security model for signcryption. We also analyze the efficiency of the
corrected scheme by comparing it with an existing identity-based signcryption
scheme for multiple receivers.

The rest of this paper proceeds as follows. In Section 2, we review the prelim-
inaries like bilinear pairings and related computational problems, the general
framework of ID-based signcryption schemes for multiple receivers, and the se-
curity models for such schemes. Next, in Section 3, we review Zhang et al.’s
proposed multi-receiver ID-based signcryption scheme. We present the attack
on this scheme in Section 4. In Section 5, we lay out the details of our fix to
Zhang et al.’s scheme. In Section 6, we present the proof of unforgeability of our



scheme, while we move the proofs of correctness and confidentiality of our scheme
to the appendix. Section 7 discusses the efficiency of our scheme in comparison
with the existing scheme of Duan et al. and Section 8 concludes the discussion.

2 Preliminaries

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P , with prime order q, and G2

be a multiplicative cyclic group of the same order q. A bilinear pairing is a map
ê : G1 ×G1 → G2 with the following properties.

– Bilinearity. For all P, Q,R ∈ G1,
• ê(P + Q,R) = ê(P, R)ê(Q,R)
• ê(P, Q + R) = ê(P, Q)ê(P,R)
• ê(aP, bQ) = ê(P, Q)ab

– Non-Degeneracy. There exist P,Q ∈ G1 such that ê(P, Q) 6= IG2 , where
IG2 is the identity element of G2.

– Computability. There exists an efficient algorithm to compute ê(P, Q) for
all P, Q ∈ G1.

2.2 Computational Assumptions

In this section, we review the computational assumptions related to bilinear
maps that are relevant to the protocol we discuss.

Bilinear Diffie-Hellman Problem (BDHP) Given (P, aP, bP, cP ) ∈ G4
1 for

unknown a, b, c ∈ Z∗q , the BDH problem in G1 is to compute ê(P, P )abc.

Definition. The advantage of any probabilistic polynomial time algorithm A
in solving the BDH problem in G1 is defined as

AdvBDH
A = Pr

[A(P, aP, bP, cP ) = ê(P, P )abc | a, b, c ∈ Z∗q
]

The BDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvBDH

A is negiligbly small.

Decisional Bilinear Diffie-Hellman Problem (DBDHP) Given (P, aP, bP, cP, α) ∈
G4

1 × G2 for unknown a, b, c ∈ Z∗q , the DBDH problem in G1 is to decide if
α = ê(P, P )abc.

Definition. The advantage of any probabilistic polynomial time algorithm A
in solving the DBDH problem in G1 is defined as

AdvDBDH
A = |Pr

[A(P, aP, bP, cP, ê(P, P )abc) = 1
]−Pr [A(P, aP, bP, cP, α) = 1] |

The DBDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvDBDH

A is negiligbly small.



Compuational Diffie-Hellman Problem (CDHP) Given (P, aP, bP ) ∈ G3
1

for unknown a, b ∈ Z∗q , the CDH problem in G1 is to compute abP .

Definition. The advantage of any probabilistic polynomial time algorithm A
in solving the CDH problem in G1 is defined as

AdvCDH
A = Pr

[A(P, aP, bP ) = abP | a, b ∈ Z∗q
]

The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDH

A is negiligbly small.

2.3 Identity-Based Signcryption for Multiple Receivers

A generic IBSC multi-receiver scheme for sending a single message to t users
consists of the following probabilistic polynomial time algorithms,

– Setup(k). Given a security parameter k, the Private Key Generator (PKG)
generates the public parameters params and master secret key msk of the
system.

– Keygen(IDAlice). Given an identity IDAlice, the PKG computes the corre-
sponding private key DAlice and transmits it to Alice in a secure way.

– Signcrypt(m, IDAlice,L = {ID1, ID2, ....IDt} , DAlice). To send a message
m to (ID1, ID2, ....IDt) with identity IDBob, Alice with identity IDAlice and
private key DAlice runs this algorithm to obtain the signcrypted ciphertext
σ.

– Designcrypt(σ, IDAlice, IDBob, DBob). When Bob with identity IDBob and
private key DBob receives the signcrypted ciphertext σ from Alice with iden-
tity IDAlice, he runs this algorithm to obtain either the plain text m or ⊥
according as whether σ was a valid signcryption from identity IDAlice to
identity IDBob or not.

For consistency, we require that if σ = Signcrypt (m, IDAlice, (ID1, ID2, IDt), DAlice),
then m = Designcrypt (σ, IDAlice, IDi, DBob) for 1 ≤ i ≤ t.

2.4 Security Model for Identity-Based Signcryption for Multiple
Receivers (MIBSC)

The notion of semantic security of public key encryption was extended to identity-
based signcryption scheme by Malone-Lee in [8]. This was later modified by Sher-
man et al. in [10] which incorporates indistinguishability against adaptive chosen
ciphertext and identity attacks (IND-IBSC-CCIA) and existential unforgeability
against adaptive chosen message and identity attacks (EUF-IBSC-ACMIA). We
describe below the security models for confidentiality and unforgeability below.



Confidentiality A signcryption scheme is semantically secure against chosen
ciphertext attack (IND-MIBSC-CCA2) if no probabilistic polynomial time ad-
versary A has a non-negligible advantage in the following game.
1. The challenger C runs the Setup algorithm and sends the system public

parameters to the adversary A.
2. In the first phase, A makes polynomially bounded number of queries to the

following oracles.
(a) Keygen Oracle — A produces an identity ID and queries for the secret

key of ID. The Keygen Oracle returns DID to A.
(b) Signcrypt Oracle — A produces a message m, sender identity IDA

and a list of receiver identities ID1, ID2, . . . , IDt. C computes the secret
key DA from Keygen(IDA) and returns to A, the signcrypted ciphertext
σ from Signcrypt (m, IDA, {ID1, ID2, . . . , IDt} , DA).

(c) Designcrypt Oracle — A produces a sender identity IDA, receiver
identity IDB and a signcryption σ. The challenger C computes the secret
key DB from Keygen(IDB), returning the result of Designcrypt (σ, IDA, IDB , DB)
to A. The result returned is ⊥ if σ is an invalid signcrypted ciphertext
from IDA to IDB .

3. A produces two messages m0 and m1 of equal length from the message space
M and an arbitrary sender identity IDA. The challenger C flips a coin, sam-
pling a bit b ← {0, 1} and computes σ∗ = Signcrypt (mb, IDA, {ID1, ID2, . . . , IDt} , DA).
σ∗ is returned to A as challenge signcrypted ciphertext.

4. A is allowed to make polynomially bounded number of new queries as in Step
2 with the restrictions that it should not query the Designcryption Oracle
for the designcryption of σ∗, the Signcryption Oracle for the signcryption
of m0 or m1 under the sender identity IDA and the Keygen Oracle for the
secret keys of ID1, ID2, . . . , IDt.

5. At the end of this game, A outputs a bit b′. A wins the game if b′ = b.

Unforgeability A signcryption scheme is existentially unforgeable under chosen
message attack (EUF-MIBSC) if no probabilistic polynomial time adversary A
has a non-negligible advantage in the following game.
1. The challenger C runs the Setup algorithm to generate the master public and

private keys params and msk respectively. C gives system public parameters
params to A and keeps the master private key msk secret from A.

2. The adversary A makes polynomially bounded number of queries to the
oracles as described in Step 2 of the confidentiality game.

3. A produces a signcrypted ciphertext σ and wins the game if the private key
of sender identity IDA was not queried in the previous step and ⊥ is not
returned by Designcrypt(σ, IDA, IDB , DB) and σ is not the output of a
previous query to the Signcrypt Oracle.

3 Review of Zhang’s ID-Based Multi-Receiver
Signcryption Scheme (Z-MIBSC)

The Z-MIBSC scheme in [1] has the following algorithms.



3.1 Setup(k)

The security parameter of the scheme is k and G1, G2 are two groups of prime
order q and P is a generator of G1 and ê is a bilinear map defined as ê : G1×G1 →
G2. Let n0, n1, n2 and n3 denote the number of bits required to represent an
identity, an element of G1, an element of G2 and a message respectively. Three
hash functions H1 : {0, 1}n0 → G1, H2 : {0, 1}n1+n3 → Z∗q , H3 : {0, 1}n2 →
{0, 1}n3 are used. The PKG chooses s ∈ Z∗q and R ∈ G1\ {0G1} and computes
Ppub = sP and θ = ê(R,Ppub), where 0G1 denotes the zero element of G1. The
public parameters are 〈G1,G2, P, Ppub, R, θ, ê,H1,H2, H3〉.

3.2 Keygen(IDA)

The public key and private key of user A are computed from his identity IDA

as QA = H1 (IDA) and DA = sQA respectively.

3.3 Signcrypt(m, IDA, ID1, ID2, . . . , IDn, DA)

Suppose A wants to encrypt a message m to n receivers with identities ID1, ID2, . . . , IDn.
User A does the following.

1. Choose r ∈R Z∗q
2. Compute the following.

(a) X = rQA

(b) h2 = H2 (X‖m)
(c) Z = (r + h2)DA

(d) U = rP
(e) ω = ê (Z, P )
(f) y = m⊕H3 (ω)
(g) W = θrω
(h) Ti = rH1 (IDi) + rR, for 1 ≤ i ≤ n.

3. The signcrypted ciphertext is σ = 〈y, U,X, W, T1, T2, . . . , Tn, L〉, where L is
the list of receivers who can decrypt the message. Here, Ti is meant for the
receiver IDi.

3.4 Designcrypt(σ, IDA, IDi, Di)

A receiver with identity IDi uses his secret key Di to designcrypt σ = 〈y, U,X,W, Ti, L〉
from IDA as follows.

1. Compute the following.
(a) ω′ = Wê (U,Di) ê (Ppub, Ti)

−1

(b) m′ = y ⊕H3 (ω′)
(c) QA = H1 (IDA)
(d) h′2 = H2 (X‖m′)

2. If ω′ = ê (Ppub, X + h′2QA), return m′. Otherwise, return ⊥.



4 Attack on Z-MIBSC

The scheme described above [1] is insecure from the point of view of unforge-
ability. Anybody can generate a valid signcryption for any message m∗ as if it
were generated by another legal user. We describe how the attack proceeds in
this section.

Let Alice be a legal user of the system and Eve be any forger. If Eve wants to
generate a signcryption on any message m∗ as if it were generated by Alice for a
list of legal users of the system with identities ID1, ID2, . . . , IDt, Eve just has
to do the following.

1. Choose r∗ ∈R Z∗q
2. Compute the following.

(a) X∗ = r∗QAlice

(b) h∗2 = H2 (X∗‖m∗)
(c) Z∗ = (r∗ + h∗2) QAlice.
(d) U∗ = r∗P
(e) ω∗ = ê (Z∗, Ppub)
(f) y∗ = m∗ ⊕H3 (ω∗)
(g) W ∗ = θr∗ω∗

(h) T ∗j = r∗H1 (IDj) + r∗R, for 1 ≤ j ≤ t

3. σ∗ = 〈y∗, U∗, X∗,W ∗, T ∗1 , T ∗2 , . . . , T ∗t , L∗〉 is the signature of Alice on mes-
sage m∗ generated by Eve for the list of users L∗ with identities {IDj}1≤j≤t

We now prove that the σ∗ generated by Eve is a valid signcryption from Alice
to the receivers in L∗ on the message m∗.

Designcrypt(σ∗ = 〈y∗, U∗, X∗,W ∗, T ∗1 , T ∗2 , . . . , T ∗t , L∗〉, IDAlice, IDj , Dj). A re-
ceiver with identity IDj uses his secret key Dj to designcrypt σ∗ obtained from
Eve as follows.

1. Compute the following.
(a) QAlice = H1 (IDAlice)
(b) Next, it can be seen that

ω′ = W ∗ê (U∗, Dj) ê
(
Ppub, T

∗
j

)

= θr∗ω∗ê (r∗P, sQj) ê (Ppub, r
∗Qj + r∗R)−1

= ê (Ppub, R)r∗
ω∗ê (P, Qj)

r∗s
ê (P,Qj)

−r∗s
ê (P,R)−r∗s

= ω∗

(c) m′ = y∗ ⊕H3 (ω′) = m∗

(d) h′2 = H2 (X∗‖m′) = h∗2
2. Next, the check ω′ ?= ê (Ppub, X

∗ + h′2QAlice) is performed. We show below
that this test will succeed and hence message m∗ will be returned.



ê (Ppub, X
∗ + h′2QAlice) = ê (sP, r∗QAlice + h∗2QAlice) (since h′2 = h∗2)

= ê (sP, (r∗ + h∗2)QAlice)
= ê (Ppub, Z

∗) (from Step 2(c) of Eve’s forgery above)
= ê (Z∗, Ppub) (by symmetry of the bilinear map)
= ω∗ = ω′

From this it is clear that Eve can succeed in generating a signcryption of message
m∗ with Alice as sender and identities IDj , 1 ≤ j ≤ t as receivers without
knowing the secret key of Alice. Thus any legal user can forge any message on
behalf of any other legal user to any set of receivers.

5 Improved Multi-Receiver Identity Based Signcryption
Scheme (I-MIBSC)

In this section, we propose an improved version of Z-MIBSC, which we formally
prove to be secure. The setup and key generation algorithms of I-MIBSC are
similar to that of Z-MIBSC, but with slightly different hash functions. The details
are given below.

5.1 Setup(k)

Let k be the security parameter of the system. Let G1 and G2 be two groups
of prime order q and let P be the generator of G1 and ê be a bilinear map
defined as ê : G1×G1 → G2. As before, let n0, n1, n2 and n3 denote the number
of bits required to represent an identity, an element of G1, an element of G2

and a message respectively. Consider three hash functions H1 : {0, 1}n0 → G1,
H2 : {0, 1}n0+2n1+n3 → Z∗q , H3 : {0, 1}n2 → {0, 1}n1+n3 . The PKG chooses its
secret key s ∈ Z∗q and sets the public key Ppub = sP . The PKI also chooses
R ∈ G1\ {0G1} and computes θ = e(R, sP ), where 0G1 denotes the zero element
of G1. The public parameters of the system are 〈G1,G2, P, Ppub, R, θ, ê : G1 ×
G1 → G2,H1, H2,H3〉.

5.2 Keygen(IDA)

The public key and private key of user A are computed from his identity IDA

as QA = H1 (IDA) and DA = sQA respectively.

5.3 Signcrypt(m, IDA, ID1, ID2, . . . , IDn, DA)

For signcryption of message m by user A with identity IDA and secret key DA

to n receivers with identities ID1, ID2, . . . , IDn, do the following.

1. Choose r1, r2 ∈R Z∗q



2. Compute the following.
(a) U = r1P
(b) X = r2QA

(c) h2 = H2 (IDA‖U‖X‖m)
(d) Z = (r2 + h2)DA

(e) ω = ê (Z, P )
(f) y = (m‖Z)⊕H3 (ω)
(g) W = θr1ω
(h) Ti = r1(Qi + R), for 1 ≤ i ≤ n

3. The signcrypted ciphertext is σ = 〈y, U,X, W, T1, T2, . . . , Tn, L〉, where L is
the list of receivers who can decrypt the message. Here, Ti is meant for the
receiver IDi.

5.4 Designcrypt(σ, IDA, IDi, Di)

A receiver with identity IDi uses his secret key Di to designcrypt σ = 〈y, U,X,W, Ti, L〉
from IDA as follows.

1. Compute the following.
(a) ω′ = Wê (U,Di) ê (Ppub, Ti)

−1

(b) m′‖Z ′ = y ⊕H3 (ω′)
(c) h′2 = H2 (IDA‖U‖X‖m′)

2. If ω′ = ê (Z ′, P ) and ω′ = ê (X + h′2QA, Ppub), return m′. Otherwise, return
⊥.

We prove the correctness of our scheme in Appendix A and confidentiality of our
scheme in Appendix B. Since the attack we presented on Zhang et al.’s scheme
was based on the unforgeability aspect, we present the proof of unforgeability of
our scheme formally in Section 6.

6 Proof of Unforgeability of I-MIBSC

Theorem. Our multi-receiver identity based signcryption scheme I-MIBSC is
secure against any EUF-MIBSC adversary A under the random oracle model if
CDHP is hard in G1.

The challenger C receives an instance (P, aP, bP ) of the CDH problem. His goal
is to determine abP . Suppose there exists an EUF-MIBSC adversary A for our
proposed I-MIBSC scheme. We show that C can use A to solve the CDH prob-
lem. C will set the random oracles OH1 , OH2 , OH3 , OKeyExtract, OSigncrypt

and ODesigncrypt. The answers to the oracles OH1 , OH2 , and OH3 are ran-
domly selected, therefore, to maintain consistency, C will maintain three lists
L1 = 〈IDi, Qi, xi〉, L2 = 〈IDi, U,X,m, h2〉, L3 = 〈ω, h3〉. We assume that
A will ask for H0(ID) before ID is used in any key extraction, signcryption
and designcryption queries. First, the adversary A outputs the identity IDA of



the sender whose signcryption he claims to be able to forge. Then, the chal-
lenger C gives A the system parameters params, consisting of P , Ppub = bP , R,
θ = ê(R, Ppub = ê(R, bP ). The descriptions of the oracles follow.

Oracle OH1(IDi). C checks if there exists a tuple (IDi, Qi, xi) in L1. If such a
tuple exists, C answers with Qi. Otherwise, C does the following.

1. If IDi 6= IDA, choose a new1 xi ∈R Z∗q and set Qi = xiP .
2. If IDi = IDA, choose a new xi ∈R Z∗q and set Qi = (xi − a)P .
3. Add the tuple (IDi, Qi, xi) to L1 and return Qi.

Oracle OH2 (IDi‖U‖X‖m). C checks if there exists a tuple (IDi, U,X, m, h2)
in L2. If such a tuple exists, C returns h2. Otherwise, C chooses a new h2 ∈R Z∗q ,
adds the tuple (IDi, U,X, m, h2) to L2 and returns h2.

Oracle OH3(ω). C checks if there exists a tuple (ω, h3) in L3. If such a tuple
exists, C returns h3. Otherwise, C chooses a new h3 ∈R {0, 1}n1 + n3, adds the
tuple (ω, h3) in L3 and returns h3.

Oracle OKeyExtract(IDi). C does the following.

1. If IDi = IDA, return ⊥.
2. If IDi 6= IDA, recover the tuple (IDi, Qi, xi) from L1 and return Di =

xiPpub = bQi.

Oracle OSigncrypt (m, IDi,L). On receiving this query, where L = {ID1, ID2, . . . , IDt}
is the list of intended receivers, C checks if IDi = IDB . If not, C computes Di

using OKeyExtract (IDi), generates the signcryption in a normal way and returns
it. Otherwise, that is, if IDi = IDA, it chooses r, r′ and a new h2 ∈R Z∗q and
does the following.

1. Compute U = r′P
2. Compute X = rP − h2OH1(IDA) and add the tuple (IDA, U,X,m, h2) to

L2.
3. Compute the following.

(a) Z = rPpub

(b) ω = ê(Z, P )
(c) y = OH3(ω)⊕ (m‖Z)
(d) For all IDj ∈ L, Tj = r′(OH1(IDj) + R).
(e) W = θr′ω

4. Return the signcrypted ciphertext σ = 〈y, U,X, W, T1, T2, . . . , Tt,L〉.

Oracle ODesigncrypt (σ, IDi, IDj). On receiveing this query, where the sign-
crypted ciphertext σ = 〈y, U,X, W, T1, T2, . . . , Tt,L〉, C checks if IDj = IDA.
If not, then C computes Dj using OKeyExtract(IDj), designcrypts σ in the nor-
mal way and returns what the designcryption algorithm returns. Otherwise,
1 By new, we mean that the random value chosen must not have been already chosen

during an earlier execution.



that is, if IDj = IDA, then C tries to locate entries (IDi, U,X, m, h2) ∈ L2

and (ω, h3) ∈ L3 for some h2, h3, and ω under the constraints that ω =
ê(Ppub, X + h2OH1(IDi)), (m‖Z) = h3 ⊕ y, and ω = ê(Z,P ). If no such en-
tries are found, the oracle returns ⊥. Otherwise, m is returned.

EventuallyA outputs a forged signcryption σ′ = 〈y′, U ′, X ′,W ′, T ′1, T
′
2, . . . , T

′
t ,L′〉

on some message m′ from the sender IDA to users in the set L′ = {ID1, ID2, . . . , IDt},
with IDA /∈ L′. Challenger C designcrypts the ciphertext σ′ with any of the iden-
tities IDj ∈ L′ to get the ‘signature’ Z ′ of IDA on m′, if σ′ is a valid signcrypted
ciphertext from IDA to IDj on message m′. Now, C applies the oracle replay
technique to produce two valid signcrypted ciphertexts σ1 = 〈y1, U1, X1,W1, T

′1
1 , T ′12 , . . . , T ′1t ,L′〉

and σ2 = 〈y2, U2, X2,W2, T
′2
1 , T ′22 , . . . , T ′2t ,L′〉 on some message m′ from the

sender IDA to users in the set L′ = {ID1, ID2, . . . , IDt}, with IDA /∈ L′.
C designcrypts σ1 and σ2 to obtain signatures Z1 = (r2 + h′2)DA and Z2 =
(r2 +h′′2)DA. Now we can apply standard arguments for the outputs of the fork-
ing lemma since both Z1 and Z2 are valid signatures for the same message m′

and same random tape of the adversary. Finally, C obtains the solution to the
CDH instance as xAPpub − (h′2 − h′′2)−1(Z1 − Z2). We have

xAPpub − (h′2 − h′′2)−1(Z1 − Z2) = xAPpub − (h′2 − h′′2)−1(h′2 − h′′2)DA

= xAPpub −DA = xAbP −DA

= xAbp− (xA − a)bP = abP

So, we can see that the challenger C has the same advantage in solving the CDH
problem as the adversary (A) has in forging a valid signcrypted ciphertext. So,
if there exists an adversary who can forge a valid signcrypted ciphertext with
non-negligible advantage, that means there exists an algorithm to solve the CDH
problem with non-negligible advantage. Since this is not possible, no adversary
can forge a valid signcrypted ciphertext with non-negligible advantage. Hence,
I-MIBSC is secure against any EUF-MIBSC attack. ¤

7 Efficiency Analysis

In this section, we compare the efficiency of our scheme with Duan et al.’s scheme
[15]. For this, we consider the costly operations which include map-to-point hash
operation (G1 Map), point scalar multiplication on G1 (G1 Mul), exponentiation
on G2 (G2 Exp) and pairing operation (Pairing).

Scheme Signcrypt
G1 Map G1 Mul Pairing G2 Exp

Our scheme - n+3 1 1
Duan et al. 1 n+4 1 -

Table 1. Comparison of Efficiency of I-MIBSC Scheme with Duan et al.’s
Scheme (Signcryption)



Scheme Designcrypt
G1 Map G1 Mul Pairing G2 Exp

Our scheme - 1 4 1
Duan et al. 1 2 4 1

Table 2. Comparison of Efficiency of I-MIBSC Scheme with Duan et al.’s
Scheme (Designcryption)

8 Conclusion

In this paper, we have studied an existing multi-receiver ID-based signcryption
scheme by Zhang et al. [1]. They have proved the confidentiality of their scheme,
but do not give any formal proof for unforgeability. We have shown a univer-
sal forgeability attack on their scheme whereby anybody can generate a valid
signcryption of any message to any subset of legitimate users as if a legitimate
user had generated it. We have also proposed an improved scheme and we have
proved its security formally in the existing security model for multi-receiver ID-
based signcryption schemes. We leave it as an open problem to investigate for
more efficient schemes for multi-receiver ID-based signcryption.
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A Proof of Correctness of I-MIBSC

In this section, we show that our improved scheme is consistent. If σ = 〈y, U,X,W, Ti〉
is a valid signcryption for a user with identity IDi, then Designcrypt(σ, IDA, IDi, Di)
does the following.

1. Compute QA = H1 (IDA)



2. Next, we observe that

ω′ = Wê (U,Di) ê (Ppub, Ti)
−1

= θr1ωê (r1P, sQi) ê (sP, r1Qi + r1R)−1

= ê (P,R)r1s
ωê (P,Qi)

r1s
ê (P, Qi)

−r1s
ê (P, R)−r1s

= ω

3. Compute m′‖Z ′ = c⊕H3 (ω′) = m‖Z
4. Compute h′2 = H2 (IDA‖U‖X‖m′) = h2

5. Next, the checks ω′ ?= ê (Z ′, P ) and ω′ ?= ê (X + h′2QA, Ppub) are performed.
We show below that these tests will succeed and hence message m′ will be
returned.

– Check 1
ω′ = ω = ê (Z,P ) = ê (Z ′, P )

– Check 2

ê (X + h′2QA, Ppub) = ê (X + h2QA, Ppub)
= ê (r2QA + h2QA, sP )
= ê ((r2 + h2)QA, sP )
= ê ((r2 + h2)DA, P )
= ω = ω′

¤

B Proof of Confidentiality of I-MIBSC

Theorem. Our multi-receiver identity based signcryption scheme I-MIBSC is
secure against any IND-MIBSC-CCA2 adversary A under the random oracle
model if DBDHP is hard in G1.

The challenger C receives an instance (P, aP, bP, cP, α) of the DBDH problem.
His goal is to decide whether α = ê (P, P )abc or not. Suppose there exists an IND-
MIBSC-CCA2 adversary A for the proposed I-MIBSC scheme. We show that C
can use A to solve the DBDH problem. C will set the random oracles OH1 , OH2 ,
OH3 , OKeyExtract, OSigncrypt and ODesigncrypt. The answers to the oracles OH1 ,
OH2 , and OH3 are randomly selected, therefore, to maintain consistency, C will
maintain three lists L1 = 〈IDi, Qi, xi〉, L2 = 〈IDi, U,X,m, h2〉, L3 = 〈ω, h3〉.
We assume that A will ask for H0(ID) before ID is used in any key extraction,
signcryption and designcryption queries. First, the adversary A outputs the list
of identities L = {ID∗

0 , ID∗
1 , . . . , ID∗

t } which is the set of target users. Then, the
challenger C gives A the system parameters params consisting of P , Ppub = cP ,
R = bP , and θ = ê(R,Ppub)ê(R, cP ). The descriptions of the oracles follow.

Oracle OH1(IDi). C checks if there exists a tuple (IDi, Qi, xi) in L1. If such a
tuple exists, C answers with Qi. Otherwise, C does the following.



1. If IDi /∈ L, choose a new2 xi ∈R Z∗q and set Qi = xiP .
2. If IDi ∈ L, choose a new xi ∈R Z∗q and set Qi = xiP −R.
3. Add the tuple (IDi, Qi, xi) to L1 and return Qi.

Oracle OH2(IDi‖U‖X‖m). C checks if there exists a tuple (IDi, U,X, m, h2)
in L2. If such a tuple exists, C returns h2. Otherwise, C chooses a new h2 ∈R Z∗q ,
adds the tuple (IDi, U,X, m, h2) to L2 and returns h2.

Oracle OH3(ω). C checks if there exists a tuple (ω, h3) in L3. If such a tuple
exists, C returns h3. Otherwise, C chooses a new h3 ∈R {0, 1}n1+n3 , adds the
tuple (ω, h3) in L3 and returns h3.

Oracle OKeyExtract(IDi). C does the following.

1. If IDi ∈ L return ⊥.
2. If IDi /∈ L, recover the tuple (IDi, Qi, xi) from L1 and return Di = xiPpub =

cQi.

Oracle OSigncrypt (m, IDA,L1). On receiving this query, where L1 = {ID1, ID2, . . . , IDt}
is the list of intended receivers, C checks if IDA ∈ L. If not, C computes DA using
OKeyExtract (IDA), generates the signcryption in a normal way and returns it.
Otherwise, that is, if IDA ∈ L, it chooses r, r′ and a new h2 ∈R Z∗q and does
the following.

1. Compute U = r′P
2. Compute X = rP − h2OH1(IDA) and add the tuple (IDA, U,X,m, h2) to

L2.
3. Compute the following.

(a) Z = rPpub

(b) ω = ê(Z, P )
(c) y = OH3(ω)⊕ (m‖Z)
(d) For all IDj ∈ L1, Tj = r′(OH1(IDj) + R).
(e) W = θr′ω

4. Return the signcrypted ciphertext σ = 〈y, U,X, W, T1, T2, . . . , Tt,L1〉.

Oracle ODesigncrypt (σ, IDA, IDj). On receiveing this query, where the sign-
crypted ciphertext σ = 〈y, U,X, W, T1, T2, . . . , Tt,L1〉, C checks if IDj ∈ L. If
not, then C computes Dj using OKeyExtract(IDj), designcrypts σ in the normal
way and returns what the designcryption algorithm returns. Otherwise, that is, if
IDj ∈ L, then C tries to locate entries (IDA, U,X, m, h2) ∈ L2 and (ω, h3) ∈ L3

for some h2, h3, and ω under the constraints that ω = ê(Ppub, X+h2OH1(IDA)),
(m‖Z) = h3⊕y, and ω = ê(Z,P ). If no such entries are found, the oracle returns
⊥. Otherwise, m is returned.

After the first query stage, A outputs two plaintext messages m0 and m1 of
equal length, together with a senders’s identity IDA on which he wishes to
2 By new, we mean that the random value chosen must not have been already chosen

during an earlier execution.



be challenged. A now waits for a challenge signcrypted ciphertext built under
the receivers’ identities ID1, ID2, . . . , IDt ⊆ L. Now, C chooses a random bit
b ∈ {0, 1} and signcrypts message mb as follows.

1. Choose a new h2 and r ∈R Z∗q .
2. Compute U∗ = aP
3. Compute X∗ = rP − h2OH1(IDA) and add the tuple (IDA, U∗, X∗,mb, h2)

to the list L2.
4. Compute the following.

(a) Z∗ = rPpub = rcP
(b) ω = ê(Z∗, P )
(c) y∗ = OH3(ω)⊕ (mb‖Z∗)
(d) T ∗j = xjaP for 1 ≤ j ≤ t
(e) W ∗ = αω

5. Create a new label L∗ = {ID1, ID2, . . . , IDt} and send the signcrypted
ciphertext as σ∗ = 〈y∗, U∗, X∗, W ∗, T1, T2, . . . , Tt,L∗〉 to the adversary.

A can perform queries as above. However, it cannot query the designcryption
oracle with the challenge signcrypted ciphertext or the signcryption oracle with
messages m0 or m1 and IDA as the sender. At the end of the simulation, A
outputs a bit b′ for which he believes that the challenge signcryption ciphertext
is the signcryption of mb′ from IDA to L∗. If the relation b = b′ holds, then
C outputs 1 as the answer to the DBDH problem. Otherwise, it outputs 0. We
have,

σ∗ is a valid signcryption of mb from IDA to the receivers in L∗

⇔ ω = W ∗ê(Tj , Ppub)−1ê(U∗, Dj)

⇔ αê(Tj , Ppub)−1ê(U∗, Dj) = 1 (because we have W ∗ = αω)

⇔ αê(xjaP, cP )−1ê(aP, (xj − b)cP ) = 1

⇔ αê(xjaP, cP )−1ê(aP, xjcP )ê(aP,−bcP ) = 1
⇔ αê(P,−abcP ) = 1

⇔ α = ê(P, P )abc

These calculations show that we get a correct ω if and only if α = ê(P, P )abc.

So, we can see that the challenger C has the same advantage in solving the
DBDH problem as the adversary (A) has in distinguishing a valid signcrypted
ciphertext from a random string. So, if there exists an adversary who can succeed
in such a CCA2 attack with non-negligible advantage, that means there exists
an algorithm to solve the DBDH problem with non-negligible advantage. Since
this is not possible, no adversary can distinguish a valid signcrypted ciphertext
from a random string with non-negligible advantage. Hence I-MIBSC is secure
against any IND-MIBSC-CCA2 attack. ¤


