Enumeration of Homogeneous Rotation Symmetric Functions over GF(p) ${ }^{1}$

Shaojing Fu Chao Li Bing Sun
Department of Mathematic and System Science, NUDT, Changsha, 410073

Abstract

We give a lower bound on the number of homogeneous rotation symmetric functions over finite field $\operatorname{GF}(p)$ by finding solutions of an equation system. Furthermore, we give a formula to count homogeneous rotation symmetric functions with prime degree more than 3 , which partially solve the open problem in [7].

Key words: Rotation symmetry; Nonlinearity; Minimal function; Monic monomial

1. Introduction

In [1], Pieprzyk and Qu studied some functions, which they called rotation symmetric (RotS), as components in the rounds of a hashing algorithm. This class of functions is invariant under circular translation of indices, and it is clear that this class of functions is very rich in terms of many cryptographic properties such as nonlinearity and correlation immune. In[2-4], Stanica, Maitra and Clark gave out many counting results of RotS Boolean functions. They also investigated the correlation immune property of such functions. Dalai and Maitra studied RotS bent function in [5]. Maximov, Hell and Maitra got many interesting results on plateaued RotS functions in [6]. Yuan Li extended the concept of RotS from GF(2) to GF(p) , and got many results about their cryptographic properties and enumeration [7]. In this paper, by studying RotS functions over $\operatorname{GF}(p)$, we give a lower bound on the number of homogeneous RotS functions over $\operatorname{GF}(p)$, and one of the open problems in [7] is partially solved.

2. Preliminaries

In this paper, p is a prime number. Let GF (p) be the finite field of p elements, and GF $(p)^{n}$ be the vector space of dimension n over $\operatorname{GF}(p)$. An n-variable function $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ can be seen as a multivariate polynomial over $\operatorname{GF}(p)$, that is,

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{y_{1}, y_{2}, \cdots, y_{n}=0}^{p-1} a_{y_{1}, y_{2}, \cdots, y_{n}} X_{1}^{y_{1}} X_{2}^{y_{2}} \cdots x_{n}^{y_{n}}
$$

where the coefficients $a_{y_{1}, y_{2}, \cdots, y_{n}}$ is a constant in $\operatorname{GF}(p)$. This representation of f is called the algebraic normal form (ANF) of f. The number $y_{1}+y_{2}+\cdots+y_{n}$ will be defined as the degree of term $a_{y_{1}, y_{2}, \cdots, y_{n}} x_{1}^{y_{1}} x_{2}^{y_{2}} \cdots x_{n}^{y_{n}}$ with nonzero coefficient $a_{y_{1}, y_{2}, \cdots, y_{n}}$. The greatest degree of all the terms of f is called the Algebraic degree, denoted by $\operatorname{deg}(f)$. If the degrees of all the terms of f are equal, then we say f is homogeneous.

[^0]If $x_{i} \in \mathrm{GF}(p)$ for $1 \leq i \leq n$. and $0 \leq k \leq n-1$, we define

$$
\rho_{n}^{k}\left(x_{i}\right)= \begin{cases}x_{i+k} & \text { if } i+k \leq n \\ x_{i+k-n} & \text { if } i+k>n\end{cases}
$$

Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \operatorname{GF}(p)^{n}$. Then we can extend the definition of ρ_{n}^{k} on tuples and monomials as follows:

$$
\rho_{n}^{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(\rho_{n}^{k}\left(x_{1}\right), \rho_{n}^{k}\left(x_{2}\right), \cdots, \rho_{n}^{k}\left(x_{n}\right)\right)
$$

and

$$
\rho_{n}^{k}\left(x_{1}^{y_{1}} x_{2}^{y_{2}} \cdots x_{n}^{y_{n}}\right)=\left(\rho_{n}^{k}\left(x_{1}\right)\right)^{y_{1}}\left(\rho_{n}^{k}\left(x_{2}\right)\right)^{y_{2}} \cdots\left(\rho_{n}^{k}\left(x_{n}\right)\right)^{y_{n}}
$$

Definition 1 A function $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ over GF $(p)^{n}$ is RotS if for each input $\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \operatorname{GF}(p)^{n}, f\left(\rho_{n}^{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right)=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ for any $0 \leq k \leq n-1$.

3. Enumeration of Homogeneous RotS Functions

In this section, we will do some enumeration on homogeneous RotS functions over GF(p). We start with the definition of the minimal function. A function $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is the minimal function of monic monomial $x_{1}^{y_{1}} x_{2}^{y_{2}} \cdots x_{n}^{y_{n}}$ if $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ has the form

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{k=0}^{N-1} \rho_{n}^{k}\left(x_{1}^{y_{1}} x_{2}^{y_{2}} \cdots x_{n}^{y_{n}}\right)
$$

where $N=\#\left\{\rho_{n}^{k}\left(x_{1}^{y_{1}} X_{2}^{y_{2}} \cdots x_{n}^{y_{n}}\right) \mid 0 \leq k \leq n-1\right\}$.

Definition 2 A monic monomial $x_{1}^{z_{1}}{X_{2}}^{z_{2}} \cdots x_{n}^{z_{n}}$ over $\operatorname{GF}(p)^{n}$ is analogous to $x_{1}^{y_{1}}{X_{2}}^{y_{2}} \cdots x_{n}{ }^{y_{n}}$ if $\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}=\left\{z_{1}, z_{2}, \cdots, z_{n}\right\}$

Considering the equation system Ω

$$
\Omega:\left\{\begin{array}{l}
y_{1}+y_{2}+\cdots+y_{n}=d \\
0 \leq y_{n} \leq y_{n-1} \leq \cdots \leq y_{2} \leq y_{1} \leq p-1 \\
y_{i} \in Z \text { for all } 1 \leq i \leq n
\end{array}\right.
$$

Let the number of solutions of the equation system Ω is N_{Ω}, and the solutions are $\left(y_{1}^{(1)}, y_{2}^{(1)}, \cdots, y_{n}^{(1)}\right),\left(y_{1}^{(2)}, y_{2}^{(2)}, \cdots, y_{n}^{(2)}\right), \cdots,\left(y_{1}^{\left(N_{\Omega}\right)}, y_{2}^{\left(N_{\Omega}\right)}, \cdots, y_{n}^{\left(N_{\Omega}\right)}\right)=(\underbrace{1, \cdots, 1}_{d}, 0, \cdots, 0)$

Lemma 1 Let $m_{i}^{(j)}(0 \leq i \leq p-1)$ be the number of times that i appears in $\left\{y_{1}{ }^{(j)}, y_{2}{ }^{(j)}, \cdots, y_{n}{ }^{(j)}\right\}$, then the number of monic monomials with degree d is $\sum_{j=1}^{N_{\Omega}} \frac{n!}{m_{1}^{(j)}!m_{2}^{(j)}!\cdots m_{n}^{(j)}!}$

Proof. For a fixed j and corresponding solution $\left(y_{1}{ }^{(j)}, y_{2}{ }^{(j)}, \cdots, y_{n}{ }^{(j)}\right)$, then the number of monic monomials analogous to ${X_{1}}^{y_{1}^{(j)}} X_{2}^{y_{2}^{(j)}} \cdots x_{n}^{y_{n}^{(j)}}$ is

$$
\binom{n}{m_{1}^{(j)}}\binom{n-m_{1}^{(j)}}{m_{2}^{(j)}} \cdots\binom{n-\sum_{i=1}^{n-1} m_{i}^{(j)}}{m_{n}^{(j)}}=\frac{n!}{m_{1}^{(j)}!m_{2}^{(j)}!\cdots m_{n}^{(j)}!}
$$

so the number of monic monomials with degree d is $\sum_{j=1}^{N_{\Omega}} \frac{n!}{m_{1}^{(j)}!m_{2}^{(j)}!\cdots m_{n}^{(j)}!}$.

Theorem 1 Let $N U M_{d}$ be the number of n-variable homogeneous Rots functions over GF (p) with degree d, then $N U M_{d} \geq p^{\sum_{j=1}^{N_{\Omega}} \frac{(n-1)!}{m_{1}^{(j)}!m_{2}^{(j)!}!\cdots m_{n}^{(j)}!}}-1$

Proof. Let T_{d} be the number of minimal functions with degree d. Note that a homogeneous Rots function $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ with degree d is a nonzero combination of degree d minimal function. That is

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{m=1}^{T_{d}} a_{g_{m}} g_{m}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

where $a_{g_{m}} \in \mathrm{GF}(p)^{n}, \quad g_{m}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ are minimal functions with degree d.
If a minimal function has the term $x_{1}^{y_{1}^{(j)}} x_{2}^{y_{2}^{(j)}} \cdots x_{n}^{y_{n}^{(j)}}$, then it has all the terms of the set $\left\{\rho_{n}^{k}\left(x_{1}^{y_{1}^{(j)}} x_{2}^{y_{2}^{(j)}} \cdots x_{n}^{y_{n}^{(j)}}\right) \mid 0 \leq k \leq n-1\right\}$, It is easy to show that $\#\left\{\rho_{n}^{k}\left(x_{1}^{y_{1}^{(j)}} x_{2}^{y_{2}^{(j)}} \cdots x_{n}^{y_{n}^{(j)}}\right) \mid 0 \leq k \leq n-1\right\} \leq n$. From lemma 1 we know the number of monic monomials with degree d is $\sum_{j=1}^{N_{\Omega}} \frac{n!}{m_{1}^{(j)}!m_{2}^{(j)}!\cdots m_{n}^{(j)}!}$, so $T_{d} \leq \sum_{j=1}^{N_{\Omega}} \frac{(n-1)!}{m_{1}^{(j)}!m_{2}^{(j)}!\cdots m_{n}^{(j)}!}$.
Since the constant 0 function is not counted, we get $N U M_{d} \geq p^{\sum_{j=1}^{N_{\Omega}} \frac{(n-1)!}{m_{1}^{(j)}!m_{2}^{(j)!\cdots m_{n}^{(j)!}}}-1}$
Note that if n is a prime, then $\#\left\{\rho_{n}^{k}\left(x_{1}^{y_{1}^{(j)}} x_{2}^{y_{2}^{(j)}} \cdots x_{n}^{y_{n}^{(j)}}\right) \mid 0 \leq k \leq n-1\right\}=n$ for any $1 \leq j \leq N_{\Omega}$, so we have the following Corollary.

Corollary 1 The lower bound in Theorem 1 can be reached if n is a prime number.
Theorem 2 If d is a prime number. The number of n-variable homogeneous Rots functions over
$\mathrm{GF}(p)$ with degree d is $p^{\sum_{j=1}^{N_{\Omega}-1} \frac{(n-1)!}{m_{1}^{(j)}!m_{2}^{(j)!}!\cdots m_{n}^{(j)}!}+\left[\frac{(n-1)!}{(n-d)!d!}\right]}-1$

Proof. Let $m_{i}^{(j)}(0 \leq i \leq p-1)$ be the number of times that i appears in $\left\{y_{1}{ }^{(j)}, y_{2}{ }^{(j)}, \cdots, y_{n}{ }^{(j)}\right\}$. We distinguish two case.
Case 1:
$1 \leq j \leq N_{\Omega}-1$, then $\#\left\{\rho_{n}^{k}\left(x_{1}^{y_{1}^{(j)}} x_{2}^{y_{2}^{(j)}} \cdots x_{n}^{y_{n}^{(j)}}\right) \mid 0 \leq k \leq n-1\right\}=n$
Otherwise, if \# $\left\{\rho_{n}^{k}\left(x_{1}^{y_{1}^{(j)}} x_{2}^{y_{2}^{(j)}} \cdots x_{n}^{{ }^{y_{n}(j)}}\right) \mid 0 \leq k \leq n-1\right\}=N<n$
Then $N \mid n$, and $\rho_{n}^{N}\left(x_{1}^{y_{1}^{(j)}} x_{2}^{{ }^{y_{2}(j)}} \cdots x_{n}^{y_{n}{ }^{(j)}}\right)=x_{1}^{y_{1}^{(j)}} x_{2}^{y_{2}{ }^{(j)}} \cdots x_{n}^{y_{n}^{(j)}}$

$\Rightarrow \sum_{j=1}^{N} y_{1}^{(j)}=\sum_{j=N+1}^{2 N} y_{1}^{(j)}=\cdots=\sum_{j=n-N}^{n} y_{1}^{(j)}$
It is clear that $\sum_{j=1}^{N} y_{1}^{(j)} \neq 1$ and $\sum_{j=1}^{N} y_{1}{ }^{(j)} \mid d$, This contradict the fact that d is a prime number.
There are $\sum_{j=1}^{N_{\Omega}} \frac{n!}{m_{1}^{(j)}!m_{2}^{(j)}!\cdots m_{n}^{(j)}!}$ monic monomials, so the number of minimal function
is $\sum_{j=1}^{d-1} \frac{(n-1)!}{m_{1}^{(j)}!m_{2}^{(j)}!\cdots m_{n}^{(j)}!}$.
Case 2:
$j=N_{\Omega}$, then $\left(y_{1}{ }^{\left(N_{\Omega}\right)}, y_{2}^{\left(N_{\Omega}\right)}, \cdots, y_{n}^{\left(N_{\Omega}\right)}\right)=(\underbrace{1, \cdots, 1}_{d}, 0, \cdots, 0)$
We know there are $\frac{n!}{(n-d)!d!}$ degree d monic monomials,
If $d \mid n$, Then there is only one minimal function has the $\frac{n}{d}$ term monic monomials, the other minimal functions have the n term monic monomials, the number of minimal functions is
$\frac{1}{n}\left(\frac{n!}{(n-d)!d!}-\frac{n}{d}\right)+1=\left\lceil\frac{(n-1)!}{(n-d)!d!}\right\rceil$
If $d \dagger n$, then all minimal functions have the n term monic monomials, the number of minimal functions is $\frac{(n-1)!}{(n-d)!d!}$.
so the total number of minimal functions is $\sum_{j=1}^{d-1} \frac{(n-1)!}{m_{1}^{(j)}!m_{2}^{(j)}!\cdots m_{n}^{(j)}!}+\left[\frac{(n-1)!}{(n-d)!d!}\right]$, then we get the count.

Example 1 we count the number of homogeneous Rots functions with degree 5 over $\operatorname{GF}(p)$ ($p>6$) .
First, we solve the equation system

$$
\Omega:\left\{\begin{array}{l}
y_{1}+y_{2}+\cdots+y_{n}=5 \\
0 \leq y_{n} \leq y_{n-1} \leq \cdots \leq y_{2} \leq y_{1} \leq p-1 \\
y_{i} \in Z \text { for all } 1 \leq i \leq n
\end{array}\right.
$$

There are seven solutions: $(5,0, \cdots, 0),(4,1,0, \cdots, 0),(3,2,0, \cdots, 0)$,
$(3,1,1,0, \cdots, 0),(2,2,1,0, \cdots, 0),(2,1,1,1,0, \cdots, 0),(1,1,1,1,1,0, \cdots, 0)$
Then $\sum_{j=1}^{d-1} \frac{(n-1)!}{m_{1}^{(j)}!m_{2}^{(j)}!\cdots m_{n}^{(j)}!}+\left\lceil\frac{(n-1)!}{(n-d)!d!}\right\rceil$

$$
=\frac{(n-1)!}{(n-1)!}+\frac{(n-1)!}{(n-2)!}+\frac{(n-1)!}{(n-2)!}+\frac{(n-1)!}{2!(n-3)!}+\frac{(n-1)!}{2!(n-3)!}+
$$

$$
\begin{aligned}
& \frac{(n-1)!}{3!(n-4)!}+\left\lceil\frac{(n-1)!}{5!(n-5)!}\right\rceil \\
= & \left\lceil\frac{(n-1)(n-2)(n-3)(n-4)}{5!}\right\rceil+\frac{(n-1)(n-2)(n-3)}{3!}+\left(n^{2}-n+1\right)
\end{aligned}
$$

So the number of homogeneous Rots functions with degree 5over $\operatorname{GF}(p)$ equals $p^{M}-1$, where

$$
M=\left\lceil\frac{(n-1)(n-2)(n-3)(n-4)}{5!}\right\rceil+\frac{(n-1)(n-2)(n-3)}{3!}+\left(n^{2}-n+1\right)
$$

4. Conclusion

In this paper, we obtain some counting results about homogeneous rotation symmetric functions over finite field GF(p). We get a lower bound by finding solutions of an equation system, we show that this bound is tight when n is prime. We also partially solve the open problem in [7]. Besides, for general d (not a prime number), it is still an open problem to count the homogeneous rotation symmetric polynomials with degree d more than 3 .

References

[1] J. Pieprzyk and C.X. Qu. Fast Hashing and Rotation-Symmetric Functions. Journal of Universal Computer Science, pages 20-31, vol 5, no 1 (1999).
[2] P. Stanica, S. Maitra, Rotation symmetric Boolean functions-count and cryptographic properties, in: R.C. Bose Centenary Symposium on Discrete Mathematics and Applications, Electronic Notes in Discrete Mathematics, Elsevier, vol. 15, December 2002, pp. 139-145.
[3] P. Stanica, S. Maitra, A constructive count of rotation symmetric functions, Information Processing Letters 88 (2003) 299 - 304.
[4] P. Stanica, S. Maitra, J. Clark, Results on rotation symmetric bent and correlation immune Boolean functions, in: Fast Software Encryption Workshop (FSE 2004), New Delhi, India, LNCS, vol. 3017, Springer Verlag, 2004, pp. 161-177.
[5] D.K. Dalai, S. Maitra, S. Sarkar, Results on rotation symmetric bent functions, in: Second International Workshop on Boolean Functions: Cryptography and Applications, BFCA’ 06, March 2006, pp. 137 - 156.
[6] A. Maximov, M. Hell, S. Maitra, Plateaued Rotation Symmetric Boolean Functions on Odd Number of Variables, in: First Workshop on Boolean Functions: Cryptography and Applications, BFCA 05, LIFAR, University of Rouen, France, March 7-9, 2005, pp. 83-104.
[7] Yuan Li, Results on rotation symmetric polynomials over GF(p), Information Sciences 178 (2008) 280-286.

[^0]: ${ }^{1}$ Supported by the National Natural Science Foundation of China (60573028)
 E-mail: shaojing1984@163.com

