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Abstract. We examine the problem of message and entity recognition in the context of ad hoc

networks. We review the definitions and the security model described in the literature and examine

previous recognition protocols described in [1], [2], [3], [7], and [8]. We prove that there is a one

to one correspondence between non-interactive message recognition protocols and digital signature

schemes. Hence, we concentrate on designing interactive recognition protocols.

We look at [3] in more detail and suggest a variant to overcome a certain shortcoming. In

particular, in case of communication failure or adversarial disruption, this protocol is not equipped

with a practical resynchronization process and can fail to resume. We propose a variant of this

protocol which is equipped with a resynchronization technique that allows users to resynchronize

whenever they wish or when they suspect an intrusion.

1. Introduction

Entity recognition is a security notion weaker than entity authentication; it refers to the process
where two parties meet initially and one party can be assured in future conversations that it is
communicating with the same second party. It should also provide uniqueness, that is the corrob-
orative evidence obtained in this process should uniquely determine the identity of the claimant.
It should also assure timeliness, that is to provide verifiable evidence that the claimant is active at
the time of, or immediately before, the evidence was obtained. Message recognition, on the other
hand, provides data integrity with respect to the data origin and it ensures that the entity who sent
the message is the same in future conversations. However, it does not have to provide uniqueness
or timeliness. There are proposals for entity recognition and message recognition protocols in the
literature, using both public-key and secret-key cryptography.

Public-key techniques such as digital signature schemes solve the problem of recognition easily.
However, using these techniques in some scenarios, such as ad hoc pervasive networks, may be very
costly. For instance, in an ad hoc network, there may be no pre-deployed authentic information
available. Also, we may not be able to assume trusted third parties are available to form a trusted
infrastructure. Further, we may be dealing with devices with very low computational power where
public-key computations are too heavy to be carried out. On the other hand, secret-key techniques
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require the existence of a secure channel where the secret keys can be transmitted confidentially.
In a dynamic environment with no infrastructure, this assumption may not be realistic.

RFID tags and sensor network motes in a hostile environment are examples of cases where
public key techniques and secret key transmissions are not practical due to aforementioned reasons.
Recognition protocols have applications in secure routing methods. In such scenarios, it may be
unnecessary to provide the stronger security guarantees of entity and message authentication under
reasonable assumptions. In fact, recognition is often all that is required in a dynamic environment.
Hence, the weaker security of entity and message recognition is often pursued. Moreover, there
are claims in the literature, [8], suggesting that in such an environment (where no pre-established
authentic information exists and without the presence of a trusted third party), achieving anything
more than recognition security is not possible.

We assume that two channels are accessible for communication: an insecure broadband channel
and an authenticated narrow-band channel. We adapt the notation of [6] and [5] for illustrating
these channels: the insecure channel and the authenticated channel are denoted by → and ⇒,
respectively. The latter is sometimes referred to as the manual channel. We use the narrow-band
channel for the initial session between two users. Later sessions occur over the insecure channel.

The adversary has full control over the broadband channel. That is, the adversary can listen to
any messages sent over the broadband channel, modify the messages sent via this channel, stall the
message from being delivered, and inject a new message into this channel at any time. However,
the adversary remains passive on the narrow-band channel.

We have two small devices, Alice and Bob, in a hostile environment. They have previously met
in a secure environment. Now, Alice wants Bob to recognize her or recognize the messages sent
from her to Bob. The adversary Eve is trying to make Bob recognize Eve as Alice, or recognize
messages from Eve as sent from Alice, where Alice has never sent those messages. We further
assume that Eve can make Alice send messages of Eve’s choice.

The rest of the paper is organized as follows. Section 2 is devoted to examining previous recog-
nition protocols in [1], [2], [3], [7], and [8]. In particular, some shortcomings of these recognition
protocols in the context of ad hoc networks are described.

In Section 3, we look at the protocol proposed in [3] in more detail and suggest some improve-
ments. Moreover, in case of communication failure or adversarial disruption, none of these protocols
are equipped with a practical resynchronization process. We propose a variant of the recognition
protocol in [3] which includes resynchronization technique.

Further, we prove that there is a one to one correspondence between non-interactive message
recognition protocols and digital signature schemes in Section 4.

2. Previous Recognition Protocols

In this section, we review the existing protocols in the literature which provide entity or message
recognition. The usability of each protocol is discussed in the context of ad hoc pervasive networks
where devices have low computation power and low communication bandwidth.
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The Guy Fawkes protocol was proposed by Anderson et. al. in [1]. There are two variants of this
protocol suggested and a one-way hash function is deployed in both variants. In the first variant
of the Guy Fawkes protocol, random codewords, Xi, are chosen in each session and are refreshed
each time a message, Mi, is authenticated. Alice commits to the message and these codewords and
then publishes the commitment in a public directory which provides time-stamping services. Later,
she reveals the committed values to prove that she is the same party who was involved in previous
sessions. However, assuming the existence of a trusted party which provides time-stamping services
is not realistic in most ad hoc network scenarios. The second variant of the Guy Fawkes protocol
does not require any interaction with a time-stamping provider and instead requires interaction of
the authenticating party with the verifying party. The initialization phase of this protocol does
not assume any authenticated channel; however, it requires digital signatures for authenticating
the first blocks and codewords. This may not be suitable in ad hoc networks and, in particular,
in low-power environments. Moreover, for a message to be authenticated in session i, users need
to commit to it in the previous session. In the context of message recognition in ad hoc networks,
this means that users are engaged in two sessions of this protocol to authenticate a single message,
which may not be desirable.

An entity recognition protocol, known as ‘Remote User Authentication Protocol’, was introduced
by Mitchell in [7]. In this protocol, a message authentication code (MAC) is used to prove that
a user is the same entity involved in previous sessions. The protocol can be adapted to perform
message recognition as well; however, this is not discussed in the paper. The setup phase of
this protocol requires that t MAC values be sent over the authenticated channel. This may be
costly since authenticated channels are usually of low bandwidth. Further, the “cut-and-choose”
procedure in each round involves in sending 2t MAC values and r secret keys. In order for the
protocol to be secure, it is suggested that t ≥ 35 and r ≈ t/2. Hence, the amount of computations
and communication here is large compared to other protocols that are providing entity or message
recognition and it may not be suitable for ad hoc network settings with low power devices.

Weimerskirch et. al. introduced a protocol called Zero Common-Knowledge (ZCK) protocol in
[8]. They use MACs and hash chains of the form ai = h(ai−1) and bi = h(bi−1), i = 1, . . . , n, as
keys for the MACs computed by Alice and Bob, respectively. Here, n is fixed at the beginning and
h is a one-way hash function.

Hammell et. al. implemented the ZCK protocol and published the results in [2]. The provided
measurements and observations from this implementation provided a proof-of-concept. Low com-
putational power, low code space, low communication bandwidth, low energy resources, are among
the main requirements of a recognition protocol designed for an ad hoc pervasive network setting.
The measurements resulted from this implementation proved that the ZCK protocol exhibits the
aforementioned requirements. They note that denial-of-service and memory complexity are areas
of concern and need to be addressed or improved upon in the future.

Note that [2] investigates the practicality of the ZCK protocol and does not investigate its
security properties. That is, it relies on the security proof presented in [8]. However, in [3], Lucks
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et. al. found a flaw in the security proof of this protocol and presented an attack against the ZCK
protocol. Furthermore, they proposed a modification to fix the flaw.

2.1. LZWW05 Protocol.
As noted above, in [3], Lucks et. al. found an attack against the ZCK protocol of [8] and pointed

out the flaw in the security proof of this protocol. Further, using the same idea of using values in a
hash chain as keys for MACs, they proposed a message recognition protocol which is a modification
of the original ZCK protocol.

They consider a cryptographic hash function h : {0, 1}s → {0, 1}s, as a one-way hash function,
and a message authentication code MAC : {0, 1}s×{0, 1}∗ → {0, 1}c. Typical values are suggested
to be s ≥ 80 and c ≥ 30. Further, n is fixed to be the maximum number of messages to be
authenticated. In other words, the maximum number of sessions is fixed to be n. Alice and
Bob randomly choose a0 and b0, respectively. Then, they respectively form ai = h(ai−1) and
bi = h(bi−1), i = 1, . . . , n.

In the initialization phase, Eve is assumed to be passive. Hence, we can denote this channel, in
accordance with our notation, by⇒. Alice and Bob will exchange an and bn over the authenticated
channel during this phase.

Alice Bob

Choose a random a0 and Choose a random b0 and

compute ai = H(ai−1) for i = 1, . . . , n
an====⇒ compute bi = H(bi−1) for i = 1, . . . , n.

bn⇐====

Figure 1. Initialization Phase of LZWW05 Recognition Protocol

After the initialization phase, there are n sessions denoted by n− 1, . . . , 0, starting from session
n− 1 and moving down to lower values one at a time. In session i, Alice authenticates the message
mi using ai as the key for the MAC. Once Bob authenticates himself to Alice by revealing bi, Alice
reveals ai and allows Bob to verify and accept this new key and the authenticity of the message
mi. When a key k is accepted, it is denoted by accept-key(k). Moreover, commit-message(m, i)
indicates that Alice commits to a message m in session i, and accept-message(m, i) indicates that
Bob accepts m as authentic and fresh in session i. After a successful session of the protocol, Alice
and Bob will “move down” in the hash chain, using ai−1 and bi−1 for session i− 1.

Formally, Alice and Bob keep the following information as their internal states:

• i, the session counter,
• bi+1, the most recently accepted value of Bob’s hash chain kept by Alice, and ai+1, the

most recently accepted value of Alice’s hash chain kept by Bob (hence accept-key(bi+1) and
accept-key(ai+1) have occurred already).
• a one-bit flag, to determine the program states A0 and A1, or B0 and B1 for Alice and

Bob, respectively.

Session i of the protocol is executed as follows:
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A0 (Alice’s initial program state) Obtain mi (possibly from Eve), then
– commit-message(mi, i);
– compute di = MACai(mi);
– send (di, mi); goto A1.

A1 Wait for a message b′ (supposedly from Bob), then
if H(b′) = bi+1,
then bi := b′; accept-key(bi); send ai; set i := i− 1; goto A0,
else goto A1.

B0 (Bob’s initial program state) Wait for a message (di, mi), then send bi and goto B1.
B1 Wait for a message a′ (supposedly from Alice), then

if H(a′) = ai+1 then
– ai := a′; accept-key(ai);
– if MACa′(mi) = di

then accept mi as authentic in session i, (else do not accept any message for session i);
– set i := i− 1; goto B0

else goto B1.

Figure 2 depicts the LZWW05 protocol. We analyze this protocol in more detail in Section 3
and point out its shortcomings in case of adversarial disruption or communication failure. Further,
we propose a new variant of the recognition protocol of [3] which incorporates a resynchronization
technique allowing a full recoverability of the protocol.

Alice Bob

Input (mi, Bob)
commit-message(mi, i)

di = MACai
(mi)

mi, di−−−−→ Receive m′i, d′i

bi←−−−−

Receive b′i and
If bi+1 = H(b′i)
then accept-key(b′i)

else wait for a new bi
ai−−−−→ Receive a′i

If ai+1 = H(a′i)
then accept-key(a′i)
else wait for a new ai.
For an accepted a′i check if d′i = MACa′

i
(m′i).

If so, accept-message(m′i, i).

Figure 2. LZWW05 Entity and Message Recognition Protocol

The extended abstract, [3], does not contain the security proof of this protocol and the reader is
referred to the full version of the paper [4] for the security proof.

3. An Improvement to the LZWW05 Protocol

In [3], there is a small time-frame associated with each session i. In particular, a message mi

is fresh if it is sent within the associated time-frame of session i. It is assumed that during each
time-frame, Alice commits to only one message and Bob accepts at most one message. As a result,
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the time-frame should be known to both Alice and Bob. However, the value i, which could indicate
the appropriate time-frame, is contained in the internal states of Alice and Bob. Note that i is not
being transmitted during the protocol execution and it is implicit that Alice’s and Bob’s internal
states agree on this value. This may be problematic in different ways. First, how will Alice and
Bob remain synchronized during the different time-frames? Assuming a secure synchronized clock
is a quick fix to this problem. However, assuming availability of such a service may not be practical
for most ad hoc network scenarios. In particular, [3] assumes that no securely synchronized clock
is available. Hence, the process of synchronization is highly dependent on the schedule of received
and sent messages, that is, on the dynamics of the communication in the network. This gives rise
to the second problem: in case of communication failure or adversarial disruption, this protocol is
not equipped with a practical resynchronization process.

In particular, an adversary can easily manipulate one user to move forward to the next time-
frame, while the other user is still in the previous time-frame. In this case, Alice and Bob will not
be able to successfully execute the protocol anymore. For instance, Bob could get trapped in a case
where the condition in the program state B1 fail and he stays in B1 in a vicious circle. The way
the protocol is stated suggests that Bob could stay in program state B1 forever! This situation is
depicted in Figure 3. As illustrated in this figure, upon reception of the new message m′i and d′i,
Bob will automatically move forward to the next time-frame whereas Alice is still in the previous
time-frame. Furthermore, since ai+1 6= H(a′i), Bob is instructed to wait for a new ai. Moreover,
while he is waiting for a new ai, he will not accept a message of the form (mj , dj), for any j, even
if it is really sent by Alice! Therefore, he is “trapped” in state B1. It is suggested in [3] that,
having waited for too long to receive the correct ai, Bob sends bi again. However, this is not going
to overcome the problem here. Alice has not initiated the session and is not anticipating bi.

Eve Bob

Choose random m′i and d′i.
m′i, d′i−−−−→ Move to the next time-frame upon reception of the

bi←−−−− new message and send bi.

Choose a′i such that ai+1 6= H(a′i)
a′i−−−−→ Since ai+1 6= H(a′i), wait for a new ai.

Figure 3. Eve “trapping” Bob in state B1

Similarly, Alice could get stuck in program state A1 for an indeterminate period of time. This
situation is depicted in Figure 4. Note that the protocol has failed in both cases while the adversary
does not need to continue changing the information. Indeed, the adversary can honestly relay the
rest of the messages, yet Alice and Bob will no longer be able to successfully execute the protocol.
This contradicts the recoverability notion that the paper is claiming.

There should be a mechanism to help Alice and Bob resynchronize after having waited for a
sufficiently long period of time for a new ai or bi. Otherwise, the protocol cannot be resumed and
recoverability is lost. One way to perform this resynchronization is to utilize the authenticated
channel occasionally. The advantage of this solution is that it is very simple. However, the au-
thenticated channel is expensive and it may not be practical to assume that it is accessible after
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Alice Eve

Input (mi, Bob)
commit-message(mi, i)

di = MACai
(mi)

mi, di−−−−→

Since bi+1 6= H(b′i), wait for a new bi

b′i←−−−− Choose b′i such that bi+1 6= H(b′i)

Figure 4. Eve “trapping” Alice in state A1

the initialization phase. For instance, the sensor motes may be widely dispersed, and it may not
be possible to collect them again to perform this kind of resynchronization. Furthermore, periodic
employment of the resynchronization process, according to a predefined schedule, will not be based
on the dynamics of the network. For instance, some motes maybe more active than others or there
may be more noise present in some parts of the network compared to other parts of the network.
Indeed, there is more disruption caused by noise or communication failure in busier parts of the
network. Hence, resynchronization among some users may be necessary more often than others.
As a result, it is desirable to execute the resynchronization process when it is needed according to
the state of the network. We propose the following protocol to overcome these shortcomings. We
use the same hash function, H, used in [3] and write Hj , j ≥ 1, to denote the case when the hash
function H is applied j times iteratively.

3.1. Description of our Protocol.
The internal state of Alice and Bob includes:

• iA and iB, counters pointing the position of Alice and Bob in their respective hash chains,
• iacceptA, a counter kept by Alice which is the smallest index such that Alice has accepted

the key biacceptA in session iacceptA. Similarly, iacceptB, a counter kept by Bob which is the
smallest index such that Bob has accepted the key aiacceptB in session iacceptB.

Alice executes the protocol as follows:

• Let i := iA and jA := iacceptA − iA;
• Wait for mi (possibly from Eve), then
• commit-message(mi, i);
• compute di = MACai(i‖mi);
• send (i‖mi, di);
• wait for a message b′i (supposedly from Bob), then

if HjA(b′i) = biacceptA , (key verification step)
then bi := b′i; accept-key(bi); send ai; set iacceptA := i and iA = i− 1;
else initiate the resynchronization process.

Bob executes the protocol as follows:

• Let jB := iacceptB − iB;
• Wait for a message (i′‖m′i′ , di′).
• If i′ = iB, then send bi′ , else initiate the resynchronization process.
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• Wait for a message a′i′ (supposedly from Alice), then
if HjB (a′i′) = aiacceptB , (key verification step)
then ai′ := a′i′ ; accept-key(ai′); set iacceptB := i′ and iB := i′ − 1

if MACai′ (i
′‖m′i′) = di′

then accept m′i′ as authentic in session i′;
else initiate the resynchronization process.

Figure 5 illustrates this protocol. Let us first highlight the differences between this protocol
and the protocol of [3]. In the internal states of Alice and Bob, the session counter i is replaced
by iA and iB to incorporate adversarial ability to manipulate a party to increment the session
counter, as was discussed previously, and consequently change its position in the hash chain. For
the same reason, i + 1 is changed to iacceptA and iacceptB as the smallest index such that a key has
been accepted by Alice or Bob, respectively. Moreover, ai+1 and bi+1 are replaced by aiacceptB and
biacceptA as the accepted keys. Moreover, parameters jA and jB are introduced to deal with the
case where iacceptA > iA + 1 or iacceptB > iB + 1, respectively, due to adversary’s intrusions. A
related modification refers to the key verification step, where the users may need to apply the hash
function H more than once. In [3], the session counter is not being transmitted or committed to by
either party. However, we require that Alice commits to iA and transmit it in the first flow. This
allows Bob to easily detect any possible manipulations of the session counter by Eve. Furthermore,
we provide a resynchronization process, allowing Alice and Bob to initiate the resynchronization
process when the do not receive the correct keys. Hence, the adversary can no longer “trap” them
in states A1 or B1, as was explained previously.

Surely, it holds that iA = iB when the adversary has been passive since the initialization.
Moreover, in the case where all flows are safely relayed from the initialization, Alice and Bob will
accept every single key from the other party and move forward in the hash chain together. Hence,
in the ith session, iA = iB = i and iacceptA = iacceptA = i + 1. In particular, jA = iacceptA − iA = 1
and jB := iacceptB−iB = 1. However, once the adversary begins sending messages to Alice and Bob,
she is capable of manipulating either party to increment their session counter in a bogus session.
Hence, Alice and Bob will need to resynchronize to agree on a mutual position in their respective
hash chains, which may result in jA 6= 1 or jB 6= 1.

In this protocol, the session counter is being transmitted in the first flow. Moreover, Alice
commits to this value as part of the message, so the adversary cannot arbitrarily change it without
being detected. This implies that the security proof of the LZWW05 protocol, found in [4], will
apply to this new variant as well. Furthermore, once either user realizes that Eve could have
manipulated the values, they can initiate a resynchronization process. This process allows them to
agree on a session counter iA = iB, which indicates the corresponding position of each user in their
respective hash chains.

3.2. Resynchronization Process.
At some point during the execution of the protocol, either Alice or Bob realizes the need for

resynchronizing with the other party. This may be due to a mismatch caused by adversarial
efforts or just due to some communication failure or noise. In the resynchronization process, Alice
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Alice Bob
Internal-state= iA and iacceptA Internal-state= iB and iacceptB

Let i := iA and jA := iacceptA − iA Let jB := iacceptB − iB ;
Receive input (mi, Bob) and commit-message(mi, i)

di = MACai
(i‖mi)

i, mi, di−−−−−→ Receive i′, m′
i′ , d′

i′

If i′ = iB , then send bi′ ,
bi′←−−−−− else initiate resynchronization.

Receive b′i and
If biacceptA

= HjA (b′i), then accept-key(b′i)

Send ai and set iacceptA := i and iA = i− 1;

else initiate resynchronization
ai−−−−−→ Receive a′

i′

If HjB (a′
i′ ) = aiacceptB

, then accept-key(a′
i′ )

and set iacceptB := i′ and iB := i′ − 1
else initiate resynchronization.
For an accepted a′

i′ check if d′
i′ = MACa′

i′
(i′‖m′

i′ ).

If so, accept-message(m′
i′ , i′).

Figure 5. Our Proposed Variant of LZWW05 Protocol

computes IA := min{i : Alice has revealed ai} − 1 and, similarly, Bob computes IB := min{i :
Bob has revealed bi} − 1. Then, they exchange IA and IB over the insecure channel. Note that,

Eve can change these values, say to I ′A and I ′B, since they are being sent over the insecure channel.
Alice will let iA := min(IA, I ′B) and Bob will similarly find iB := min(I ′A, IB). Figure 6 depicts the
resynchronization process.

Alice Bob

Find IA := min{i : Alice has revealed ai} − 1 Find IB := min{i : Bob has revealed bi} − 1
IA−−−−−→ Receive I′A

Receive I′B
IB←−−−−−

Let iA := min(IA, I′B) Let iB := min(I′A, IB)

Figure 6. Resynchronization Process for the Proposed Protocol

Note that an active adversary can always disrupt the synchronizations. If the adversary is
passive in the resynchronization stage, then IA = I ′A and IB = I ′B. As a result, iA = iB and the
synchronization is achieved. On the other hand, we will show that intrusions of an active adversary
during the resynchronization stage, is going to be detected by either Alice or Bob. Consider the
first execution of the protocol immediately after the resynchronization, depicted in Figure 7. We
now show that the case of iA 6= iB will be detected by one of Alice or Bob, unless the adversary
has found unrevealed preimages of particular values in the hash chain.

In order for Eve not to be detected by Bob in the key verification step, she must replace aiA with
aiB . Otherwise, Bob will not accept the key and he will initiate resynchronization regardless of the
values of miB and diB . Similarly, she has to replace biB with biA , otherwise, she will be detected by
Alice. Now, assume that iA < iB after the resynchronization. Finding a correct value for biA means
that Eve has found a nonempty set of preimages {biB , biB−1, . . . , biA+1}. Similarly, if iA > iB and
the adversary goes undetected, she has found preimages aiA , aiA−1, . . . , aiB+1. Hence, as long as
finding pre-images of H is a hard task, the adversary will be detected with high probability. As a
result, we obtain the following theorem.
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Alice Eve Bob

Internal-state= iA Internal-state= iB

commit-message(miA
, iA)

iA, miA
, diA−−−−−→

iB , miB
, diB−−−−−→

Key verification step
biA←−−−−−

biB←−−−−− Send biB

Send aiA

aiA−−−−−→
aiB−−−−−→ Key verification step

Figure 7. The first execution after the resynchronization

Theorem 1. Let H be a pre-image resistant hash function in the protocol of Figure 5. Consider
a polynomially bounded adversary who changes the values of IA or IB in the resynchronization
process of Figure 6, resulting in iA 6= iB. A successful such intrusion can only occur with a
negligible probability.

4. Non-interactive Message Recognition Protocols and Digital Signature Schemes

In this section, we prove that there is a one to one correspondence between non-interactive
message recognition protocols and digital signature schemes.

4.1. Non-interactive Message Recognition Protocols.
As was mentioned before, a message recognition protocol provides data integrity with respect

to the data origin and assures the recipient that the same entity who was initially the source of a
recognized message is sending messages in future sessions. The initialization phase occurs over an
authenticated channel. In order to authenticate future messages, parties use the insecure channel
in the future sessions. A general non-interactive message recognition protocol, where all flows are
going from Alice to Bob, consists of two flows. The first flow refers to the initialization step which
happens only once. The second flow, occurring over the insecure channel, is sent once for each
message to be authenticated. As a result, the message and its commitment (and possibly some
other information) are all being transmitted in one flow. Hence, one should not reveal keys, such
as ai in the hash chain, in these protocols. Otherwise, the adversary having seen the revealed key
will stop this single flow and commit to a message of her own using this key. This implies that
there is no point in using hash chains or any form of chains in the non-interactive setting since the
chains can only be useful when you actually reveal them.

Figure 8 depicts a general non-interactive message recognition protocol. Here, f needs to be a
one-way function to make the impersonation impossible. That is, it should be hard to find a given
the value of A.

The protocol is described in terms of two functions, denoted by compose and decompose. The
function compose can be a randomized algorithm. Note that any non-interactive protocol can be put
in this form. It is required that decompose(c′, A) =⊥ with high probability if c′ 6= compose(M,a)
for some message M and A = f(a). Moreover, it is required that decompose(c, A) = M when
c = compose(M, a).

4.2. Signature Schemes.
10



Alice Eve Bob

Choose a random a and

compute A = f(a)
A

====⇒ Receive A.

Alice Eve Bob

Input (M , Bob)

compose(M, a) = c
c−−−−→ Receive c′

Compute d = decompose(c′, A)
If d = M ′, a valid message,
output (M ′, Alice), otherwise, reject.

Figure 8. A Non-interactive Message Recognition

Typically, there are three algorithms in a signature scheme: key generation, sign and verify.
They work as follows:

• The key generation algorithm G randomly produces a pair of public and private keys
(PK, SK) for each signer. The signer uses SK to sign and PK is used by others to
verify signatures.
• On input message m and a secret key SK, the signing algorithm S outputs a signature s.

(S may be a randomized algorithm.)
• On input a message m, a public key PK, and a signature s, the signature verifying al-

gorithm, V, either outputs 1, indicating that s is a valid signature for m given PK, or it
rejects s by outputting 0.

These steps are illustrated in Figure 9.

Alice Eve Bob

Choose a random SK and

compute PK = G(Alice)(SK)
PK

====⇒ Receive PK.

Alice Eve Bob

Input (M , Bob)

S(M, SK) = s
M, s
−−−−→ Receive M ′ and s′

Compute v = V(M ′, s′, PK)
If v = 1, output (M ′, s′, Alice),
otherwise, reject.

Figure 9. A Digital Signature Scheme

It is required that the following properties hold for these algorithms:

• Correctness: A signature s of m that is computed honestly using the secret key SK should
be accepted by the verifying algorithm using the associated public key PK. In other words,
for all m, PK, and SK

V(m, PK,S(m, SK)) = 1.

• It should be difficult for any polynomially bounded adversary, to forge valid signature(s)
knowing only the public key PK, and the three algorithms.
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4.3. Equivalence of Non-interactive Message Recognition Protocols and Digital Signa-
ture Schemes.

We prove the equivalence of digital signature schemes and non-interactive message recognition
protocols in the following theorem.

Theorem 2. Given functions f , compose, and decompose, any non-interactive message recognition
protocol can be transformed to a digital signature scheme. Conversely, any digital signature scheme,
with functions G,S, and V, can be transformed to a non-interactive message recognition protocol.

Note that it was previously known that a signature scheme could be used to construct a non-
interactive recognition scheme. The converse result is new.

Proof. We first show that a non-interactive message recognition protocol gives rise to a signature
scheme. We let SK := a and G := f , which implies that PK = A. Further, we compute the V and
S functions as follows:

• S(M,a) = compose(M, a), where a = SK, and
• V(M, A, s) = decompose(c, A), where c = M‖s and A = PK.

It is now easy to see that the desired properties of the compose and decompose functions of the
non-interactive message recognition protocol translate to the correctness and soundness properties
of the signature scheme.

Similarly, we show that a signature scheme can be used as a non-interactive message recognition
protocol by the following assignments:

Let a := SK and f := G, which implies that A = PK. Let the compose and decompose functions
be defined as follows:

• compose(M, a) = M‖S(M,a), where a = SK, and
• decompose(c, A) = V(M, A, s), where c = M‖s and A = PK.

�

5. Conclusions

The problem of message and entity recognition for ad hoc network scenarios is investigated in
this paper by first reviewing the definitions and the security model described in the literature.
Previous recognition protocols were revisited and their shortcoming in such scenarios were pointed
out. The most recent work in this setting, and the best one in terms of practicality, is presented in
[3].

We looked at this protocol in more detail and described a situation where the protocol fails to
recover after the adversary’s intrusion. We further suggest a variant of this protocol to overcome
this problem. In particular, in case of communication failure or adversarial disruption, this protocol
is not equipped with a practical resynchronization process and can fail to resume. Our proposed
variant is equipped with a resynchronization technique that allows users to resynchronize whenever
they wish or when they suspect an intrusion. Hence, our proposed protocol can fully recover.

Finally, we prove that any particular design of a non-interactive recognition protocols can be
transformed into a digital signature scheme, and vise versa. Digital signature schemes involve
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computations that are expensive for a low-power environment. Hence, this suggests that attention
should be drawn to designing interactive recognition protocols for ad hoc pervasive networks.
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[4] Stefan Lucks, Erik Zenner, André Weimerskirch, and Dirk Westhoff. Is this Message From Alice? Efficient and

Secure Entity Recognition for Low-End Devices. 2007. Submitted for publication.

[5] Atefeh Mashatan and Douglas R. Stinson. Interactive two-channel message authentication based on interactive-

collision resistant hash functions. Technical Report 02, Centre for Applied Cryptographic Research (CACR),

University of Waterloo, Canada, 2007.

[6] Atefeh Mashatan and Douglas R. Stinson. Noninteractive two-channel message authentication based on hybrid-

collision resistant hash functions. IET Information Security, 1(3):111–118, September 2007.

[7] Chris J. Mitchell. Remote user authentication using public information. In Kenneth G. Paterson, editor, IMA Int.

Conf., volume 2898 of Lecture Notes in Computer Science, pages 360–369. Springer, 2003.
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