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Abstract. Rotation symmetric functions have been used as components
of different cryptosystems. This class of functions are invariant under
circular translation of indices. In this paper, we will do some enumeration
on homogeneous rotation symmetric functions over GF (p). And we give
a formula to count homogeneous rotation symmetric functions when the
greatest common divisor of input variable n and the degree d is a power
of a prime, which solves the open problem in [7].
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1 Introduction

In [1], Pieprzyk and Qu studied some functions, which they called rotation sym-
metric (RotS), as components in the rounds of a hashing algorithm. This class of
functions are invariant under circular translation of indices, and it is clear that
this class of functions are very rich in terms of many cryptographic properties
such as nonlinearity and correlation immune.

As it is the case with every cryptographic property, one is interested to
count the objects satisfying that property. This motivates us to look at Boolean
functions satisfying various criteria and try to select functions necessary for a
cryptographic design. We need to know how big the pool of choices is and how
to generate functions in that pool.

In[2-4], Stanica, Maitra and Clark gave many counting results of RotS Boolean
functions. They also investigated the correlation immune property of such func-
tions. Dalai and Maitra studied RotS bent functions in [5]. Maximov, Hell and
Maitra got many interesting results on plateaued RotS functions in [6]. Yuan Li
extended the concept of RotS from GF (2) to GF (p)[7], and he gave a formula
to count homogeneous rotation symmetric functions with degree no more than
3. We here work in the direction at enumeration of homogeneous RotS functions
over GF (p) and provide better results than the previous work.

The paper is organized as follows. Section 2 provides basic definitions and
notations. In Section 3, we do some enumeration on homogeneous RotS functions
over GF (p) and solve one of the open problems in [7]. Section 4 concludes this
paper.
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2 Preliminaries

In this paper, p is a prime. Let GF (p) be the finite field of p elements, and
GF(p)n be the vector space of dimension n over GF (p). An n-variable function
f(x1, x2, · · · , xn) can be seen as a multivariate polynomial over GF (p), that is,

f(x1, x2, · · · , xn) =
n∑

k1,k2,··· ,kn=0

ak1,k2,··· ,knxk1
1 xk2

2 · · ·xkn
n

where each coefficient ak1,k2,··· ,kn
is a constant in GF (p). This representation of

f is called the algebraic normal form (ANF) of f . k1 +k2 + · · ·+kn is defined as
the degree of term with nonzero coefficient. The greatest degree of all the terms
of f is called the Algebraic degree of f , denoted by deg(f). If the degrees of all
the terms of f are equal, then we say f is homogeneous.

f(x) is affine if f(x) = a1x1 + a2x2 + · · · + anxn + a0, and linear if f(x) =
a1x1 + a2x2 + · · · + anxn. We will denote by Fn the set of all functions of n
variables and by Ln the set of affine ones. We will call a function nonlinear if it
is not in Ln.

If xi ∈ GF (p) for any 1 ≤ i ≤ n, and 0 ≤ k ≤ n− 1. We define

ρk
n(xi) =

{
xi+k, if i + k ≤ n,

xi+k−n, if i + k > n.

Let x = (x1, · · · , xn) ∈ GF (p)n, then the definition of ρk
n on tuples and

monomials can be extend as follows:

ρk
n(x1, · · · , xn) = (ρk

n(x1), · · · , ρk
n(xn)),

and
ρk

n(xk1
1 xk2

2 · · ·xkn
n ) = (ρk

n(x1))k1 · · · (ρk
n(xn))kn .

Definition 1. A function f(x1, x2, · · · , xn) over GF(p)n is RotS if for each in-
put x = (x1, · · · , xn) ∈ GF (p)n, f

(
ρk

n(x1, x2, · · · , xn)
)

= f(x1, x2, · · · , xn) for
any 0 ≤ k ≤ n− 1.

3 Enumeration of Balanced RotS Functions

In this section, we will do some enumeration on homogeneous RotS functions
over GF (p). Now we start with some important definitions.

Definition 2. A function f : GF(p)n→GF(p) is called minimal function if f
has the form

f(x1, x2, · · · , xn) =
N−1∑

k=0

ρk
n(xk1

1 xk2
2 · · ·xkn

n )

where xk1
1 xk2

2 · · ·xkn
n is a monomial of f and N = #{ρk

n(xk1
1 xk2

2 · · ·xkn
n )|0 ≤ k ≤

n− 1}.
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Definition 3. A monic monomial xy1
1 xy2

2 · · ·xyn
n is analogous to xk1

1 xk2
2 · · ·xkn

n ,
if there exists a permutation π on n elements, such that (k1, k2, · · · , kn) =
(yπ(1), yπ(2), · · · , yπ(n)).

Let Ω(d, p, n) be the equation system as follow:

Ω(d, p, n) :





y1 + y2 + · · ·+ yn = d

0 ≤ yn ≤ · · · ≤ y2 ≤ y1 ≤ p− 1
yi ∈ Z(1 ≤ i ≤ n)

Let NΩ be the number of solutions of Ω(d, p, n), and the solutions be {(y(j)
1 , y

(j)
2 , · · · ,

y
(j)
n )|1 ≤ j ≤ NΩ}.

In the rest of this paper, we denoted by Tn,d the number of minimal functions
with degree d, and NUn,d is denoted by the number of n-variable homogeneous
RotS functions over GF (p) with degree d.

Lemma 1. Let m
(j)
i (0 ≤ i ≤ p − 1, 1 ≤ j ≤ NΩ , ) be the number of times

that i appears in {y(j)
1 , y

(j)
2 , · · · , y

(j)
n )}(1 ≤ j ≤ NΩ), then the number of monic

monomials with degree d is
∑NΩ

j=1
n!

m
(j)
0 !m

(j)
1 !···m(j)

p−1!
.

Proof. For a fixed j and the corresponding solution (y(j)
1 , y

(j)
2 , · · · , y

(j)
n ), the num-

ber of monic monomials analogous to x
y
(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n is

(
n

m
(j)
0

)(
n−m

(j)
0

m
(j)
1

)
· · ·

(
n−∑p−2

i=1 m
(j)
i

m
(j)
p−1

)
=

n!

m
(j)
0 !m(j)

1 ! · · ·m(j)
(p−1)!

so the number of monic monomials with degree d is
∑NΩ

j=1
n!

m
(j)
0 !m

(j)
1 !···m(j)

p−1!
.

Theorem 1. NUn,d ≥ p

∑NΩ
j=1

(n−1)!

m
(j)
0 !m(j)

1 !···m(j)
p−1! − 1.

Proof. Note that a homogeneous RotS function f(x1, x2, · · · , xn) with degree d
is a nonzero combination of minimal functions with degree d. That is

f(x1, x2, · · · , xn) =
Tn,d∑
m=1

amgm(x1, x2, · · · , xn)

where am ∈ GF (p), gm(x1, x2, · · · , xn) are minimal functions with degree d.

If a minimal function has the term x
y
(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n , then it has all the

terms in the set {ρk
n(xy

(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n )|0 ≤ k ≤ n − 1}, It is easy to show

that #{ρk
n(xy

(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n )|0 ≤ k ≤ n − 1} ≤ n. From Lemma 1 we know
the number of monic monomials with degree d is

∑NΩ

j=1
n!

m
(j)
0 !m

(j)
1 !···m(j)

p−1!
. So the

number of minimal functions Tn,d ≥
∑NΩ

j=1
(n−1)!

m
(j)
0 !m

(j)
1 !···m(j)

p−1!
. Since the constant

0 function is not counted, we get the result.
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Note that if n is a prime and n - d, then #{ρk
n(xy

(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n )|0 ≤ k ≤
n− 1} = n for any 1 ≤ j ≤ NΩ , so we have the following Corollary.

Corollary 1. If n is a prime and n - d, then:

NUn,d = p

∑NΩ
j=1

(n−1)!

m
(j)
0 !m(j)

1 !···m(j)
p−1! − 1.

In [7], it is an open problem to count n-variable homogeneous rotation sym-
metric functions with degree d more than 3. In the following theorems, we will
solve the problem when gcd(n, d) = 1 or gcd(n, d) is a power of a prime.

Theorem 2. If gcd(d, n) = 1, then:

Tn,d =
NΩ∑

j=1

(n− 1)!

m
(j)
0 !m(j)

1 ! · · ·m(j)
p−1!

.

Proof. Let m
(j)
i (0 ≤ i ≤ p − 1, 1 ≤ j ≤ NΩ) as denoted in lemma 1, then

#{ρk
n(xy

(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n )|0 ≤ k ≤ n−1} = n. Otherwise, if #{ρk
n(xy

(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n )
|0 ≤ k ≤ n− 1} = N < n, then N | n and n

N > 1,

ρN
n (xy

(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n ) = x
y
(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n

⇒ x
y
(j)
1

N+1x
y
(j)
2

N+2 · · ·x
y
(j)
2

n x
y
(j)
2

1 · · ·xy(j)
n

N = x
y
(j)
1

1 x
y
(j)
2

2 · · ·xy(j)
n

n

⇒
N∑

j=1

y
(j)
1 =

2N∑

j=N+1

y
(j)
1 = · · · =

n∑

j=n−N

y
(j)
1

It is obviously that
∑N

j=1 y
(j)
1 6= 1. Then

y1 + y2 + · · ·+ yn = d

⇒ d =
n

N
·

N∑

j=1

y
(j)
1

⇒ n

N
| d

⇒ gcd(d, n) =
n

N
.

This contradicts with the fact that gcd(d, n) = 1. There are
∑NΩ

j=1
n!

m
(j)
0 !m

(j)
1 !···m(j)

p−1!

monic monomials with degree d, so Tn,d =
∑NΩ

j=1
(n−1)!

m
(j)
0 !m

(j)
1 !···m(j)

p−1!
.

Theorem 3. If gcd(n, d) = qr(q prime, r ≥ 1), then we have:

Tn,d =
NΩ∑

j=1

(n− 1)!

m
(j)
0 !m(j)

1 ! · · ·m(j)
p−1!

+
r∑

i=1

qi − 1
qi

T n

qi , d

qi
.
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Proof. First, we make the observation that Tn,d is the sum between the num-
ber of minimal functions has n terms(abbr. long minimal functions) and the
number of minimal functions has terms less than n(abbr. short minimal func-
tions). Obviously, f(x1, x2, · · · , xn) =

∑N−1
k=0 ρk

n(xy1
1 xy2

2 · · ·xyn
n ) has terms less

than n, if and only if there exists a minimal block b = [y1, y2, · · · , yt] such that
(y1, y2, · · · , yn) is covered by concatenating m copies of b. Then it follows that
m divides n and m divides d, so m | qr. Since b is minimal, then it must be
#{ρk

n(xy1
1 xy2

2 · · ·xyt
n )|0 ≤ k ≤ n− 1} = n. Thus

#short minimal functions =
r∑

i=1

T n

qi , d

qi
. (1)

Let L be the sets of monic monomials of all the long minimal functions, S be
the sets of monic monomials of all the short minimal functions. Recall that the
total number of monic monomials with degree d is

∑NΩ

j=1
n!

m
(j)
0 !m

(j)
1 !···m(j)

p−1!
. There-

fore, |L| =
∑NΩ

j=1
n!

m
(j)
0 !m

(j)
1 !···m(j)

p−1!
− |S|. The number of long minimal functions

is 1
n |L|. Then it follows that

#long minimal functions =
NΩ∑

j=1

(n− 1)!

m
(j)
0 !m(j)

1 ! · · ·m(j)
p−1!

− 1
n

r∑

i=1

n

qi
T n

qi , d

qi
(2)

Putting together 1 and 2, we obtain the number of minimal functions.

The following corollary is the direct result of theorem 2 and theorem 3.

Corollary 2. If gcd(d, n) = 1, then

NUn,d = p

∑NΩ
j=1

(n−1)!

m
(j)
0 !m(j)

1 !···m(j)
p−1! − 1.

If gcd(n, d) = qr(q prime, r ≥ 1), then

NUn,d = p

∑NΩ
j=1

(n−1)!

m
(j)
0 !m(j)

1 !···m(j)
p−1!

+
∑r

i=1
qi−1

qi Tn/qi,d/qi

− 1.

Example 1. We count the number of homogeneous RotS functions with degree
5 over GF (p) (p ≥ 7,n ≥ 5).

First, we solve the equation system Ω(5, p, n), there are seven solutions:
(5, 0, · · · , 0), (4, 1, 0, · · · , 0), (3, 2, 0, · · · , 0), (3, 1, 1, 0, · · · , 0), (2, 2, 1, 0, · · · , 0),
(2, 1, 1, 1, 0, · · · , 0), (1, 1, 1, 1, 1, 0, · · · , 0). Then
(1)if d - n,

∑NΩ

j=1
(n−1)!

m
(j)
0 !m

(j)
1 !···m(j)

p−1!
= (n−1)!

(n−1)! +
(n−1)!
(n−2)! +

(n−1)!
(n−2)! +

(n−1)!
2!(n−3)! +

(n−1)!
2!(n−3)! +

(n−1)!
3!(n−4)! + (n−1)!

5!(n−5)! = (n−1)(n−2)(n−3)(n+16)
5! + (n2 − n + 1).Then

NUn,5 = p
(n−1)(n−2)(n−3)(n+16)

5! +(n2−n+1) − 1.

(2)if d | n,
∑NΩ

j=1
(n−1)!

m
(j)
0 !m

(j)
1 !···m(j)

p−1!
+d−1

d Tn
d ,1 = (n−1)(n−2)(n−3)(n+16)

5! +(n2−n+ 9
5 ).

Then NUn,5 = p
(n−1)(n−2)(n−3)(n+16)

5! +(n2−n+ 9
5 ) − 1.
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4 Conclusion

In this paper, we investigated homogeneous rotation symmetric functions over
finite field GF (p). We get a lower bound on the number of homogeneous rotation
symmetric functions by finding solutions of an equation system, we show that
this bound is tight when n is a prime. And we also give a formula to count
homogeneous rotation symmetric functions when the greatest common divisor
of the number of input variable and the degree is a power of a prime, which
solve the open problem in [7]. Besides, for general n, it is still an open problem
to count the homogeneous rotation symmetric functions.
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