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Abstract:  In this paper, we describe a method to construct (n, m, t) resilient functions which 
satisfy multiple cryptographic criteria including high nonlinearity, good resiliency, high algebraic 
degree, and nonexistence of nonzero linear structure. Given a [u, m, t+1] linear code, we show that 
it is possible to construct (n, m, t) resilient functions with multiple good cryptographic criteria, 
where 2m≤u<n. 
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1 Introduction 

Resilient functions have wide applications in quantum cryptographic key distribution, 
fault tolerant distributed computing, random sequence generation for stream ciphers, and 
S-box for block ciphers. It is now well accepted that for an (n, m, t) resilient function in sy- 
mmetric cipher systems, it must satisfy the properties of high nonlinearity, high algebraic, 
and good resiliency, and good propagation character and so on. All of these parameters are 
important in resisting different kinds of attacks, so the research on cryptographic resilient 
functions is paid attention more and more[1,2,3,4,5]. However, we note that functions with 
good resiliency and high nonlinearity could imply some properties that lead to some 
cryptographic weakness, such as existence of linear structures. For example, the (n, m, t) 
resilient functions obtained from the paper [4, 6, 7], are all existence of nonzero linear st- 
ructures [8]. Thus, Y.Z Wei turns to construct the (n, m, t) resilient functions which satisfy 
multiple cryptographic criteria including high nonlinearity, good resiliency, high algebraic 
degree, and nonexistence of nonzero linear structure [9], the construction is based on a 
binary [u, m, t+1] linear code and its disjoint dual code. But if the [u, m, t+1] linear code 
and its dual code are not disjoint, then the construction in [9] is not valid. 

In this paper, we study the case that the construction in [9] can’t work, and describe an 
improved method to construct (n, m, t) resilient functions which satisfy multiple 
cryptographic criteria. The construction is based on a linear code. Given a [u, m, t+1] 
linear code, we show that it is possible to construct (n, m, t) resilient functions with 
multiple cryptographic criteria, where 2m≤u<n. 
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2 Preliminaries 

Let F2 be the finite field with 2 elements, the vector space of n-tuples of element from 
F2 is denoted by F2

n, let (F2
n)* be the nonzero vector of F2

n .The addition operator over F2 is 
denoted by +, representing additions modulo 2 . By Vn we mean the set of all Boolean fun- 
ctions on n variables. We interpret a Boolean function f(x1, x2, ,xn) as the output column 
of its truth table, that is, a binary string of length 2n having the form: {f(0, 0, ,0), 
f(0,0,  ,1) ,  ,f(1,1, ,1)}. The weight of f is the number of ones in its output column, 
this is denoted by wt(f). An n -variable function f is said to be balance if wt(f)=2n-1. 

An n-variable function f can be considered to be a multivariate polynomial over F2. 
This polynomial can be express as a sum of products representation of all distinct 
kth-order (k<n) product terms of the variables. The number of variables in the highest 
order product term with nonzero coefficient is called the algebraic degree of f (abbr. 
deg(f)). 

Functions with degree at most one are called affine functions. Affine functions with 
f(0)=0 are called linear functions. The set of all n-variable affine (respectively, linear) 
functions is denoted by An (respectively, Ln). The nonlinearity of an n-variable function f is 
the distance between f and the set of all n-variable affine functions, this is denoted by nl(f). 

The walsh transform of an n-variable function f is a real valued function defined as 
( )fW u ＝

2

( )( 1)
n

f x x u

x F

+ ⋅

∈

−∑  

where the dot product of vectors x and u is defined as 1 1 2 2 n nx u x u x u x u⋅ = + + + . An n 

variable function f is called t-resilient if and only if ( ) 0fW u = for all u with 0 ( )wt u t≤ ≤ , 

and f is said to have a linear structure, say a, iff f(x+a)+f(x) is a constant function. Let us 
consider the function 1 2( ) ( ( ), ( ), , ( ))mF x f x f x f x= .Then the nonlinearity of F is defined 

as 

nl(F)= min{ nl(
1

( )m
i ii
f xτ

=∑ ) | 1( , , )mτ τ τ= ∈(F2
m)* }. 

Similarly the algebraic degree of F is defined as 

deg(F)=min{ deg(
1

( )m
i ii
f xτ

=∑ ) | 1( , , )mτ τ τ= ∈(F2
m)* }. 

F is said to be an (n, m, t) resilient function, iff
1

( )m
i ii
f xτ

=∑ is an (n, 1, t) resilient function, 

for anyτ ∈(F2
m)*. Moreover, a is said to be a linear structure of F, iff a is a linear structure 

of functions
1

( )m
i ii
f xτ

=∑ , for anyτ ∈(F2
m)*. 

Definition 1. A set D is called n-basis-set, if it satisfies the following conditions: 
1) D⊂F2

n. 
2) There exists ri∈D, i=1,2, ,n such that {r1, r2, ,rn }be a basis of F2

n 
3) There exists i≠ j such that ri+ rj ∈D, where 1≤ i, j≤ n. 

Lemma 1[9]. If D is an n-basis-set, then the function f(x)=b ⋅ x (x∈D) is not a constant 
function for any b∈(F2

n)*. 
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3 Construction of Resilient Functions with Multiple Cryptographic 

Criteria 

In this section, we will provide a new method to get (n, m, t) resilient functions with 
multiple cryptographic criteria. Firstly, we give an example that the [u, m, t+1] linear code 
and its dual code are not disjoint, in this case the construction in [9] is not valid. 

 

Example 1. Consider a [7,3,3] linear code C with a basis {[1,0,0,1,0,1,1], [0,1,0,1,1,1,1], 
[0,0,1,0,1,0,1]}.then the dual of C(defined as C⊥) is a [7,4,2] linear code which has a basis 
{[1,0,0,0,0,1,0], [0,1,0,0,1,1,1], [0,0,1,0,0,1,1],[0,0,0,1,0,1,0]}. It is easy to show that 
C∩C⊥={[1,1,1,0,0,0,1], [0,0,0,0,0,0,0]}. By computer search we know that a 7-basis-set D, 

such that |D|=23,wt(x)≥2, for any x∈ D can not be constructed by C and C⊥. 
 

Lemma 2. Let C be a [u, m, t+1] linear code. Then there exists a u-basis-set D, such that 
|D|=2q, wt(x)≥ t+1, for any x∈ D, where ln(u+4)≤q≤m 
 

Proof : Let 1 (0,1,1, ,1)r = , 2 (1,0,1, ,1)r = , (1,1, ,1,0)ur = , 1 (1,1, ,1,1)ur + = where r1, r2, ,ru, 

ru+1 ∈ F2
u.It is easy to show that{ 1 1ur r ++ , 2 1ur r ++ , 3 1ur r ++ , 1, u ur r ++ }is a basis of F2

u , 

Now we define a set D ( |D|=2q ) satisfies: 
1) 1r , 2r , 3r , 1, ,u ur r + ∈D 

2)Let 1c , 2c , 1 2c c+ ∈D where 1c , 2c C∈  

3)And the remaining 2q –(u+4) elements are chosen arbitrarily from C. 
then D is a u-basis-set, such that |D|=2q,wt(x)≥t+1, for any x∈ D.          

 

Theorem 1. Let C be a [u, m, t+1] linear code. Let f(x,y)=ϕ(x)⋅y+g(x), x∈F2
q, y∈ F2

u. 
Where g(x) is a Boolean function on F2

q, andϕ(x) is a bijection from F2
q to the u-basis-set 

D (defined as in Lemma 2). Then the following results hold: 

(1) f(x,y) does not exist nonzero linear structure. 
(2) f(x,y) is an (n,1, t) resilient function with n=u+q 
(3) nl(f)= 2n-1 -2u-1 
(4) deg(f) ≥q 
 

Proof . 
(1) 2( , ) na b F∀ ∈ ,where 2 2,q ua F b F∈ ∈  

( , ) ( , )fD f x y f x a y b= + + + ( ) ( ) [ ( ) ( )] ( )g x g x a x x a y x a bϕ ϕ ϕ= + + + + + ⋅ + + ⋅  

If 0a = , fD = ( )x bϕ ⋅ , then from Lemma 1 we know that fD is not a constant function 

If 0a ≠ , then ( ) ( ) 0x x aϕ ϕ+ + ≠  thus fD is balance. 

So f(x, y) does not exist nonzero linear structure. 

(2) Let 1 2( , ) u u u= 1 2 2 2( , ) q uu F u F∈ ∈ with 0 ( )wt u t≤ ≤  
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( )fW u ＝ 1 2( , ) ( , ) ( , )

,
( 1) f x y u u x y

x y

+ ⋅−∑  

＝ 1 2( ) ( )

,
( 1) x y g x u x u y

x y

ϕ ⋅ + + ⋅ + ⋅−∑  

1 2( ) ( ( ) )( 1) ( 1)g x u x x u y

x y

ϕ+ ⋅ + ⋅= − −∑ ∑  

2( )wt u t≤ and ( ( )) 1wt x tϕ ≥ +  by Lemma 2, then 2( ) 0x uϕ + ≠  for all x∈F2
q, so 

( ) 0fW u = for all u with 0 ( )wt u t≤ ≤ . 

(3) ( )fW u ＝ 1 2( ) ( )

,

( 1) x y g x u x u y

x y

ϕ ⋅ + + ⋅ + ⋅−∑ 1 2( ) ( ( ) )( 1) ( 1)g x u x x u y

x y

ϕ+ ⋅ + ⋅= − −∑ ∑  

Since: 

20            If ( ) 0 for all 
( )

2           If  , ( ) 0           

q

f u

x u x F
W u

x x u

ϕ

ϕ

⎧ + ≠ ∈⎪= ⎨
∃ + =⎪⎩

 

So nl(f)= 2n-1 -2u-1 
(4) Since g(x) is arbitrary over F2

q, then the algebraic degree of f(x,y) can exceed q.                
 

Lemma 3[9]. Let 0 1{ , , , }mc c c be a basis of [u, m, t+1] linear code C. Letβ be a primitive 

element in F2
m and 2 1{1, , , , }mβ β β − be a basis of F2

m. Define a bijection :φ  F2
m →C 

by 
0 1 1

0 1 1( )m
ma a aφ β β β −
−+ + + 0 0 1 1 1 1m ma c a c a c− −= + + +  

Considers the matrices: 
1

2

2 2 2

(1) ( ) ( )
( ) ( ) ( )

( ) (1) ( )
m

m

m

m

A

φ φ β φ β
φ β φ β φ β

φ β φ φ β

−

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

    

1

2

1 2 2

(1) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

m

m

m m m

B

φ φ β φ β
φ β φ β φ β

φ β φ β φ β

−

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

    

Then the following results hold: 

(1)For any linear combination of columns (not all zero) of A, each nonzero codeword of  
C will appear exactly once. 

(2)For any linear combination of columns (not all zero) of B, there exist a set of m 
nonzero codeword, which is always a basis of linear code C. 

 

Lemma 4. Let C be a [u, m, t+1] linear code, then there exists a [u, u-m, t*+1] linear code  
C*, such that C∩C*={0}, where t*+1≥1. 
 

Proof. Let 0 1 1{ , , }mc c c − be a basis of [u, m, t+1] linear code C. It is easy to show that 

there exist 1 2{ , , }u mr r r − ∈GF(2)u–C such that 0 1 1{ , , mc c c − , 1 2, , }u mr r r −  is a basis of 

F2
u , now we define a set C* satisfying: 

1)  C* is a linear code with length u. 
2) 1 2{ , , }u mr r r −

 is a basis of C*. 
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Let t*=min{wt(x)|x∈ C*}-1, then C* is a [u, u-m, t*+1] linear code such that C∩C*={0}.               
 

Lemma 5. Let C be a [u, m, t+1] linear code and C* be a [u, u-m, t*+1] linear code such  
that C∩C*={0}.Then there exists a matrix

2q m
T

×
which has the property that every m nonz- 

ero codeword obtained in any linear combination of columns (not all zero) is still a 
u-basis-set D, such that |D|=2q, wt(x)≥d, for any x∈ D, where ln(u+1)≤q≤u-m, u≥2m. 
d=min(t+1, t*+1). 
 

Proof. Let 0 1 1{ , , }mc c c − be a basis of C andβ be a primitive element in F2
m. Let 

1 2{ , , }u mr r r − be a basis of C*  andβ ∗ be a primitive element in F2
u-m. 

Define a bijection 1 :φ  F2
m→C by 

0 1 1
1 0 1 1( )m

ma a aφ β β β −
−+ + + 0 0 1 1 1 1m ma c a c a c− −= + + +  

Define a bijection 2 :φ  F2
m→C* by 

1
2 0 1 1( )u m

u ma a aφ β β∗ ∗ − −
− −+ + + 0 0 1 1 1 1u m u ma r a r a r− − − −= + + +  

Then we can obtain two matrices A1 and A2 

1 2 1
1 1 1

1 2 2
1 1 1

1

2 2 2
1 1 1

( ) ( ) ( )
( ) ( ) ( )

( ) (1) ( )
m

m m m

m m m

m

A

φ β φ β φ β
φ β φ β φ β

φ β φ φ β

+ −

+ +

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

( ) ( 1) ( 1)
2 2 2

( 1) ( 2)
2 2 2

2

2 2 2
2 2 2

( ) ( ) ( )
( ) ( ) ( )

( ) (1) ( )
u m

u m u m u

u m u m u

u m

A

φ β φ β φ β
φ β φ β φ β

φ β φ φ β
−

∗ − ∗ − + ∗ −

∗ − + ∗ − + ∗

∗ − ∗ − −

⎛ ⎞
⎜ ⎟
⎜ ⎟=⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Let 
1

1 1 1
2

1 1 1
1

1 2 2
1 1 1

(1) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

m

m

m m m

B

φ φ β φ β
φ β φ β φ β

φ β φ β φ β

−

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

   

( 1)
2 2 2

2
2 2 2

2

*( 1) ( ) ( 2)
2 2 2

(1) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

m

m

u m u m u

B

φ φ β φ β
φ β φ β φ β

φ β φ β φ β

∗ ∗ −

∗ ∗ ∗

− − ∗ − ∗ −

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

1

2 ( )

3 (2 ) 2

( )
( )
( ) q q

m m

u m m

u m m

B
T B

B

∗
×

∗
− ×

∗
− × ×

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Where B3 come from the row of A1 and A2 .         

From the results of Lemma 3 and Lemma 4, it is easy to show that matrix T has the 
property that every 2q nonzero codeword obtained in any linear combination of columns 
(not all zero) is still a u-basis-set D, such that |D|=2q, wt(x)≥d, for any x∈ D. where 
ln(u+1)≤q≤u-m, u≥2m, d=min(t+1, t*+1).            

 

Theorem 2. Let C be a [u, m, t+1] linear code and C* be the [u, u-m, t*+1] obtained in 
Lemma 4. Let (n,m) function F(x, y)=( f1(x,y), f2(x,y),  fm(x,y) ), where  
fi(x,y)=ϕ i(x)⋅y+gi(x), x∈ F2

q, y∈ F2
u , gi(x) is any Boolean function on F2

q, and ϕ i(x) is  
any bijection from F2

q to the ith column of matrix T (defined as in Lemma 5). 
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Then the following results hold: 
   (1) F(x, y) does not exist nonzero linear structures. 
   (2) F(x, y) is (n, m, t) resilient function with d=min(t, t*) and n=u+q. 
   (3) nl(F)= 2n-1 -2u-1. 
   (4) deg(F) ≥q-2 for max( (2m)1/2, ln(u+1))≤q≤ m-1, deg(F) ≥q-1 for m≤q≤u-m 
 

Proof: Let 1( , , )mτ τ τ= ∈ (F2
m)*. then

1
( , )m

i ii
f x yτ

=∑ =
1

( )m
i ii

x yτ ϕ
=

⋅∑ +
1

( )m
i ii
g xτ

=∑  

From Lemma 5 we can show that 
1

( )m
i ii

xτ ϕ
=∑  is a bijection from F2

q to a u-basis-set D, 

where |D|=2q, wt(x)≥d, for any x∈ D. 
Then from Theorem 1 we obtain : 
   (1) F(x, y) does not exist nonzero linear structures. 
   (2) F(x, y) is (n, m, t) resilient function with d=min(t+1, t*+1). 
   (3) nl(F)= 2n-1 -2u-1. 

   Now we prove (4), Note that gi(x) is any Boolean function on F2
q 

If m≤q≤u-m then for1 i m≤ ≤ , define ( )ig x = 1 2 1 1i i qx x x x x− + , then deg(
1

( )m
i ii
g xτ

=∑ )  

=q-1 for 1( , , )mτ τ τ= ∈(F2
m)* 

If max( (2m)1/2, ln(u+1))≤q≤ m-1, define 
   S={ 1 2 1 1 1 1k k l l qx x x x x x x− + − +  |0 ,k l q≤ ≤  and k l≠ }∪ { 1 2 1 1i i qx x x x x− + |1 i q≤ ≤ } 

( )ig x (1 i m≤ ≤ ) are m arbitrary element of S. then deg(
1

( )m
i ii
g xτ

=∑ ) =q-2,  

for 1( , , )mτ τ ∈(F2
m)*                            

 

Construction Procedure: 
 Input: a [u, m, t+1] linear code C 
 Output: an (n, m, d) resilient function 
 1) Let t*= t 
 2) Search to obtain a [u, u-m, t*+1] linear code C* such that C∩C*={0}, if 
           successful go to 4) 
 3) t*= t*-1 
 4) Obtain the matrix T (see Lemma 5) 
 5) Define fi(x,y)=ϕ i(x)⋅y+gi(x), x∈GF(2)q, y∈GF(2)u (defined as in Theorem 2) 
 6) output( f1(x,y), f2(x,y),  fm(x,y) ) 
 

   However, the major problem with our method is the fact that such a construction is  
available through computer search (which becomes infeasible for a moderate cardinality of  
codes). Using the result in[10], we describe an easy way in some special cases. 
 

Lemma 6[10] the number of disjoint [tm, m, t+1] linear code is lower bounded by 
2

2

0
( , , 1) (2 2 ) (2 1) (2 1)

t
lb m i m t i

i
M tm m t m m

−
− −

=

+ = − − −∑  
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Theorem 3. Let C be a [2m, m, 3] linear code and q be an integer with  
max( (2m)1/2, ln(2m+1))≤q≤u-m. Let n=u+q , then there exists (n,m) function 
 F(x, y)=( f1(x,y), f2(x,y),  fm(x,y) ) such that: 

(1) F(x, y) does not exist nonzero linear structures. 
(2) F(x, y) is (n, m, 2) resilient function. 
(3) nl(F)= 2n-1 -22m-1. 
(4) deg(F) ≥q-2 for max( (2m)1/2, ln(2m +1))≤q≤ m-1, deg(F) ≥q-1 for m≤q≤u-m 

 

Proof:  From Lemma 6, it is easy to show that (2 , ,3) (2 2 ) 2lb mM m m m= − ≥ , 

Then we can construction another [2m, m, 3] linear code C* such that C∩C*={0}. 
The remaining proof is similar to Theorem 2. 
   In the following table we compare (n, m, t) resilient functions obtained using the 
techniques presented in this paper with the existing results.  
 

      Table 1. comparison of (n, m, t) resilient functions with multiple cryptographic criteria 

 Codes Nonlinearity Degree Nonzero linear 
structure 

[6] A [u, m, t+1] linear code 2n-1 -2u-1 ≥q Exist 
[7] Some disjoint [u, m, t+1] 

linear codes 
≥2n-1 -2u-1 ≥m Exist 

Ours A [u, m, t+1] linear code  2n-1 -2u-1 ≥q Not exist 

  
4 Conclusion 

   In this paper, we study the case that the construction in [9] can’t work, and describe an 
improved method for constructing of (n, m, t) resilient functions which satisfy multiple 
Cryptographic criteria. The construction is based on the use of linear error correcting code , 
our method provides a new idea in designing cryptographic functions. Besides, given a [u, 
m, t+1] linear code C, It will be of interest to find new methods to get a [u, u-m, t*+1] 
linear code C* that C and C* are disjoint.  
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