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Abstract

This study presents a special type of middle isotopism under which m-inverse quasi-
groups are isotopic invariant. A sufficient condition for an m-inverse quasigroup that is
specially isotopic to a quasigroup to be isomorphic to the quasigroup isotope is estab-
lished. It is shown that under this special type of middle isotopism, if n is a positive
even integer, then, a quasigroup is an m-inverse quasigroup with an inverse cycle of
length nm if and only if its quasigroup isotope is an m-inverse quasigroup with an in-
verse cycle of length nm. But when n is an odd positive integer. Then, if a quasigroup
is an m-inverse quasigroup with an inverse cycle of length nm, its quasigroup isotope
is an m-inverse quasigroup with an inverse cycle of length nm if and only if the two
quasigroups are isomorphic. Hence, they are isomorphic m-inverse quasigroups. Expla-
nations and procedures are given on how these results can be used to apply m-inverse
quasigroups to cryptography, double cryptography and triple cryptography.

1 Introduction

Let L be a non-empty set. Define a binary operation (·) on L : If x · y ∈ L for all x, y ∈ L,
(L, ·) is called a groupoid. If the system of equations ;

a · x = b and y · a = b

have unique solutions for x and y respectively, then (L, ·) is called a quasigroup. For each
x ∈ L, the elements xρ = xJρ, x

λ = xJλ ∈ L such that xxρ = e and xλx = e are called the
right, left inverses of x respectively. Now, if there exists a unique element e ∈ L called the
identity element such that for all x ∈ L, x · e = e · x = x, (L, ·) is called a loop.
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Karklinüsh and Karkliň [11] introduced m-inverse loops. A loop is an m-inverse loop(m-
IL) if and only if it obeys any of the equivalent conditions

(xy)Jm
ρ · xJm+1

ρ = yJm
ρ and xJm+1

λ · (yx)Jm
λ = yJm

λ .

Keedwell and Shcherbacov [11] originally defined an m-inverse quasigroup(m-IQ) as a quasi-
group that obeys the identity (xy)Jm · xJm+1 = yJm such that J is a permutation. For the
sake of this present study, we shall take J = Jρ and so m-IQs obey the equivalent identities
that define m-ILs.

m-IQs and m-ILs are generalizations of WIPLs and CIPLs, which corresponds to m = −1
and m = 0 respectively. After the study of m-inverse loops by Keedwell and Shcherbacov
[10], they have also generalized them to quasigroups called (r, s, t)-inverse quasigroups in [12]
and [13]. Keedwell and Shcherbacov [10] investigated the existence of m-inverse quasigroups
and loops with long inverse cycle such that m ≥ 1.They were able to establish that the direct
product of two m-inverse quasigroups is an m-inverse quasigroup.

Consider (G, ·) and (H, ◦) been two distinct groupoids(quasigroups, loops). Let A, B
and C be three distinct non-equal bijective mappings, that maps G onto H. The triple
α = (A,B,C) is called an isotopism of (G, ·) onto (H, ◦) if and only if

xA ◦ yB = (x · y)C ∀ x, y ∈ G.

• If α = (A,B, B), then the triple is called a left isotopism and the
groupoids(quasigroups, loops) are called left isotopes.

• If α = (A,B, A), then the triple is called a right isotopism and the
groupoids(quasigroups, loops) are called right isotopes.

• If α = (A, A,B), then the triple is called a middle isotopism and the groupoids are
called middle isotopes.

If (G, ·) = (H, ◦), then the triple α = (A,B,C) of bijections on (G, ·) is called an autotopism
of the groupoid(quasigroup, loop) (G, ·). Such triples form a group AUT (G, ·) called the
autotopism group of (G, ·). Furthermore, if A = B = C, then A is called an automorphism
of the groupoid(quasigroup, loop) (G, ·). Such bijections form a group AUM(G, ·) called the
automorphism group of (G, ·).

As observed by Osborn [14], a loop is a WIPL and an AIPL if and only if it is a CIPL. The
past efforts of Artzy [1, 4, 3, 2], Belousov and Tzurkan [5] and recent studies of Keedwell [10],
Keedwell and Shcherbacov [11, 12, 13] are of great significance in the study of WIPLs, AIPLs,
CIPQs and CIPLs, their generalizations(i.e m-inverse loops and quasigroups, (r,s,t)-inverse
quasigroups) and applications to cryptography.

In the quest for the application of CIPQs with long inverse cycles to cryptography, Keed-
well [10] constructed the a CIPQ. The author also gave examples and detailed explanation
and procedures of the use of this CIPQ for cryptography. Cross inverse property quasi-
groups have been found appropriate for cryptography because of the fact that the left and
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right inverses xλ and xρ of an element x do not coincide unlike in left and right inverse
property loops, hence this gave rise to what is called ’cycle of inverses’ or ’inverse cycles’
or simply ’cycles’ i.e finite sequence of elements x1, x2, · · · , xn such that xρ

k = xk+1 mod n.
The number n is called the length of the cycle. The origin of the idea of cycles can be traced
back to Artzy [1, 4] where he also found there existence in WIPLs apart form CIPLs. In his
two papers, he proved some results on possibilities for the values of n and for the number m
of cycles of length n for WIPLs and especially CIPLs. We call these ”Cycle Theorems” for
now.

The universality of WIPLs and CIPLs have been addressed by OSborn [14] and Artzy [2]
respectively. Artzy showed that isotopic CIPLs are isomorphic. In 1970, Basarab [7] later
continued the work of Osborn of 1961 on universal WIPLs by studying isotopes of WIPLs
that are also WIPLs after he had studied a class of WIPLs([6]) in 1967. Osborn [14], while
investigating the universality of WIPLs discovered that a universal WIPL (G, ·) obeys the
identity

yx · (zEy · y) = (y · xz) · y ∀ x, y, z ∈ G (1)

where Ey = LyLyλ = R−1
yρ R−1

y = LyRyL
−1
y R−1

y .

Eight years after Osborn’s [14] 1960 work on WIPL, in 1968, Huthnance Jr. [9] studied the
theory of generalized Moufang loops. He named a loop that obeys (1) a generalized Moufang
loop and later on in the same thesis, he called them M-loops. On the other hand, he called
a universal WIPL an Osborn loop and this same definition was adopted by Chiboka [8].

From the literature review stated above, it can be seen that neither WIPLs nor CIPLs
has been shown to be isotopic invariant. In fact, it is yet to be shown that there exist a
special type of isotopism(e.g left, right or middle isotopism) under which the WIP or CIP
is isotopic invariant. Aside this, there has never been any investigation into the isotopy of
m-inverse quasigroups and loops.

The aim of the present study is to present a special type of middle isotopism under
which m-inverse quasigroups are isotopic invariant. A sufficient condition for an m-inverse
quasigroup that is specially isotopic to a quasigroup to be isomorphic to the quasigroup
isotope is established. It is shown that under this special type of middle isotopism, if n is a
positive even integer, then, a quasigroup is an m-inverse quasigroup with an inverse cycle of
length nm if and only if its quasigroup isotope is an m-inverse quasigroup with an inverse
cycle of length nm. But when n is an odd positive integer. Then, if a quasigroup is an
m-inverse quasigroup with an inverse cycle of length nm, its quasigroup isotope is an m-
inverse quasigroup with an inverse cycle of length nm if and only if the two quasigroups are
isomorphic. Hence, they are isomorphic m-inverse quasigroups. Explanations and procedures
are given on how these results can be used to apply m-inverse quasigroups to cryptography,
double cryptography and triple cryptography.

3



2 Preliminaries

Definition 2.1 Let L be a quasigroup and m ∈ Z. Let xρm
= xJm

ρ and xλm
= xJm

λ for all
x ∈ L. A mapping α ∈ SY M(L)(where SY M(L) is the group of all bijections on L) which
obeys the identity xρm

= [(xα)ρm
]α is called a m-weak right inverse permutation. Their set

is represented by S(ρ,m)(L).
Similarly, if α obeys the identity xλm

= [(xα)λm
]α it is called a m-weak left inverse

permutation. Their set is represented by S(λ,m)(L)
If α satisfies both, it is called an m-weak inverse permutation. Their set is represented

by S ′m(L).
It can be shown that α ∈ SY M(L) is a m-weak right inverse if and only if it is a m-weak

left inverse permutation. So, S ′m(L) = S(ρ,m)(L) = S(λ,m)(L). And thus, α is called and
m-weak inverse permutation.

Remark 2.1 Every permutation of order 2 that preserves the right(left) inverse of each
element in a m-inverse quasigroup is a m-weak right(left) inverse permutation.

Throughout, we shall employ the use of the bijections; Jρ : x 7→ xρ, Jλ : x 7→ xλ,
Lx : y 7→ xy and Rx : y 7→ yx for a loop and the bijections; J ′ρ : x 7→ xρ′ , J ′λ : x 7→ xλ′ ,
L′x : y 7→ xy and R′

x : y 7→ yx for its loop isotope. If the identity element of a loop is e
then that of the isotope shall be denoted by e′.

Lemma 2.1 In a quasigroup, the set of weak inverse permutations that commute form an
abelian group.

Definition 2.2 (T -condition)
Let (G, ·) and (H, ◦) be two distinct quasigroups that are isotopic under the triple

(A,B, C). (G, ·) obeys the T(1,m) condition if and only if A = B. (G, ·) obeys the T(2,m)

condition if and only if J ′mρ = C−1Jm
ρ A = B−1Jm

ρ C. (G, ·) obeys the T(3,m) condition if and
only if J ′mλ = C−1Jm

λ B = A−1Jm
λ C. So, (G, ·) obeys the Tm condition if and only if it obey

T(1,m) and T(2,m) conditions or T(1,m) and T(3,m) conditions since T(2,m) ≡ T(3,m).

It must here by be noted that the Tm-conditions refer to a pair of isotopic loops at a time.
This statement might be omitted at times. That is whenever we say a loop (G, ·) has the
Tm-condition, then this is relative to some isotope (H, ◦) of (G, ·)

Lemma 2.2 Let L be a quasigroup. The following are equivalent.

1. L is a m-inverse quasigroup.

2. RxJ
m
λ LxJm+1

λ
= Jm

λ for all x ∈ L.

3. LxJ
m
ρ RxJm+1

ρ
= Jm

ρ for all x ∈ L.
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3 Main Results

Theorem 3.1 Let (G, ·) and (H, ◦) be two distinct quasigroups that are isotopic under the
triple (A, B, C).

1. If the pair of (G, ·) and (H, ◦) obey the Tm condition, then (G, ·) is an m-inverse
quasigroup if and only if (H, ◦) is an m-inverse quasigroup.

2. If (G, ·) and (H, ◦) are m-inverse quasigroups, then Jm
ρ RxJm+1

ρ
Jm

λ B =

CJ ′mρ R′
xAJ ′m+1

ρ
J ′mλ and Jm

λ LxJm+1
λ

Jm
ρ A = CJ ′mλ L′

xBJ ′m+1
λ

J ′mρ for all x ∈ G.

Proof

1. (A,B, C) : G → H is an isotopism ⇔ xA ◦ yB = (x · y)C ⇔ yBL′xA = yLxC ⇔
BL′xA = LxC ⇔ L′xA = B−1LxC ⇔

Lx = BL′xAC−1 (2)

Also, (A,B,C) : G → H is an isotopism ⇔ xAR′
yB = xRyC ⇔ AR′

yB = RyC ⇔
R′

yB = A−1RyC ⇔
Ry = AR′

yBC−1 (3)

Let G be an m-inverse quasigroup. Applying (2) and (3) to Lemma 2.2 separately, we
have : LxJ

m
ρ RxJm+1

ρ
= Jm

ρ , RxJ
m
λ LxJm+1

λ
= Jm

λ ⇒ (AR′
xBC−1)Jm

λ (BL′
xJm+1

λ A
C−1) =

Jm
λ , (BL′xAC−1)Jm

ρ (AR′
xJm+1

ρ B
C−1) = Jm

ρ ⇔ AR′
xB(C−1Jm

λ B)L′
xJm+1

λ A
C−1 = Jm

λ ,

BL′xA(C−1Jm
ρ A)R′

xJm+1
ρ B

C−1 = Jm
ρ ⇔

R′
xB(C−1Jm

λ B)L′
xJm+1

λ A
= A−1Jm

λ C, L′xA(C−1Jm
ρ A)R′

xJm+1
ρ B

= B−1Jm
ρ C. (4)

Let J ′mλ = C−1Jm
λ B = A−1Jm

λ C, J ′mρ = C−1Jm
ρ A = B−1Jm

ρ C. Then, J ′λ =

C−1JλB, J ′ρ = C−1JρA. So, J ′m+1
λ = (A−1Jm

λ C)(C−1JλB) = A−1Jm+1
λ B, J ′m+1

ρ =
(B−1Jm

ρ C)(C−1JA
ρ ) = B−1Jm+1

ρ A.

Then, from (4), and using the Tm-condition, we have

R′
xBJ ′mλ L′

xJm+1
λ A

= J ′mλ = R′
xBJ ′mλ L′

xAJ ′m+1
λ B−1A

= R′
xAJ ′mλ L′

xAJ ′m+1
λ

, (5)

L′xAJ ′mρ R′
xJm+1

ρ B
= J ′mρ = L′xAJ ′mρ R′

xBJ ′m+1
ρ A−1B

= L′xBJ ′mρ R′
xBJ ′m+1

ρ
(6)

Thus, by Lemma 2.2, (5) and (6) H is a m-inverse quasigroup. This completes the proof
of the forward part. To prove the converse, carry out the same procedure, assuming
the Tm condition and the fact that (H, ◦) is a m-inverse quasigroup.
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2. If (H, ◦) is a m-inverse quasigroup, then

L′xJ
′m
ρ R′

xJ ′m+1
ρ

= J ′mρ ⇔ R′
xJ

′m
λ L′

xJ ′m+1
λ

= J ′mλ ∀ x ∈ H (7)

while since G is a m-inverse quasigroup,

LxJ
m
ρ RxJm+1

ρ
= Jm

ρ ⇔ RxJ
m
λ LxJm+1

λ
= Jm

λ ∀ x ∈ G (8)

From (7),
R′

x = J ′mλ L′−1

xJ ′m+1
λ

J ′mρ ⇔ L′x = J ′mρ R′−1

xJ ′m+1
ρ

J ′mλ ∀ x ∈ H (9)

while from (8),

Rx = Jm
λ L−1

xJm+1
λ

Jm
ρ ⇔ Lx = Jm

ρ R−1

xJm+1
ρ

Jm
λ ∀ x ∈ G. (10)

The fact that G and H are isotopic implies that

Lx = BL′xAC−1 ∀ x ∈ G and (11)

Rx = AR′
xBC−1 ∀ x ∈ G. (12)

So, using (9) and (10) in (11) we get

Jm
ρ R−1

xJm+1
ρ

Jm
λ = BJ ′mρ R′−1

xAJ ′m+1
ρ

J ′mλ C−1 ∀ x ∈ G (13)

while using (9) and (10) in (12) we get

Jm
λ L−1

xJm+1
λ

Jm
ρ = AJ ′mλ L′−1

xBJ ′m+1
λ

J ′mρ C−1 ∀ x ∈ G. (14)

Thus, (13) becomes

Jm
ρ RxJm+1

ρ
Jm

λ = CJ ′mρ R′
xAJ ′m+1

ρ
J ′mλ B−1 ⇔ Jm

ρ RxJm+1
ρ

Jm
λ B = CJ ′mρ R′

xAJ ′m+1
ρ

J ′mλ ∀ x ∈ G

while (14) becomes

Jm
λ LxJm+1

λ
Jm

ρ = CJ ′mλ L′
xBJ ′m+1

λ
J ′mρ A−1 ⇔ Jm

λ LxJm+1
λ

Jm
ρ A = CJ ′mλ L′

xBJ ′m+1
λ

J ′mρ ∀ x ∈ G.

These completes the proof.

Theorem 3.2 Let (G, ·) and (H, ◦) be two distinct quasigroups that are isotopic under the
triple (A, B, C) such that they obey the Tm condition.

1. If n is an even positive integer. Then, (G, ·) is a m-inverse quasigroup with an inverse
cycle of length nm if and only if (H, ◦) is a m-inverse quasigroup with an inverse cycle
of length nm.
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2. If n is an odd positive integer. Then, if (G, ·) or (H, ◦) is an m-inverse quasigroup
with an inverse cycle of length nm then, (H, ◦) or (G, ·) is an m-inverse quasigroup
with an inverse cycle of length nm if and only if (G, ·) ∼= (H, ◦).

Proof
The fact that (G, ·) is a m-inverse quasigroup if and only if (H, ◦) is a m-inverse quasigroup
has been proved in Theorem 3.1.

1. It will now be shown that (G, ·) has an inverse cycle of length nm if and only if (H, ◦)
has an inverse cycle of length nm. An m-inverse quasigroup (G, ·) has an inverse cycle
of length nm if and only if |Jm

ρ | = n. Recall that J ′mρ = C−1Jm
ρ A and J ′mρ = B−1Jm

ρ C
if and only if CJ ′mρ A−1 = Jm

ρ and BJ ′mρ C−1 = Jm
ρ . Consider the following inductive

process.

J2m
ρ = CJ ′mρ A−1BJ ′mρ C−1

︸ ︷︷ ︸
2=2×1

= CJ ′2m
ρ C−1 , J4m

ρ = CJ ′2m
ρ C−1CJ ′2m

ρ C−1

︸ ︷︷ ︸
4=2×2

= CJ ′4m
ρ C−1

J6m
ρ = CJ ′4m

ρ C−1CJ ′2m
ρ C−1

︸ ︷︷ ︸
6=2×3

= CJ ′6m
ρ C−1 , J8m

ρ = CJ ′6m
ρ C−1CJ ′2m

ρ C−1

︸ ︷︷ ︸
8=2×4

= CJ ′8m
ρ C−1

...
...

Jqm
ρ = CJ ′(q−2)m

ρ C−1CJ ′2m
ρ C−1

︸ ︷︷ ︸
q=2×k

= CJ ′qm
ρ C−1 , J (q+2)m

ρ = CJ ′qm
ρ C−1CJ ′2m

ρ C−1

︸ ︷︷ ︸
q+2=2×(k+1)

= CJ ′(q+2)m
ρ C−1

...
...

Jnm
ρ = CJ ′(n−2)m

ρ C−1CJ ′2m
ρ C−1

︸ ︷︷ ︸
n=2×(q+1)

= CJ ′nm
ρ C−1 , J (n+2)m

ρ = CJ ′nm
ρ C−1CJ ′2m

ρ C−1

︸ ︷︷ ︸
n+2=2×(q+2)

= CJ ′(n+2)m
ρ C−1.

So, Jnm
ρ = CJ ′nm

ρ C−1 for all even n ∈ Z+. Thus, |Jρ| = nm if and only if |J ′ρ| = nm
which justifies the claim.

2. Let n be an odd positive integer.

J2m
ρ = CJ ′mρ A−1BJ ′mρ C−1

︸ ︷︷ ︸
2=2×1

= CJ ′2m
ρ C−1 , J3m

ρ = CJ ′2m
ρ C−1CJ ′mρ A−1

︸ ︷︷ ︸ = CJ ′3m
ρ A−1

J4m
ρ = CJ ′2m

ρ C−1CJ ′2m
ρ C−1

︸ ︷︷ ︸
4=2×2

= CJ ′4m
ρ C−1, J5m

ρ = CJ ′4m
ρ C−1CJ ′mρ A−1

︸ ︷︷ ︸ = CJ ′5m
ρ A−1

...
...

Jqm
ρ = CJ ′(q−2)m

ρ C−1CJ ′2m
ρ C−1

︸ ︷︷ ︸ = CJ ′qm
ρ C−1 , J (q+1)m

ρ = CJ ′qm
ρ C−1CJ ′mρ A−1

︸ ︷︷ ︸ = CJ ′(q+1)m
ρ A−1

...
...

Jnm
ρ = CJ ′(n−2)m

ρ C−1CJ ′2m
ρ C−1

︸ ︷︷ ︸ = CJ ′nm
ρ C−1 , J (n+1)m

ρ = CJ ′nm
ρ C−1CJ ′mρ A−1

︸ ︷︷ ︸ = CJ ′(n+1)m
ρ A−1.

7



So, Jnm
ρ = CJ ′nm

ρ A−1 for all odd n ∈ Z+. Thus, if |Jρ| = nm or |J ′ρ| = nm then,
|J ′ρ| = nm or |Jρ| = nm if and only if (G, ·) ∼= (H, ◦) which justifies the claim.

Corollary 3.1 Let (G, ·) and (H, ◦) be two distinct quasigroups that are isotopic under the
triple (A,B,C). If G is a m-inverse quasigroup with the Tm condition, then H is a m-inverse
quasigroup and so:

1. there exists α, β ∈ S ′m(G) i.e α and β are m-weak inverse permutations and

2. J ′ρ = J ′λ ⇒ Jm
ρ = Jm

λ and Jρ = Jλ ⇒ J ′mρ = J ′mλ

Proof
By Theorem 3.1, A = B and J ′mρ = C−1Jm

ρ A = B−1Jm
ρ C or J ′mλ = C−1Jm

λ B = A−1Jm
λ C.

1. C−1Jm
ρ A = B−1Jm

ρ C ⇔ Jm
ρ A = CB−1Jm

ρ C ⇔ Jm
ρ = CB−1Jm

ρ CA−1 =
CA−1Jm

ρ CA−1 = αJm
ρ α where α = CA−1. This implies that α = CA−1 ∈ S ′m(G, ·).

2. C−1Jm
λ B = A−1Jm

λ C ⇔ Jm
λ B = CA−1Jm

λ C ⇔ Jm
λ = CA−1Jm

λ CB−1 =
CB−1Jm

λ CB−1 = βJm
λ β where β = CB−1. This implies that α = β = CB−1 ∈

S ′m(G, ·).
3. J ′mρ = C−1Jm

ρ A = B−1Jm
ρ C, J ′mλ = C−1Jm

λ B. J ′ρ = J ′λ ⇒ J ′mρ = J ′mλ ⇔ C−1Jm
ρ A =

C−1Jm
λ B = C−1Jm

λ A ⇔ Jm
λ = Jm

ρ ⇔ Jλ = Jρ.

Lemma 3.1 Let (G, ·) be a m-inverse quasigroup with the Tm condition and isotopic to
another quasigroup (H, ◦). (H, ◦) is a m-inverse quasigroup and G has a weak inverse
permutation.

Proof
From the proof of Corollary 3.1, α = β, hence the conclusion.

Theorem 3.3 If two distinct quasigroups are isotopic under the T condition. And any one
of them is a m-inverse quasigroup and has a trivial set of m-weak inverse permutations, then
the two quasigroups are both m-inverse quasigroups that are isomorphic.

Proof
From Lemma 3.1, α = I is a weak inverse permutation. In the proof of Corollary 3.1,
α = CA−1 = I ⇒ A = C. Already, A = B, hence (G, ·) ∼= (H, ◦).
Remark 3.1 Theorem 3.3 describes isotopic m-inverse quasigroups that are isomorphic by
the Tm condition(for a special case).
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Application To Cryptography In application, it is assumed that the message to be
transmitted can be represented as single element y of a m-inverse quasigroup (G, ·) and that
this is enciphered by pre-multiplying by another element x of G and then compute (xy)Jm

ρ

so that the encoded message is (xy)ρm
. At the receiving end, the message is deciphered by

post-multiplying by xJm+1
ρ to get yJm

ρ from which the original message y can be extracted
from.

Let (G, ·) be a m-inverse quasigroup with an inverse cycle of length nm where n is an even
positive integer. Let (H, ◦) be a quasigroup that is isotopic to (G, ·) under the Tm condition.
Then by Theorem 3.1, H is a m-inverse quasigroup and by Theorem 3.2, H has an inverse
cycle of length nm. So, according to Theorem 3.1, by the choice of the triple (A,B, C) been
an isotopism from G onto H such that the Tm condition holds, if G is an m-inverse quasigroup
with an inverse cycle of length nm then H is a m-inverse quasigroup with an inverse cycle of
length nm. So, the secret key for the systems is the pair {(A,B,C), Tm}. Thus whenever a set
of information or messages is to be transmitted, the sender will enciphere in G(as described
earlier on) and then enciphere again with {(A,B, C), Tm} to get a m-inverse quasigroup
with an inverse cycle of length nm H which is the set of encoded messages. At the receiving
end, the combined message H is deciphered by using an inverse isotopism(i.e inverse key
{(A−, B−1, C−1), T }) to get G and then deciphere again(as described earlier on) to get the
messages. The secret key can be changed over time. Futhermore, after enciphering in G and
with {(A,B,C), Tm} to get H, enciphering can be done again in H the ways it was done in
G.

The method described above is a double(triple) encryption and its a double(triple) pro-
tection. It protects each piece of information(element of the quasigroup) and protects the
combined information(the quasigroup as a whole). Its like putting on a pair of socks and
shoes or putting on under wears and clothes, the body gets better protection.

Thieves and robbers are fond of stealing items and goods and changing there original
forms by selling off their various parts to different locations. By doing these, they pose a
great challenge and difficulty to security agencies in tracking down the culprits.

4 Conclusion and Future Study

Keedwell and Shcherbacov [12, 13] have also generalized m-inverse quasigroup to quasigroups
called (r, s, t)-inverse quasigroups. It will be interesting to study the universality of m-inverse
loops and (r, s, t)-inverse quasigroups in general sense. These will generalize the works of J.
M. Osborn and R. Artzy on universal WIPLs and CIPLs respectively.
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