
Leakage-Resilient Cryptography in the Standard Model

Stefan Dziembowski

University of Rome

La Sapienza

Krzysztof Pietrzak

CWI Amsterdam

May 28, 2008

Abstract

We construct a stream-cipher S whose implementation is secure even if arbitrary (ad-
versely chosen) information on the internal state of S is leaked during computation. This
captures all possible side-channel attacks on S where the amount of information leaked in a
given period is bounded, but overall can be arbitrary large, in particular much larger than
the internal state of S. The only other assumption we make on the implementation of S

is that only data that is accessed during computation leaks information. The construction
can be based on any pseudorandom generator, and the only computational assumption we
make is that this PRG is secure against non-uniform adversaries in the classical sense (i.e.
when there are no side-channels).

The stream-cipher S generates its output in chunks K1, K2, . . ., and arbitrary but bounded
information leakage is modeled by allowing the adversary to adaptively chose a function
fℓ : {0, 1}∗ → {0, 1}λ before Kℓ is computed, she then gets fℓ(τℓ) where τℓ is the in-
ternal state of S that is accessed during the computation of Kℓ. One notion of security
we prove for S is that Kℓ is indistinguishable from random when given K1, . . . , Kℓ−1,
f1(τ1), . . . , fℓ−1(τℓ−1) and also the complete internal state of S after Kℓ has been computed
(i.e. our cipher is forward-secure).

The construction is based on alternating extraction (previously used in the intrusion-
resilient secret-sharing scheme from FOCS’07). We move this concept to the computational
setting by proving a lemma that states that the output of any PRG has high HILL pseu-
doentropy (i.e. is indistinguishable from some distribution with high min-entropy) even if
arbitrary information about the seed is leaked. The amount of leakage λ that we can tolerate
in each step depends on the strength of the underlying PRG, it is at least logarithmic, but
can be as large as a constant fraction of the internal state of S if the PRG is exponentially
hard.

Preliminary Version – May 28, 2008 – 21:11

1 Introduction

When analyzing the security of a cryptosystem, we can either think of the system as a math-
ematical object, or try to analyze the security of an actual implementation. Traditionally,
cryptographers have mostly considered the former view and analyzed the security of the mathe-
matical object, and it is generally believed that our current knowledge of cryptography suffices
to construct schemes that, when modeled in this way, are extremely secure. On a theoreti-
cal side, we know how to construct secure primitives under quite weak complexity-theoretic
assumptions, for example (symmetric) encryption can be based on any one-way function [15].
Also from the practical perspective, the currently used constructions have very strong security
properties, e.g. after 30 years of intensive cryptanalytic efforts still the most practical attack on
the DES cipher is exhaustive key search.

Side-Channel Attacks. The picture is much more gloomy when the security of real-life
implementations is considered. This is because when considering an implementation of a cryp-
tosystem, one must take into account the possibility of side-channels, which refers to leakage of
any kind of information from the cryptosystem during its execution which cannot be efficiently
derived from access to the mathematical object alone. In the last decade many attacks against
cryptosystems (still assumed to by sound as mathematical objects) have been found exploiting
side-channels like running-time [20], electromagnetic radiation [27, 13], power consumption [21],
fault detection [4, 3] and many more (see e.g. [28, 25]).

A typical countermeasure against this type of attacks is to design hardware that minimizes
the leakage of secret data (e.g. by shielding any electromagnetic emissions), or to look for an
algorithm-specific solution, for example by masking intermediate variables using randomization
(see [25] for a list of relevant papers). The problem with hardware-based solutions is that
protection against all possible types of leakage is very hard to achieve [1], if not impossible. On
the other hand, most algorithm-specific methods proposed so far are only heuristic and do not
offer any formal security proof (we mention some exceptions in Sect.1.1). Moreover, they are
ad-hoc in the sense that they protect only against some specific attacks that are known at the
moment, instead of providing security against a large well-defined class of attacks. This raises
the following, natural question: is there a systematic method of designing cryptographic schemes
so that already their mathematical description guarantees that they are provably-secure, even
if they are implemented on hardware that may be subject to a side-channel attack belonging
to a large well-defined class of attacks? Ideally, one would like to develop a theory that (1)
provides precise definition of such a class of attacks, and (2) shows how to construct systems
that are secure in this model (under the assumptions that are as weak as possible). This should
be viewed as moving the task of constructing cryptosystems secure against side-channel attacks
from the realm of engineering or security research to cryptography, which over the last 3 decades
was extremely successful in defining security models, and constructing cryptosystems that are
provably-secure in this models.

General Model for Leakage Resilience. We propose a model for cryptographic computa-
tion where the class of possible side-channel attacks is extremely broad, yet simple and natural.
Models similar to ours have been proposed before, in particular Micali and Reyzin [23] explicitly
stated the “only computation leaks” assumption we will use. The only other assumption on
the implementation we make is that the amount of leakage in each round is bounded. This
approach is inspired by the bounded-storage and bounded-retrieval models and has to best of
our knowledge never been used in this context. We stress however, that the main contribution
of this paper is not the definition of the model, but the construction of an actual cryptosystem
(a stream-cipher) which is provably secure in this model, details follow.

Consider a cryptosystems CS, let M denote its memory and M0 denote the data initially

1

Preliminary Version – May 28, 2008 – 21:11

on M (i.e. the secret key). Clearly the most general side-channel attack against a cryptosystem
CS(M0) is one in which the adversary can choose any polynomial-time computable leakage
function f and retrieve f(M0) from the cryptographic machine.1 Of course no security is
achievable in this setting, as defining f(M0) = M0 the adversary learns the complete random
key. Thus a necessary restriction we must make on f is that its output range is bounded to
{0, 1}λ where λ ≪ |M0|.

We assume that the adversary can apply this attack many times throughout the lifetime
of the device. Technically, this will be done by dividing the execution of the algorithm imple-
menting CS into rounds, and allowing the adversary to evaluate a function on the internal state
of CS in each of those rounds (let fj denote the leakage function that she chooses in the jth
round, for j = 1, 2...). Almost all cryptographic tasks can be divided into rounds in a natural
way: in particular, in this paper we will construct a stream cipher that outputs data in chunks
of a few bits, and each chunk will be computed in a separate round.

Let q be the number of rounds we want our cryptosystem CS to run, and let M0 be the
secret key that is used in the scheme. At first sight one may think that to hope for any security
we would need to assume that q · λ <

∣∣M0
∣∣, as otherwise the adversary can learn the entire

M0, by just retrieving in every round λ different bits of it. This trivial attack does not work
any more if we consider cryptosystems which occasionally update their state. For this let Mj

denote the state of CS after round j.
Unfortunately, no security is possible even if we allow CS to update its state (i.e. when Mj

is not necessarily equal to Mj+1) if we allow any fj, to see this let t = ⌈|M|/λ⌉ and consider
fj, j ≤ t where each fj outputs different λ bits of Mt (note that the function fj, j ≤ t can
compute the future state Mt from the current state Mj). After the tth round the adversary
has learned the complete state Mt, and no security is possible beyond this point. We call this
the key-precomputation attack.

Hence, we have to somehow restrict the leakage function if we want security even when the
amount of leaked information is (much) larger than the internal state. The restriction that we
will use is that in each round, the leakage function fj only gets as input the part of the state
Mj that is actually accessed in the jth round by CS. This translates into a requirement on
the implementation: we assume that only computation leaks information, and the “untouched
memory cells” are completely secure. As illustrated in Figure 1, in our construction of a stream-
cipher, M will consists of just three parts M0,M1 and O (where O is the output tape), and in
the jth round the circuit CS (and thus the leakage function fj) will access only Mj mod 2 and O
. We give the leakage function (in the jth round) access to the complete Mj mod 2,O, even if the
computation of CS only access a small part of it. Thus in an actual implementation, one only
must ensure that in the jth round Mj+1 mod 2 does not leak. This requirement should easily be
realizable by an actual implementation having M0 and M1 use different static memory cells
(here “static” refers to the fact that this memory needs not to be refreshed, and thus should
not leak any kind of radiation when not used).2

Let us mention that the above restriction is not the only natural restriction that one could
make on the leakage functions to avoid the key-precomputation attack. One other option
might be to allow the state to be refreshed using external randomness, which would make
the key-evolution non-deterministic. Though, this option is a bit difficult to handle for many

1Without loss of generality we can assume that the leakage function is applied only to M
0 since all the other

internal variables used in computation are deterministic functions of M0.
2Let us mention that this model also covers the case where (the not accessed) Mj+1 mod 2 does leak in round j,

as long as this leakage is independent of the leakage of (the accessed) Mj mod 2 (i.e. when we consider an adversary
Q

′ who can in round j choose two functions f ′

j and f ′′

j and then gets f ′

j(Mj mod 2) and also f ′′

j (Mj+1 mod 2)). The
reason is that we can simulate Q′ by an adversary Q who just chooses one function fj which outputs f ′

j(Mj mod 2)
and also f ′′

j+1(Mj mod 2) (thus Q in round j simply precomputes the information that Q
′ will learn in round j +1

on the non-leaking part). Note that it’s not a problem that Q
′ might compute f ′′

j+1 adaptively as a function of
the information leaked in round j, as the leakage function fj has this information too, and thus can compute the
f ′′

j+1 that Q
′ would have chosen.

2

Preliminary Version – May 28, 2008 – 21:11

cryptosystems including ciphers, as here one would have to make sure all legitimate parties
knowing the secret key use the same randomness (and this randomness cannot be agreed upon
initially). Another option is to require that the leakage function is in some very weak complexity
class not including the function used for key evolution.3

Leakage Resilient Stream-Cipher. The main contribution of this paper is the construction
of a stream cipher S which is provably secure in the model described above. Let τℓ denote the
data on S’s memory which is accessed in the ℓth round, and let Kℓ denote the output written
by S on its output tape O in the ℓth round.

The classical security notion for stream ciphers implies that one cannot distinguish Kℓ from
a random string given K1, . . . ,Kℓ−1, of course our construction satisfies this notion. But we
prove much more, namely that Kℓ is indistinguishable from random even when not only given
K0, . . . ,Kℓ−1, but additionally Λ1, . . . ,Λℓ−1 where Λj = fj(τj) and each fj is a function with
range {0, 1}λ chosen adaptively (as a function of K1, . . . ,Kℓ−1,Λ1, . . . ,Λj−1) by an adversary.
If the adversary also gets Λℓ, we cannot hope that Kℓ is indistinguishable from random any
more, as fℓ could for example simply output the λ first bits of Kℓ. The best we can hope for
in this case, is that Kℓ is unpredictable (or equivalently, has high HILL-pseudoentropy), in the
full version of this paper we will show that for our construction this indeed is the case.

Forward Security. In many settings, it is not enough that Kℓ is indistinguishable (or un-
predictable) given the view of the adversary after round ℓ − 1 as just described, but it should
stay indistinguishable even if S leaks some information in the future. In our construction such
“forward-security” comes up naturally, as the key Kℓ is almost independent (in a computational
sense) from the state of S after Kℓ was output. Precise security definitions are given is Sect. 2.

Our Construction. The construction, as described in detail in Section 2.2, uses the idea
of alternating extraction previously used in the intrusion-resilient secret-sharing scheme from
[12]. We move this concept to the computational setting by proving a lemma that states that
the output of any PRG has high HILL pseudoentropy (i.e. is indistinguishable from some
distribution with high min-entropy) even if arbitrary information about the seed is leaked. Our
construction can be instantiated with any pseudorandom-generator, and the amount of leakage
λ that we can tolerate in each step depends on the strength of the underlying PRG, it is at least
logarithmic, but can be as large as a constant fraction of the internal state of S if the PRG is
exponentially secure.

On (Non-)Uniformity. Throughout the paper, we always consider non-uniform adversaries.4

In particular, our stream-cipher is secure against non-uniform adversaries, and we require the
PRG used in the construction to be secure against non-uniform adversaries. The only step
in the security proof where it matters that we are in a non-uniform setting, is in Section 5,
where we use a theorem due to Barak et al. [2] which shows that two notions of pseudoentropy
(called HILL and metric-type) are equivalent for circuits. In [2] this equivalence is also proved
in a uniform setting, and one could use this to get a stream-cipher secure against uniform
adversaries from any PRG secure against uniform adversaries. We won’t do so, as for one thing
the non-uniform setting is the more interesting one, and also the exact security we could get

3Interestingly, that would probably be the first case of a real-life cryptographic application where it makes
sense to assume that the computational power of the adversary (in some parts of the attack scenario) is smaller
than the computational power needed to execute the scheme. Hence, one could hope to obtain results that do not
require any additional intractability assumptions (except, say, that one-way functions exist), since the hierarchy
results separating such complexity classes are known to hold unconditionally).

4Recall that a uniform adversary can be modelled as a single Turing-machine which as input gets a security
parameter, whereas (more powerful) non-uniform adversaries are modelled by a sequence of circuits indexed by
the security parameter.

3

Preliminary Version – May 28, 2008 – 21:11

in the uniform setting is much worse (due to the security loss in the reduction from [2] in the
uniform setting).

1.1 Related work

A general theory of side-channel attacks was put forward in [23], where the authors propose
a number of “axioms” on which such a theory should be based. In particular they formulate
the assumption, that we also use in this work, that only computation leaks information. As
mentioned in the introduction, most published work on securing cryptosystems against side-
channel attacks are ad-hoc solutions trying to prevent some particular attack or some general
heuristics coming without security proofs. A notable exception is the work of Ishai et al. [17, 16],
who propose a general way of making circuits provably secure [17] and even tamper resistant
[16] against adversaries who can read/tamper the value of a bounded number of arbitrary wires
in the circuit (the more restricted model where an adversary can learn the value of some input
bits has been extensively investigated [5, 8, 18]). It is interesting to compare the result from
this paper with the approach of Ishai et al. On one hand, their results are generic, in the sense
that they provide a method to transform any cryptosystem given as a circuit C into another
circuit Ct that is secure against an adversary that can read-off up to t wires, whereas we only
construct a particular primitive (a stream-cipher). On the other hand, we prove security against
any side-channel attack, whereas Ishai et al. consider the particular case where the adversary
can read-off the values of a few individual wires. Moreover Ishai et al. require special gates that
can generate random bits, we do not assume any special hardware.

The idea to define the set of leakage functions by restricting the length of function’s output
is taken from the bounded-retrieval model [7, 10, 9, 6, 12], which in turn was inspired by the
bounded-storage model [22].5

Some constructions of ciphers secure against general leakages were also proposed in the
literature, however, their security proofs rely on very strong assumptions. For example [26]
works only in the ideal-cipher model, and [23] reduce the existence of such a cipher to one-way
permutations which do not leak any information at all.

1.2 Notation

We denote with Un the random variable with distribution uniform over {0, 1}n. With X ∼
Y we denote that X and Y have the same distribution. Let random variables X0,X1 be
distributed over some set X and let Y be a random variable distributed over Y. Define the
statistical distance between X0 and X1 as δ(X0;X1) = 1/2

∑
x∈X |PX0

(x) −PX1
(x)|. Moreover

let δ(X0;X1|Y) := d(X0, Y ;X1, Y) be the statistical distance between X0 and X1 conditioned on
Y . If X is distributed over {0, 1}n then let d(X) := δ(X;Un) denote the statistical distance of X
from a uniform distribution (over {0, 1}n), and let d(X|Y) := δ(X;Un|Y) denote the statistical
distance of X from a uniform distribution, given Y . If d(X) ≤ ǫ then we will say that X is
ǫ-close to uniform.

5The bounded-storage model is limited in its usability by the fact that the secret key must be larger than the
memory of a potential adversary, which means in the range of terabytes. In the bounded-retrieval model, the
key must only be larger than the amount of data adversary can retrieve without being detected (say, by having
a computer-virus send the data from an infected machine), which means in the range of Mega- or Gigabytes.
Whereas in our setting the key length depends on the amount of side-channel information that leaks (in one
round) form the cryptosystem considered, which (given a reasonable construction) we can assume to be as small
as a few (or a few hundred) bits. In particular, unlike the bounded-storage and bounded-retrieval models, our
keys need not to be made artificially huge.

4

Preliminary Version – May 28, 2008 – 21:11

2 A Leakage-Resilient Stream-Cipher

We will now formally define our security notions which we already informally discussed and
motivated in Sect. 1.

Initialization. The secret key of our stream cipher S consists of the three variables A,B ∈
{0, 1}r and K0 ∈ {0, 1}k . The values A,B,K0 should be sampled uniformly at random, but only
A,B must be secret, K0 must not, one can think of K0 as the first k bits of output of S. We also
do not really need A and B to be uniformly random, they just must be independent and have
sufficiently high min-entropy. In an implementation, the memory of S is assumed to be split
in three parts, M0,M1,O, and for j > 0 we denote with Mj−1

0 ,Mj−1
1 ,Oj−1 the contents of

M0,M1,O at the beginning of the jth round, in particular the initial state is M0
0 = A,M0

1 = B
and O0 = K0.

Computation. As illustrated in Fig. 1, in the jth round S does only access (which means
reads and possible rewrites) Mj mod 2 and the output tape O. Let τℓ denote the values (on
either M0 or M1) that is accessed in the ℓth round, and τ ℓ the value which is not accessed, i.e.

τℓ
def
= Mℓ−1

ℓ mod 2 τ ℓ
def
= Mℓ−1

ℓ+1 mod 2 (1)

We will refer to the output of the ℓth round (i.e. the value Oℓ on the output tape O at the end
of this round) as Kℓ.

Adversary. As illustrated in Figure 1, we consider adversaries Q which in the ℓth round can
adaptively choose a function fℓ with range {0, 1}λ, and at the end of the round gets the output
Kℓ and

Λℓ
def
= fℓ(τℓ)

i.e. the output of fℓ on input the data accessed by S in this round.
We denote with Aλ adversaries as just described restricted to choose leakage functions

with range {0, 1}λ. As we consider non-uniform adversaries, we can without loss of generality
assume that they are deterministic. Let viewℓ denote the view of the adversary after Kℓ has
been computed, i.e. viewℓ = {K0, . . . ,Kℓ,Λ1, . . . ,Λℓ}.

Indistinguishability. The security notion we consider requires that Kℓ is indistinguishable
from random, even when given viewℓ−1.

For an adversary Q ∈ Aλ we denote with S(A,B,K0)
ℓ
 Q the random experiment where Q

attacks S (initialized with a key A,B,K0) for ℓ rounds (cf. Figure 1), and with view(S(A,B,K0)
ℓ

Q) we denote the view viewℓ of Q at the end of the attack. For any circuit Dind : {0, 1}∗ → {0, 1}
(with one bit output), we denote with AdvInd(Dind,Q,S, ℓ) the advantage of Dind in distinguish-

ing Kℓ from random given view(S
ℓ−1
 Q), formally

AdvInd(Dind,Q,S, ℓ) = |preal − prandom| where

prandom = Pr
A,B,K0

[Dind(view(S(A,B,K0)
ℓ−1
 Q), Uk) = 1] (2)

preal = Pr
A,B,K0

[Dind(view(S(A,B,K0)
ℓ−1
 Q),Kℓ) = 1] (3)

In the full version of this paper, we will also consider the case where the distinguisher also gets
Λℓ, i.e. we assume that information leaks also in round ℓ. Although then we can’t hope for Kℓ

to be indistinguishable from random (as Λℓ could for example be the first λ bits of Kℓ), we still
can require that Kℓ cannot be completely guessed.

5

Preliminary Version – May 28, 2008 – 21:11

A K0 B

M0
0 O0 = K0 M0

1 Q

eval

S

M1
0 O1 = K1 M1

1 Q

eval

S

M2
0 O2 = K2 M2

1 Q

eval

S

M3
0 O3 = K3 M3

1 Q

f1τ1

f1(τ1)

f2
τ2

f2(τ2)

f3τ3

f3(τ3)

Figure 1: General structure of the random experiment S(A,K0, B)
3
 Q (the regular evaluation

of S, generating output K1,K2, . . ., is shown in black. The attack related part is shown in gray).
Here Q is the adversary and eval denotes a circuit which on input the description of a function
f and some input τ outputs f(τ). The adversary can, before Ki is computed, adaptively choose

a leakage function fi : {0, 1}r → {0, 1}λ, after the ith round she then gets Ki and Λi
def
= fi(τi).

Forward Security. As motivated in the introduction, we’ll also consider “forward-secure”
notions of the above definition. Informally, we’d like to extend the definitions AdvInd just given,
but additionally give the attacker Dind the complete state Mℓ

0,O
ℓ,Mℓ

1 of S after Kℓ has been
computed. Of course then Kℓ = Oℓ cannot be secure in any way as it is given to Dind entirely.
We could simply not give Oℓ to Dind, but then we cannot claim that we leaked the state of S

completely, as in our construction Oℓ is needed to compute the future outputs of S. There are
at least two ways around this problem. We could relax our requirement on forward security,
and not leak the state after round ℓ, but only after round ℓ+1 (in terms of the implementation,
this would mean that the output Kℓ is indistinguishable, if in rounds ℓ and ℓ+1 nothing leaked,
even given the complete state of S after round ℓ + 1).

Another possibility, which we we’ll use, is to split the value on the output tape into two
parts Oℓ = Kℓ = Knxt

ℓ ‖Kout
ℓ , such that only the Knxt

ℓ part is actually used by S to compute the
future state. We then require that the Kout

ℓ (and not the entire Kℓ) is indistinguishable from
random if in round ℓ nothing leaked, even when given the state of S after round ℓ, where Kout

ℓ

is not considered to be part of the state.
Let stateℓ := {Mℓ

0,K
nxt
ℓ ,Mℓ

1} denote the state of S after round ℓ (not containing Kout
ℓ as

just explained). The forward secure indistingusihability notion is given by

AdvIndFwd(Dind,Q,S, ℓ) = |pfwd
real − pfwd

random| where

pfwd
random = Pr

A,B,K0

[Dind(view(S(A,B,K0)
ℓ−1
 Q, stateℓ), U|Kout|) = 1]

pfwd
real = Pr

A,B,K0

[Dind(view(S(A,B,K0)
ℓ−1
 Q, stateℓ),K

out
ℓ) = 1]

Note that the only difference to AdvInd is that now Dind additionally gets stateℓ, and we only
require Kout

ℓ (and not the whole Kℓ) to be indistinguishable. Thus, if forward security is an
issue, one must always discard the first Knxt

ℓ part of S’s output Kℓ. In our construction, Knxt
ℓ

6

Preliminary Version – May 28, 2008 – 21:11

will be just a random seed for an extractor, using existing constructions we can make this part
logarithmic in the total length of Kℓ, thus the efficiency loss one has to pay to get forward
security is marginal.

2.1 The Ingredients

The main ingredients of our construction is the concept of alternating extraction introduced
in the intrusion-resilient secret-sharing scheme of [12] (which again was based on ideas from
the bounded storage model [11, 22, 29]), combined with the concept of HILL-pseudoentropy
(cf. Def. 3, Sect. 5) which we use to get a computational version of alternating extraction.

Alternating Extraction. Let ext : {0, 1}kext × {0, 1}r → {0, 1}k be an (ǫext, next)-extractor
(cf. Def. 1, Sect. 4.1). Consider some uniformly random A,B ∈ {0, 1}r and some random K0 ∈
{0, 1}k . As illustrated in Figure 3 in Sect. 4, let K1,K2, . . . be computed as Ki = ext(Knxt

i−1, Ci)
(where Knxt denotes the kext first bits of K and Ci = B if i is odd and Ci = A otherwise).
So the Ki’s are computed by alternately extracting from A and B. It is not hard to show
that Ki = ext(Knxt

i−1, Ci) is iǫext close to uniformly random given K0, . . . ,Ki−1 while Ci has still
enough min-entropy for our extractor (i.e. H∞(Ci|K1, . . . ,Ki−1) ≥ next).

As shown in [12], the key Ki is even close to uniformly random when not only given
K1, . . . ,Ki−1 but also some values f1(C1), . . . , fi−1(Ci−1) for arbitrary functions fi as long
as Ci has min-entropy at least next (conditioned on K0, . . . ,Ki−1, and f1(C1), . . . , fi−1(Ci−1)).

Consider a “stream cipher” S∗(A,B,K0) which outputs K1,K2, . . . computed as described
above, and an adversary Q which, before Ki is computed, can adaptively choose a function
fi and then gets Ki, fi(Ci) (as Ki−1 can be hard-coded into fi, this function has access to all
the data accessed during the computation of Ki = ext(Knxt

i−1, Ci). As explained in the previous
paragraph, we can give the following security guarantee for S∗: as long as the min-entropy of
Ci is at least next (given the adversary’s view), the next output Ki is close to uniformly random
(given the view of the adversary so far).

Pseudoentropy. The stream cipher S∗ just described is not very useful, as it only provides
security (in the sense that the next output looks random given the current view as required by
our AdvInd security notion) as long as the output (i.e. the Ki’s plus the leaked information) is
shorter (by at least next bits) than the initial key.

To get security beyond that bound, we will “refresh” the values A,B after we extracted
from them. Let Ai = Mi

0 and Bi = Mi
1 denote the values on M0 and M0 after round

i respectively. In round i (we assume i is odd, otherwise replace the role of A and B) we
extract (Ki,Xi) = ext(Knxt

i−1, Bi−1), and use Xi to compute the fresh Bi := prg(Xi) using a
pseudorandom generator prg as illustrated in Figure 2. If at the beginning of the ith round
Bi−1 has min-entropy at least next (given the adversaries view), Knxt

i−1 is pseudorandom (given
Bi) and we assume that during this ith round no information is leaked, then Xi, and thus also
Bi = prg(Xi) is pseudorandom given the view of the adversary.

Of course assuming that the refreshing phase does not leak any information is completely
unjustified, and we do not want to make such an assumption. As we give Λi = fi(Bi) to the
adversary, we cannot hope for Bi to be pseudorandom (just consider the case where fi(Bi) are
the λ first bits of Bi). Fortunately, Bi needs not to be (pseudo)random to apply alternating
extraction, all we need is that Bi has high min-entropy. Of course Bi = prg(Xi) cannot even
have min-entropy more than Xi, but as we consider computationally bounded adversaries, it is
enough if Bi is indistinguishable from some distribution with high min-entropy. Such a variable
which is computationally indistinguishable from some variable with min-entropy k is said to
have HILL-pseudoentropy k. It is not hard to see that a pseudorandom value Bi has high
HILL-pseudoentropy when given fi(Bi) for some efficient function fi, but this is not enough

7

Preliminary Version – May 28, 2008 – 21:11

for our application, as the leakage function fi is given access to Bi−1 (and not just Bi), from
which it can compute the seed Xi used to compute Bi = prg(Xi). We will prove (Lemma 8)
that for any pseudorandom generator prg, the output of prg(X) on a random seed X has high
HILL-pseudoentropy even if some function (with sufficiently short output) of X (and not only
prg(X)) is leaked.

Using this lemma, we can prove that refreshing using a PRG as just described actually
works, and will result in a “fresh” value Bi (or Ai for even i) having high HILL-pseudoentropy.

2.2 The construction

M0 O M1

A0 K0 = Knxt
0 ‖Kout

0 B0 Q

eval

(K1,X1) := ext(Knxt
0 , B0)

A1 = A0 K1 B1 = prg(X1) Q

eval

(K2,X2) := ext(Knxt
1 , B1)

A2 = prg(X2) K2 B2 = B1 Q

eval

(K3,X3) := ext(Knxt
2 , B2)

A3 = A2 K3 B3 = prg(X3) Q

f1τ1

f1(τ1)

f2

τ2

f2(τ2)

f3τ3

f3(τ3)

Figure 2: The random experiment S(A0, B0,K0)
3
 Q for our construction of a stream cipher

S as described in Section 2.2. The outputs Ki = Knxt
i ‖Kout

i are computed by alternating
extraction (Ki,Xi) = ext(Knxt

i−1, τi) from the values in M0 and M1 and written on the output
tape O. The value τi (on Mi mod 2) which is accessed in round i, is replaced with a “fresh”
value computed as prg(Xi).

We will now formally define the construction just outlined, based on an extractor ext :
{0, 1}kext × {0, 1}r → {0, 1}mext and a pseudorandom generator prg : {0, 1}kprg → {0, 1}r .

State: The state of S at the beginning of round ℓ is Mℓ−1
0 ,Mℓ−1

1 ,Oℓ−1.

Get Key: Read Kℓ−1 = Oℓ−1 and parse it as Kℓ−1 = (Knxt
ℓ−1,K

out
ℓ−1) ∈ {0, 1}kext × {0, 1}kout .

Extract next Key and Seed: Compute ext(KL
ℓ−1,M

ℓ−1
ℓ mod 2) and parse it as (Kℓ,Xℓ) ∈ {0, 1}k×

{0, 1}kprg .

Write output: Write Kℓ on O (so Oℓ = Kℓ).

Refresh: Compute prg(Xℓ) and write it on Mℓ mod 2.

3 Security of S

Total Size. We denote with size(D) the size size of the circuit D. For an adversary Q ∈ Aλ,

size(S
ℓ
 Q) denotes the size of a circuit needed to implement the experiment S

ℓ
 Q.

8

Preliminary Version – May 28, 2008 – 21:11

Theorem 1 (Main Result: Security of S) Let ext : {0, 1}kext × {0, 1}r → {0, 1}mext be an
(ǫext, next) extractor, and let prg : {0, 1}kprg → {0, 1}r be an (ǫprg, sprg) pseudorandom generator.
Consider any ǫHILL > 0 and let ŝ ≈ ǫ2

HILLsprg/8r.
6 Consider any ǫgap > 0,∆ > 0 where

ǫprg ≤
ǫ2
gap

2λ
− 2−∆ and next ≤ r − ∆ − (λ + mext) − 2 log(1/ǫgap) (4)

Then for all adversaries Q ∈ Aλ and D where size(S
ℓ
 Q)+size(D) ≤ ŝ with δℓ

def
= ℓ2(3ǫgap +

ǫHILL + ǫext)

AdvInd(D,Q,S, ℓ) ≤ δℓ and AdvIndFwd(D,Q,S, ℓ) ≤ δℓ (5)

We actually do not even need the initial key to S to be uniformly random, but only require a
weaker condition as give by equations (27) and (28).

The proof of Theorem 1 is split in three parts. The first part in Section 4 on alternating extrac-
tion is information theoretic and uses ideas from the intrusion-resilient secret-sharing scheme
from [12]. In the second part (Section 5) we revisit some notions and results on computational
pseudoentropy. We then prove that the output of any pseudorandom generator has high HILL
pseudoentropy even if information about the seed is leaked. In Section 6 we prove Theorem 1
by using the result from Section 5 to get a computational version of alternating extraction from
Section 4.

How Much Leakage can we Tolerate? The amount of leakage we can tolerate is bounded
by (4) as ǫprg ≤ ǫ2

gap/2
λ − 2−∆. For concreteness, assume we set ∆ such that 2−∆ ≤ ǫprg/2 and

ǫgap ≥ 4
√

ǫprg/4, then we can set

λ =

⌊
log ǫ−1

prg

2

⌋

To see what this means it is convenient to take an asymptotic viewpoint and think of S as a
family of stream ciphers indexed by a security parameter which we identify with kprg, i.e. the
input length to prg. If prg is secure against polynomial-size circuits, then ǫprg = 2−ω(log kprg) (and
thus λ ∈ ω(log kprg)), and if prg is secure against exponential size circuits, then ǫprg = 2−Θ(kprg)

(and λ ∈ Θ(kprg)).
Let us mention that already the case where λ ∈ ω(log kprg), i.e. the leakage is super-

logarithmic, covers quite a large class of real-life attacks. In particular, many attacks that are
based on measuring the power consumption result in logarithmic-size leakages. For example in
a so-called Hamming weight attack (see e.g. [19]) the adversary just learns the number of wires
carrying the bit 1. Of course this value is of logarithmic length in the size of the circuit, and
hence also in kprg.

The case where prg is exponentially hard and thus λ ∈ Θ(kprg) actually means that we
can leak a constant fraction of the entire state of S (it needs some work to check that using
existing constructions of extractors, one can set the parameters such that the entire state has
size Θ(kprg)).

4 Random Keys by Alternating Extraction

We first prove an information theoretic result which is inspired by the security proof of the
intrusion-resilient secret-sharing scheme from [12]. Basically, we consider the random experi-

ment S
ℓ
 Q but without the refreshing. For this let S∗ denoted the construction S but without

6See Lemma 7 as to what ŝ exactly is.

9

Preliminary Version – May 28, 2008 – 21:11

A K0 = Knxt
0 ‖K ′

0 B Q

eval

ext

A K1 = ext(Knxt
0 , B) B Q

eval

ext

A K2 = ext(Knxt
1 , A) B Q

eval

ext

A K3 = ext(Knxt
2 , B) B Q

f1τ1

f1(τ1)

f2

τ2

f2(τ2)

f3τ3

f3(τ3)

Figure 3: The “alternating extraction” random experiment S∗(A,B,K0)
3
 Q as considered in

Lemma 1.

refreshing: thus in the random experiment S∗(A,B,K0)
ℓ
 Q where Q ∈ Aλ, in the jth round Q

chooses a function fj : {0, 1}r → {0, 1}λ and as output gets Kj = ext(Knxt
j−1, τj) and Λj = fj(τj)

where τj = B if j is odd and τj = A otherwise.
As Q attacks S∗, she learns information on A and B, and thus the min-entropy of A and

B degrades (recall that a variable X has min-entropy k, denoted H∞(X) = k, if maxx Pr[X =
x] = 2−k). We show that as long as the min-entropy of A and B is high enough (which means
more than next as required by the extractor ext), the next key Kj to be output is close to
uniformly random when given the view after Kj−1 has been computed.

Lemma 1 belows similar to Lemma 8 from [12] (for the special case of two players). One
difference is that in [12] the variables A,B,K0 were all independent and uniformly random,
whereas in the Lemma below this is somewhat relaxed (cf. equation (6)). Further in [12] there
was no conditioning on τℓ in equation (8). For the security proof of S, we’ll only need the
lemma for the special case ℓ = 1, we prove this more general version as for one thing it’s not
significantly harder, and it can be used to prove the security of variations of S where one does
not refresh in every round.

Definition 1 (Extractor) A function ext : {0, 1}kext × {0, 1}r → {0, 1}mext is an (ǫext, next)
extractor if for any X with H∞(X) ≥ next and K ∼ Ukext

we have that d((ext(K,X),K) ≤ ǫext.

Lemma 1 (Alternating Extraction) Let ext : {0, 1}kext×{0, 1}r → {0, 1}mext be an (ǫext, next)-
extractor. Let A,B ∈ {0, 1}r and K0 ∈ {0, 1}k be random variables where A and B are inde-
pendent and

d(K0|B) ≤ ǫ0 H∞(A) ≥ r − ∆ H∞(B) ≥ r − ∆, (6)

Consider any λ,∆, r ≥ 0 and 1 ≥ ǫgap > 0 which satisfy

next ≤ r − ∆ − ⌈ℓ/2⌉(λ + mext) − log(1/ǫgap). (7)

Consider any adversary Q ∈ Aλ and the random experiment S∗(A,B,K0)
ℓ
 Q and let viewℓ =

{K0, . . . ,Kℓ, Λ1, . . . ,Λℓ} and τℓ = B if ℓ is odd and τℓ = B otherwise. Then

d(Kℓ+1|viewℓ, τℓ) ≤ (ℓ + 1)ǫext + 2ǫgap + ǫ0, (8)

i.e. given the view of Q after the computation of Kℓ and τℓ, the next key Kℓ+1 to be output by
S is (ℓǫext + 2ǫgap + ǫ0)-close to uniformly random.

10

Preliminary Version – May 28, 2008 – 21:11

4.1 Basic Lemmata

We state some basic information theoretic lemmata which will be needed in the proof of the
alternating extraction lemma. The following Lemma similar to Lemma 5 from [12] (the latter
can be seen as a special case where Xi = Xj and Yi = Yj for all i 6= j). Its proof appears in
Appendix A

Lemma 2 Let X0, Y0 be independent random variables, and φ1, φ2, . . . be any sequence of func-
tions. Let X1,X2, . . ., Y1, Y2, . . . and V1, V2, . . . be defined as

((Xi+1, Vi+1), Yi+1) := (φi+1(Xi, V1, . . . , Vi), Yi) if i is even
(Xi+1, (Vi+1, Yi+1)) := (Xi, φi+1(Yi, V1, . . . , Vi)) otherwise

Then Yi → {V1, . . . , Vi} → Xi (and Xi → {V1, . . . , Vi} → Yi) is a Markov chain (or equivalently,
Xi and Yi are independent given the V1, . . . , Vi)

By identifying Xℓ, Yℓ from Lemma 2 with A,B in the random experiment S∗(A,B,K0)
ℓ
 Q,

or with Aℓ, Bℓ in the random experiment S(A,B,K0)
ℓ
 Q, we get the following corollary.

Corollary 1 (i) In S∗(A,B,K0)
ℓ
 Q, A and B are independent given viewℓ. (ii) In S(A,B,K0)

ℓ

Q, Aℓ = Mℓ
0 and Bℓ = Mℓ

1 are independent given viewℓ.

The proofs of Lemmata 3–6 appear in Appendix A

Lemma 3 Let X and Y be (in general dependent) random variables where Y ∈ {0, 1}µ, and
let Z be a random variable which is independent of X given Y , i.e. I(X,Z|Y) = 0. Then for
any ǫgap > 0 we have that Pry:=Y [H∞(X|Z, Y = y) ≤ H∞(X) − µ − log(1/ǫgap)] ≤ ǫgap.

Lemma 4 For random variables A,B and any function φ, d(A|B) = d(A|B,φ(B)) and d(A|B) ≥
d(A|φ(B)).

Lemma 5 Let K, K̃,R, T be random variables such that K is uniformly random, and let φ be
any function. Then d(φ(K̃,R)|K̃, T) ≤ d(φ(K,R)|K,T) + d(K̃|T).

Lemma 6 Consider any random variables K ′, V,R where d(K ′|V,R) ≤ ǫ and H∞(R|V) ≥ next,
and let ext be an (ǫext, next)-extractor, then d(ext(K ′, R),K ′|V) ≤ ǫ + ǫext.

4.2 Proof of Lemma 1 (alternating extraction)

By the following claim, the min-entropy of A and B is unlikely to fall below next during the
random experiment.

Claim 1

Pr
v=viewℓ

[H∞(A|viewℓ = v) ≤ next] ≤ ǫgap Pr
v=viewℓ

[H∞(B|viewℓ = v) ≤ next] ≤ ǫgap

Proof of Claim: For b ∈ {0, 1}, let view
b
ℓ = {Ki,Λi : i ≥ 1, i = 0 mod b}, then viewℓ =

K0 ∪ view
0
ℓ ∪ view

1
ℓ . The claim now follows by Lemma 3 and eq. (7), observing that |viewb

ℓ| ≤
⌈ℓ/2⌉(λ + mext) and that A is independent view1

ℓ given view
0
ℓ ,K0 (and B is independent view0

ℓ

given view
1
ℓ ,K0). △

By the above claim, the probability that the min-entropy of A or B drops below next during
the random experiment is at most 2ǫgap. Below we will assume that this will not be the case,
the 2ǫgap term in (8) accounts for this assumption. We will show by induction on i that

d(Ki|viewi−1, τi−1) ≤ i · ǫext + ǫ0. (9)

11

Preliminary Version – May 28, 2008 – 21:11

Note that is the statement of the Lemma for i = ℓ (modulo the 2ǫgap term). We first prove that
(9) holds for i = 1. The left side of (9) for i = 1 by definition is

d(K1|view0, A) = d(K1|K0, A) = d(ext(Knxt
0 , B)|K0, A)

Now, as by Corollary 1 the variables A and B are independent and we already condition on
K0, this is equivalent to d(ext(Knxt

0 , B)|K0). Further, using Lemma 5 (below K ∼ Uk), we can
upper bound this by ≤ d(ext(Knxt, B)|K) + d(K0|B) ≤ ǫext + ǫ0, which proves (9) for i = 1.
Assuming (9) holds for i − 1, we can show that it holds also for i as follows (the steps will be
explained in detail below, here again K ∼ Uk)

d(Ki|viewi−1, τi−1) = d(ext(Knxt
i−1, τi)|viewi−2,Ki−1, fi−1(τi−1), τi−1) (10)

= d(ext(Knxt
i−1, τi)|viewi−2,Ki−1, τi−1) (11)

= d(ext(Knxt
i−1, τi)|viewi−2,Ki−1) (12)

≤ d(ext(Knxt, τi)|viewi−2,K) + d(Ki−1|viewi−2) (13)

≤ ǫext + d(Ki−1|viewi−2) (14)

≤ ǫext + (i − 1)ǫext + ǫ0 ≤ i · ǫext + ǫ0 (15)

Step (10) just uses the definition. The next step (11) uses Lemma 4 (observing that fi−1 can be
computed from viewi−2). Step (12) follows as τi and τi−1 are independent by Corollary 1. Step
(13) uses Lemma 5. In step (14) we use our assumption that H∞(τi|viewi−2) ≥ H∞(τi|viewℓ) ≥
next and the fact that ext is an (ǫext, next)-extractor. The last step (15) follow from the induction
hypothesis (9) for i − 1. �

5 Pseudoentropy

In this section we will prove that the output of a PRG has high HILL-pseudoentropy even if
some function of the seed is leaked. We only actually prove this result for a weaker notion of
pseudoentropy called “metric-type”, and then use the equivalence of metric-type and HILL-
pseudoentropy (Lemma 7) to get our lower bound for HILL-pseudoentropy.

Basic Definitions We denote with δD(X;Y) the advantage of a circuit D in distinguishing

the random variables X,Y , i.e.: δD(X;Y)
def
= 1

2 |Pr[D(X) = 1] − Pr[D(Y) = 1]|. With δs(X;Y)
we denote maxDδD(X;Y) where the maximum is over all circuits D of size s. For a random

variable X over {0, 1}z , ds(X)
def
= δs(X;Uz).

Definition 2 (Pseudorandom Generator) A function prg : {0, 1}n → {0, 1}m is a (δ, s)-
secure pseudorandom generator (PRG) if ds(prg(Un)) ≤ δ.

Definition 3 (HILL pseudoentropy[15, 2]) We say X has HILL pseudoentropy k, denoted
by HHILL

ǫ,s (X) ≥ k, if there exists a distribution Y where H∞(Y) ≥ k and δs(X,Y) ≤ ǫ.

The above definition requires that there exists a distribution Y with high min-entropy that is
indistinguishable from X by all distinguishers. It is natural to consider a definition where the
quantifiers are exchanged, i.e. to allow the distribution to depend on the distinguisher.

Definition 4 (Metric-type pseudoentropy [2]) We say X has metric-type pseudoentropy
k, denoted HMetric

ǫ,s (X) ≥ k, if for every circuit D of size s there exists a distribution Y with

H∞(Y) ≥ k and δD(X,Y) ≤ ǫ.

Barak et al. [2] use the von Neumann’s min-max theorem [24] to prove the equivalence of HHILL

and HMetric.

12

Preliminary Version – May 28, 2008 – 21:11

Lemma 7 (Equivalence of HHILL and HMetric for Circuits (Thm.5.2 from [2])) Let X be
a distribution over {0, 1}n. For every ǫ, ǫHILL > 0 and k, if HMetric

ǫ,s (X) ≥ k then HHILL
ǫ+ǫHILL,ŝ

(X) ≥

k where s ∈ O(nŝ/ǫ2
HILL) or equivalently ŝ ∈ Ω(ǫ2

HILLs/n). More precisely (by inspection of the
proof of Thm.5.2 in [2]) s ≤ 8nŝ/ǫ2

HILL − ζ where ζ is the size of a circuit needed to compute the
majority of 8n/ǫ2

HILL bits.

5.1 Pseudoentropy of a PRG

By the following lemma, the output of a PRG has high metric-type pseudoentropy (and thus
by Lemma 7 also high HILL-pseudoentropy) even if some function of its input is leaked.

Lemma 8 (Metric/HILL Pseudoentropy of a PRG) Let prg : {0, 1}n → {0, 1}m and
f : {0, 1}n → {0, 1}λ (where λ < n < m) be any functions. If prg is a (ǫprg, sprg)-secure

pseudorandom-generator, then for any ǫ,∆ > 0 satisfying7 ǫprg ≤ ǫ2

2λ − 2−∆, we have with
X ∼ Un

Pr
y:=f(X)

[HMetric
ǫ,sprg

(prg(X)|f(X) = y) ≥ m − ∆] ≥ 1 − ǫ (16)

and for any ǫHILL > 0

Pr
y:=f(X)

[HHILL
ǫ+ǫHILL,ŝ

(prg(X)|f(X) = y) ≥ m − ∆] ≥ 1 − ǫ (17)

where ŝ ≈ ǫ2
HILLsprg/8m.

Proof Eq. (17) follows from (16) by Lemma 7. To prove (16) assume for contradiction that it
does not hold. Hence, by Def. 4, there exists a subset

S ⊆ {0, 1}λ where Pr[f(Un) ∈ S] > ǫ (18)

such that for each a ∈ S there exists a distinguisher Da of size at most sprg such that for every
random variable Z with H∞(Z) ≥ m − ∆ we have (again X ∼ Un)

|Pr[Da(Z) = 1] − Pr[Da(prg(X)) = 1|f(X) = a]| ≥ ǫ (19)

Consider some a ∈ S for which
Pr[f(Un) = a] > 2−λǫ (20)

Such an a exists by (18) and by the fact that the range of f has a size 2λ. Our distinguisher
for the PRG prg will be the distinguisher Da satisfying (19) and (20). It remains to prove that
Da breaks prg with advantage more than ǫprg. For b ∈ {0, 1} let Ib := {x ∈ {0, 1}m : Da(x) = b}

Claim 2 For some β ∈ {0, 1} we have |Iβ| < 2m−∆

Proof of Claim: Assume for contradiction that |Ib| ≥ 2m−∆ for b = 0 and b = 1. For b ∈ {0, 1}
and X ∼ Un let pb = Pr[Da(prg(X)) = b|f(X) = a]. Let Z ′ be a random variable distributed
uniformly over S′

0 ∪ S′
1 where S′

b is an arbitrary subset of Ib of size pb2
m−∆ (here we use the

fact that |Ib| ≥ 2m−∆). Clearly since |S′
0 ∪ S′

1| = 2m−∆ we have that H∞(Z ′) = m − ∆ and by
construction (with X ∼ Un)

Pr[Da(Z
′) = 1]︸ ︷︷ ︸

=Pr[Z′∈S′

1]=p1

−Pr[Da(prg(X)) = 1|f(X) = a] = 0

contradicting (19). This finishes the proof of the claim. △

7For the lemma to be non-trivial, one should choose ∆ such that ǫ2/2λ > 2−∆

13

Preliminary Version – May 28, 2008 – 21:11

For β as guaranteed by the above claim, we have

Pr[Da(Um) = β] = |Iβ|/2
m < 2−∆. (21)

By equation (19), using that H∞(Um) = m > m − ∆ we get:

|Pr[Da(Um) = β]︸ ︷︷ ︸
<2−∆

−Pr[Da(prg(X)) = β|f(X) = a]| ≥ ǫ

We can assume that ǫ ≥ ǫ2/2λ > 2−∆ as otherwise the Lemma is trivial. As for any x, y, ǫ ≥ 0
we have that |x − y| ≥ ǫ and ǫ > x implies y ≥ ǫ, the above equation implies Pr[Da(prg(X) =
β|f(X) = a] ≥ ǫ, and further with X ∼ Un

Pr[Da(prg(X)) = β] ≥ Pr[Da(prg(X)) = β|f(X) = a]︸ ︷︷ ︸
≥ǫ

·Pr[f(X) = a]︸ ︷︷ ︸
≥2−λ·ǫ by(20)

>
ǫ2

2λ
.

By (21) and the above equation, the advantage of Da for Um and prg(Un) is at least

Pr[Da(prg(Un)) = β] − Pr[Da(Um) = β] >
ǫ2

2λ
− 2−∆ ≥ ǫprg.

�

6 Putting Things Together: Proof of Theorem 1

In this section we will prove the security of S based on ext, prg as stated in Theorem 1, recall
that

• ext : {0, 1}kext × {0, 1}r → {0, 1}mext is an (ǫext, next) extractor.

• prg : {0, 1}kprg → {0, 1}r is an (ǫprg, sprg) pseudorandom generator.

further we set kout := mext−kext +kprg (thus mext = kext +kout +kprg) and parameters ∆, ǫgap, λ
satisfying

ǫprg ≤
ǫ2
gap

2λ
− 2−∆ and next ≤ r − ∆ − (λ + mext) − log(1/ǫgap) (22)

We also fix some ǫHILL > 0 and set ŝ := ǫ2
HILLsprg/8r.

The following lemma quantifies how much security is “lost” by one round of our stream

cipher. Let sizei denote the size of the circuit realizing the ith round of the experiment S
ℓ
 Q,

then
∑ℓ

i=1 sizei = size(S
ℓ
 Q).

Lemma 9 (The ith round) Consider the random experiment S
ℓ
 Q. Then if before round

i ≤ ℓ (recall that τ i−1 = τi = Bi if i is odd and τ i−1 = τi = Ai otherwise) for some si−1 ≤ ŝ

and ǫ′
def
= ǫHILL + ǫgap

HHILL
ǫ′,si−1

(Ai−1|viewi−1, Bi−1) ≥ r − ∆ HHILL
ǫ′,si−1

(Bi−1|viewi−1, Ai−1) ≥ r − ∆ (23)

dsi−1
(Ki−1|viewi−2, τ i−1) ≤ ǫi−1 (24)

then with si
def
= si−1 − sizei, s

′
i

def
= si−1 − size(ext) and ǫi

def
= ǫi−1 + ǫext + ǫgap + ǫ′.

ds′i
(Ki,Xi|viewi−1, τ i) ≤ ǫi (25)

with probability 1 − ǫgap − ǫi

HHILL
ǫ′,si

(Ai|viewi, Bi) ≥ r − ∆ HHILL
ǫ′,si

(Bi|viewi, Ai) ≥ r − ∆ (26)

14

Preliminary Version – May 28, 2008 – 21:11

Proof We prove the statement for odd i, in this case (Ki,Xi) := ext(Knxt
i−1, Bi−1), Bi := prg(Xi)

and Ai := Ai−1. The case for even i is identical, we just have to swap the role of A and B.
The bound for Ai given by the first equation of (26) follows from the bound on Ai−1 (23),

as Ai = Ai−1, we just have to replace si−1 by si = si−1 − sizei to account for the work done
in round i (i.e. computing viewi, Bi from viewi−1, Bi−1, which was done by a circuit of size
sizei).

We’ll now prove the bound on Bi given by (26). For this, let us first consider random
variables B̃i−1, K̃i−1 which satisfy the preconditions for Bi−1,Ki−1 as stated in (23) and (24),
but in an information theoretic sense, and not just relative to circuits of size si−1

Pr[H∞(B̃i−1|viewi−1, Ai−1) ≥ r − ∆] ≥ 1 − ǫ′ d(K̃i−1|viewi−2, B̃i−1) ≤ ǫi−1

Let (K̃i, X̃i) := ext(K̃L
i−1, B̃i−1) and B̃i = prg(X̃i). Then by Lemma 1 (with ℓ = 1, taking into

account that K̃i−1 is only ǫi−1 close to uniform, and B̃i−1 has high min-entropy only with prob.
1 − ǫ′)

d([K̃i, X̃i]|viewi−1, Ai) ≤ ǫi−1 + ǫext + ǫgap + ǫ′ = ǫi

The above directly implies d(X̃i|K̃i, viewi−1, Ai) ≤ ǫi, and by Lemma 8 (and the fact that X̃i

is ǫi close to uniform), we get that with probability 1 − ǫgap − ǫi

HHILL
ǫ′,ŝ (prg(X̃i)︸ ︷︷ ︸

B̃i

|Λi, K̃i, viewi−1︸ ︷︷ ︸
viewi

, Ai) ≥ r − ∆

The actual bounds follow from the above by taking into account that Bi−1,Ki−1 are only
indistinguishable by circuits of size si−1, we omit the details. �

We’ll now see how Theorem 1 is implied by this lemma. Let ǫ0 = 0 and s0 = ŝ, then ǫℓ =

ℓ(2ǫgap + ǫext + ǫHILL) and sℓ = ŝ − size(S
ℓ
 Q). If the initial key A0, B0,K0 satisfies

HHILL
ǫ′,s0

(A0|B0) ≥ r − ∆ HHILL
ǫ′,s0

(B0|A0) ≥ r − ∆ (27)

d(K0|B0) = ǫ0 (28)

Which is the case for the precondition of Theorem 1, then by Lemma 9, with probability
1 −

∑ℓ
i=1(ǫgap + ǫi) ≥ 1 − ℓ(ǫgap + ǫℓ).

ds′
ℓ
(Kℓ,Xℓ|viewℓ−1, τ ℓ) ≤ ǫℓ (29)

This proves (note that s′ℓ < sℓ) the bound for the AdvInd as stated in Theorem 1. to prove the
bound for AdvIndFwd we move Xℓ,K

nxt
ℓ to the conditioned part (recall that Kℓ = Knxt

ℓ ‖Kout
ℓ)

ds′
ℓ
(Kout

ℓ |Knxt
ℓ ,Xℓ, viewℓ−1, τ ℓ) ≤ ǫℓ

Then we apply the prg to Xℓ

ds′ℓ − |prg|︸ ︷︷ ︸
>sℓ

(Kout
ℓ |Knxt

ℓ , viewℓ−1,

Aℓ,Bℓ︷ ︸︸ ︷
τ ℓ+1︸︷︷︸

prg(Xℓ)

, τ ℓ) ≤ ǫℓ (30)

Which proves the bound on AdvIndFwd as stated in Theorem 1.

15

Preliminary Version – May 28, 2008 – 21:11

References

[1] Ross Anderson and Markus Kuhn. Tamper resistance: a cautionary note. In WOEC’96:
Proceedings of the 2nd conference on Proceedings of the Second USENIX Workshop on
Electronic Commerce, pages 1–11, Berkeley, CA, USA, 1996. USENIX Association.

[2] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues of entropy. In
RANDOM-APPROX, pages 200–215, 2003.

[3] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In
CRYPTO, pages 513–525, 1997.

[4] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking
cryptographic protocols for faults (extended abstract). In EUROCRYPT, pages 37–51,
1997.

[5] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. Exposure-
resilient functions and all-or-nothing transforms. In EUROCRYPT, pages 453–469, 2000.

[6] David Cash, Yan Zong Ding, Yevgeniy Dodis, Wenke Lee, Richard J. Lipton, and Shabsi
Walfish. Intrusion-resilient key exchange in the bounded retrieval model. In Salil P. Vadhan,
editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages 479–498. Springer,
2007.

[7] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Perfectly secure password
protocols in the bounded retrieval model. In Halevi and Rabin [14], pages 225–244.

[8] Yevgeniy Dodis, Amit Sahai, and Adam Smith. On perfect and adaptive security in
exposure-resilient cryptography. In EUROCRYPT, pages 301–324, 2001.

[9] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In Halevi and
Rabin [14], pages 207–224.

[10] Stefan Dziembowski. On forward-secure storage. In Cynthia Dwork, editor, CRYPTO,
volume 4117 of Lecture Notes in Computer Science, pages 251–270. Springer, 2006.

[11] Stefan Dziembowski and Ueli M. Maurer. On generating the initial key in the bounded-
storage model. In EUROCRYPT, pages 126–137, 2004.

[12] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In FOCS,
pages 227–237, 2007.

[13] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis: Con-
crete results. In CHES, pages 251–261, 2001.

[14] Shai Halevi and Tal Rabin, editors. Theory of Cryptography, Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, volume 3876
of Lecture Notes in Computer Science. Springer, 2006.

[15] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[16] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private Circuits II:
Keeping Secrets in Tamperable Circuits. In EUROCRYPT, pages 308–327, 2006.

[17] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware against
Probing Attacks. In CRYPTO, pages 463–481, 2003.

16

Preliminary Version – May 28, 2008 – 21:11

[18] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM J. Comput., 36(5):1231–1247, 2007.

[19] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel cryptanalysis
of product ciphers. In Jean-Jacques Quisquater, Yves Deswarte, Catherine Meadows, and
Dieter Gollmann, editors, ESORICS, volume 1485 of Lecture Notes in Computer Science,
pages 97–110. Springer, 1998.

[20] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In CRYPTO, pages 104–113, 1996.

[21] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In CRYPTO,
pages 388–397, 1999.

[22] Ueli M. Maurer. A provably-secure strongly-randomized cipher. In EUROCRYPT, pages
361–373, 1990.

[23] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract).
In TCC, pages 278–296, 2004.

[24] John Von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen,
100(1):295–320, 1928.

[25] European Network of Excellence (ECRYPT). The side channel cryptanalysis lounge.
http://www.crypto.ruhr-uni-bochum.de/en sclounge.html. retrieved on 29.03.2008.

[26] Christophe Petit, Francois-Xavier Standaert, Olivier Pereira, Tal G. Malkin, and Moti
Yung. A block cipher based prng secure against side-channel key recovery. Cryptology
ePrint Archive, Report 2007/356, 2007. http://eprint.iacr.org/.

[27] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema): Measures
and counter-measures for smart cards. In E-smart, pages 200–210, 2001.

[28] Jean-Jaques Quisquater and Franois Koene. Side channel attacks: State of the art, October
2002. [25].

[29] Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the
bounded-storage model. J. Cryptology, 17(1):43–77, 2004.

A Proofs of Lemmata

Lemma 3 Let X and Y be (in general dependent) random variables where Y ∈ {0, 1}µ, and
let Z be a random variable which is independent of X given Y , i.e. I(X,Z|Y) = 0. Then for
any ǫgap > 0 we have that

Pr
y:=Y

[H∞(X|Z, Y = y) ≤ H∞(X) − µ − log(1/ǫgap)] ≤ ǫgap. (31)

Proof As Z is independent of X given Y , we can ignore it, i.e. eq.(31) is equivalent to

Pr
y:=Y

[H∞(X|Y = y) ≤ H∞(X) − µ − log(1/ǫgap)] ≤ ǫgap. (32)

Let Y be the set of all the elements y ∈ {0, 1}µ such that

H∞(X|Y = y) ≤ H∞(X) − µ − log(1/ǫgap). (33)

17

Preliminary Version – May 28, 2008 – 21:11

For the sake of contradiction suppose (32) does not hold, in other words: Pr [Y ∈ Y] > ǫgap.
Hence there exits y′ ∈ Y such that

Pr
[
Y = y′

]
> 2−µ · ǫgap. (34)

By definition of min-entropy there exists x′ such that Pr [X = x′ | Y = y′] ≥ 2−H∞(X)+µ+log(1/ǫgap) =
2−H∞(X)+µ · ǫ−1

gap, and therefore

Pr
[
X = x′

]
= Pr

[
X = x′

∣∣ Y = y′
]
·

>2−µ·ǫgap by(34)︷ ︸︸ ︷
Pr

[
Y = y′

]

> 2−H∞(X),

which contradicts the definition of min-entropy. �

The remaining lemmata in this section are standard and were already proven e.g. the full version
of [12]. For completeness we include the proofs here. Before proving Lemma 4 we show the
following.

Lemma 10 For every random variables A and A′ over A, and every function γ : A → B we
have δ(A;A′) ≥ δ(γ(A); γ(A′)).

Proof

δ(A;A′) = 1
2

∑

a∈A

∣∣Pr [A = a] − Pr
[
A′ = a

]∣∣

= 1
2

∑

b∈B

∑

a such that γ(a) = b

∣∣Pr [A = a] − Pr
[
A′ = a

]∣∣

≥ 1
2

∑

b∈B

∣∣∣∣∣∣∣

∑

a such that γ(a) = b

Pr [A = a] −
∑

a such that γ(a) = b

Pr
[
A′ = a

]
∣∣∣∣∣∣∣
(35)

= 1
2

∑

b∈B

∣∣Pr [γ(A) = a] − Pr
[
γ(A′) = a

]∣∣

= δ(γ(A); γ(A′)),

where (35) comes from the triangle inequality. �

Lemma 4 Let A,B be random variables and let φ be any function. Then d(A|B) ≥ d(A|φ(B)).
In particular d(A|B,C) ≥ d(A|B) for any random variable C.

Proof Define γ as γ(X,Y) = (X,φ(Y)). Let U be uniform over A, now by Lemma 10

δ(A,B;U,B)︸ ︷︷ ︸
d(A|B)

≥ δ(γ(A,B); γ(U,B)) = δ(A,φ(B);U, φ(B))︸ ︷︷ ︸
d(A|φ(B))

�

Lemma 5 Let K, K̃,R, T be random variables such that K is uniformly random, and let φ be
any function. Then

d(φ(K̃,R)|K̃, T) ≤ d(φ(K,R)|K,T) + δ(K̃ |T).

18

Preliminary Version – May 28, 2008 – 21:11

Proof Let Y denote the range of φ and Y be uniform over Y, we have

d(φ(K,R)|K,T)

= 1
2

∑

(k,y,t)∈K×Y×T

|Pr [φ(K,R) = y,K = k, T = t] − Pr [Y = y,K = k, T = t]|

= 1
2

∑

(k,y,t)∈K×Y×T

Pr [K = k, T = t] · |Pr [φ(K,R) = y | K = k, T = t] − Pr [Y = y | K = k, T = t]|

= 1
2

∑

(k,y,t)∈K×Y×T

Pr [K = k, T = t] ·

∣∣∣∣Pr [φ(k,R) = y | T = t] −
1

|Y|

∣∣∣∣ (36)

By the same argument

d(φ(K̃,R)|K̃, T) = 1
2

∑

(k,y,t)∈K×Y×T

Pr
[
K̃ = k, T = t

]
·

∣∣∣∣Pr [φ(k,R) = y | T = t] −
1

|Y|

∣∣∣∣ . (37)

Now, (37) minus (36) is equal to

1
2

∑

(k,y,t)∈K×Y×T

(
Pr

[
K̃ = k, T = t

]
− Pr [K = k, T = t]

)
·

∣∣∣∣Pr [φ(k,R) = y | T = t] −
1

|Y|

∣∣∣∣

= 1
2

∑

(k,t)∈K×T

(
Pr

[
K̃ = k, T = t

]
− Pr [K = k, T = t]

)
·

∣∣∣∣∣∣

∑

y∈Y

Pr [φ(k,R) = y | T = t] −
1

|Y|

∣∣∣∣∣∣
︸ ︷︷ ︸

=1

≤ δ(K,T ; K̃, T) = d(K̃ |T).

�

Lemma 6 Consider any random variables Knxt, V,R where

d(Knxt|V,R) ≤ ǫ H∞(R|V) ≥ next

and let ext be an (ǫext, next)-extractor, then

d(ext(Knxt, R)|V) ≤ ǫ + ǫext

Lemma 11 Let T,E, F be random variables where T → E → F is a Markov chain, then
d(F |E,T) = d(F |E).

Proof Let U be independent and uniformly distributed over F . We have

d(F |E,T)

= δ(F,E, T ;U,E, T)

= 1
2

∑

(f,e,t)∈F×E×T

|Pr [F = f,E = e, T = t] − Pr [U = f,E = e, T = t]|

= 1
2

∑

(f,e,t)∈F×E×T

Pr [E = e, T = t] · |Pr [F = f | E = e, T = t] − Pr [U = f | E = e, T = t]|

= 1
2

∑

(f,e,t)∈F×E×T

Pr [E = e, T = t] · |Pr [F = f | E = e] − Pr [U = f | E = e]| (38)

= 1
2

∑

(e,t)∈E×T

Pr [E = e] · |Pr [F = f | E = e] − Pr [U = f | E = e]|

= δ(F,E;U,E),

= d(F |E) (39)

where (38) comes from the Markov property. �

19

Preliminary Version – May 28, 2008 – 21:11

Lemma 2 Let X0, Y0 be independent random variables, and φ1, φ2, . . . be any sequence of
functions. Let X1,X2, . . ., Y1, Y2, . . . and V1, V2, . . . be defined as

((Xi+1, Vi+1), Yi+1) := (φi+1(Xi, V1, . . . , Vi), Yi) if i is even
(Xi+1, (Vi+1, Yi+1)) := (Xi, φi+1(Yi, V1, . . . , Vi)) otherwise

Then Yi → {V1, . . . , Vi} → Xi (and Xi → {V1, . . . , Vi} → Yi) is a Markov chain (or equivalently,
Xi and Yi are independent given the V1, . . . , Vi)

Proof Recall that X → Y → Z is a Markov chain if and only if

H(Z|Y,X) = H(Z|Y)

Moreover X → Y → Z is a Markov chain iff Z → Y → X is a Markov chain. We will prove by
induction over i that

Yi → {V1, . . . , Vi} → Xi or equivalently Xi → {V1, . . . , Vi} → Yi (40)

is a Markov chain. This trivially holds for i = 0 as X0 and Y0 are independent. We now show
(by contradiction) that if (40) holds for some i, then it also holds for i + 1: Assume (40) is
wrong for i + 1, i.e.

Xi+1 → {V1, . . . , Vi, Vi+1} → Yi+1

is not Markov. For even i this implies (for odd i replace the role of X and Y)

H(Yi+1|V1, . . . , Vi, φi+1(Xi, V1, . . . , Vi)︸ ︷︷ ︸
(Xi+1,Vi+1)

) < H(Yi+1|V1, . . . , Vi)

by Lemma 4

H(Yi+1|V1, . . . , vi,Xi) ≤ H(Yi+1|V1, . . . , Vi, φi+1(Xi, V1, . . . , Vi))

the two equations above and the fact that Yi = Yi+1 for even i implies

H(Yi|V1, . . . , Vi,Xi) < H(Yi|V1, . . . , Vi)

the last inequality means that
Yi → {V1, . . . , Vi} → Xi

is not Markov, but this contradicts the assumption that the induction hypothesis (40) holds for
i. �

20

Preliminary Version – May 28, 2008 – 21:11

