
FACTORING IS EQUIVALENT TO GENERIC RSA

Divesh Aggarwal and Ueli Maurer

Department of Computer Science,
ETH Zurich, 8092 Zurich, Switzerland
{divesha,maurer}@inf.ethz.ch

Abstract. We show that a generic ring algorithm for breaking RSA in ZN can be
converted into an algorithm for factoring the corresponding RSA-modulus N . Our
results imply that any attempt at breaking RSA without factoring N will be non-
generic and hence will have to manipulate the particular bit-representation of the
input in ZN . This provides new evidence that breaking RSA may be equivalent to
factoring the modulus.

1. Introduction

1.1. RSA vs Factoring. The security of the well-known RSA public key encryption
and signature scheme [16] relies on certain number theoretic assumptions on the ring
ZN , where N is a random variable chosen according to a certain probability distribution
over the product of two primes p and q, for example an element chosen uniformly
at random from the set of products of two random k-bit primes satisfying certain
conditions. The following are some of the assumptions that have been studied in this
context.

RSA Assumption: Given N , an integer e > 1 that is relatively prime to φ(N)1,
and an element a chosen uniformly at random from Z∗N , no probabilistic polynomial
time adversary can compute x ∈ Z∗N such that xe = a(mod N) with non-negligible
probability.2

Low-exponent RSA (LE-RSA) Assumption: This is the RSA assumption under the
additional constraint that e is bounded by a constant.

’Hardness of Factoring’ Assumption: Given N , no probabilistic polynomial time
adversary can find a non-trivial factor of N with non-negligible probability.

It is easy to see that if the RSA assumption holds then factoring is hard. However it is
a long-standing open problem whether the converse is true. It is therefore interesting to
investigate reasonable restricted models of computation and prove that in such a model
factoring is equivalent to the RSA problem. In a restricted model one assumes that
only certain kinds of operations are allowed. Nechaev [14] and Shoup [17] introduced

1e can take any integer value, and so can in principle be much larger than N
2A function f(k) is considered a negligible function of k, if for all c > 0 and sufficiently large k,

|f(k)| < 1
kc . In this paper k is taken to be log(N) i.e. the size of the input.

1

the concept of generic algorithms which are algorithms that do not exploit any property
of the representation of the elements. They proved lower bounds on the complexity
of computing discrete logarithms in the context of generic algorithms. Computing
Discrete Logarithms is one of the two problems (the other is Integer Factorization)
whose hardness assumption most existing public key cryptosystems rely on. Maurer [12]
provided a simpler and more general model for modeling and analyzing representation-
independent algorithms.

1.2. Generic Model of Computation. We give here a brief description of the model
of [12], sufficient for our purpose. The model is characterized by a black-box B which
can store values from a certain set S in internal state variables x0, x1, x2, · · · .

The initial state consists of the values of [x0, · · · , x`], which are set according to
some probability distribution (e.g. the uniform distribution).

The black box B allows two types of operations: computation operations on internal
state variables and queries about the internal state variables. We give a more formal
description of these operations.

Computation operations. For a set Π of operations on S of some arities, a computa-
tion operation consists of selecting an operation f ∈ Π (say t-ary) as well as the indices
i1, · · · , it+1 of t+1 state variables. B computes f(xi1 , · · · , xit) and stores the result in
xit+1 .

Relation Queries. For a set Σ of relations (of some arities) on S, a query consists of
selecting a relation ρ ∈ Σ (say t-ary) as well as the indices i1, · · · , it of t state variables.
The query is replied by ρ(xi1 , · · · , xit).

The complexity of an algorithm for solving any problem in this model can be mea-
sured by the number of interactions it can perform with the black-box B.

For this paper, the set S is ZN . A generic ring algorithm is an algorithm that is
just allowed to perform the ring operations, i.e., addition and multiplication as well
as the inverse ring operations (negatives and multiplicative inverses), and can test
for equality. Many results in the literature are restricted in that they exclude the
inverse operations, but since these operations are easy to perform in ZN , they should
be included as otherwise the results are only of limited interest.

In this model of [12], for example, generic ring algorithms on Z∗N correspond to
Π = {+,−, ·, /} and the set of relations being Σ = {=}. A straight-line program (SLP)
on ZN corresponds to the case where Σ is the empty set, i.e., no equality tests are
possible.

In this paper, we show that under the assumption that factoring N is hard, given any
e relatively prime to φ(N) and an element a chosen uniformly at random from Z∗N , no
probabilistic polynomial-time generic ring algorithm can compute, with non-negligible
probability, an x ∈ Z∗N such that xe = a(mod N).

1.3. Related Work and Contributions of this Paper. Boneh and Venkatesan [2]
showed that any straight line program that efficiently factorsN given access to an oracle
solving the LE-RSA problem (RSA problem when the public exponent e is small) can

2

be converted into a real polynomial-time algorithm for factoring N . This means that if
factoring is hard, then there exists no straight-line reduction from factoring to LE-RSA.

Brown [3] showed that if factoring is hard then the LE-RSA problem is intractable
for straight-line programs without multiplicative inverses, i.e., Π = {+,−, ·}. More pre-
cisely, he proves that an efficient SLP for breaking LE-RSA can always be transformed
into an efficient factoring algorithm.

Leander and Rupp [10] generalized the result of [3] to generic ring algorithms which,
as explained above, can test the equality of elements. Again, multiplicative inverses
are excluded (Π = {+,−, ·}).

Another theoretical result about the hardness of the RSA problem is due to Damgard
and Koprowski [7]. They studied the problem of root extraction in finite groups of
unknown order and proved that the RSA problem is intractable with respect to generic
group algorithms. This corresponds to excluding addition and multiplicative inversion
from the set of operations (Π = {·}).

Our results generalize the previous results in many ways. (Actually, Theorem 9 ap-
pears to be the most general statement about the equivalence of factoring and breaking
RSA in a generic model.)

• First, compared to [3, 10] we consider the full-fledged RSA problem (not only
LE-RSA) with exponent e of arbitrary size, even with bit-size much larger than
that of N .
• Second, compared to [7, 3, 10] we consider the unresticted set of ring operations,

including multiplicative inverses. This generalization is important since there
are problems that are easy to solve in our generic ring model but are provably
hard to solve using the model without multiplicative inversion. Actually, as
has been pointed out by the author of [3] himself, computing the multiplicative
inverse of a random element in ZN is hard if Π = {+,−, ·}.
• Third, we allow for randomized generic algorithms.

1.4. Organization of the Paper. The rest of the paper is structured as follows: In
Section 2, we introduce basic definitions and notations and show a few preliminary
results. In Section 3, we show that under the assumption that factoring is hard, no
adversary using a generic ring algorithm can solve the RSA problem. Section 4 provides
some conclusions and lists some open problems.

2. Preliminaries

2.1. Straight-Line Programs. Straight-line programs are algorithms that correspond
to Π = {+,−, ·, /} and Σ = {}.
More concretely:

Definition 1. A straight-line program(SLP) of length L on ZN and on input {y1, · · · , y`} ⊂
ZN is a sequence of (random) tuples (ak, bk, ◦k) for ` + 1 ≤ k ≤ L, where, for all k,
(ak, bk, ◦k) is chosen according to some distribution conditioned on x1 · · · , xk−1 and
xi (ith internal state variable) is given by x0 = 1, xm = ym for 1 ≤ m ≤ ` and
xm = xam ◦m xbm for `+ 1 ≤ m ≤ L. The output of the SLP is xL.

3

Note that our definition of a SLP is more general than the one used in [2, 3] because
we include the inverse ring operations and allow randomization.

For any SLP P of length L, each xk for 0 ≤ k ≤ L is of the form

xk =
Pk(y1, · · · , y`)
Qk(y1, · · · , y`)

,

where Pk and Qk are polynomials. The following lemma states that the degree of Pk
and Qk is at most exponential in k.

Lemma 2. Pk and Qk are polynomials of degree at most 2k in each of the yi’s.

Proof. We prove this by induction on k.
The result is trivially true for k = 0. We assume Pr and Qr are polynomials of degree
at most 2r in each of the yi’s for all r < k.
Pk

Qk
=

Pak

Qak
◦k

Pbk

Qbk

for some ak, bk, ◦k.
• Case (i): ◦k ∈ {+,−}.

In this case deg(Pk) ≤ max(deg(Pak
) + deg(Qbk), deg(Qak

) + deg(Pbk)) ≤ 2ak +
2bk ≤ 2k−1 + 2k−1 = 2k and deg(Qk) ≤ deg(Qak

) + deg(Qbk) ≤ 2ak + 2bk ≤
2k−1 + 2k−1 = 2k.
• Case (ii): ◦k ∈ {·, /}.

Here, max(deg(Pk), deg(Qk)) ≤ max(deg(Pak
), deg(Qak

))+max(deg(Pbk), deg(Qbk)) ≤
2ak + 2bk ≤ 2k−1 + 2k−1 = 2k.

�

Next, we show that any SLP can be converted into a SLP that does not require the
multiplicative inverse operation, i.e., for which Σ = {+,−, ·}, without increasing the
complexity by more than a constant factor.

Lemma 3. There exists a SLP of length 4L that uses only the operations {+,−, ·} and
contains Pk(y1 · · · , y`) and Qk(y1 · · · , y`) for 1 ≤ k ≤ L.

Proof. We prove this by induction on L.
The result is trivial for L = 0. We suppose it is true for L = L′. Therefore there exists
a SLP of length len ≤ 4L′ that uses only the operations {+,−, ·} and contains Pk and
Qk for 1 ≤ k ≤ L′. Let this program compute the values x′i for 1 ≤ i ≤ len. Let
r = L′ + 1. Now consider the following cases:

• Case (i): ◦r ∈ {+,−}.
Let x′len+1 = Par · Qbr , x′len+2 = Pbr · Qar , x′len+3 = x′len+1 ◦r x′len+2 = Pr and
x′len+4 = Qar ·Qbr = Qr.
• Case (ii): ◦r ∈ {·}.

Let x′len+1 = Par · Pbr = Pr and x′len+2 = Qar ·Qbr = Qr.
• Case (iii): ◦r ∈ {/}.

Let x′len+1 = Par ·Qbr = Pr and x′len+2 = Qar · Pbr = Qr.

Therefore, in each of the cases, we get a SLP of length at most len+ 4 ≤ 4(L′ + 1).
�

4

2.2. Generic Ring Algorithms. A generic ring algorithm is allowed to test for equal-
ity of elements in the black-box, in addition to performing the arithmetic operations.
It corresponds to Π = {+,−, ·, /} and Σ = {=}.
More concretely:

Definition 4. A generic ring algorithm of L steps in ZN is an algorithm that takes as
input some elements of the ring ZN , perform one operation in each step and outputs
an element in ZN . Each operation performed is either a computation operation from
the set Π = {+,−, ·, /} on two previously computed values, or it is a query whether
two of the previously computed values are equal.

2.3. The Generic RSA Problem. As mentioned earlier, in this paper we restrict
our attention to the case where the adversary is only allowed to use a generic ring
algorithm to solve the RSA problem. We refer to the RSA assumption in this case as
the Generic RSA assumption.

Generic RSA Assumption: Given N , an integer e > 1 that is relatively prime to φ(N),
and an element a chosen uniformly at random from Z∗N , no probabilistic polynomial
time generic ring algorithm can compute x ∈ Z∗N such that xe = a(mod N) with non-
negligible probability.

We begin by proving the following lemma that shows that under the ’factoring is hard’
assumption, if a problem is hard to solve using a straight line program, then it is
also hard to solve using a generic ring algorithm. This generalizes the argument that
Leander et al [10] used for generalizing the result of [3] from SLPs to generic ring
algorithms (without division operation).

Lemma 5. For any L-step generic ring algorithm A on ZN , for all 0 < c < 1, either
there exists an L-step SLP which, on random input from Z∗N

`, gives the same output
as A with probability at least 1− c, or there exists an algorithm that factors N and has

expected running time O(L
4·log2(N)

c2
).

Proof. Let N = pq and let {y1, · · · , y`} ⊂ ZN be randomly chosen elements that are
given as input to A. Since A is an L step algorithm the total number of values it
computes in the ring can be at most L. Let {xk|1 ≤ k ≤ L′}(where L′ ≤ L) be the
values computed by A. Consider the following two cases.

CASE 1: ∃r, s such that c
L
≤ Pr(xr = xs) ≤ 1− c

L
.

In this case we give an algorithm that factors N . The algorithm proceeds as follows:

Repeat:

(1) Generate random elements y1, · · · , y` ∈ Z∗N .
(2) Run A to get xk for 1 ≤ k ≤ L′.
(3) For all t, u ≤ L′, compute g = gcd(xt − xu, N). If g /∈ {1, N}, return g.

The algorithm is correct because it continues till we get a non-trivial factor of N .
We now give a lower bound on the success probability of one run of the loop.

5

Let Pr(xr = xs mod p) and Pr(xr = xs mod q) be γp and γq respectively. It is easy
to see that xr − xs is a non-zero non-invertible element of ZN if xr − xs = 0 modulo
one of p and q and xr − xs 6= 0 modulo the other. Therefore the probability that one
run of the algorithm is successful is at least γp(1− γq) + γp(1− γq).
Clearly, Pr(xr = xs mod N) = γp · γq, which implies c

L
≤ γp · γq ≤ 1− c

L
.

γp · γq ≥ c
L
⇒ γp ≥ c

L
and γq ≥ c

L
(because γp and γq are at most 1).

Also, γp · γq ≤ 1− c
L
⇒ either γp ≤ 1− c

2L
or γq ≤ 1− c

2L
(because if γp > 1− c

2L
and

γq > 1− c
2L

, then γp · γq > (1− c
2L

)2 > 1− c
L

).

So the success probability of one run of the loop is at least c
L
· (1− (1− c

2L
)) = c2

2L2 .
Hence the expected number of repetitions till we get a factor of N is O(L2/c2). Each

gcd computation can be performed in O(log2(N)) time. Hence the expected time

complexity of the algorithm is O(L
2·L′2·log2(N)

c2
) = O(L

4·log2(N)
c2

).

CASE 2: ∀r, s such that 0 ≤ r, s ≤ L′, either Pr(xr = xs) <
c
L

or Pr(xr = xs) >
1− c

L
.

In this case, we give an L′ step SLP that computes the values x0, · · · , xL′ and hence
gives the same output as A with probability at least c. Let the SLP be given by x′k for
0 ≤ k ≤ L′. The other parameters, as in the definition of SLP, are given by ak, bk, ◦k
for 0 ≤ k ≤ L′. What we want essentially is that the SLP should compute the same
elements of Z∗N as A without using any query of the equality relation.The SLP proceeds
as follows. For each computation operation performed by A, xk = xak

◦k xbk the SLP
performs the computation operation x′k = x′ak

◦k x′bk . For each equality test in A of
some two elements, say xi and xj, if Pr(xi = xj) <

c
L

, then the SLP assumes xi 6= xj,
else (if Pr(xr = xs) > 1− c

L
) the SLP assumes xi = xj.

Now to compute the probability that xk = x′k for 0 ≤ k ≤ L′. Clearly this happens if
all the equality test results that the SLP assumes are correct. The assumption on the
result of each equality test is incorrect with probability at most c/L. There are a total
of at most L equality tests, and so the SLP differs from A in at least one computed
value with probability at most c.

�

Therefore, if factoring is hard, then any problem that can be solved using a generic
algorithm can also be solved using a SLP. Since we assume that factoring is hard for all
results in this paper, for the rest of the paper, we can restrict our attention to SLPs.

3. Generic RSA is equivalent to factoring

In this section, we prove that under the assumption that factoring N is hard, the
Generic RSA assumption holds. The arguments used to prove the results of this section
are motivated by those in [3].

Lemma 6. Let p be a prime. A random degree d monic polynomial f(x) ∈ Zp[x] is
irreducible in Zp[x] with probability at least 1

2d
and has a root in Zp with probability at

least 1/2.
6

Proof. From the distribution theorem of monic polynomials (see, e.g., [11]), it follows

that the number of monic irreducible polynomials of degree d over Fp is at least pd

2d
.

Therefore f(x) will be an irreducible polynomial over Zp with probability at least 1
2d

.

The number of monic polynomials over Zp with at least one root is:

d∑
l=1

(−1)l−1

(
p

l

)
pd−l. (1)

This can be seen by applying the principle of inclusion and exclusion. The terms in
this summation are in decreasing order of their absolute value. So, taking the first two

terms, this sum is greater than
(
p
1

)
pd−1 −

(
p
2

)
pd−2 which is greater than pd

2
. Hence the

probability that f(x) has a root in Zp is at least 1/2.
�

For any polynomials A(x), B(x) ∈ ZN [x], let gcdp(A(x), B(x)) and gcdq(A(x), B(x))
be the gcd of the polynomials modulo p and q respectively. We state the following
observation that is easy to see.

Observation 7. Let h1(x), h2(x) ∈ ZN [x]. Then:

• If Euclid’s algorithm, when run on h1(x) and h2(x), fails3, some step of the
algorithm yields a non-trivial non-invertible element of ZN . We denote this
element as H(h1(x), h2(x)).
• If deg(gcdp(h1(x), h2(x))) 6= deg(gcdp(h1(x), h2(x))), then the Euclid’s algo-

rithm, when run on (h1(x), h2(x)), fails.

Lemma 8. Let α be an element chosen uniformly at random from ZN . Let A be an L
step SLP that takes as input α and a positive integer e > 1 such that (e, φ(N)) = 1 and
outputs an element β ∈ ZN such that Pr(βe = α) ≥ µ. Then there exists an algorithm

that factors N and whose expected running time is O(L
4+log4(e)+log2(N)

µ
).

Proof. Since the only possible operations in a SLP are the arithmetic operations, the
only functions of the input that can be computed by A are rational functions in α. Let

β = f(α)
g(α)

, where f(x) and g(x) are polynomials in ZN [x]. Let P (x) = f(x)e− x · g(x)e.

Then, Pr(P (α) = 0 mod n) ≥ µ.
The factoring algorithm proceeds as follows:

Repeat until the algorithm returns

(1) Choose a monic polynomial h(x) uniformly at random from all monic polyno-
mials of degree d (= log(e) + L) in ZN [x].

(2) Compute h′(x), the derivative of h(x) in ZN [x].
(3) Then choose a random element r(x) ∈ ZN [x]/h(x).
(4) Compute z(x) = f(r(x))e − g(r(x))e · r(x) in ZN [x]/h(x).
(5) Run Euclid’s algorithm in ZN [x] on the pairs h(x) and z(x). If this fails return

gcd(N,H(h(x), z(x))).

3Euclid’s Algorithm could fail since ZN [x] is not a Euclidean domain.
7

(6) Run Euclid’s algorithm in Zn[x] on the pairs h(x) and h′(x). If this fails return
gcd(N,H(h(x), h′(x))).

By Observation 7, if the algorithm terminates, it yields a factor of N .
Now we compute the success probability of one loop of the algorithm. By Lemma

6, the probability that h(x) is irreducible modulo q and has a root modulo p is at least
1
2d
· 1

2
= 1

4d
. We assume this for the rest of the proof.

Let the root of h(x) modulo p be s. Therefore (x− s) | h(x) in Zp[x].

• Case 1: (x− s)2 | h(x) in Zp[x].
This implies (x− s) | gcdp(h(x), h′(x)).
However, since h(x) is irreducible in Zq[x], gcdq(h(x), h′(x)) ∈ Zq.
Therefore gcdp(h(x), h′(x)) and gcdq(h(x), h′(x)) have unequal degree, which
implies, by Observation 7, that the Euclid’s algorithm on h(x) and h′(x) fails
and hence step 6 yields a factor of x.
• Case 2: (x− s)2 - h(x) in Zp[x].

Let h(x) = h1(x) · (x− s) mod p. Then:

ZN [x]/h(x) ∼= Zp[x]/h(x)× Zq[x]/h(x) ∼= Zp[x]/(x− s)× Zp[x]/h1(x)× Fqd . (2)

because Zq[x]/h(x) ∼= Fqd as h(x) is irreducible in Zq[x] by our assumption.
Under this isomorphism, let r(x) and z(x) map to the tuples (r(s)(mod

p), u(x), rq(x)) and (z(s)(mod p), v(x), zq(x)) respectively, where rq(x) and zq(x)
are the reductions of r(x) and z(x) modulo q.
Since r(x) is uniformly random in ZN [x]/h(x), r(s) is uniformly random in
Zp[x]/(x− s) ∼= Zp.

This implies Pr(z(s) = 0 mod p) = Pr(f(r(s))e − g(r(s))e · r(s) = 0 mod
p) ≥ Pr(f(r(s))e − g(r(s))e · r(s) = 0 mod n) ≥ µ.
Therefore, with probability at least µ, (x− s) divides z(x) in Zp[x], which im-
plies Pr((x− s) divides gcdp(z(x), h(x))) ≥ µ.

Since r(x) is uniformly random in ZN [x]/h(x), rq(x) will be uniformly random
in Zq[x]/h(x) ∼= Fqd .

This implies Pr(zq(x) = 0) = Pr(P (rq(x)) = 0) ≤ deg(P)
qd (because a polynomial

over a finite field can have at most as many roots as the degree of the polyno-
mial).

So, by Lemma 2, Pr(zq(x) 6= 0 in Zq[x]) ≥ 1 − 2L·(e+1)
qd ≥ 1

2
(because d =

L+ log(e)).
z(x) 6= 0 in Zq[x] implies gcdq(z(x), h(x)) has degree 0 because h(x) is irre-
ducible modulo q.
Therefore the probability that the Euclid’s algorithm on h(x) and z(x) fails is
at least 1

4d
· µ · 1

2
= µ

8d
.

Now we compute the time complexity of one run of the loop.
Generating h(x) and r(x) can be done by choosing d values uniformly at random from
ZN and can be done in time Θ(d). Computing the derivative requires Θ(d) operations
in ZN .

8

By Lemma 3, there exists a SLP on ZN with 4L steps that contains f(α) and g(α)
that uses only the operations {+,−, ·}. eth power can be computed by such a SLP
using log(e) steps. So, we can find an O(L + log(e)) step SLP on ZN that computes
P (x) for a given x ∈ ZN .

Each multiplication operation in ZN [x]/h(x) can be implemented by at most d2

multiplication operations and at most d2 additions operations in ZN . Each addition
operation can be performed by O(d) operations in ZN . Therefore, P (r(x)) = z(x) can
be computed in time O(d2 · L + d2 · log(e)) = O(d3). Euclid’s algorithm on z(x) and
h(x) can be performed by O(d(log(N) + d)) operations. So, the running time of one
loop of the algorithm is O(d3 + log(N)d).

The expected number of times we need to run this loop is Θ(d
µ
). So the expected

running time of the algorithm isO(d3+log(N)d)·Θ(d
µ
) = O(d

4+log(N)d2

µ
) = O(d

4+log(N)2

µ
).

Since d = log(e) + L, we get an upper bound on the expected running time of the

factoring algorithm as O(L
4+log4(e)+log2(N)

µ
).

�

Using Lemma 5 and Lemma 8, we get the following result.

Theorem 9. The Generic RSA assumption on ZN holds if and only if factoring N is
hard.

4. Conclusions and open problems

In this paper we showed that if factoring is hard, then no generic algorithm can solve
the RSA problem efficiently. This solves, in the generic model, the long-standing open
problem of the equivalence of factoring and breaking RSA. There are yet other problems
that can be looked at in this model. For instance, the Cramer-Shoup cryptosystem
and signature scheme relies on the ”Strong RSA Assumption” [8, 1], which allows
the adversary to himself choose an exponent e > 1. A natural question would be
whether we can show that factoring is equivalent to solving strong RSA using a generic
algorithm. It is not clear whether this statement is true. The proof of Lemma 8,
however, does not work for this case because here e will depend on the input α. As
a result, in the proof of Lemma 8, P (α) = f(α)e − α · g(α)e is not a polynomial in α
(because the exponent is not independent of α).

References

[1] N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without
trees. In Jr. Burton S. Kaliski, editor, EUROCRYPT 1997 volume 1233 of Lecture Notes in Com-
puter Science, pages 480-494. Springer-Verlag 1997.

[2] D. Boneh and R. Venkatesan. Breaking RSA may be easier than factoring. In K. Nyberg, editor,
Advances in Cryptology - EUROCRYPT 1998, volume 1403 of Lecture Notes in Computer Science,
pages 59-71. IACR, Springer, 1998.

[3] D. R. L. Brown. Breaking RSA may be as difficult as factoring. Cryptology ePrint Archive, Report
205/380, 2006.

[4] L. Childs. A concrete introduction to higher algebra. New York: Springer-Verlag, 1992.
9

[5] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In Hugo Krawczyk, editor, CRYPTO 1998, volume 1462 of Lecture Notes
in Computer Science, pages 13-25. Springer-Verlag 1998.

[6] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. In 6th ACM
Conference on Computer and Communications Security, pages 46-52. ACM, Nov 1999.

[7] I. Damgard and M. Koprowski. Generic lower bounds for root extraction and signature schemes
in general groups. in Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes
in Computer Science, pages 256-271. Springer-Verlag, 2002.

[8] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial re-
lations. In Jr. Burton S. Kaliski, editor, CRYPTO 1997 volume 1294 of Lecture Notes in Computer
Science, pages 16-30. Springer-Verlag 1997.

[9] S. Hohenberger. The cryptographic impact of groups with infeasible inversion. Master’s thesis,
Massachussetts Institute of Technology, EECS Dept., Cambridge, MA, June 2003.

[10] G. Leander and A. Rupp. On the Equivalence of RSA and Factoring Regarding Generic Ring
Algorithms. In Asiacrypt 2006 volume 4284 of Lecture Notes in Computer Science, pages 241-251.
Springer-Verlag 2006.

[11] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge Uni-
versity Press, 1994.

[12] U. Maurer. Abstract models of computation in cryptoraphy. In Nigel P. Smart, editor, Cryptog-
raphy and Coding 2005, volume 3796 of Lecture Notes in Computer Science, pages 1-12. Springer-
Verlag, 2005.

[13] D. Micciancio. The RSA group is pseudo-free. In R. Cramer, editor, EUROCRYPT 2005 volume
3494 of Lecture Notes in Computer Science, pages 387-403. Springer-Verlag 2005.

[14] V. I. Nechaev. Complexity of a deterministic algorithm for the discrete logarithm. Mathematical
Notes, volume 55, no. 2, pages 91-101, 1994.

[15] R.L. Rivest. On the notion of pseudo-free groups. In M. Naor, editior, Theory of Cryptogra-
phy conference - TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages 505-521,
Cambridge, MA, USA, Feb. 2003. Springer.

[16] R. Rivest, A. Shamir and L. Adleman. A method for obtaining digital signatures and public key
cryptosystems. Communications of the ACM, volume 21: pages 120-126, 1978.

[17] V. Shoup. Lower bounds for discrete logarithms and related problems. In Jr. Burton S. Kaliski,
editor, EUROCRYPT 1997 volume 1233 of Lecture Notes in Computer Science, pages 256-266.
Springer-Verlag 1997.

10

	1. Introduction
	1.1. RSA vs Factoring
	1.2. Generic Model of Computation
	1.3. Related Work and Contributions of this Paper
	1.4. Organization of the Paper

	2. Preliminaries
	2.1. Straight-Line Programs
	2.2. Generic Ring Algorithms
	2.3. The Generic RSA Problem

	3. Generic RSA is equivalent to factoring
	4. Conclusions and open problems
	References

