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Abstract. In ATC 2007, an identity-based signcryption scheme for multiple receivers was proposed by
Yu et al. They prove confidentiality of their scheme and also claim unforgeability without any proof. In
this paper, we show that their signcryption scheme is insecure by demonstrating a universal forgeability
attack — anyone can generate a valid signcrypted ciphertext on any message on behalf of any legal user
for any set of legal receivers without knowing the secret keys of the legal users. Further, we propose
a corrected version of their scheme and formally prove its security (confidentiality and unforgeability)
under the existing security model for signcryption. We also analyze the efficiency of the corrected
scheme by comparing it with existing signcryption schemes for multiple receivers.
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1 Introduction

Encryption and signatures are basic cryptographic tools offered by public key cryptography
for achieving privacy and authenticity. Both primitives are used in a number of high level
protocols. There are scenarios where properties of both primitives are needed. The most
common example is secure emailing, where the messages should be encrypted and signed
to provide confidentiality and authentication. For achieving this, encryption schemes and
signature schemes can be combined to meet the requirements. This was shown to be complex
by An et al. in [17]. Signcryption, introduced by Zheng in 1997 [2], is a cryptographic primitive
that offers confidentiality and unforgeability simultaneously similar to the sign-then-encrypt
technique, but with lesser computational complexity and lower communication cost. This has
made signcryption a suitable primitive for applications that require secure and authenticated
message delivery, where devices have limited resources. After Zheng’s work, a number of
signcryption schemes were proposed ([4], [19], [20], [21], [11], [10], [22]). The security notion
for signcryption was first formally defined in 2002 by Baek et al. in [18]. This was similar
to the notion of semantic security against adaptive chosen ciphertext attack and existential
unforgeability against adaptive chosen message attack.

The concept of an Identity based (ID-based) cryptosystem was introduced by Shamir [24]
in 1984. The distinguishing characteristic of ID-based cryptography is the ability to use any
string as a public key. In particular, this string maybe the email address, telephone number,
or any publicly available parameter of an individual that is unique to that individual.The
corresponding private key can only be derived by a trusted Private Key Generator (PKG)
who keeps a master secret which is involved in the said derivation. An ID-based cryptosystem
removes the need for senders to look up the receiver’s public key before sending out an



encrypted message. It provides a more convenient alternative to conventional public key
infrastructure.

ID-based signcryption schemes achieve the functionality of signcryption with the added ad-
vantage that ID-based cryptography provides. In [8], Malone-Lee gave the first ID-based
signcryption scheme. Later it was found that Malone-Lee’s scheme was not semantically se-
cure. Since then, quite a few ID-based signcryption schemes have been proposed ([9], [22],
[10], [23], [12]). To date, some of the most efficient ID-based signcryption schemes are that
of Chen et al. [12], and Barreto et al. [23]

In practice, broadcasting a message to multiple users in a secure and authenticated manner
is an important facility for a group of people who are jointly working on the same project
to communicate with one another. While this can be achieved by using the single-user sign-
cryption primitive individually for each recipient, this method results in huge computation
and communication costs. Instead, we opt for multi-receiver signcryption, whose objective is
to efficiently broadcast a single confidential ciphertext to different receivers by performing
a single signcryption operation, while achieving the security properties of authenticity and
unforgeability. We point out that there are only two multi-receiver ID-based signcryption
schemes till date, which we discuss briefly. Duan et al. [15] were the first to come up with
an ID-based scheme for multi-receiver signcryption. Their scheme requires just one pairing
operation to signcrypt a single message for multiple receivers. They prove, in the random
oracle model, that their scheme achieves confidentiality against chosen ciphertext attacks
and strong existential unforgeability against chosen message attacks. Following this, You et
al. [1] came up with another scheme with improved efficiency in the designcryption phase
(their scheme requires one less pairing operation than Dual et al.’s).

Our Contribution. We show that the signcryption scheme of You et al. [1] is insecure with
respect to unforgeability by demonstrating an attack which shows that any legal user of the
system can generate a signcrypted ciphertext on any message on behalf of any other legal
user for any set of receivers without knowing the secret key of any other legal users. Further,
we propose a corrected version of their scheme and prove its security (confidentiality and
unforgeability) under the existing security model for signcryption. We also analyze the effi-
ciency of the corrected scheme by comparing it with an existing identity-based signcryption
scheme for multiple receivers.

The rest of this paper proceeds as follows. In Section 2, we review the preliminaries like
bilinear pairings and related computational problems, the general framework of ID-based
signcryption schemes for multiple receivers, and the security models for such schemes. Next,
in Section 3, we review You et al.’s proposed multi-receiver ID-based signcryption scheme.
We present the attack on this scheme in Section 4. In Section 5, we lay out the details of our
fix to You et al.’s scheme. In Section 6, we present the proof of unforgeability of our scheme,
while we move the proofs of correctness and confidentiality of our scheme to the appendix.
Section 7 discusses the efficiency of our scheme in comparison with the existing scheme of
Duan et al. and Section 8 concludes the discussion.



2 Preliminaries

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P , with prime order q, and G2 be a mul-
tiplicative cyclic group of the same order q. A bilinear pairing is a map ê : G1 × G1 → G2

with the following properties.

– Bilinearity. For all P, Q, R ∈ G1,
• ê(P + Q, R) = ê(P, R)ê(Q,R)
• ê(P, Q + R) = ê(P, Q)ê(P, R)
• ê(aP, bQ) = ê(P, Q)ab

– Non-Degeneracy. There exist P, Q ∈ G1 such that ê(P, Q) 6= IG2 , where IG2 is the
identity element of G2.

– Computability. There exists an efficient algorithm to compute ê(P, Q) for all P, Q ∈ G1.

2.2 Computational Assumptions

In this section, we review the computational assumptions related to bilinear maps that are
relevant to the protocol we discuss.

Bilinear Diffie-Hellman Problem (BDHP) Given (P, aP, bP, cP ) ∈ G4
1 for unknown

a, b, c ∈ Z∗
q, the BDH problem in G1 is to compute ê(P, P )abc.

Definition. The advantage of any probabilistic polynomial time algorithm A in solving the
BDH problem in G1 is defined as

AdvBDH
A = Pr

[
A(P, aP, bP, cP ) = ê(P, P )abc | a, b, c ∈ Z∗

q

]
The BDH Assumption is that, for any probabilistic polynomial time algorithm A, the ad-
vantage AdvBDH

A is negligibly small.

Decisional Bilinear Diffie-Hellman Problem (DBDHP) Given (P, aP, bP, cP, α) ∈
G4

1 ×G2 for unknown a, b, c ∈ Z∗
q , the DBDH problem in G1 is to decide if α = ê(P, P )abc.

Definition. The advantage of any probabilistic polynomial time algorithm A in solving the
DBDH problem in G1 is defined as

AdvDBDH
A = |Pr

[
A(P, aP, bP, cP, ê(P, P )abc) = 1

]
− Pr [A(P, aP, bP, cP, α) = 1] |

The DBDH Assumption is that, for any probabilistic polynomial time algorithm A, the
advantage AdvDBDH

A is negligibly small.

Computation Diffie-Hellman Problem (CDHP) Given (P, aP, bP ) ∈ G3
1 for unknown

a, b ∈ Z∗
q, the CDH problem in G1 is to compute abP .

Definition. The advantage of any probabilistic polynomial time algorithm A in solving the
CDH problem in G1 is defined as

AdvCDH
A = Pr

[
A(P, aP, bP ) = abP | a, b ∈ Z∗

q

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the ad-
vantage AdvCDH

A is negligibly small.



2.3 Identity-Based Signcryption for Multiple Receivers

A generic IBSC multi-receiver scheme for sending a single message to t users consists of the
following probabilistic polynomial time algorithms,

– Setup(k). Given a security parameter k, the Private Key Generator (PKG) generates
the public parameters params and master secret key msk of the system.

– Keygen(IDAlice). Given an identity IDAlice, the PKG computes the corresponding pri-
vate key DAlice and transmits it to Alice in a secure way.

– Signcrypt(m, IDAlice,L = {ID1, ID2, . . . , IDt} , DAlice). To send a message m to (ID1, ID2, . . . , IDt),
Alice with identity IDAlice and private key DAlice runs this algorithm to obtain the sign-
crypted ciphertext σ.

– Designcrypt(σ, IDAlice, IDBob, DBob). When Bob with identity IDBob and private key
DBob receives the signcrypted ciphertext σ from Alice with identity IDAlice, he runs this
algorithm to obtain either the plain text m or ⊥ according as whether σ was a valid
signcryption from identity IDAlice to identity IDBob or not.

For consistency, we require that if σ = Signcrypt (m, IDAlice, (ID1, ID2, . . . , IDt), DAlice),
then m = Designcrypt (σ, IDAlice, IDi, Di) for 1 ≤ i ≤ t.

2.4 Security Model for Identity-Based Signcryption for Multiple Receivers
(MIBSC)

The notion of semantic security of public key encryption was extended to identity-based
signcryption scheme by Malone-Lee in [8]. This was later modified by Sherman et al. in [10]
which incorporates indistinguishability against adaptive chosen ciphertext and identity at-
tacks (IND-IBSC-CCIA) and existential unforgeability against adaptive chosen message and
identity attacks (EUF-IBSC-ACMIA). We describe below the security models for confiden-
tiality and unforgeability given in [11], this is the strongest security notion for this problem.

Confidentiality A signcryption scheme is semantically secure against chosen ciphertext
attack (IND-MIBSC-CCA2) if no probabilistic polynomial time adversary A has a non-
negligible advantage in the following game.

1. The challenger C runs the Setup algorithm and sends the system public parameters to
the adversary A.

2. In the first phase, A makes polynomially bounded number of queries to the following
oracles.
(a) Keygen Oracle — A produces an identity IDi and queries for the secret key of user

i. The Keygen Oracle returns Di to A.
(b) Signcrypt Oracle — A produces a message m, sender identity IDA and a list of re-

ceiver identities ID1, ID2, . . . , IDt. C computes the secret key DA from Keygen(IDA)
and returns toA, the signcrypted ciphertext σ from Signcrypt (m, IDA, {ID1, ID2, . . . , IDt} , DA).

(c) Designcrypt Oracle —A produces a sender identity IDA, receiver identity IDB and
a signcryption σ. The challenger C computes the secret key DB from Keygen(IDB),
returning the result of Designcrypt (σ, IDA, IDB, DB) to A. The result returned is ⊥
if σ is an invalid signcryption from IDA to IDB.



3. A produces two messages m0 and m1 of equal length from the message spaceM and an
arbitrary sender identity IDA. The challenger C flips a coin, sampling a bit b ← {0, 1}
and computes σ∗ = Signcrypt (mb, IDA, {ID1, ID2, . . . , IDt} , DA). σ∗ is returned to A
as challenge signcrypted ciphertext.

4. A is allowed to make polynomially bounded number of new queries as in Step 2 with the
restrictions that it should not query the Designcryption Oracle for the designcryption of
σ∗, the Signcryption Oracle for the signcryption of m0 or m1 under the sender identity
IDA and the Keygen Oracle for the secret keys of ID1, ID2, . . . , IDt.

5. At the end of this game, A outputs a bit b′. A wins the game if b′ = b.

Unforgeability A signcryption scheme is existentially unforgeable under chosen message
attack (EUF-MIBSC) if no probabilistic polynomial time adversary A has a non-negligible
advantage in the following game.

1. The challenger C runs the Setup algorithm to generate the master public and private keys
params and msk respectively. C gives system public parameters params to A and keeps
the master private key msk secret from A.

2. The adversary A makes polynomially bounded number of queries to the oracles as de-
scribed in Step 2 of the confidentiality game.

3. A produces a signcrypted ciphertext σ and wins the game if the private key of sender iden-
tity IDA was not queried in the previous step and⊥ is not returned by Designcrypt(σ, IDA, IDB, DB)
and σ is not the output of a previous query to the Signcrypt Oracle with IDA as sender.

3 Review of You’s ID-Based Multi-Receiver Signcryption
Scheme (Y-MIBSC)

The Y-MIBSC scheme in [1] has the following algorithms.

3.1 Setup(k)

The security parameter of the scheme is k and G1, G2 are two groups of prime order q and
P is a generator of G1 and ê is a bilinear map defined as ê : G1 × G1 → G2. Let n0, n1,
n2 and n3 denote the number of bits required to represent an identity, an element of G1,
an element of G2 and a message respectively. Three hash functions H1 : {0, 1}n0 → G1,
H2 : {0, 1}n1+n3 → Z∗

q, H3 : {0, 1}n2 → {0, 1}n3 are used. The PKG chooses s ∈ Z∗
q and

R ∈ G1\ {0G1} and computes Ppub = sP and θ = ê(R,Ppub), where 0G1 denotes the zero
element of G1. The public parameters are 〈G1, G2, P, Ppub, R, θ, ê, H1, H2, H3〉.

3.2 Keygen(IDA)

The public key and private key of user A are computed from his identity IDA as QA =
H1 (IDA) and DA = sQA respectively.



3.3 Signcrypt(m, IDA, ID1, ID2, . . . , IDn, DA)

Suppose A wants to encrypt a message m to n receivers with identities ID1, ID2, . . . , IDn.
User A does the following.

1. Choose r ∈R Z∗
q

2. Compute the following.
(a) X = rQA

(b) h2 = H2 (X‖m)
(c) Z = (r + h2) DA

(d) U = rP
(e) ω = ê (Z, P )
(f) y = m⊕H3 (ω)
(g) W = θrω
(h) Ti = rH1 (IDi) + rR, for 1 ≤ i ≤ n.

3. The signcrypted ciphertext is σ = 〈y, U,X, W, T1, T2, . . . , Tn, L〉, where L is the list of
receivers who can decrypt the message. Here, Ti is meant for the receiver IDi.

3.4 Designcrypt(σ, IDA, IDi, Di)

A receiver with identity IDi uses his secret key Di to designcrypt σ = 〈y, U,X, W, Ti, L〉
from IDA as follows.

1. Compute the following.
(a) ω′ = Wê (U,Di) ê (Ppub, Ti)

−1

(b) m′ = y ⊕H3 (ω′)
(c) QA = H1 (IDA)
(d) h′2 = H2 (X‖m′)

2. If ω′ = ê (Ppub, X + h′2QA), return m′. Otherwise, return ⊥.

4 Attack on Y-MIBSC

The scheme described above [1] is insecure from the point of view of unforgeability. Anybody
can generate a valid signcryption for any message m∗ as if it were generated by another legal
user. We describe how the attack proceeds in this section.

Let Alice be a legal user of the system and Eve be any forger. If Eve wants to generate a
signcryption on any message m∗ as if it were generated by Alice for a list of legal users of
the system with identities ID1, ID2, . . . , IDt, Eve just has to do the following.

1. Choose r∗ ∈R Z∗
q

2. Compute the following.
(a) X∗ = r∗QAlice

(b) h∗2 = H2 (X∗‖m∗)
(c) Z∗ = (r∗ + h∗2) QAlice.
(d) U∗ = r∗P
(e) ω∗ = ê (Z∗, Ppub)
(f) y∗ = m∗ ⊕H3 (ω∗)



(g) W ∗ = θr∗ω∗

(h) T ∗
j = r∗H1 (IDj) + r∗R, for 1 ≤ j ≤ t

3. σ∗ = 〈y∗, U∗, X∗, W ∗, T ∗
1 , T ∗

2 , . . . , T ∗
t , L∗〉 is the signature of Alice on message m∗ gener-

ated by Eve for the list of users L∗ with identities {IDj}1≤j≤t

We now prove that the σ∗ generated by Eve is a valid signcryption from Alice to the receivers
in L∗ on the message m∗.

Designcrypt(σ∗ = 〈y∗, U∗, X∗, W ∗, T ∗
1 , T ∗

2 , . . . , T ∗
t , L∗〉, IDAlice, IDj, Dj). A receiver with iden-

tity IDj uses his secret key Dj to designcrypt σ∗ obtained from Eve as follows.

1. Compute the following.

(a) QAlice = H1 (IDAlice)

(b) Next, it can be seen that

ω′ = W ∗ê (U∗, Dj) ê
(
Ppub, T

∗
j

)
= θr∗ω∗ê (r∗P, sQj) ê (Ppub, r

∗Qj + r∗R)−1

= ê (Ppub, R)r∗ ω∗ê (P, Qj)
r∗s ê (P, Qj)

−r∗s ê (P, R)−r∗s

= ω∗

(c) m′ = y∗ ⊕H3 (ω′) = m∗

(d) h′2 = H2 (X∗‖m′) = h∗2

2. Next, the check ω′ ?
= ê (Ppub, X

∗ + h′2QAlice) is performed. We show below that this test
will succeed and hence message m∗ will be returned.

ê (Ppub, X
∗ + h′2QAlice) = ê (sP, r∗QAlice + h∗2QAlice) (since h′2 = h∗2)

= ê (sP, (r∗ + h∗2) QAlice)

= ê (Ppub, Z
∗) (from Step 2(c) of Eve’s forgery above)

= ê (Z∗, Ppub) (by symmetry of the bilinear map)

= ω∗ = ω′

From this it is clear that Eve can succeed in generating a signcryption of message m∗ with
Alice as sender and identities IDj, 1 ≤ j ≤ t as receivers without knowing the secret key of
Alice. Thus any legal user can forge any message on behalf of any other legal user to any set
of receivers.

5 Improved Multi-Receiver Identity Based Signcryption Scheme
(I-MIBSC)

In this section, we propose an improved version of Y-MIBSC, which we formally prove to be
secure. The setup and key generation algorithms of I-MIBSC are similar to that of Y-MIBSC,
but with slightly different hash functions. The details are given below.



5.1 Setup(k)

Let k be the security parameter of the system. Let G1 and G2 be two groups of prime order
q and let P be the generator of G1 and ê be a bilinear map defined as ê : G1×G1 → G2. As
before, let n0, n1, n2 and n3 denote the number of bits required to represent an identity, an
element of G1, an element of G2 and a message respectively. Consider three hash functions
H1 : {0, 1}n0 → G1, H2 : {0, 1}n0+2n1+n3 → Z∗

q, H3 : {0, 1}n2 → {0, 1}n1+n3 . The PKG
chooses its secret key s ∈ Z∗

q and sets the public key Ppub = sP . The PKI also chooses
R ∈ G1\ {0G1} and computes θ = e(R, sP ), where 0G1 denotes the zero element of G1. The
public parameters of the system are 〈G1, G2, P, Ppub, R, θ, ê : G1 ×G1 → G2, H1, H2, H3〉.

5.2 Keygen(IDA)

The public key and private key of user A are computed from his identity IDA as QA =
H1 (IDA) and DA = sQA respectively.

5.3 Signcrypt(m, IDA, ID1, ID2, . . . , IDn, DA)

For signcryption of message m by user A with identity IDA and secret key DA to n receivers
with identities ID1, ID2, . . . , IDn, do the following.

1. Choose r1, r2 ∈R Z∗
q

2. Compute the following.
(a) U = r1P
(b) X = r2QA

(c) h2 = H2 (IDA‖U‖X‖m)
(d) Z = (r2 + h2) DA

(e) ω = ê (Z, P )
(f) y = (m‖Z)⊕H3 (ω)
(g) W = θr1ω
(h) Ti = r1(Qi + R), for 1 ≤ i ≤ n

3. The signcrypted ciphertext is σ = 〈y, U,X, W, T1, T2, . . . , Tn, L〉, where L is the list of
receivers who can decrypt the message. Here, Ti is meant for the receiver IDi.

5.4 Designcrypt(σ, IDA, IDi, Di)

A receiver with identity IDi uses his secret key Di to designcrypt σ = 〈y, U,X, W, Ti, L〉
from IDA as follows.

1. Compute the following.
(a) ω′ = Wê (U,Di) ê (Ppub, Ti)

−1

(b) m′‖Z ′ = y ⊕H3 (ω′)
(c) h′2 = H2 (IDA‖U‖X‖m′)

2. If ω′ = ê (Z ′, P ) and ω′ = ê (X + h′2QA, Ppub), return m′. Otherwise, return ⊥.

We prove the correctness of our scheme in Appendix A and confidentiality of our scheme
in Appendix B. Since the attack we presented on You et al.’s scheme was based on the
unforgeability aspect, we present the proof of unforgeability of our scheme formally in Section
6.



6 Proof of Unforgeability of I-MIBSC

Theorem. Our multi-receiver identity based signcryption scheme I-MIBSC is secure against
any EUF-MIBSC adversary A under the random oracle model if CDHP is hard in G1.

The challenger C receives an instance (P, aP, bP ) of the CDH problem. His goal is to de-
termine abP . Suppose there exists an EUF-MIBSC adversary A for our proposed I-MIBSC
scheme. We show that C can use A to solve the CDH problem. C will set the random oracles
OH1 , OH2 , OH3 , OKeyExtract, OSigncrypt and ODesigncrypt. The answers to the oracles OH1 ,
OH2 , and OH3 are randomly selected, therefore, to maintain consistency, C will maintain
three lists L1 = 〈IDi, Qi, xi〉, L2 = 〈IDi, U, X, m, h2〉, L3 = 〈ω, h3〉. We assume that A will
ask for H1(ID) before ID is used in any key extraction, signcryption and designcryption
queries. First, the adversary A outputs the identity IDA of the sender whose signcryption
he claims to be able to forge. Then, the challenger C gives A the system parameters params,
consisting of P , Ppub = bP , R, θ = ê(R,Ppub = ê(R, bP ). The descriptions of the oracles
follow.

Oracle OH1(IDi). C checks if there exists a tuple (IDi, Qi, xi) in L1. If such a tuple exists,
C answers with Qi. Otherwise, C does the following.

1. If IDi 6= IDA, choose a new1 xi ∈R Z∗
q and set Qi = xiP .

2. If IDi = IDA, choose a new xi ∈R Z∗
q and set Qi = (xi − a)P .

3. Add the tuple (IDi, Qi, xi) to L1 and return Qi.

Oracle OH2 (IDi‖U‖X‖m). C checks if there exists a tuple (IDi, U, X, m, h2) in L2. If
such a tuple exists, C returns h2. Otherwise, C chooses a new h2 ∈R Z∗

q, adds the tuple
(IDi, U, X, m, h2) to L2 and returns h2.

Oracle OH3(ω). C checks if there exists a tuple (ω, h3) in L3. If such a tuple exists, C returns
h3. Otherwise, C chooses a new h3 ∈R {0, 1}n1+n3 , adds the tuple (ω, h3) in L3 and returns
h3.

Oracle OKeyExtract(IDi). C does the following.

1. If IDi = IDA, return ⊥.
2. If IDi 6= IDA, recover the tuple (IDi, Qi, xi) from L1 and return Di = xiPpub = bQi.

Oracle OSigncrypt (m, IDi,L). On receiving this query, where L = {ID1, ID2, . . . , IDt}
is the list of intended receivers, C checks if IDi = IDA. If not, C computes Di using
OKeyExtract (IDi), generates the signcryption in a normal way and returns it. Otherwise,
that is, if IDi = IDA, it chooses r, r′ and a new h2 ∈R Z∗

q and does the following.

1. Compute U = r′P
2. Compute X = rP − h2OH1(IDA) and add the tuple (IDA, U, X, m, h2) to L2.
3. Compute the following.

(a) Z = rPpub

(b) ω = ê(Z, P )
(c) y = OH3(ω)⊕ (m‖Z)

1 By new, we mean that the random value chosen must not have been already chosen during an earlier execution.



(d) For all IDj ∈ L, Tj = r′(OH1(IDj) + R).
(e) W = θr′ω

4. Return the signcrypted ciphertext σ = 〈y, U,X, W, T1, T2, . . . , Tt,L〉.

Oracle ODesigncrypt (σ, IDi, IDj). On receiving this query, where the signcryption σ =
〈y, U,X, W, T1, T2, . . . , Tt,L〉, C checks if IDj = IDA. If not, then C computes Dj us-
ing OKeyExtract(IDj), designcrypts σ in the normal way and returns what the designcryp-
tion algorithm returns. Otherwise, that is, if IDj = IDA, then C tries to locate entries
(IDi, U, X,m, h2) ∈ L2 and (ω, h3) ∈ L3 for some h2, h3, and ω under the constraints that
ω = ê(Ppub, X +h2OH1(IDi)), (m‖Z) = h3⊕y, and ω = ê(Z, P ). If no such entries are found,
the oracle returns ⊥. Otherwise, m is returned.

Eventually A outputs a forged signcryption σ′ = 〈y′, U ′, X ′, W ′, T ′
1, T

′
2, . . . , T

′
t ,L′〉 on some

message m′ from the sender IDA to users in the set L′ = {ID1, ID2, . . . , IDt}, with IDA /∈ L′.
Challenger C designcrypts the ciphertext σ′ with any of the identities IDj ∈ L′ to get the ‘sig-
nature’ Z ′ of IDA on m′, if σ′ is a valid signcrypted ciphertext from IDA to IDj on message
m′. Now, C applies the oracle replay technique to produce two valid signcrypted cipher-
texts σ1 = 〈y1, U1, X1, W1, T

′1
1 , T ′1

2 , . . . , T ′1
t ,L′〉 and σ2 = 〈y2, U2, X2, W2, T

′2
1 , T ′2

2 , . . . , T ′2
t ,L′〉

on some message m′ from the sender IDA to users in the set L′ = {ID1, ID2, . . . , IDt},
with IDA /∈ L′. C designcrypts σ1 and σ2 to obtain signatures Z1 = (r2 + h′2)DA and
Z2 = (r2 + h′′2)DA. Now we can apply standard arguments for the outputs of the fork-
ing lemma since both Z1 and Z2 are valid signatures for the same message m′ and same
random tape of the adversary. Finally, C obtains the solution to the CDH instance as
xAPpub − (h′2 − h′′2)

−1(Z1 − Z2). In fact,

xAPpub − (h′2 − h′′2)
−1(Z1 − Z2) = xAPpub − (h′2 − h′′2)

−1(h′2 − h′′2)DA

= xAPpub −DA = xAbP −DA

= xAbp− (xA − a)bP = abP

So, we can see that the challenger C has the same advantage in solving the CDH problem as
the adversary A has in forging a valid signcrypted ciphertext. So, if there exists an adversary
who can forge a valid signcrypted ciphertext with non-negligible advantage, that means there
exists an algorithm to solve the CDH problem with non-negligible advantage. Since this is not
possible, no adversary can forge a valid signcrypted ciphertext with non-negligible advantage.
Hence, I-MIBSC is secure against any EUF-MIBSC attack. �

7 Efficiency Analysis

In this section, we compare the efficiency of our scheme with Duan et al.’s scheme [15].
For this, we consider the costly operations which include map-to-point hash operation (G1

Map), point scalar multiplication on G1 (G1 Mul), exponentiation on G2 (G2 Exp) and
pairing operation (Pairing).



Scheme Signcrypt

G1 Map G1 Mul Pairing G2 Exp
Our scheme - n+3 1 1
Duan et al. 1 n+4 1 -

Table 1. Comparison of Efficiency of I-MIBSC Scheme with Duan et al.’s Scheme
(Signcryption)

Scheme Designcrypt

G1 Map G1 Mul Pairing G2 Exp
Our scheme - 1 4 1
Duan et al. 1 2 4 1

Table 2. Comparison of Efficiency of I-MIBSC Scheme with Duan et al.’s Scheme
(Designcryption)

8 Conclusion

In this paper, we have studied an existing multi-receiver ID-based signcryption scheme by
You et al. [1]. They have proved the confidentiality of their scheme, but do not give any
formal proof for unforgeability. We have shown a universal forgeability attack on their scheme
whereby anybody can generate a valid signcryption of any message to any subset of legitimate
users as if a legitimate user had generated it. We have also proposed an improved scheme
and we have proved its security formally in the existing security model for multi-receiver ID-
based signcryption schemes. We leave it as an open problem to investigate for more efficient
schemes for multi-receiver ID-based signcryption.
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A Proof of Correctness of I-MIBSC

In this section, we show that our improved scheme is consistent. If σ = 〈y, U,X, W, Ti〉 is
a valid signcryption for a user with identity IDi, then Designcrypt(σ, IDA, IDi, Di) does
the following.

1. Compute QA = H1 (IDA)
2. Next, we observe that

ω′ = Wê (U,Di) ê (Ppub, Ti)
−1

= θr1ωê (r1P, sQi) ê (sP, r1Qi + r1R)−1

= ê (P, R)r1s ωê (P, Qi)
r1s ê (P, Qi)

−r1s ê (P, R)−r1s

= ω

3. Compute m′‖Z ′ = c⊕H3 (ω′) = m‖Z
4. Compute h′2 = H2 (IDA‖U‖X‖m′) = h2

5. Next, the checks ω′ ?
= ê (Z ′, P ) and ω′ ?

= ê (X + h′2QA, Ppub) are performed. We show
below that these tests will succeed and hence message m′ will be returned.

– Check 1
ω′ = ω = ê (Z, P ) = ê (Z ′, P )



– Check 2

ê (X + h′2QA, Ppub) = ê (X + h2QA, Ppub)

= ê (r2QA + h2QA, sP )

= ê ((r2 + h2) QA, sP )

= ê ((r2 + h2) DA, P )

= ω = ω′

�

B Proof of Confidentiality of I-MIBSC

Theorem. Our multi-receiver identity based signcryption scheme I-MIBSC is secure against
any IND-MIBSC-CCA2 adversary A under the random oracle model if DBDHP is hard in
G1.

The challenger C receives an instance (P, aP, bP, cP, α) of the DBDH problem. His goal
is to decide whether α = ê (P, P )abc or not. Suppose there exists an IND-MIBSC-CCA2
adversaryA for the proposed I-MIBSC scheme. We show that C can useA to solve the DBDH
problem. C will set the random oraclesOH1 ,OH2 ,OH3 ,OKeyExtract,OSigncrypt andODesigncrypt.
The answers to the oracles OH1 , OH2 , and OH3 are randomly selected, therefore, to maintain
consistency, C will maintain three lists L1 = 〈IDi, Qi, xi〉, L2 = 〈IDi, U, X, m, h2〉, L3 =
〈ω, h3〉. We assume that A will ask for H1(ID) before ID is used in any key extraction,
signcryption and designcryption queries. First, the adversary A outputs the list of identities
L = {ID∗

0, ID∗
1, . . . , ID∗

t } which is the set of target users. Then, the challenger C gives A the
system parameters params consisting of P , Ppub = cP , R = bP , and θ = ê(R,Ppub)ê(R, cP ).
The descriptions of the oracles follow.

Oracle OH1(IDi). C checks if there exists a tuple (IDi, Qi, xi) in L1. If such a tuple exists,
C answers with Qi. Otherwise, C does the following.

1. If IDi /∈ L, choose a new2 xi ∈R Z∗
q and set Qi = xiP .

2. If IDi ∈ L, choose a new xi ∈R Z∗
q and set Qi = xiP −R.

3. Add the tuple (IDi, Qi, xi) to L1 and return Qi.

Oracle OH2(IDi‖U‖X‖m). C checks if there exists a tuple (IDi, U, X,m, h2) in L2. If
such a tuple exists, C returns h2. Otherwise, C chooses a new h2 ∈R Z∗

q, adds the tuple
(IDi, U, X, m, h2) to L2 and returns h2.

Oracle OH3(ω). C checks if there exists a tuple (ω, h3) in L3. If such a tuple exists, C returns
h3. Otherwise, C chooses a new h3 ∈R {0, 1}n1+n3 , adds the tuple (ω, h3) in L3 and returns
h3.

Oracle OKeyExtract(IDi). C does the following.

1. If IDi ∈ L return ⊥.

2 By new, we mean that the random value chosen must not have been already chosen during an earlier execution.



2. If IDi /∈ L, recover the tuple (IDi, Qi, xi) from L1 and return Di = xiPpub = cQi.

Oracle OSigncrypt (m, IDA,L1). On receiving this query, where L1 = {ID1, ID2, . . . , IDt} is
the list of intended receivers, C checks if IDA ∈ L. If not, C computes DA usingOKeyExtract (IDA),
generates the signcryption in a normal way and returns it. Otherwise, that is, if IDA ∈ L,
it chooses r, r′ and a new h2 ∈R Z∗

q and does the following.

1. Compute U = r′P
2. Compute X = rP − h2OH1(IDA) and add the tuple (IDA, U, X,m, h2) to L2.
3. Compute the following.

(a) Z = rPpub

(b) ω = ê(Z, P )
(c) y = OH3(ω)⊕ (m‖Z)
(d) For all IDj ∈ L1, Tj = r′(OH1(IDj) + R).
(e) W = θr′ω

4. Return the signcrypted ciphertext σ = 〈y, U,X, W, T1, T2, . . . , Tt,L1〉.

Oracle ODesigncrypt (σ, IDA, IDj). On receiving this query, where the signcryption σ =
〈y, U,X, W, T1, T2, . . . , Tt,L1〉, C checks if IDj ∈ L. If not, then C computes Dj using
OKeyExtract(IDj), designcrypts σ in the normal way and returns what the designcryption al-
gorithm returns. Otherwise, that is, if IDj ∈ L, then C tries to locate entries (IDA, U, X, m, h2) ∈
L2 and (ω, h3) ∈ L3 for some h2, h3, and ω under the constraints that ω = ê(Ppub, X +
h2OH1(IDA)), (m‖Z) = h3 ⊕ y, and ω = ê(Z, P ). If no such entries are found, the oracle
returns ⊥. Otherwise, m is returned.

After the first query stage, A outputs two plaintext messages m0 and m1 of equal length,
together with a senders’s identity IDA on which he wishes to be challenged. A now waits for a
challenge signcrypted ciphertext built under the receivers’ identities ID1, ID2, . . . , IDt ⊆ L.
Now, C chooses a random bit b ∈ {0, 1} and signcrypts message mb as follows.

1. Choose a new h2 and r ∈R Z∗
q.

2. Compute U∗ = aP
3. Compute X∗ = rP −h2OH1(IDA) and add the tuple (IDA, U∗, X∗, mb, h2) to the list L2.
4. Compute the following.

(a) Z∗ = rPpub = rcP
(b) ω = ê(Z∗, P )
(c) y∗ = OH3(ω)⊕ (mb‖Z∗)
(d) T ∗

j = xjaP for 1 ≤ j ≤ t
(e) W ∗ = αω

5. Create a new label L∗ = {ID1, ID2, . . . , IDt} and send the signcrypted ciphertext as
σ∗ = 〈y∗, U∗, X∗, W ∗, T1, T2, . . . , Tt,L∗〉 to the adversary.

A can perform queries as above. However, it cannot query the designcryption oracle with
the challenge signcrypted ciphertext or the signcryption oracle with messages m0 or m1 and
IDA as the sender. At the end of the simulation, A outputs a bit b′ for which he believes
that the challenge signcryption ciphertext is the signcryption of mb′ from IDA to L∗. If the



relation b = b′ holds, then C outputs 1 as the answer to the DBDH problem. Otherwise, it
outputs 0. We have,

σ∗ is a valid signcryption of mb from IDA to the receivers in L∗

⇔ ω = W ∗ê(Tj, Ppub)
−1ê(U∗, Dj)

⇔ αê(Tj, Ppub)
−1ê(U∗, Dj) = 1 (because we have W ∗ = αω)

⇔ αê(xjaP, cP )−1ê(aP, (xj − b)cP ) = 1

⇔ αê(xjaP, cP )−1ê(aP, xjcP )ê(aP,−bcP ) = 1

⇔ αê(P,−abcP ) = 1

⇔ α = ê(P, P )abc

These calculations show that we get a correct ω if and only if α = ê(P, P )abc.

So, we can see that the challenger C has the same advantage in solving the DBDH problem
as the adversary A has in distinguishing a valid signcrypted ciphertext from a random
string. So, if there exists an adversary who can succeed in such a CCA2 attack with non-
negligible advantage, that means there exists an algorithm to solve the DBDH problem with
non-negligible advantage. Since this is not possible, no adversary can distinguish a valid
signcrypted ciphertext from a random string with non-negligible advantage. Hence I-MIBSC
is secure against any IND-MIBSC-CCA2 attack. �


