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Abstract. In ATC 2007, an identity based signcryption scheme for multiple receivers was proposed by
Yu et al. They formally proved confidentiality of their scheme and also claim unforgeability without any
proof. In this paper, we show that Yu et al.’s signcryption scheme is insecure by demonstrating an uni-
versal forgeability attack - anyone can generate a valid signcrypted ciphertext on any message on behalf
of any legal user for any set of legal receivers without knowing the secret keys of the legal users. Also, we
point out a subtle flaw in the proof of confidentiality given by Yu et al. and show that the scheme does
not provide confidentiality. Further, we propose a corrected version of Yu et al.’s scheme and formally
prove its security (confidentiality and unforgeability) under the existing security model for signcryption.

In another direction, Fagen Li et al. have proposed a pairing based multi-recipient signcryption scheme.
We also show that, the scheme proposed by Fagen Li et al. is not adaptive chosen ciphertext secure. We
propose an improvement for Fagen Li et al.’s scheme and formally prove confidentiality under adaptive
chosen ciphertext attack. Since all the previously reported multi-receiver schemes are shown to have
flaws either here or else where, the schemes reported in this paper are the only correct and efficient
schemes (identity based and pairing-based) for multi-receiver signcryption.

Keywords. Signcryption, Cryptanalysis, Identity Based Cryptography, PKI, Multiple Receivers, Bilinear
Pairing.

1 Introduction

Encryption and signatures are basic cryptographic tools offered by public key cryptography for achieving
privacy and authenticity. Both primitives are used in a variety of high level protocols. There are scenarios
where properties of both primitives are needed. The most common example is secure emailing, where the
messages should be encrypted and signed to provide confidentiality and authenticity. For achieving this,
encryption schemes and signature schemes can be combined together. This was shown to be complex by
An et al. in [2]. Signcryption, introduced by Zheng in 1997 [22], is a cryptographic primitive that offers
confidentiality and unforgeability simultaneously similar to the sign-then-encrypt technique, but with lesser
computational complexity and lower communication cost. This has made signcryption a suitable primitive
for applications that require secure and authenticated message delivery, where devices have limited resources.
After Zheng’s work, a number of signcryption schemes were proposed ([4], [16], [19], [20], [5], [8], [13]). The
security notion for signcryption was first formally defined in 2002 by Baek et al. in [3]. This was similar
to the notion of semantic security against adaptive chosen ciphertext attack and existential unforgeability
against adaptive chosen message attack.

The concept of identity based (ID-based) cryptosystem was introduced by Shamir [1] in 1984. The distin-
guishing characteristic of identity based cryptography is the ability to use any string as a public key. In
particular, this string maybe the email address, telephone number, or any publicly available parameter of
an individual that is unique to that individual. The corresponding private key can only be derived by a
trusted Private Key Generator (PKG) who keeps a master secret which is involved in the user private key
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derivation. An identity based cryptosystem removes the need for senders to look up the receiver’s public key
before sending out an encrypted message. It provides a more convenient alternative to conventional Public
Key Infrastructure (PKI).

Identity based signcryption schemes achieve the functionality of signcryption with the added advantage that
identity based cryptography provides. In [14], Malone-Lee gave the first identity based signcryption scheme.
Later it was found that Malone-Lee’s scheme was not semantically secure. Since then, quite a few identity
based signcryption schemes have been proposed ([11], [5], [13], [8], [17], [6]). To date, some of the most
efficient identity based signcryption schemes are that of Chen et al. [6], and Barreto et al. [17]

Related Work and Our Contribution: In practice, broadcasting a message to multiple users in a secure
and authenticated manner is an important facility for a group of people who are jointly working on the same
project to communicate with one another. While this can be achieved by using the single-user signcryption
primitive individually for each recipient, it results in huge computation and communication overhead. In-
stead, we opt for multi-receiver signcryption, whose objective is to efficiently broadcast a single confidential
ciphertext to different receivers by performing a single signcryption operation, while achieving the security
properties of authenticity and unforgeability.

We point out that there are only two multi-receiver identity based signcryption schemes till date. Duan et
al. [9] were the first to come up with an identity based scheme for multi-receiver signcryption. Their scheme
requires just one pairing operation to signcrypt a single message for multiple receivers. Chik How Tan [7]
proved that, in spite of its efficiency and cleaver construct, [9] lacks adaptive chosen ciphertext security. Yu
et al. [21] came up with another scheme with improved efficiency in the unsigncryption phase (their scheme
requires one less pairing operation than Dual et al.’s). However, in this paper, we show that Yu et al.’s scheme
[21] is insecure with respect to unforgeability and confidentiality, by demonstrating an attack which shows
that any legal user of the system can generate a signcrypted ciphertext on any message on behalf of any
other legal user for any set of receivers without knowing the secret key of any other legal users. Further, we
propose a corrected version of Yu et al.’s scheme and prove its security (confidentiality and unforgeability)
under the existing security model for signcryption. Thus, it turns out that ours is the only existing correct
and provably secure identity based multi-receiver signcryption scheme.

To the best of our knowledge, three PKI based multi-receiver signcryption schemes are reported in the
literature [12, 18, 10]. Zheng has given a construct for multi-receiver signcryption in [12]. However, it is
known that Zheng’s [12] signcryption scheme is not forward secure, anyone who obtains the sender’s private
key can recover the original message of a signcrypted ciphertext, which was shown in [23], following that
Duan et al. [18] proposed a multi-receiver signcryption scheme, which is a combination of Zheng’s multi-
receiver signcryption and Bellare’s concepts on multi-receiver setting for public key encryption [15]. However,
[18] is insecure with respect to insider security, i.e. during the confidentiality game the senders private key is
known to the adversary, knowing it the adversary can distinguish the message signcrypted in the ciphertext
(Since the work is not published and is only available in the authors web page, we do not review and provide
the formal attack on the scheme in [18]). Recently, Fagen Li et al. [10] proposed a multi-receiver signcryption
scheme which depends on bilinear pairing. We show that [10] is not adaptive chosen ciphertext secure, also we
propose a new multi-receiver signcryption scheme and formally prove the confidentiality and unforgeability
of the new scheme. Thus, all the previously reported schemes are flawed ones and the only correct PKI based
multi-receiver signcryption scheme is the scheme presented in this paper.

The rest of this paper proceeds as follows. In Section 2, we review the preliminaries like bilinear pairings
and related computational problems, the general framework of identity based and PKI based signcryption
schemes for multiple receivers and the security models for those schemes. Next, in Section 3, we review Yu
et al.’s multi-receiver identity based signcryption scheme and present the attacks on the scheme. In section
4, we propose the improved multi-receiver identity based signcryption scheme and the formal security proof
for it. In Section 5, we review Fagen Li et al.’s multi-receiver signcryption scheme and show that it is not
adaptive chosen ciphertext secure. Following that in section 6 we lay out the details of our new multi-receiver
signcryption scheme and give the formal proof for confidentiality and unforgeability of the new scheme and
in section 7 we conclude the discussion.



2 Preliminaries

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P , with prime order q, and G2 be a multiplicative cyclic
group of the same order q. A bilinear pairing is a map ê : G1 × G1 → G2 with the following properties.

– Bilinearity. For all P, Q, R ∈ G1 and a, b ∈ Z∗
q

• ê(P + Q, R) = ê(P, R)ê(Q, R)
• ê(P, Q + R) = ê(P, Q)ê(P, R)
• ê(aP, bQ) = ê(P, Q)ab

– Non-Degeneracy. There exist P, Q ∈ G1 such that ê(P, Q) $= IG2 , where IG2 is the identity element of
G2.

– Computability. There exists an efficient algorithm to compute ê(P, Q) for all P, Q ∈ G1.

2.2 Computational Assumptions

In this section, we review the computational assumptions related to bilinear maps that are relevant to the
protocol we discuss.

Definition 1. (Computation Diffie-Hellman Problem (CDHP)): Given (P, aP, bP ) ∈ G3
1 for unknown a, b ∈

Z∗
q , the CDH problem in G1 is to compute abP . The advantage of any probabilistic polynomial time algorithm

A in solving the CDH problem in G1 is defined as

AdvCDH
A = Pr

[
A(P, aP, bP ) = abP | a, b ∈ Z∗

q

]

The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvCDH
A is

negligibly small.

Definition 2. (Bilinear Diffie-Hellman Problem (BDHP)): Given (P, aP, bP, cP ) ∈ G4
1 for unknown a, b, c ∈

Z∗
q , the BDH problem in G1 is to compute ê(P, P )abc. The advantage of any probabilistic polynomial time

algorithm A in solving the BDH problem in G1 is defined as

AdvBDH
A = Pr

[
A(P, aP, bP, cP ) = ê(P, P )abc | a, b, c ∈ Z∗

q

]

The BDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvBDH
A is

negligibly small.

Definition 3. (Decisional Bilinear Diffie-Hellman Problem (DBDHP)): Given (P, aP, bP, cP,α) ∈ G4
1 ×G2

for unknown a, b, c ∈ Z∗
q , the DBDH problem in G1 is to decide if α = ê(P, P )abc. The advantage of any

probabilistic polynomial time algorithm A in solving the DBDH problem in G1 is defined as

AdvDBDH
A = |Pr

[
A(P, aP, bP, cP, ê(P, P )abc) = 1

]
− Pr [A(P, aP, bP, cP,α) = 1] |

The DBDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvDBDH
A

is negligibly small.

2.3 ID-Based Signcryption for Multiple Receivers

A generic multi-receiver IBSC scheme for sending a single message to t users consists of the following
probabilistic polynomial time algorithms,

– Setup(k). Given a security parameter k, the Private Key Generator (PKG) generates the public param-
eters params and master secret key msk of the system.

– Keygen(IDAlice). Given an identity IDAlice, the PKG computes the corresponding private key DAlice

and transmits it to Alice in a secure way.



– Signcrypt(m, IDAlice,L = {ID1, ID2, . . . , IDt} , DAlice). To send a message m to a set of receivers with
identities ID1, ID2, . . . , IDt, Alice with identity IDAlice and private key DAlice runs this algorithm to
obtain the signcrypted ciphertext σ.

– Unsigncrypt(σ, IDAlice, IDBob, DBob). When Bob with identity IDBob and private key DBob receives
the signcrypted ciphertext σ from Alice with identity IDAlice, Bob runs this algorithm to obtain either
the plain text m or invalid according as whether σ was a valid signcryption from Alice to Bob or not.

For consistency, we require that if σ = Signcrypt (m, IDAlice,L = {ID1, ID2, . . . , IDt}, DAlice), then m =
Unsigncrypt (σ, IDAlice, IDi, Di) for 1 ≤ i ≤ t.

2.4 Security Model for Multi-Receiver ID-Based Signcryption (MIBSC)

We describe below the security models for confidentiality and unforgeability given by [5] and these are the
strongest security notions for MIBSC schemes.

Confidentiality: A signcryption scheme is semantically secure against chosen ciphertext attack (IND-
MIBSC-CCA2) if no probabilistic polynomial time adversary A has a non-negligible advantage in the fol-
lowing game.

Setup Phase: The challenger C runs the Setup algorithm and sends the system public parameters to the
adversary A.

Phase I: In this phase, A makes polynomial number of queries to the following oracles.
1. Keygen Oracle: A produces an identity IDi and queries for the secret key of user i. The Keygen

Oracle returns Di to A.
2. Signcrypt Oracle: A produces a message m, sender identity IDA and a list of receiver identities

ID1, ID2, . . . , IDt. C computes the secret key DA from Keygen(IDA) and returns to A, the sign-
crypted ciphertext σ.

3. Unsigncrypt Oracle: A produces a sender identity IDA, receiver identity IDB and a signcryption σ.
The challenger C computes the secret key DB from Keygen(IDB) and returns the message m to A.
It returns invalid if σ is an invalid signcryption from IDA to IDB.

Challenge: A produces two messages m0 and m1 of equal length from the message space M and an
arbitrary sender identity IDA. The challenger C flips a coin, sampling a bit b ← {0, 1} and computes
σ∗ = Signcrypt (mb, IDA, {ID1, ID2, . . . , IDt} , DA). σ∗ is returned to A as the challenge signcrypted
ciphertext.

Phase II: A is allowed to make polynomial number of new queries as in Phase I: with the restrictions
that it should not query the Unsigncryption Oracle for the unsigncryption of σ∗, the Signcryption Oracle
for the signcryption of m0 or m1 under the sender identity IDA and the Keygen Oracle for the secret
keys of ID1, ID2, . . . , IDt.

Guess: At the end of this game, A outputs a bit b′. A wins the game if b′ = b.

Unforgeability: A signcryption scheme is existentially unforgeable under chosen message attack (EUF-
MIBSC-CMA) if no probabilistic polynomial time adversaryA has a non-negligible advantage in the following
game.

Setup Phase: The challenger C runs the Setup algorithm to generate the master public and private keys
params and msk respectively. C gives system public parameters params to A and keeps the master
private key msk secret from A.

Training Phase: The adversary A makes polynomial number of queries to the oracles as described in
Phase I: of the confidentiality game.

Forgery: A produces a signcrypted ciphertext σ and wins the game if the private key of sender identity
IDA was not queried in the Training Phase:, the output of Unsigncrypt(σ, IDA, IDB, DB) is not
invalid and σ is not the output of any previous queries to the Signcrypt Oracle with IDA as sender.



2.5 Security Model for PKI Based Multiple Receiver Signcryption for (MSC)

We describe below the security models for confidentiality and unforgeability for PKI based multi-receiver
signcryption scheme and these are the strongest security notions for MSC schemes.

Confidentiality: A multi-receiver signcryption scheme is semantically secure against adaptive chosen ci-
phertext attack (IND-MSC-CCA2), if no polynomially bounded adversary A has a non-negligible advantage
in the following game.
The challenger C, takes the security parameter κ as input and runs Keygen to generate multiple key pairs
(skRi , pkRi), (i = 1, . . . , n) for the n receivers. All skRi are kept secret while pkRi the corresponding public
keys are given to A.

Phase 1: A performs a series of queries in an adaptive fashion in this phase. The queries allowed are given
below:
Signcryption oracle: A produces a message m ∈ M and requests the result of the operation Signcrypt(
m, skS , pkR1 , . . . , pkRn).
Unsigncryption oracle: A produces a ciphertext σ and an arbitrary sender public key pkS and requires
the result of the operation Unsigncryt(σ, pkS , skRi).
These queries may be asked adaptively, i.e. each query may depend on the answers to previous ones.

Challenge: At the end of Phase 1, A generate two equal length plaintexts m0 and m1 and sends it to C.
Now, C flips b ∈R {0, 1} and computes σ∗ = signcrypt( mb, skS , pkR1 , . . ., pkRn) and returns it to A.

Phase 2: A can perform polynomial number of queries adaptively again as in Phase 1 but he cannot make
an unsigncryption query on σ∗.

Guess: A outputs a bit b′ and wins the game if b′ = b.

Unforgeability: A multi-receiver signcryption scheme is existentially unforgeable under chosen message
attack (EUF-MSC-CMA) if no probabilistic polynomial time adversary A has a non-negligible advantage in
the following game.
The challenger C, takes the security parameter κ as input and runs Keygen to generate multiple key pairs
(skRi , pkRi), (i = 1, . . . , n) for the n receivers. All skRi are kept secret while pkRi the corresponding public
keys are given to A.

Training Phase: The adversary A makes polynomial number of queries to the oracles as described in
Phase I: of the confidentiality game.

Forgery: A produces a signcrypted ciphertext σ∗ and wins the game if the private key of sender S was
not queried in the Training Phase:, the output of Unsigncryt(σ∗, pkS , skRi) is not invalid and σ∗ is
not the output of any previous queries to the Signcrypt Oracle with S as the sender.

3 Yu et al.’s ID-Based Multi-Receiver Signcryption Scheme (Y-MIBSC)

In this section, we review Yu et al.’s identity based multi-receiver signcryption scheme (Y-MIBSC) and show
that the scheme does not provide both unforgeability as well as confidentiality.

3.1 Review of Y-MIBSC

The Y-MIBSC scheme in [21] has the following algorithms.

Setup(k): The security parameter of the scheme is k, G1, G2 are two cyclic groups of prime order q, P
is a generator of G1 and ê is a bilinear map defined as ê : G1 × G1 → G2. Let n0, n1, n2 and n3 denote
the number of bits required to represent an identity, an element of G1, an element of G2 and a message
respectively. Three hash functions H1 : {0, 1}n0 → G1, H2 : {0, 1}n1+n3 → Z∗

q , H3 : {0, 1}n2 → {0, 1}n3 are
used. The PKG chooses s ∈ Z∗

q and R ∈ G1\ {0G1} and computes Ppub = sP and θ = ê(R, Ppub), where 0G1

denotes the zero element of G1. The public parameters are 〈G1, G2, P, Ppub, R, θ, ê, H1, H2, H3〉.



Keygen(IDA): The public key and private key of user A are computed from his identity IDA as QA =
H1 (IDA) and DA = sQA respectively.

Signcrypt(m, IDA, ID1, ID2, . . . , IDn, DA): Suppose A wants to encrypt a message m to n receivers
with identities ID1, ID2, . . . , IDn. User A does the following.

1. Chooses r ∈R Z∗
q

2. Computes the following.
(a) X = rQA

(b) h2 = H2 (X‖m)
(c) Z = (r + h2)DA

(d) U = rP
(e) ω = ê (Z, P )
(f) y = m ⊕ H3 (ω)
(g) W = θrω
(h) Ti = rH1 (IDi) + rR, for 1 ≤ i ≤ n.

3. The signcrypted ciphertext is σ = 〈y, U, X, W, T1, T2, . . . , Tn,L〉, where L is the list of receivers who can
decrypt the message. Here, Ti is meant for the receiver IDi.

Unsigncrypt(σ, IDA, IDi, Di) : A receiver with identity IDi uses his secret key Di to unsigncrypt
σ = 〈y, U, X, W, Ti,L〉 from IDA as follows.

1. Computes the following.
(a) ω′ = Wê (U, Di) ê (Ppub, Ti)

−1

(b) m′ = y ⊕ H3 (ω′)
(c) QA = H1 (IDA)
(d) h′

2 = H2 (X‖m′)
2. If ω′ = ê (Ppub, X + h′

2QA), returns m′. Otherwise, returns invalid.

3.2 Attack on Y-MIBSC

The scheme described above is insecure from the point of view of unforgeability and confidentiality. Anybody
can generate a valid signcryption for any message m∗ as if it were generated by another legal user. We describe
how these attacks proceed in this section.

Attack on Unforgeability: Let Alice be a legal user of the system and Eve be any forger. If Eve wants
to generate a signcryption on any message m∗ as if it were generated by Alice for a list of legal users of the
system with identities ID1, ID2, . . . , IDn, Eve just has to do the following.

1. Choose r∗ ∈R Z∗
q

2. Compute the following.
(a) X∗ = r∗QAlice

(b) h∗
2 = H2 (X∗‖m∗)

(c) Z∗ = (r∗ + h∗
2) QAlice.

(d) U∗ = r∗P
(e) ω∗ = ê (Z∗, Ppub)
(f) y∗ = m∗ ⊕ H3 (ω∗)
(g) W ∗ = θr∗

ω∗

(h) T ∗
j = r∗H1 (IDj) + r∗R, for 1 ≤ j ≤ n

3. σ∗ = 〈y∗, U∗, X∗, W ∗, T ∗
1 , T ∗

2 , . . . , T ∗
n ,L∗〉 is the signature of Alice on message m∗ generated by Eve for

the list of users L∗ with identities {IDj}1≤j≤n

We now prove that the σ∗ generated by Eve is a valid signcryption from Alice to the receivers in L∗ on the
message m∗.
Unsigncrypt(σ∗ = 〈y∗, U∗, X∗, W ∗, T ∗

1 , T ∗
2 , . . . , T ∗

n , L∗〉, IDAlice, IDj, Dj). A receiver with identity IDj uses
his secret key Dj to unsigncrypt σ∗ obtained from Eve as follows.



1. Compute the following.
(a) QAlice = H1 (IDAlice)
(b) Next, it can be seen that

ω′ = W ∗ê (U∗, Dj) ê
(
Ppub, T

∗
j

)

= θr∗
ω∗ê (r∗P, sQj) ê (Ppub, r

∗Qj + r∗R)−1

= ê (Ppub, R)r∗
ω∗ê (P, Qj)

r∗s ê (P, Qj)
−r∗s ê (P, R)−r∗s

= ω∗

(c) m′ = y∗ ⊕ H3 (ω′) = m∗

(d) h′
2 = H2 (X∗‖m′) = h∗

2

2. Next, the check ω′ ?= ê (Ppub, X∗ + h′
2QAlice) is performed. We show below that this test will succeed

and hence message m∗ will be returned.

ê (Ppub, X
∗ + h′

2QAlice) = ê (sP, r∗QAlice + h∗
2QAlice) (since h′

2 = h∗
2)

= ê (sP, (r∗ + h∗
2)QAlice)

= ê (Ppub, Z
∗) (from Step 2(c) of Eve’s forgery above)

= ê (Z∗, Ppub) (by symmetry of the bilinear map)
= ω∗ = ω′

From this it is clear that Eve can succeed in generating a signcryption of message m∗ with Alice as sender
and identities IDj, 1 ≤ j ≤ n as receivers without knowing the secret key of Alice. Thus any legal user can
forge any message on behalf of any other legal user to any set of receivers.

Attack on Confidentiality : The scheme in [21] does not provide confidentiality. This can be shown by
the following:

Let m0 and m1 be the two messages given by the adversary to the challenger during the challenge
phase of the confidentiality game. On seeing the challenge ciphertext σ∗ = 〈y∗, U∗, X∗, W ∗, T ∗

i ,L∗ =
{ID1, ID2, . . . , IDn}〉, the adversary will be able to compute h0

2 = H2(X∗‖m0) and w0 = ê(X∗+h0
2QID1 , Ppub).

Then, he can compute m′ = y∗ ⊕ H3(w0). If m′ = m0 then adversary knows that σ∗ is signcryption of m0,
else, σ∗ is signcryption of m1.

4 Improved Multi-Receiver ID-Based Signcryption Scheme (I-MIBSC)

In this section, we propose an improved version of Y-MIBSC, which we formally prove to be secure.

4.1 Scheme

The setup and key generation algorithms of I-MIBSC are similar to that of Y-MIBSC, but with slightly
different hash functions. The details are given below.

Setup(k): Let k be the security parameter of the system. Let G1 and G2 be two groups of prime order q
and let P be the generator of G1 and ê be a bilinear map defined as ê : G1 ×G1 → G2. As before, let n0, n1,
n2 and n3 denote the number of bits required to represent an identity, an element of G1, an element of G2

and a message respectively. Consider three hash functions H1 : {0, 1}n0 → G1, H2 : {0, 1}n0+2n1+n3 → Z∗
q ,

H3 : {0, 1}n2 → {0, 1}n1+n3 . The PKG chooses its secret key s ∈ Z∗
q and sets the public key Ppub = sP . The

PKI also chooses R ∈ G1\ {0G1} and computes θ = e(R, sP ), where 0G1 denotes the zero element of G1.
The public parameters of the system are 〈G1, G2, P, Ppub, R, θ, ê : G1 × G1 → G2, H1, H2, H3〉.

Keygen(IDA): The public key and private key of user A are computed from his identity IDA as QA =
H1 (IDA) and DA = sQA respectively.



Signcrypt(m, IDA, ID1, ID2, . . . , IDn, DA): For signcryption of message m by user A with identity
IDA and secret key DA to n receivers with identities ID1, ID2, . . . , IDn, do the following.

1. Choose r1, r2 ∈R Z∗
q

2. Compute the following.
(a) U = r1P
(b) X = r2QA

(c) h2 = H2 (IDA‖U‖X‖m)
(d) Z = (r2 + h2)DA

(e) ω = ê (Z, P )
(f) y = (m‖Z‖X)⊕ H3 (ω)
(g) W = θr1ω
(h) Ti = r1(Qi + R), for 1 ≤ i ≤ n

3. The signcrypted ciphertext is σ = 〈y, U, W, T1, T2, . . . , Tn,L〉, where L is the list of receivers who can
decrypt the message. Here, Ti is meant for the receiver IDi.

Unsigncrypt(σ, IDA, IDi, Di): A receiver with identity IDi uses his secret key Di to unsigncrypt σ =
〈y, U, W, Ti,L〉 from IDA as follows.

1. Compute the following.
(a) ω′ = Wê (U, Di) ê (Ppub, Ti)

−1

(b) m′‖Z ′‖X ′ = y ⊕ H3 (ω′)
(c) h′

2 = H2 (IDA‖U‖X ′‖m′)
2. If ω′ = ê (Z ′, P ) and ω′ = ê (X + h′

2QA, Ppub), return m′. Otherwise, return invalid.

We prove the correctness of our scheme in Appendix-A and confidentiality of our scheme in Appendix-B.

4.2 Proof of Unforgeability of I-MIBSC

Theorem 1. Our multi-receiver identity based signcryption scheme I-MIBSC is secure against any EUF-
MIBSC-CMA adversary A under the random oracle model if CDHP is hard in G1.

The challenger C receives an instance (P, aP, bP ) of the CDH problem. His goal is to determine abP . Suppose
there exists an EUF-MIBSC-CMA adversary A for our proposed I-MIBSC scheme. We show that C can use
A to solve the CDH problem. C will set the random oracles OH1 , OH2 , OH3 , OKeyExtract, OSigncrypt and
OUnsigncrypt. The answers to the oracles OH1 , OH2 , and OH3 are randomly selected, therefore, to maintain
consistency, C will maintain three lists L1 = 〈IDi, Qi, xi〉, L2 = 〈IDi, U, X, m, h2〉, L3 = 〈ω, h3〉. We assume
that A will ask for H1(ID) before ID is used in any key extraction, signcryption and unsigncryption queries.
First, the adversary A outputs the identity IDA of the sender whose signcryption he claims to be able to
forge.
Setup Phase: C gives A the system parameters params, consisting of P , Ppub = bP , R, θ = ê(R, Ppub =
ê(R, bP ).

Training Phase: A interacts with C by accessing the various oracles provided by C The descriptions of
these oracles are presented below.

Oracle OH1(IDi). C checks if there exists a tuple (IDi, Qi, xi) in L1. If such a tuple exists, C answers with
Qi. Otherwise, C does the following.

1. If IDi $= IDA, choose a new1 xi ∈R Z∗
q and set Qi = xiP .

2. If IDi = IDA, choose a new xi ∈R Z∗
q and set Qi = (xi − a)P .

3. Add the tuple (IDi, Qi, xi) to L1 and return Qi.

1 By new, we mean that the random value chosen must not have been already chosen during an earlier execution.



Oracle OH2 (IDi‖U‖X‖m). C checks if there exists a tuple (IDi, U, X, m, h2) in L2. If such a tuple exists,
C returns h2. Otherwise, C chooses a new h2 ∈R Z∗

q , adds the tuple (IDi, U, X, m, h2) to L2 and returns h2.
Oracle OH3(ω). C checks if there exists a tuple (ω, h3) in L3. If such a tuple exists, C returns h3. Otherwise,
C chooses a new h3 ∈R {0, 1}n1+n3 , adds the tuple (ω, h3) in L3 and returns h3.

Oracle OKeyExtract(IDi). C does the following.

1. If IDi = IDA, return invalid.
2. If IDi $= IDA, recover the tuple (IDi, Qi, xi) from L1 and return Di = xiPpub = bQi.

Oracle OSigncrypt (m, IDi,L). On receiving this query, where L = {ID1, ID2, . . . , IDn} is the list of in-
tended receivers, C checks if IDi = IDA. If not, C computes Di using OKeyExtract (IDi), generates the
signcryption in a normal way and returns it. Otherwise, that is, if IDi = IDA, it chooses r, r′ and a new
h2 ∈R Z∗

q and does the following.

1. Compute U = r′P
2. Compute X = rP − h2OH1(IDA) and add the tuple (IDA, U, X, m, h2) to L2.
3. Compute the following.

(a) Z = rPpub

(b) ω = ê(Z, P )
(c) y = OH3(ω) ⊕ (m‖Z‖X)
(d) For all IDj ∈ L, Tj = r′(OH1(IDj) + R).
(e) W = θr′

ω
4. Return the signcrypted ciphertext σ = 〈y, U, W, T1, T2, . . . , Tn,L〉.

Oracle OUnsigncrypt (σ, IDi, IDj). On receiving this query, where the signcryption σ = 〈 y, U ,W, T1, T2,
. . . , Tn, L〉, C checks if IDj = IDA. If not, C computes Dj using OKeyExtract(IDj), unsigncrypts σ in the
normal way and returns what the unsigncryption algorithm returns. Otherwise, that is, if IDj = IDA, then
C tries to locate entries (IDi, U, X, m, h2) ∈ L2 and (ω, h3) ∈ L3 for some h2, h3, and ω under the constraints
that ω = ê(Ppub, X + h2OH1(IDi)), (m‖Z‖X) = h3 ⊕ y, and ω = ê(Z, P ). If no such entries are found, the
oracle returns invalid. Otherwise, m is returned.

Forgery: Eventually, A outputs a forged signcryption σ′ = 〈y′, U ′, W ′, T ′
1, T

′
2, . . . , T

′
n,L′〉 on some message

m′ from the sender IDA to users in the set L′ = {ID1, ID2, . . . , IDn}, with IDA /∈ L′.

Now, C unsigncrypts the ciphertext σ′ with the private key of any of the identities IDj ∈ L′ to get the ‘signa-
ture’ Z ′ of IDA on m′, if σ′ is a valid signcrypted ciphertext from IDA to IDj on message m′. Now, C applies
the oracle replay technique to produce two valid signcrypted ciphertexts σ1 = 〈y1, U1, W1, T ′1

1 , T ′1
2 , . . . , T ′1

n ,L′〉
and σ2 = 〈y2, U2, W2, T ′2

1 , T ′2
2 , . . . , T ′2

n ,L′〉 on some message m′ from the sender IDA to users in the set
L′ = {ID1, ID2, . . . , IDn}, with IDA /∈ L′. C unsigncrypts σ1 and σ2 to obtain signatures Z1 = (r2 +h′

2)DA

and Z2 = (r2 +h′′
2 )DA. Now C can apply standard arguments for the outputs of the forking lemma since both

Z1 and Z2 are valid signatures for the same message m′ and same random tape of the adversary. Finally, C
obtains the solution to the CDH instance as xAPpub − (h′

2 − h′′
2)−1(Z1 − Z2). In fact,

xAPpub − (h′
2 − h′′

2)−1(Z1 − Z2) = xAPpub − (h′
2 − h′′

2)−1(h′
2 − h′′

2)DA

= xAPpub − DA = xAbP − DA

= xAbp − (xA − a)bP = abP

So, we can see that C has the same advantage in solving the CDH problem as the adversary A has in forging
a valid signcrypted ciphertext. So, if there exists an adversary who can forge a valid signcrypted ciphertext
with non-negligible advantage, that means there exists an algorithm to solve the CDH problem with non-
negligible advantage. Since this is not possible, no adversary can forge a valid signcrypted ciphertext with
non-negligible advantage. Hence, I-MIBSC is secure against any EUF-MIBSC-CMA attack. !

5 Li et al.’s Multi-receiver Signcryption Scheme (L-MSC)

In this section, we review Li et al.’s multi-receiver signcryption scheme (L-MSC) as described in [10] and
show that the scheme is not adaptive chosen ciphertext secure.



5.1 Review of L-MSC

This scheme has the following three algorithms. Given κ and l as the two security parameters, the sender and
the receiver agrees up on two cyclic groups G1 and G2 of prime order q > 2κ (the number of bits required
to represent G1 is l), a bilinear map ê : G1 × G1 → G2 and a generator P ∈R G1. They also choose three
cryptographic hash functions H1 : G1 → {0, 1}n1, H2 : {0, 1}n1+(n+1)l → G1 and H3 : G3

1 → {0, 1}l.

Extract: User U does the following to extract the private/public key pair:

– Choose xU ∈R Z∗
q and sets it as his private key.

– Sets the public key as YU = xUP .

The sender is represented by S and the set of receivers are denotes as Ri, where (i = 1 to n)

Signcrypt: Given a message m, a set of receivers R1, R2, . . . , Rn and the sender S executes the following
steps:

– Chooses r ∈R Zq∗ and R ∈R G1.
– Computes U = rP .
– Computes c = m ⊕ H1(R).
– Computes V = xSH2(c, U, YR1 , . . . , YRn).
– Computes Zi = R ⊕ H3(U, YRi , rYRi ) for i = 1, . . . , n.

The ciphertext is σ = (U, c, V, Z1, . . . , Zn).

Unsigncrypt: On receiving a ciphertext σ = (U, c, V, Z1, . . . , Zn), each receiver Ri performs the following
steps.

– Computes R = Zi ⊕ H3(U, YRi , xRiU).
– Computes m = c ⊕ H1(R).
– Computes H = H2(c, U, YR1 , . . . , YRn).
– Accepts the message if and only if ê(P, V ) ?= ê(YS , H), return invalid otherwise.

5.2 Attack on Li et al.’s Multi-receiver Signcryption Scheme (L-MSC)

The above scheme is insecure against adaptive chosen ciphertext security, we launch the attack on the
confidentiality of the scheme as follows.

Attack on Confidentiality The crucial argument in the confidentiality proof of [10] is that the adversary
A will not realize that the challenge ciphertext σ∗ is not a valid signcryption for the sender’s private key and
public keys YR1 , . . . , YRn of the set of receivers R1, . . . , Rn unless it asks for the hash value H3(aP, bP, abP ),
which reduces the problem to CDH. We prove that this is not the only means for A to decrypt the challenge
ciphertext. A can manipulate the ciphertext by attaching an arbitrary message and generating the signature
(A knows the secret key of the sender in confidentiality game) for the manipulated ciphertext. Now, A
can make use of the oracles to decrypt the altered ciphertext and thus decrypts without solving any hard
problem.
During the IND-MSC-CCA2 game, the adversaryA, on getting the challenge ciphertext σ∗ = (U∗, c∗, V ∗, Z∗

1 , . . . , Z∗
n),

can do the following to identify whether σ∗ is a signcryption of m0 or m1 with out solving any hard problem.

– A computes c′ = c∗ ⊕ m′.
– Chooses an arbitrary sender, for which it knows the private key (let the private key be xA).
– Computes V ′ = xAH2(c′, U∗, YR1 , . . . , YRn) (note: A can choose the receivers of the newly generated

ciphertext as any subset of receivers from the challenge ciphertext), where all values except c′ are the
same as in the challenge ciphertext.



– Now, σ′ = (U∗, c′, V ′, Z∗
1 , . . . , Z∗

n) is a valid signcryption from user A to multiple receivers Ri, where
i = 1 to n.

– Since it is a valid ciphertext and is also not the exact challenge ciphertext, A can obtain the unsigncryp-
tion of σ′ during Phase 2 from C.

Unsigncryt(σ′) produces mb⊕m′. As m′ is selected by A and it also knows m0 and m1, it can easily identify
whether c∗ is a signcryption of m0 or m1.

6 New Multi-receiver Signcryption Scheme (N-MSC)

The bug identified in this scheme is not a trivial one but it can be extirpated by altering the scheme
according to the guideline of An et al. [2]. We propose a new multi-receiver signcryption scheme and prove
the confidentiality against adaptive chosen ciphertext attack and unforgeability against chosen message
attack in the random oracle model in this section.

6.1 Scheme.

The improved scheme also has three algorithms. First, given κ as the security parameter, the sender and the
receiver agrees up on two cyclic groups G1 and G2 of prime order q > 2κ (Let the number of bits required
to represent a message m be n1), a bilinear map ê : G1 × G1 → G2 and a generator P ∈R G1. They also
choose four cryptographic hash functions H1 : G1 → {0, 1}n1+n2 , H2 : {0, 1}∗ → G1, H3 : G3

1 → G1. and
H4 : {0, 1}∗ → {0, 1}n2

Extract: User U does the following to extract the private/public key pair:

– Chooses xU ∈R Z∗
q and sets it as his private key.

– Sets the public key as YU = xUP .

The sender is represented by S and the set of receivers are denotes as Ri, where (i = 1 to n)

Signcrypt: Given a message m, a set of receivers R1, R2, . . . , Rn, the sender S executes the following steps
to perform signcryption:

– Chooses r ∈R Zq∗ and R ∈R G1.
– Computes U = rP and h = H4(m, R, YS , YR1 , . . . , YRn).
– Computes c = (m‖h) ⊕ H1(R).
– Computes V = xSH2(c, U, YR1 , . . . , YRn).
– Computes Zi = R ⊕ H3(U, YRi , rYRi ), for i = 1, . . . , n.

The ciphertext is σ = (U, c, V, Z1, . . . , Zn).

Unsigncrypt: On receiving a ciphertext σ = (U, c, V, Z1, . . . , Zn), each receiver Ri performs the following
steps.

– Computes R = Zi ⊕ H3(U, YRi , xRiU).
– Computes h′ = H4(m, R, YS , YR1 , . . . , YRn).
– Retrieves the message m and h as (m‖h) = c ⊕ H1(R).
– Computes H = H2(c, U, YR1 , . . . , YRn).
– Accepts the message if ê(P, V ) ?= ê(YS , H) and h

?= h′, otherwise rejects the ciphertext σ.

Remark 1: For a signcryption scheme to be secure in multi-user setting it is required to have the following
binding in the Encrypt-then-Sign (EtS) paradigm.

– Encryption should involve the identity of sender,
– The signature should involve the identity of the receiver.



This key issue was proved by An, Dodis and Rabin in [2]. The scheme by Fagen Li et al. [10] also uses the
(EtS) paradigm, but it fails to achieve the above said property. Thus, during the confidentiality game, the
adversary is able to alter the signature part of the challenge ciphertext and produce a valid ciphertext as if
it is signcrypted by a legitimate user for some other message (It can be the signature of the actual sender
itself, as the secret key of the sender is known to the adversary during the confidentiality game to prove the
insider security). This led to the weakness on adaptive chosen ciphertext security of [10] as mentioned in the
attack, but we counter it by following the guidelines in [2].

6.2 Proof of Confidentiality of N-MSC

Theorem 2. Our multi-receiver signcryption scheme N-MSC is secure against any IND-N-MSC-CCA2 ad-
versary A under the random oracle model if CDHP is hard in G1.

The challenger C uses the adversary A, who is capable of breaking the IND-N-MSC-CCA2 security of
N-MSC to solve the CDH problem in polynomial time. Let (P, aP, bP ) be a random instance of the CDH
problem C has received. C starts the game by choosing a receiver R∗ ∈ {R1, . . . Rn} and sets the public key
of the user R∗ as Y ∗ = bP , which is the challenge public key and gives the public parameters to A.

Phase I: A then adaptively performs queries on the various oracles OH1 , OH2 , OH3 , OH4 , OSigncryption

and OUnsigncryption.
To handle these queries, C maintains lists Li that keeps track of the answers given to oracle queries
by A on queries to Hi for (i = 1, 2, 3, 4). Upon a query by A on the hash oracles OH1 , OH2 , OH3 and
OH4 , C responds in the following way: C first checks in the respective lists Li, whether the oracle is
queried previously for the same input; if so, retrieves and returns the corresponding value; if not queried
previously, randomly generate an element from the output range of the corresponding hash function,
returns it to A and stores the input and output values in the corresponding list.
OSigncryption queries: To face the signcryption query on a plaintext m chosen by A, C does the following:
– If the public key of the sender is not the target public key, i.e. YS $= Y ∗ then C proceeds as per the

Signcrypt algorithm.
– If the public key of the sender is the target public key i.e. YS = Y ∗ then C proceeds as follows:

• Chooses r ∈R Zq∗ and R ∈R G1.
• Computes U = rP and queries h4 = OH4(m, R, YS , YR1 , . . . , YRn) and h1 = OH1(R). If entries

(m, R, YS , YR1 , . . . , YRn , h4) and (R, h1) already exists in the list L4 and L1 respectively, C uses
them.

• Computes c = (m‖h4) ⊕ h1.
• Chooses x′ ∈R Z∗

q , sets H ′
2 = x′P and stores the tuple 〈c, U, YR1 , . . . , TRn , H ′

2〉 in the list L2.
• Computes V = x′bP .
• Queries h3i = OH3(U, YRi , rYRi) for i = 1, . . . , n. If all entries (U, YRi , rYRi , h3i), for i = 1, . . . , n

already exists in the list L3, C uses them.
• Computes Zi = R ⊕ h3i for i = 1, . . . , n.
• The ciphertext σ = (U, c, V, Z1, . . . , Zn) is then returned as the signcryption of the message m

with Y ∗ as the sender to A.

OUnsigncryption queries: Upon receiving an unsigncryption query on a ciphertext σ = (U, c, V, Z1, . . . , Zn)
and a senders public key YS both chosen by A, C proceeds as follows:
– If the public key of the receiver is not the target public key, i.e. YR $= Y ∗ then C proceeds as per the

Unsigncrypt algorithm.
– If the public key of the receiver is the target public key i.e. YR = Y ∗ then C proceeds as follows:

• Retrieves (U, YRi , rYRi , h3i), where (0 ≤ i ≤ qH3) from list L3, if the tuple does not exist return
invalid.

• Computes R = Zi ⊕ h3i .
• Retrieves the message m′ and h′

4 by computing (m′‖h′
4) = c⊕ h1 where h1 is retrieved from the

list L1 by searching for a tuple (R, h1) in it, if not present returns invalid.
• Retrieves (m, R, YS , YR1 , . . . , YRn , h4) from the list L4, if the tuple does not exist returns invalid.
• Retrieves (c, U, YR1 , . . . , YRn , H ′

2) from the list L2, if the tuple does not exist returns invalid.



• Returns the message m to A if and only if ê(P, V ) ?= ê(YS , H ′
2) and h4

?= h′
4, otherwise return

invalid and Abort.
Challenge: At the end of Phase I, A produces two plaintexts m0 and m1 to C and requires a challenge

ciphertext encrypted with the receivers public keys that includes the challenge public key Y ∗. C chooses
a random bit b ∈R {0, 1} and signcrypts mb as follows.
– Computes U∗ = aP and chooses R∗ ∈R G1.
– Queries the oracles OH4 and OH1 to obtain h∗

4 = OH4(m, R, YS , YR1 , . . . , YRn) and h∗
1 = OH1(R)

respectively.
– Computes c∗ = (mb‖h∗

4) ⊕ h∗
1.

– Queries the oracle OH2 and obtains H ′∗
2 = OH2(c∗, U∗, YR1 , . . . , YRn).

– Computes V ∗ = xSH ′
2.

C then chooses {Z∗
1 , . . . , Z∗

n} ∈R G1 and sends the challenge ciphertext σ∗ = (U∗, c∗, V ∗, Z∗
1 , . . . , Z∗

n) to
A.

Phase II: A adaptively performs series of queries in this phase also but with the restriction that, it is not
allowed to get the decryption of the challenge ciphertext σ∗. These queries are handled by C as those in
the first stage.

(Note that A cannot realize that σ∗ is not a valid signcryption for the senders private key xS and the receiver
public key Y ∗ unless it asks for the hash value H3(U∗, Y ∗, aY ∗)= H3(aP, bP, abP ). In that case, the solution
of the Computational Diffie-Hellman problem would be inserted in the list L3 and it does not matter to the
challenger, even if the simulation of A’s view is no longer perfect.)

Guess: At the end of Phase II, A outputs a bit b′.

C ignores the result of A. C is only interested in the tuple in the list L3 which is of the form (aP, bP, X, .).
C now checks whether ê(P, X) ?= ê(aP, bP ) for all entries of the list L3 and if this relation holds, stops and
outputs X as the solution of the CDH problem instance it has received. If no tuple of this kind satisfies the
equality, C stops and outputs invalid. The probability that C’s answer to the CDH problem is correct, is
same as the probability that A queries OH3(aP, bP, abP ) and this implies that C can solve the CDH problem
with non-negligible advantage and this is a contradiction. !

6.3 Proof of Unforgeability of N-MSC

Theorem 3. Our multi-receiver signcryption scheme N-MSC is secure against any EUF-N-MSC-CMA ad-
versary A under the random oracle model if CDHP is hard in G1.

The challenger C uses the adversary A, who is capable of breaking the IND-N-MSC-CMA security of N-MSC
to solve the CDH problem in polynomial time. Let (P, aP, bP ) be a random instance of the CDH problem. C
simulates A’s queries in the game of unforgeability as defined in the confidentiality game. It starts the game
by choosing a sender S∗ and sets Y ∗ = aP as the public key of the user S∗, which is the challenge public
key.

Training Phase: A is allowed to adaptively perform queries on the various oracles OH1 , OH2 , OH3 ,
OH4 , OSigncryption and OUnsigncryption (Note that the definition of these oracles are same as that in the
confidentiality proof in section 6.2).

Forgery: Finally, A produces a forged signcryption σ∗ = (U∗, c∗, V ∗, Z∗
1 , . . . , Z∗

n) on the message m∗ (i.e.
σ∗ was not produced by signcryption oracle OSigncryption as an output for the signcryption query on
the message m∗ with S∗ as sender). C can very well unsigncrypt and verify the validity of the forged
signcryption σ∗ because C knows the secret key of all the receivers.

If the forged signcryption passes the verification then C can obtain the solution for CDH problem by per-
forming the following steps:

– C checks list L2 whether 〈c∗, U∗, YR1 , . . . , YRn , H ′
2〉 was previously queried by A during the Training

Phase. If not queried by A, C aborts the game else if it was queried, the corresponding H ′
2 value was set

by C to be bP .



– Thus, V ∗ which is obtained from the forged signcryption is nothing but V ∗ = xS∗H ′
2 = abP , which is

the result of the CDH instance that C has received.

So, we can see that C has the same advantage in solving the CDH problem as the adversary A has in
forging a valid signcrypted ciphertext. So, if there exists an adversary who can forge a valid signcrypted
ciphertext with non-negligible advantage, it means there exists an algorithm to solve the CDH problem with
non-negligible advantage. Since this is not possible, no adversary can forge a valid signcrypted ciphertext
with non-negligible advantage. Hence, N-MSC is secure against any EUF-N-MSC-CMA attack

7 Conclusion

In this paper, we presented the cryptanalysis of the multi-receiver identity based signcryption scheme by Yu
et al. [21] and showed an universal forgeability attack on the scheme whereby anybody can generate a valid
signcryption of any message to any subset of legitimate users as if a legitimate user had generated it. Also,
we showed that the scheme does not provide confidentiality, i.e. it is not indeed adaptive chosen ciphertext
secure. We have also proposed an improved scheme and proved its security formally in the existing security
model for multi-receiver identity based signcryption schemes.

We have also cryptanalyzed a PKI based multi-receiver signcryption scheme by Fagen Li et al. [10] by
demonstrating an attack on the confidentiality of the scheme. We have also proposed a new multi-receiver
signcryption scheme and have proved both confidentiality and unforgeability formally in the random oracle
model.
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Appendix-A

Proof of Correctness of I-MIBSC In this section, we show that our improved scheme is consistent. If σ =
〈y, U, W, Ti〉 is a valid signcryption for a user with identity IDi, then Unsigncrypt(σ, IDA, IDi, Di) does
the following.

1. Compute QA = H1 (IDA)
2. Next, we observe that

ω′ = Wê (U, Di) ê (Ppub, Ti)−1

= θr1ωê (r1P, sQi) ê (sP, r1Qi + r1R)−1

= ê (P, R)r1s ωê (P, Qi)
r1s ê (P, Qi)

−r1s ê (P, R)−r1s

= ω

3. Compute m′‖Z ′ = c ⊕ H3 (ω′) = m‖Z
4. Compute h′

2 = H2 (IDA‖U‖X‖m′) = h2

5. Next, the checks ω′ ?= ê (Z ′, P ) and ω′ ?= ê (X + h′
2QA, Ppub) are performed. We show below that these

tests will succeed and hence message m′ will be returned.

– Check 1
ω′ = ω = ê (Z, P ) = ê (Z ′, P )

– Check 2

ê (X + h′
2QA, Ppub) = ê (X + h2QA, Ppub)

= ê (r2QA + h2QA, sP )
= ê ((r2 + h2)QA, sP )
= ê ((r2 + h2)DA, P )
= ω = ω′

Appendix-B

Proof of Confidentiality of I-MIBSC

Theorem 4. Our multi-receiver identity based signcryption scheme I-MIBSC is secure against any IND-
MIBSC-CCA2 adversary A under the random oracle model if DBDHP is hard in G1.



The challenger C receives an instance (P, aP, bP, cP,α) of the DBDH problem. His goal is to decide whether
α = ê (P, P )abc or not. Suppose there exists an IND-MIBSC-CCA2 adversary A for the proposed I-MIBSC
scheme. We show that C can use A to solve the DBDH problem. C will set the random oracles OH1 ,
OH2 , OH3 , OKeyExtract, OSigncrypt and OUnsigncrypt. The answers to the oracles OH1 , OH2 , and OH3

are randomly selected, therefore, to maintain consistency, C will maintain three lists L1 = 〈IDi, Qi, xi〉,
L2 = 〈IDi, U, X, m, h2〉, L3 = 〈ω, h3〉. We assume that A will ask for H1(ID) before ID is used in any
key extraction, signcryption and unsigncryption queries. First, the adversary A outputs the list of identities
L = {ID∗

0 , ID∗
1 , . . . , ID∗

t } which is the set of target users. Then, the challenger C gives A the system pa-
rameters params consisting of P , Ppub = cP , R = bP , and θ = ê(R, Ppub)ê(R, cP ). The descriptions of the
oracles follow.

Oracle OH1(IDi). C checks if there exists a tuple (IDi, Qi, xi) in L1. If such a tuple exists, C answers with
Qi. Otherwise, C does the following.

1. If IDi /∈ L, choose a new2 xi ∈R Z∗
q and set Qi = xiP .

2. If IDi ∈ L, choose a new xi ∈R Z∗
q and set Qi = xiP − R.

3. Add the tuple (IDi, Qi, xi) to L1 and return Qi.

Oracle OH2(IDi‖U‖X‖m). C checks if there exists a tuple (IDi, U, X, m, h2) in L2. If such a tuple exists,
C returns h2. Otherwise, C chooses a new h2 ∈R Z∗

q , adds the tuple (IDi, U, X, m, h2) to L2 and returns h2.

Oracle OH3(ω). C checks if there exists a tuple (ω, h3) in L3. If such a tuple exists, C returns h3. Otherwise,
C chooses a new h3 ∈R {0, 1}n1+n3 , adds the tuple (ω, h3) in L3 and returns h3.

Oracle OKeyExtract(IDi). C does the following.

1. If IDi ∈ L return invalid.
2. If IDi /∈ L, recover the tuple (IDi, Qi, xi) from L1 and return Di = xiPpub = cQi.

Oracle OSigncrypt (m, IDA,L1). On receiving this query, where L1 = {ID1, ID2, . . . , IDt} is the list of
intended receivers, C checks if IDA ∈ L. If not, C computes DA using OKeyExtract (IDA), generates the
signcryption in a normal way and returns it. Otherwise, that is, if IDA ∈ L, it chooses r, r′ and a new
h2 ∈R Z∗

q and does the following.

1. Compute U = r′P
2. Compute X = rP − h2OH1(IDA) and add the tuple (IDA, U, X, m, h2) to L2.
3. Compute the following.

(a) Z = rPpub

(b) ω = ê(Z, P )
(c) y = OH3(ω) ⊕ (m‖Z‖X)
(d) For all IDj ∈ L1, Tj = r′(OH1 (IDj) + R).
(e) W = θr′

ω
4. Return the signcrypted ciphertext σ = 〈y, U, W, T1, T2, . . . , Tt,L1〉.

d

Oracle OUnsigncrypt (σ, IDA, IDj). On receiving this query, where the signcryption σ = 〈y, U, W, T1, T2,
. . . , Tt, L1〉, C checks if IDj ∈ L. If not, then C computes Dj using OKeyExtract(IDj), unsigncrypts σ in the
normal way and returns what the unsigncryption algorithm returns. Otherwise, that is, if IDj ∈ L, then C
tries to locate entries (IDA, U, m, h2) ∈ L2 and (ω, h3) ∈ L3 for some h2, h3, and ω under the constraints
that ω = ê(Ppub, X + h2OH1(IDA)), (m‖Z‖X) = h3 ⊕ y, and ω = ê(Z, P ). If no such entries are found, the
oracle returns invalid. Otherwise, m is returned.

After the first query stage, A outputs two plaintext messages m0 and m1 of equal length, together with a
sender’s identity IDA on which he wishes to be challenged. A now waits for a challenge signcrypted ciphertext
built under the receivers’ identities ID1, ID2, . . . , IDt ⊆ L. Now, C chooses a random bit b ∈ {0, 1} and
signcrypts message mb as follows.
2 By new, we mean that the random value chosen must not have been already chosen during an earlier execution.



1. Choose a new h2 and r ∈R Z∗
q .

2. Compute U∗ = aP
3. Compute X∗ = rP − h2OH1(IDA) and add the tuple (IDA, U∗, X∗, mb, h2) to the list L2.
4. Compute the following.

(a) Z∗ = rPpub = rcP
(b) ω = ê(Z∗, P )
(c) y∗ = OH3(ω) ⊕ (mb‖Z∗‖X∗)
(d) T ∗

j = xjaP for 1 ≤ j ≤ t
(e) W ∗ = αω

5. Create a new label L∗ = {ID1, ID2, . . . , IDt} and send the signcrypted ciphertext as σ∗=〈y∗, U∗, W ∗,
T1, T2, . . ., Tt, L∗ 〉 to the adversary.

A can perform queries as above. However, it cannot query the unsigncryption oracle with the challenge
signcrypted ciphertext or the signcryption oracle with messages m0 or m1 and IDA as the sender. At the
end of the simulation, A outputs a bit b′ for which he believes that the challenge signcryption ciphertext is
the signcryption of mb′ from IDA to L∗. If the relation b = b′ holds, then C outputs 1 as the answer to the
DBDH problem. Otherwise, it outputs 0. We have,

σ∗ is a valid signcryption of mb from IDA to the receivers in L∗

⇔ ω = W ∗ê(Tj , Ppub)−1ê(U∗, Dj)

⇔ αê(Tj , Ppub)−1ê(U∗, Dj) = 1 (because we have W ∗ = αω)

⇔ αê(xjaP, cP )−1ê(aP, (xj − b)cP ) = 1

⇔ αê(xjaP, cP )−1ê(aP, xjcP )ê(aP,−bcP ) = 1
⇔ αê(P,−abcP ) = 1

⇔ α = ê(P, P )abc

These calculations show that we get a correct ω if and only if α = ê(P, P )abc.

So, we can see that the challenger C has the same advantage in solving the DBDH problem as the adversary
A has in distinguishing a valid signcrypted ciphertext from a random string. So, if there exists an adversary
who can succeed in such a CCA2 attack with non-negligible advantage, that means there exists an algorithm
to solve the DBDH problem with non-negligible advantage. Since this is not possible, no adversary can
distinguish a valid signcrypted ciphertext from a random string with non-negligible advantage. Hence I-
MIBSC is secure against any IND-MIBSC-CCA2 attack. !


