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Abstract: We give a lower bound on the number of homogeneous rotation symmetric 
functions over finite field GF(p) by finding solutions of an equation system. Furthermore, we 
give a formula to count homogeneous rotation symmetric functions with prime degree more 
than 3, which partially solve the open problem in [7]. 

Key words: Rotation symmetry; Nonlinearity; Minimal function; Monic monomial 
  

1.  Introduction 

In [1], Pieprzyk and Qu studied some functions, which they called rotation symmetric (RotS), as 
components in the rounds of a hashing algorithm. This class of functions is invariant under 
circular translation of indices, and it is clear that this class of functions is very rich in terms of 
many cryptographic properties such as nonlinearity and correlation immune. In[2-4], Stanica, 
Maitra and Clark gave out many counting results of RotS Boolean functions. They also 
investigated the correlation immune property of such functions. Dalai and Maitra studied RotS 
bent function in [5]. Maximov, Hell and Maitra got many interesting results on plateaued RotS 
functions in [6]. Yuan Li extended the concept of RotS from GF(2) to GF(p) , and got many results 
about their cryptographic properties and enumeration [7]. In this paper, by studying RotS functions 
over GF(p), we give a lower bound on the number of homogeneous RotS functions over GF(p), 
and one of the open problems in [7] is partially solved. 

 

2.  Preliminaries 
 

In this paper, p is a prime number. Let GF(p) be the finite field of p elements, and GF(p)n be the 

vector space of dimension n over GF(p). An n-variable function 1 2( , , , )nf x x x can be seen as a 

multivariate polynomial over GF(p), that is, 
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where the coefficients
1 2, , , ny y ya is a constant in GF(p). This representation of f is called the 

algebraic normal form (ANF) of f . The number 1 2 ny y y+ + + will be defined as the degree 

of term 1 2
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y y y na x x x with nonzero coefficient

1 2, , , ny y ya . The greatest degree of all the 

terms of f is called the Algebraic degree, denoted by deg(f). If the degrees of all the terms of f are 
equal, then we say f is homogeneous. 
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If ix ∈GF(p) for1 i n≤ ≤ . and 0 1k n≤ ≤ − , we define  
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Let 1 2( , , , )nx x x x= ∈GF(p)n. Then we can extend the definition of k
nρ on tuples and 

monomials as follows: 

1 2 1 2( , , , ) ( ( ), ( ), , ( ))k k k k
n n n n n nx x x x x xρ ρ ρ ρ=  

and 
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Definition 1 A function 1 2( , , , )nf x x x over GF(p)n is RotS if for each input 

1 2( , , , )nx x x ∈GF(p)n, 1 2 1 2( ( , , , )) ( , , , )k
n n nf x x x f x x xρ = for any 0 1k n≤ ≤ − . 

 

3. Enumeration of Homogeneous RotS Functions 
 

In this section, we will do some enumeration on homogeneous RotS functions over GF(p). We 

start with the definition of the minimal function. A function 1 2( , , , )nf x x x is the minimal 

function of monic monomial 1 2
1 2

nyy y
nx x x if 1 2( , , , )nf x x x has the form 
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where 1 2
1 2#{ ( ) | 0 1}nyy yk

n nN x x x k nρ= ≤ ≤ − .  
 

Definition 2 A monic monomial 1 2
1 2

nzz z
nx x x over GF(p)n is analogous to 1 2

1 2
nyy y

nx x x if 

1 2{ , , , }ny y y = 1 2{ , , , }nz z z  
 

Considering the equation systemΩ  
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Let the number of solutions of the equation systemΩ  is NΩ , and the solutions are 
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Lemma 1 Let ( ) (0 1)j
im i p≤ ≤ − be the number of times that i appears in ( ) ( ) ( )
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Proof. For a fixed j and corresponding solution ( ) ( ) ( )
1 2( , , , )j j j

ny y y , then the number of monic 
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Theorem 1 Let dNUM be the number of n-variable homogeneous Rots functions over GF(p) with 

degree d , then dNUM
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Proof. Let dT be the number of minimal functions with degree d. Note that a homogeneous Rots 

function 1 2( , , , )nf x x x with degree d is a nonzero combination of degree d minimal function. 

That is  
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where 
mga ∈GF(p)n, 1 2( , , , )m ng x x x are minimal functions with degree d. 
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Since the constant 0 function is not counted, we get dNUM
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Note that if n is a prime, then 
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1 j NΩ≤ ≤ , so we have the following Corollary. 
 

Corollary 1 The lower bound in Theorem 1 can be reached if n is a prime number.  
 

Theorem 2 If d is a prime number. The number of n-variable homogeneous Rots functions over 

GF(p) with degree d is
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Proof . Let ( ) (0 1)j
im i p≤ ≤ − be the number of times that i appears in ( ) ( ) ( )

1 2{ , , , }j j j
ny y y . 

We distinguish two case. 
Case 1:  
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number. 
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If †d n , then all minimal functions have the n term monic monomials, the number of minimal 

functions is 
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Example 1 we count the number of homogeneous Rots functions with degree 5 over GF(p) 
( 6)p > .  

First, we solve the equation system 
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There are seven solutions: (5,0, ,0) , (4,1,0, ,0) , (3, 2,0, ,0) , 

(3,1,1,0, ,0) , (2,2,1,0, ,0) , (2,1,1,1,0, ,0) , (1,1,1,1,1,0, ,0)  
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So the number of homogeneous Rots functions with degree 5over GF(p) equals 1Mp − , where 
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4. Conclusion  
 

In this paper, we obtain some counting results about homogeneous rotation symmetric functions 
over finite field GF(p). We get a lower bound by finding solutions of an equation system, we show 
that this bound is tight when n is prime. We also partially solve the open problem in [7]. Besides, 
for general d (not a prime number), it is still an open problem to count the homogeneous rotation 
symmetric polynomials with degree d more than 3. 
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