
Unconditionally Reliable and Secure Message
Transmission in Directed Networks Revisited

Arpita Patra Ashish Choudhary C. Pandu Rangan∗

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Chennai India 600036
Email:{ arpita,ashishc }@cse.iitm.ernet.in, rangan@iitm.ernet.in

Abstract

In this paper, we re-visit the problem of unconditionally reliable message transmission (URMT)
and unconditionally secure message transmission (USMT) in a directed network under the presence
of a threshold adaptive Byzantine adversary, having unbounded computing power. Desmedt et.al [5]
have given the necessary and sufficient condition for the existence of URMT and USMT protocols
in directed networks. Though their protocols are efficient, they are not communication optimal. In
this paper, we prove for the first time the lower bound on the communication complexity of URMT
and USMT protocols in directed networks. Moreover, we show that our bounds are tight by giving
efficient communication optimal URMT and USMT protocols, whose communication complexity
satisfies our proven lower bounds.

Keywords: Error Probability, Information Theoretic Security, Byzantine Adversary.

1 Introduction

Consider the following problem: a sender S and a receiver R are a part of directed synchronous network
and are connected by uni-directional vertex disjoint paths/channels (also called as wires), which are
directed either from S to R or vice-versa. An adversary At having unbounded computing power controls
at most t wires between S and R in Byzantine fashion. S intends to communicate a message MS

containing ` field elements from a finite field F to R. The challenge is to design a protocol such that
after interacting in phases1 as per the protocol, R should output MR where MR = MS with probability
at least 1−poly(κ)2−κ and κ is the error parameter. Moreover this should hold irrespective of the way
adversary controls the t wires. This problem is called unconditionally reliable message transmission
(URMT)[7, 5]. The problem of unconditionally secure message transmission (USMT)[7, 5] has an
additional restriction that at the end of the protocol, the adversary should have no information about
MS in information theoretic sense.

If S and R are directly connected by a private channel, as assumed in generic secure multiparty
computation protocols [2, 13, 3, 9], then reliable and secure communication between them is guaranteed.
However this assumption implies that the underlying network is a complete graph, which is impractical!
In incomplete networks, where S and R are NOT directly connected, URMT/USMT protocols help to
simulate a reliable/secure link with very high probability. There is another motivation to study USMT
protocols. Currently, the security of all existing public key cryptosystems, digital signature schemes,
etc are based on unproven hardness assumptions of certain number theoretic problems. However with
increase in computing speed and advent of new computing paradigm like Quantum computing may
render these assumptions to be baseless. In such a scenario, USMT protocols will help to achieve
information theoretic security against an all powerful adversary with very high probability.

Existing Literature: In [6] Dolev et.al have shown that PRMT/PSMT between S and R tolerating
At is possible in an undirected network iff there exists 2t + 1 bidirectional wires between S and R.

∗Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication and Compu-
tation sponsored by Department of Information Technology, Govt. of India.

1A phase is a send from S to R or vice-versa.

1

The problem of PRMT (PSMT) is same as URMT (USMT) except that at the end of the protocol, R
should correctly output MR(= MS) with zero error probability (i.e., κ = 0). URMT and USMT in the
presence of At was first introduced and solved by Franklin et.al [7] in undirected synchronous networks,
where they showed that URMT/USMT between S and R is possible iff there exists 2t+1 bi-directional
wires between S and R. The problem of URMT and USMT in directed networks was first studied by
Desmedt et.al [5]. Modeling the underlying network as a directed graph is well motivated because in
practice not every communication channel admits bi-directional communication. For instance, a base-
station may communicate to even a far-off hand-held device but the other way round communication
may not be possible. Following the approach of Dolev et.al[6], the authors in [5] have abstracted the
underlying directed network in the form of directed vertex disjoint paths/wires, which are directed
either from S to R or vice-versa. Under such settings, Desmedt et.al have shown that URMT/USMT
tolerating At is possible iff there are total 2t + 1 wires between S and R, of which at least t + 1 should
be directed from S to R [5]. Recently, Shankar et.al [10] have studied URMT in arbitrary directed
networks, where they have given the complete characterization of URMT tolerating At by considering
the underling directed network as a whole. Their characterization shows that it is inappropriate to
model an underlying directed network in the form of directed wires between S and R. However, it is
likely to take exponential time to verify whether a given directed network and At satisfies the conditions
given in [10] for the possibility of URMT. Moreover, as a part of their sufficiency condition, the authors
in [10] have given an exponential time URMT protocol. These two shortcomings motivate us to relook
at the wire based characterization of URMT and USMT given by Desmedt et.al, where we can afford
to design efficient protocols.

Network Model and Definitions: Even though it is inappropriate to model a directed graphs in the
form of directed wires, the characterization of URMT and USMT given by Desmedt et.al is advantageous
if the network is densely connected and there are sufficient number of wires between S and R. For such
networks, we can easily check whether URMT/USMT is possible tolerating At (we have to simply verify
whether there exists 2t+1 directed wires between S and R, of which t+1 are directed from S to R and
this can be done efficiently in polynomial time). Moreover, for such networks, Desmedt et.al have also
given an efficient, polynomial time URMT/USMT protocol. So the moral is that for enough densely
connected digraph, wire based abstraction of the network is preferable over the graph based one, where
the digraph is considered as a whole.

In this paper, we follow the model of Desmedt et.al and abstract the underlying network in the
form of a directed graph G = (V,E), where S and R are two special honest nodes in V . We assume
that there are n directed wires f1, f2, . . . , fn from S to R, called as top band and u directed wires
b1, b2, . . . , bu from R to S, called as bottom band. Moreover, the wires in the top band are disjoint from
the wires in the bottom band. A centralized adversary At with unbounded computing power actively
controls at most t wires between S and R, including the top and bottom band in a colluded fashion.
The adversary is adaptive; i.e., it can corrupt wires dynamically during the protocol execution and its
choice of corrupting a wire depends upon the data seen so far. A wire once under the control of At,
will remain so for the rest of the protocol. A wire under the control of At may behave arbitrarily and
the communication over such wires is fully known and dictated by At. We say that a wire is corrupted,
if the value(s) sent over the wire is changed arbitrarily by At. A wire which is not under the control
of At is called honest. We assume that n = max(t + 1, 2t − u + 1) and n + u = 2t + 1, which is the
minimum number of wires needed for the existence of URMT/USMT tolerating At [5]. The network
is synchronous and a protocol is executed in terms of phases, where a phase denotes a communication
either from S to R or vice-versa.

Our protocols provide unconditional security; i.e., information theoretic security with an error prob-
ability of poly(κ)2−κ in reliability, where κ is the error parameter (also known as security parameter).
The error probability of our protocols equals the probability to successfully guess an element from the
field over which computations are done. So to make the error probability at most poly(κ)2−κ, all our
computations are performed over a finite field F with |F| = GF(poly(κ)2κ). Thus each field element
can be represented by O(κ) bits. We use MS to denote the message, which is a sequence of ` ≥ 1 field
elements from F, that S intends to send to R.

Our Contributions: One of the key parameters of any URMT/USMT protocol is its communication
complexity, which is the number of field elements (bits) communicated by S and R in the protocol.
Though the USMT protocol of [5] is efficient, it is not optimal in terms of communication complexity. In

2

this paper, we prove the lower bound on the communication complexity of multiphase (more than one
phase) URMT(USMT) protocols2, which reliably(securely) sends a message containing ` field elements.
Moreover, we show that our bounds are tight by giving efficient, polynomial time communication opti-
mal URMT/USMT protocols which are first of their kind. Specifically, we show that (a) There exists
an O(u) phase URMT protocol, which reliably sends `κ bits by communicating O(`κ) bits. Thus we
get reliability with constant factor overhead in communication complexity. Since any URMT protocol
to send `κ bits needs to communicate Ω(`κ) bits, our protocol is communication optimal. (b) If at least
one wire in the bottom band is un-corrupted, then there exists an O(u) phase USMT protocol which
securely sends `κ bits by communicating O(`κ) bits. Thus we achieve security with constant factor
overhead in communication complexity. It is easy to see that the protocol is communication optimal.
(c) If full bottom band is corrupted by At, then any multiphase USMT protocol needs to communicate
Ω

(
n`
u κ

)
bits to securely sends (`κ) bits. Moreover, we show that the bound is tight by designing an

O(u) phase USMT which sends (`κ) bits by communicating O
(

n`
u κ

)
bits.

To design our protocols, we use several new techniques, which are of independent interest. For ease
of exposition, we assume that if S (R) is expecting some value(s) in some specific format from R (S)
along a wire and if nothing (or some syntactically incorrect value(s)) comes, then S (R) substitutes
predefined value(s) from F in the same specific format and continue the protocol. Thus, we separately
do not consider the case when nothing or something syntactically incorrect comes along a wire.

Tools Used:
1. Unconditionally Reliable Authentication: It is used to send a message M over a wire such
that if the wire is uncorrupted, then R correctly gets M and if the wire is corrupted, then R does
not get M but is able to detect the corruption with very high probability. This is done as fol-
lows: Let a non-zero (a, b) ∈R F2 is securely established between S and R in advance. S computes
x = URauth(M ; a, b) = aM + b and sends (M, x) to R over the wire. Let R receives (M ′, x′) along
the wire. R verifies x′ ?= URauth(M ′; a, b). If the test fails then R concludes that M ′ 6= M , otherwise
M ′ = M . The tuple (a, b) is called authentication key. Now similar to the proof of information checking
(IC) protocol of [9], the probability that M ′ 6= M , but still R fails to detect it is at most 1

|F| , which is
negligible in our context. Note that a remains information theoretically secure, even if the adversary
knows (M, x) by listening the wire.

2. Unconditionally Secure Authentication: Its goal is similar to unconditionally reliable authen-
tication, except that adversary should not get any information about M . This is done as follows: Let
(a, b, c) ∈R F3 − {(0, 0, 0)}, which is securely established between S and R in advance. S computes
(x, y) = USauth(M ; a, b, c) = (M +a, b(M +a)+ c) and sends (x, y) to R over the wire. Let R receives
(x′, y′) along the wire. R verifies y′ ?= bx′ + c. If the test fails then R concludes that wire is corrupted,
else R recovers x′ − a. It is easy to see that if the adversary knows (x, y), then also M is information
theoretic secure. Moreover, if (x′, y′) 6= (x, y), then except with error probability of at most 1

|F| (which
is negligible), R will be able to detect it.

3. Unconditional Hashing: Let (v1, v2, . . . , v`), ` > 1 be a random vector from F` and k ∈ F− {0}.
Then we define hash(k; v1, v2, . . . , v`) = v1 + v2k + v3k

2 + . . .+ v`k
`−1 [1]. Here k is called the hash key.

The probability that two different vectors map to the same hash value for an uniformly chosen hash
key is at most `

|F| . If At knows only k and hash(k; v1, v2, . . . , v`), then `− 1 elements in the vector will
be information theoretically secure.

4. Extracting Randomness: Suppose S and R by some means agree on a sequence of n random
numbers x = [x1 x2 . . . xn] ∈ Fn such that At knows n − f components of x, but has no information
about the other f components of x. However S and R do not know which values are known to At.
The goal of S and R is to agree on a sequence of f elements [y1 y2 . . . yf] ∈ Ff , such that At has no
information about [y1 y2 . . . yf]. This is done as follows [11]:

2Any single phase URMT/USMT protocol in directed network is no different from a single phase URMT(USMT)
protocol in undirected networks. So the connectivity requirement for single URMT (USMT) is same for both directed and
undirected networks. In [8], the lower bound on the communication complexity of single phase URMT/USMT protocol
in undirected networks is proved. The same bound holds in directed networks also.

3

Algorithm EXTRANDn,f (x): Let V be a n×f Vandermonde matrix with members in F. This matrix is published
as a part of the algorithm specification. S and R both locally compute the product [y1 y2 . . . yf] = [x1 x2 . . . xn]V .

2 Three Phase USMT Protocol of Desmedt et.al [5, 12]

We now briefly recall the three phase USMT protocol of [5] to send a message mS ∈ F from S to R.
We call the protocol as ΠExisting. Though we present the protocol in terms of phases, it was actually
presented in terms of rounds in [5], where in each round, either S or R does some communication
through a wire in top or bottom band respectively. But one can easily verify that when expressed in
terms of phases, the USMT protocol of [5] takes three phases. The current informal description of the
protocol is taken from [12], where as the formal description is taken from [5]. The main goal of recalling
the protocol here is to highlight few techniques which are used in the protocol. These techniques are
also used in our URMT and USMT protocols. In the protocol, there are following two cases: (a) There
exists t+1 non-faulty wires in the top band; (b) There exists less that t+1 non-faulty wires in the top
band, which implies that at least one wire in the bottom band is non-faulty.

Phase I: S to R

1. S selects a random polynomial p(x) of degree t over F such that p(0) = mS and computes the secret shares
(sS

1 , sS
2 , . . . , sS

n), where sS
i = p(i), 1 ≤ i ≤ n. In order to authenticate each sS

i , S selects n random non-zero
authentication keys (aS

i,j , b
S
i,j) ∈ F2, 1 ≤ j ≤ n. In addition, corresponding to each wire fi in top band, S

selects a random non-zero three tuple (aS
i , bSi , cSi) ∈ F3.

2. S sends {sS
i , dS

i,1, d
S
i,2, . . . , d

S
i,n} and the three tuple (aS

i , bSi , cSi) to R through wire fi where di,j =

URauth(sS
i ; aS

i,j , b
S
i,j), 1 ≤ j ≤ n. In addition, S sends the authentication key (aS

i,j , b
S
i,j) to R through

wire fj , for 1 ≤ j ≤ n.

Computation by R at the end of Phase I:

1. Let R receives {sR
i , dR

i,1, d
R
i,2, . . . , d

R
i,n} and (aR

i , bRi , cRi) along wire fi and keys (aR
i,j , b

R
i,j) along wire fj .

2. R computes Supporti = |{j : dR
i,j = URauth(sR

i ; aR
i,j , b

R
i,j)}|. If Supporti ≥ t + 1, then R concludes that sR

i

is a valid share. Otherwise, it is an invalid share. If R receives t + 1 valid shares then R recovers the secret
mR from these valid shares and terminates. Otherwise, R proceeds to execute Phase II.

Table 1: Phase I of USMT Protocol ΠExisting[5]

During Phase I, S constructs (t + 1)-out-of-n secret shares of mS and associates one share with
one wire in the top band. In order to authenticate the share associated with a wire, S selects n pair of
random authentication keys. S then sends to R the share associated with a wire, authenticated with
all the n keys. Parallely, S sends the authentication keys to R, one over each wire. In addition, S
associates a random three tuple with each wire and sends it to R. If there are t + 1 non-faulty wires in
the top band, then at the end of Phase I, R will get at least t + 1 correct shares with which he can
recover mR. The Phase I of ΠExisting is given in Table 1.

If R cannot recover the secret mR at the end of Phase I, then it implies that there is at least one
honest wire in the bottom band. In this case, using the wires in the bottom band, S and R tries to
correctly and securely agree on a shared authentication key and encryption key to securely communicate
mS from S to R. For this, R uses the 3-tuples (aR

i , bRi , cRi) which R has received from S. Now R sends
a random non-zero 2-tuple (dR

i , eR
i) to S on each wire in bottom band. In addition, each such 2-tuple

is authenticated by u random non-zero keys, so that S can verify whether it has correctly received
the 2-tuples. Now according to the values that S receives from R, S divides the bottom band into
consistent sub-sets B1,B2, . . . ,Bk, where k ≤ u, such that for each 1 ≤ l ≤ k, all the wires in Bl behave
in a ”consistent” way. In particular, there exists at least one path set Bl that behave honestly during
Phase II. Though S cannot determine which path set was honest, S will try to use each of them in a
separate way and let R to determine which path set is honest. The computation and communication
by R during Phase II and the computation by S at the end of Phase II is shown in Table 2.

Note 1 In Table 2, 〈. . .〉 denotes a function which is used in [5]. The function 〈. . .〉 maps a variable
size (the variable size is bounded by a pre-defined bound) ordered subset of F to an image element in
a field extension F∗ of F. Moreover, from any image element (in F∗), one can uniquely and efficiently
recover the ordered subset (in F).

4

Phase II: R to S (if R has not recovered the secret at the end of Phase I)

1. For 1 ≤ i ≤ n, R chooses a random non-zero rR
i ∈ F and computes βR =

{(rR
1 , γR

1), (rR
2 , γR

2), . . . , (rR
n , γR

n)}, where γR
j = hash(rR

j ; aR
j , bRj , cRj), 1 ≤ j ≤ n. For each 1 ≤ i ≤ u, R

selects a random non-zero 2-tuple (dR
i , eR

i) ∈ F2. In order to authenticate (dR
i , eR

i), R selects u random
non-zero keys {(vR

i,j , w
R
i,j) ∈ F2 : 1 ≤ j ≤ u}.

2. For each 1 ≤ i ≤ u, R sends βR, (dR
i , eR

i) and {αR
i,j : 1 ≤ j ≤ n}, where αR

i,j =

URauth(〈dR
i , eR

i 〉; vR
i,j , w

R
i,j) : 1 ≤ j ≤ u} to S via wire bi and the keys (vR

i,j , w
R
i,j) to S via wire bj

for each 1 ≤ j ≤ u.

Computation by S at the end of Phase II:

1. Let S receives βS
i , (dS

i , eS
i) and {αS

i,j : 1 ≤ j ≤ u} from R via wire bi and (vS
i,j , w

S
i,j) from R via wire

bj for each 1 ≤ j ≤ u. S divides the bottom band {b1, b2, . . . , bu} into subsets B1,B2, . . . ,Bk, where
k ≤ u, such that for any l, m, p with 1 ≤ l ≤ k, 1 ≤ m, p ≤ u and bm, bp ∈ Bl, we have: (a) βS

m = βS
p ;

(b) αS
m,p = URauth(〈dS

m, eS
m〉; vS

m,p, wS
m,p); (c) αS

p,m = URauth(〈dS
p , eS

p 〉; vS
p,m, wS

p,m).

2. For Bl, let bm ∈ Bl and βS
m = {(rS

i,l, γ
S
i,l) : 1 ≤ i ≤ n}. S computes the set of wires in top band

Fl = {i : γS
i,l = hash(rS

i,l; a
S
i , bSi , cSi), 1 ≤ i ≤ n}

If |Bl|+ |Fl| ≤ t then S decides that Bl is unacceptable set, otherwise Bl is acceptable set.

Table 2: Phase II and computation by S at the end of Phase II of Protocol ΠExisting

From the properties of URauth and hash, it is easy to check that the following holds: (a) If bi is
an honest wire in the bottom band and bi ∈ Bl, then with very high probability, the random 2-tuples
that S has received along the wires in Bl are not modified; (b) If bi is an honest wire in the bottom
band and bi ∈ Bl, then Bl is an acceptable set. However, all the acceptable sets look same to S and
S cannot determine whether an acceptable set contains all honest wires or wires controlled by the
adversary. In the worst case, the adversary can control the bottom band in such a way that there are
at most u Bl’s, with one wire from the bottom band in each Bl. S continues the protocol by assuming
that each acceptable set is correct. In other words, assuming that all the wires in an acceptable set Bl

are non-faulty, S determines which of the random 3-tuples (aS
i , bSi , cSi), (that it had sent to R during

Phase I) have been correctly received by R. Using these ”correctly-received-by-R” 3-tuples and the
random 2-tuples received by S via the wires in Bl, S computes the authentication key and encryption
key to securely send the messages to R. If the assumption that Bl contains only non-faulty wires is
valid, then R would be able to compute the same authentication and encryption key. Since at least one
of the acceptable path set is non-faulty, R will be able to decrypt the secret message correctly. The
communication by S during Phase III and message recovery by R is shown in Table 3.

Phase III: S to R: For each acceptable set Bl and the corresponding set Fl, S does the following:

• From the wires in Fl and Bl, S computes his version of the keys CS
l =

∑
fi∈Fl

aS
i +

∑
bi∈Bl

dS
i and DS

l =∑
fi∈Fl

bSi +
∑

bi∈Bl
eS

i . S then sends (ψS
l , λS

l) to R over all the wires in Fl, where ψS
l = 〈Bl,Fl, m

S+CS
l 〉

and λS
l = URauth(ψS

l ; CS
l ,DS

l).

Message Recovery by R: R knows that in the worst case, S could have sent u 2-tuples over each wire in

the top band, corresponding to the case when there are u acceptable sets. Let R receives (ψR
i,l, λ

R
i,l) over wire

fi for 1 ≤ i ≤ n and 1 ≤ l ≤ u.

1. For each 1 ≤ i ≤ n, R computes 〈BR
i,l,FR

i,l, τ
R
i,l〉 = ψR

i,l (that is, R decomposes ψR
i,l). R then computes

his version of the keys CR
i,l =

∑
fj∈Fi,l

aR
j +

∑
bj∈Bi,l

dR
j and DR

i,l =
∑

fj∈Fi,l
bRj +

∑
bj∈Bi,l

eR
j .

2. For 1 ≤ i ≤ n, R checks whether λR
i,l

?
= URauth(ψR

i,l; CR
i,l,DR

i,l). If the equation holds then R computes

the secret mR = τR
i,l − CR

i,l and terminates.

Table 3: Phase III and Secret Recovery in Protocol ΠExisting

It is easy to check that with very high probability, mR recovered by R is the same as mS. Since,
for an acceptable set Bl, |Fl|+ |Bl| > t, the adversary learns no information about CS

l or DS
l and hence

about mS. Thus the protocol achieves perfect privacy.

5

MS(x), Lower order n
3

coefficients of MS(x) are elements of mS

MS(1) MS(2) . . . MS(n + t)

fS
1 (x) fS

2 (x) . . . fS
n+t(x)

fS
1 (0) = MS(1) fS

2 (0) = MS(2) . . . fS
n+t(0) = MS(n + t)

fS
1 (1) fS

2 (1) . . . fS
n+t(1)

fS
1 (2) fS

2 (2) . . . fS
n+t(2)

.
fS
1 (j) fS

2 (j) . . . fS
n+t(j)

.
fS
1 (n) fS

2 (n) . . . fS
n+t(n)

Table 4: Matrix T as computed by S
.

2.1 Modified Version of Desmedt’s USMT Protocol

We now present a modified version of protocol ΠExisting, called ΠExisting
modified, where all the computation

and communication is done in the field F. The purpose of presenting ΠExisting
modified is to introduce certain

new techniques, which we have also used in our later protocols. Protocol ΠExisting
modified will be used as a

sub-protocol in our final communication optimal URMT and USMT protocols. The protocol securely
sends a message mS = {mS

1 mS
2 . . . mS

n
3
} containing n

3 = Θ(n) elements from F by communicating

O(n3) elements from F with very high probability.
During Phase I, S selects a random polynomial MS(x) over F of degree n − 1 + t such that the

lower order n
3 coefficients of MS(x) are elements of mS. S then computes MS(1),MS(2), . . . ,MS(n +

t). S selects n + t random polynomials fS
1 (x), fS

2 (x), . . . , fS
n+t(x) over F, each of degree t, such that

fS
i (0) = MS(i), 1 ≤ i ≤ n + t. S then evaluates each fS

i (x) at x = 1, 2, . . . , n to form an n tuple
fS

i = [fS
i (1) fS

i (2) . . . fS
i (n)]. S now constructs an (n) × (n + t) matrix T where ith column of

T contains the n tuple fS
i , 1 ≤ i ≤ n + t. The matrix T is pictorially shown in Figure. 4. Let

FS
j = [fS

1 (j) fS
2 (j) . . . fS

n+t(j)] denotes the jth, 1 ≤ j ≤ n row of T . Now the communication by S
during Phase I and the computation by R at the end of Phase I is expressed in Table 5.

Phase I: S to R: Along wire fj , 1 ≤ j ≤ n, S sends the following to R

1. The vector FS
j , a random non-zero hash key αS

j and the n tuple [vS
1j vS

2j . . . vS
nj], where vS

ij =

hash(αS
j ; FS

i), 1 ≤ i ≤ n.

2. A random non-zero (n + 1) tuple (xS
1,j , x

S
2,j , . . . , x

S
n+1,j), which is independent of FS

j .

Computation by R at the end of Phase I:

1. Let R receives the vector FR
j , hash key αR

j , the n tuple [vR
1j vR

2j . . . vR
nj] and the n + 1 tuple

(xR
1,j , x

R
2,j , . . . , x

R
n+1,j) along wire fj , 1 ≤ j ≤ n.

2. For 1 ≤ j ≤ n, R computes Supportj = |{fi : vR
ji = hash(αR

i ; FR
j)}|. If Supportj ≥ t + 1, then R

concludes that FR
j is a valid row of T . Otherwise, R concludes that FR

j is an invalid row of T .

3. If R has received t+1 valid rows, then R reconstructs the secret mR from them and terminates protocol
(see Theorem 1). Otherwise, R proceeds to execute Phase II.

Table 5: Phase I of the modified protocol ΠExisting
modified

Lemma 1 If FR
j is a valid row, then with overwhelming probability FR

j = FS
j

Proof: The lemma is true if wire fj is uncorrupted. If fj is corrupted, then FR
j 6= FS

j . In this case, if
FR

j is valid then it implies that Supportj ≥ t + 1. Since there can be at most t corrupted wires in the
top band, this implies that there exists an honest wire, say fi, which correctly delivered the hash key
αR

i = αS
i and hash value vR

ji = vS
ji, such that fi ∈ Supportj . But from the properties of unconditional

hashing, it can happen with probability at most n−1+t
|F| , which is negligible in our context. 2

Lemma 2 During Phase I, at least n coefficients of MS(x) are information theoretically secure.

Proof: We consider the worst case, when At controls at most t wires in the top band. Without loss
of generality, let these be the first t wires. So At will know the vectors FS

1 , FS
2 , . . . , FS

t , from which

6

it will come to know t distinct points of the polynomials fS
j (x), 1 ≤ j ≤ n + t. But each fS

j (x) is of
degree t and so At lacks one point to reconstruct each fS

j (x). However, At also knows t hash values
corresponding to each FS

j , 1 ≤ j ≤ n. Since the vectors FS
1 , FS

2 , . . . , FS
t are already known to At, the

t hash values corresponding to them does not add anything new to At’s view. Moreover, the vectors
FS

t+2, F
S
t+3, . . . , F

S
n can be expressed as a linear combination of vectors FS

1 , FS
2 , . . . , FS

t+1. So the t hash
values corresponding to FS

t+2, F
S
t+3, . . . , F

S
n can always be expressed as a linear combination of the t

hash values corresponding to FS
1 , FS

2 , . . . , FS
t+1, which are known to the adversary. So, out of the t

hash values corresponding to each FS
j (x), 1 ≤ j ≤ n, which are known to At, only the t hash values

corresponding to FS
t+1(x) add to At’s view. But FS

t+1 is of length n + t. So from the properties of
unconditional hashing, (n + t) − t = n coefficients of FS

t+1 will be information theoretic secure. This
further implies that n coefficients of MS(x) are information theoretically secure. 2

Theorem 1 If R gets t + 1 valid rows then R can securely recover mS with very high probability.

Proof: From Lemma 1, with very high probability, each valid row is indeed sent by S. If R gets t + 1
valid rows, then from them, R gets t + 1 distinct points on each fS

i (x). Since each fS
i (x) is of degree

t, using the t + 1 valid rows, R reconstructs each fS
i (x) and hence fS

i (0) = MS(i). Now using the
MS(i)’s, R interpolates MS(x) and recovers mS. The security of mS follows from Lemma 2. 2

If R does not get t + 1 valid rows, then R concludes that at least one wire in the bottom band is
honest. So R proceeds to execute Phase II as shown in Table 6. Phase II is similar to the Phase
II of protocol ΠExisting, except that βR contains the hashed value of each n + 1 tuple received from
S. Moreover, along each wire in the bottom band, R now sends an (n + u) tuple and hash it with u
random keys. Now as in protocol ΠExisting, depending upon the values received along the wires in the
bottom band, S divides the bottom band into different subsets. As in the previous protocol, from the
properties of hash function, it is straightforward to check that the following holds: (a) If bi is an honest
wire in the bottom band and bi ∈ Bl, then with very high probability, the random (n + u)-tuples that
S has received along the wires in Bl are not modified; (b) If bi is an honest wire in the bottom band
and bi ∈ Bl, then Bl is an acceptable set.

Phase II: R to S (if R has not recovered the secret at the end of Phase I)

1. For each 1 ≤ j ≤ n, R chooses a random non-zero hash key rR
j ∈ F and computes the set βR =

{(rR
j , γR

j) : 1 ≤ j ≤ n}, where γR
j = hash(rR

j ; xR
1,j , x

R
2,j , . . . , x

R
n+1,j).

2. For each 1 ≤ j ≤ u, R selects a random non-zero n + u tuple (yR
1,j , y

R
2,j , . . . , y

R
n+u,j) ∈ Fn+u. In order

to hash each such n tuple, R selects u random non-zero keys {keyR
i,j : 1 ≤ i ≤ u} from F.

3. For each 1 ≤ j ≤ u, R sends βR and the n + u-tuple (yR
1,j , y

R
2,j , . . . , y

R
n+u,j) to S over wire bj and the

2-tuple (keyR
i,j , α

R
i,j) to S over wire bi, 1 ≤ i ≤ u, where αR

i,j = hash(keyR
i,j ; y

R
1,j , y

R
2,j , . . . , y

R
n+u,j).

Computation by S at the end of Phase II: For 1 ≤ j ≤ u, S receives βS
j and the n + u-tuple

(yS
1,j , y

S
2,j , . . . , y

S
n+u,j) over wire bj and the pair (keyS

i,j , α
S
i,j) over bi, 1 ≤ i ≤ u. S then does the following:

1. S divides the bottom band {b1, b2, . . . , bu} into subsets B1,B2, . . . ,Bk, where k ≤ u, such that for
any l, m, p with 1 ≤ l ≤ k, 1 ≤ m, p ≤ u and bm, bp ∈ Bl, we have: (a) βS

m = βS
p ; (b) αS

m,p =

hash(keyS
m,p; yS

1,p, yS
2,p, . . . , yS

n,p); (c) αS
p,m = hash(keyS

p,m; yS
1,m, yS

2,m, . . . , yS
p,m).

2. For Bl, let bm ∈ Bl and βS
m = {(rS

j,l, γ
S
j,l) : 1 ≤ j ≤ n}. S then computes the set

FS
l = {j : γS

j,l = hash(rS
j,l; x

S
1,j , x

S
2,j , . . . , x

S
n+1,j), 1 ≤ j ≤ n}

If |Fl|+ |Bl| ≤ t then S decides that Bl is unacceptable set, otherwise Bl is acceptable set.

Table 6: Phase II and computation by S at the end of Phase II in ΠExisting
modified

Before proceeding further, we prove the following important claim.

Claim 1 Let fi and bj be two honest wire in top and bottom band respectively. Then at the end
of Phase II, at least n elements in (xS

1,i, x
S
2,i, . . . , x

S
n+1,i) and (yR

1,j , y
R
2,j , . . . , y

R
n+u,j) are information

theoretically secure.

Proof: Follows from the properties of hash function. 2

Now the steps during Phase III and message recovery by R are presented in Table 7.

7

Phase III: S to R: For each acceptable set Bl and corresponding set Pl, S does the following:

1. S considers the first n elements from the n+1 tuples which it had sent over the wires in Pl during Phase
I and the first n elements from the (n+u) tuples which S had received over the wires in Bl during Phase
II. By using them, S computes his version of n authentication keys CS

1,l =
∑

fj∈Fl
xS

1,j +
∑

bj∈Bl
yS
1,j ,

CS
2,l =

∑
fj∈Fl

xS
2,j +

∑
bj∈Bl

yS
2,j , . . ., CS

n,l =
∑

fj∈Fl
xS

n,j +
∑

bj∈Bl
yS

n,j .

2. For each element of mS (recall that |mS| = n
3
), S takes three elements from the keys computed

in the previous step and computes the set SS
l = {(cSi,l, dS

i,l) : 1 ≤ i ≤ n
3
} where (cSi,l, d

S
i,l) =

USauth(mS
i ; CS

3i−2, CS
3i−1, CS

3i), 1 ≤ i ≤ n
3
.

3. S sends the set Fl,Bl and SS
l to R over all the wires in the set Fl and terminates.

Message Recovery by R: Let R receives the sets FR
j,l,BR

j,l and SR
j,l along wire fj , 1 ≤ j ≤ n, for 1 ≤ l ≤ u.

R then does the following:

1. If for some j ∈ {1, 2, . . . , n} and some l ∈ {1, 2, . . . , u}, |FR
j,l| + |BR

j,l| ≤ t, then R concludes that wire
fj is corrupted and neglects all the values received along fj .

2. If fj is not neglected, then for each FR
j,l,BR

j,l and SR
j,l received along fj , R does the following: let

SR
j,l = {(cRj,i,l, d

R
j,i,l) : 1 ≤ i ≤ n

3
}. By using the index of the wires in FR

j,l and BR
j,l, R computes his

version of authentication keys CR
j,1,l, CR

j,2,l, . . . , CR
j,n,l. Then for each 1 ≤ i ≤ n

3
, R applies the verification

process of USauth on cRj,i,l, d
R
j,i,l, CR

3i−2, CR
3i−1 and CR

3i . If the verification is successful for all 1 ≤ i ≤ n
3
,

then R recovers mR
i from cRj,i,l, 1 ≤ j ≤ n

3
. Finally, R concatenates mR

1 , mR
2 , . . . , mR

n
3

to reconstruct

the secret mR and terminates.

Table 7: Phase III and Secret Recovery in the modified protocol ΠExisting
modified

Theorem 2 Protocol Πexisting
modified is a three phase USMT protocol which securely sends Θ(nκ) bits by

communicating O(n3κ) bits with very high probability.

Proof: If R is able to recover mR at the end of Phase I, then the correctness and secrecy of Πexisting
modified

follows from Theorem 1. If R is unable to recover mR at the end of Phase I, then the correctness and
security of Πexisting

modified follows using the similar argument as the correctness and security of Πexisting.
During Phase I and Phase II, O(n2) and O(nu+u2) field elements are communicated respectively.

During Phase III, in the worst case, S can have u distinct acceptable sets Bl each of size one and
correspondingly only one set Fl consisting of the entire top band. In this case, on behalf of each Bl,
S will have to communicate O(n2) field elements, thus incurring a total communication overhead of
O(n2u). Since u = O(n), the worst case communication complexity of Phase III and hence Πexisting

modified

is O(n3). Now each field element can be represented by O(κ) bits. So the protocol sends mS containing
Θ(nκ) bits by communicating O(n3κ) bits with very high probability. 2

3 Unconditionally Secure One Time Pad Establishment Protocol

We now propose a six phase protocol called ΠPad, which securely establishes a random non-zero one
time pad between S and R with very high probability by communicating O(n3) field elements. If the
entire bottom band is corrupted, then the size of the pad is Θ(n2u). Otherwise the size of the pad is
Θ(n3). We first design a sub-protocol Π which is used in ΠPad.

Protocol Π: Suppose S and R in advance know that full bottom band is corrupted. This implies that
at most t − u and at least t + 1 wires in the top band are corrupted and honest respectively. Under
this assumption, we design a sub-protocol Π, which securely establishes an information theoretic secure
non-zero random one time pad of size Θ(n2u) between S and R by communicating O(n3) field elements,
with very high probability.

Let c = n2+t−u. S selects (t+1)×c random non-zero elements from F, denoted by kS
1,1, k

S
1,2, . . . , k

S
1,c,

kS
2,1, k

S
2,2, . . . , k

S
2,c, . . . , k

S
t+1,1, k

S
t+1,2, . . . , k

S
t+1,c. Now using these elements, S constructs an (t + 1) × c

matrix AS, where the jth, 1 ≤ j ≤ t + 1 row of AS is [kS
j,1 kS

j,2 . . . kS
j,i . . . kS

j,c]. Now consider the
ith, 1 ≤ i ≤ c column of A containing the elements [kS

1,i kS
2,i . . . kS

t+1,i]
T . S forms a t degree polynomial

qi(x) passing through the t + 1 points [(1, kS
1,i), (2, k

S
2,i), . . . , (t + 1, kS

t+1,i)]. S now evaluates qi(x) at
x = t + 2, t + 3, . . . , n to obtain yS

t+2,i, y
S
t+3,i, . . . , y

S
n,i respectively. Finally, S constructs the matrix BS

8

of size n × c, where the ith, 1 ≤ i ≤ c column of BS is [kS
1,i kS

2,i . . . kS
t+1,i yS

t+2,i yS
t+3,i . . . yS

n,i]
T , the n

points on qi(x) as shown in Table 8. Now using the jth, 1 ≤ j ≤ n row of BS, S forms a n2 + t− u− 1

kS
1,1 kS

1,2 . . . kS
1,i . . . kS

1,c

.
kS

j,1 kS
j,2 . . . kS

j,i . . . kS
j,c

.
kS

t+1,1 kS
t+1,2 . . . kS

t+1,i . . . kS
t+1,c

.
yS

n,1 yS
n,2 . . . yS

n,i . . . yS
n,c

Table 8: Matrix BS as computed by S

degree polynomial FS
j (x) = kS

j,1 + kS
j,2x

1 + kS
j,3x

2 + . . . + kS
j,cx

c−1. S also selects n random and non-zero
distinct elements from F, denoted by αS

1 , αS
2 , . . . , αS

n. Now the communication by S during Phase I
and the computation by R at the end of Phase I is formally expressed in Table 9.

Computation and Communication by S: Along wire fj , 1 ≤ j ≤ n, S sends to R the polynomial FS
j (x),

the random value αS
j and n tuple [vS

1j vS
2j . . . vS

nj] where vS
ij = FS

i (αS
j), 1 ≤ i ≤ n. Let VS denotes the

concatenation of the elements in the first t + 1 rows of BS. S computes PS = EXTRAND|VS|,(u+1)n2(VS).

The vector PS denotes the information theoretically secure random pad of size Θ(n2u) which will be correctly
established with R with very high probability.

Computation by R at the end of Phase I:

1. Let R receives FR
j (x), the random value αR

j and the n tuple [vR
1j vR

2j . . . vR
nj] along wire fj , 1 ≤ j ≤ n.

2. For 1 ≤ j ≤ n, R computes Supportj = |{i : FR
j (αR

i) = vR
ji}|. If Supportj ≥ t + 1, then R concludes

that FR
j (x) is a valid polynomial. Otherwise, R concludes that FR

j (x) is an invalid polynomial.

3. Since there are at least t + 1 honest wires in the top band, R will get at least t + 1 valid polynomials.
Now using t +1 valid polynomials, R will construct array BR. From BR, R computes VR, from which
it finally computes PR and terminates. With very high probability, PR = PS (see Lemma 3).

Table 9: Protocol Π

Theorem 3 If the entire bottom band is corrupted, then protocol Π securely establishes a random non-
zero pad of size Θ(n2uκ) bits by communicating O(n3κ) bits.

Proof: Since protocol Π is similar to the Phase I of protocol Πexisting
modified, using similar arguments as in

Lemma 1, if FR
j (x) is a valid polynomial, then with overwhelming probability FR

j (x) = FS
j (x). Since,

there are at least t + 1 honest wires in the top band, the polynomials corresponding to these wires will
always be considered as valid. So R will always get at least t +1 valid polynomials. Thus using similar
arguments as in Lemma 1, R will be able to correctly recover VS and PS with very high probability.
The secrecy of PS follows using similar argument as in Lemma 2 and the properties of EXTRAND.
It is easy to see that O(n3) field elements and hence O(n3κ) bits are communicated by S. 2

Six Phase Protocol ΠPad: We now present the protocol ΠPad which uses protocols Π and ΠExisting
modified

as black-box. The first two phases of the protocol are given in Table 10.
Before proceeding further, we prove the following claim.

Claim 2 Let bj and fi be two honest wire in bottom and top band respectively. Then at the end of Phase
II, at least n2 elements in the tuple (yR

1,j , y
R
2,j , . . . , y

R
n2+1,j) and (xS

1,i, x
S
2,i, . . . , x

S
n2+t,i) are information

theoretically secure.

Proof: The proof follows from the properties of hash function. 2

As in protocol Πexisting
modified, from the properties of hash function, it is straightforward to check that the

following holds: (a) If fi is an honest wire in the top band and fi ∈ Fl, then with very high probability,
the random (n2 + t)-tuples that R has received along the wires in Fl are not modified; (b) If fi is an
honest wire in the top band and fi ∈ Fl, then Fl is an acceptable set.

9

Phase I: R to S: Corresponding to each wire bj , 1 ≤ j ≤ u in the bottom band, R selects a random
non-zero n2 + 1 tuple (yR

1,j , y
R
2,j , . . . , y

R
n2+1,j) and sends it to S.

Phase II: S to R:

1. Let S receives (yS
1,j , y

S
2,j , . . . , y

S
n2+1,j) along wire bj . Corresponding to each wire bj , 1 ≤ j ≤ u, S selects

a random non-zero hash key rj from F and computes the set βS = {(rS
j , γS

i) : 1 ≤ j ≤ u}, where

γS
j = hash(rS

j ; yS
1,j , y

S
2,j , . . . , y

S
n2+1,j).

2. S associates a random non-zero n2 + t tuple (xS
1,j , x

S
2,j , . . . , x

S
n2+t,j) with wire fj , 1 ≤ j ≤ n in the top

band. Moreover, in order to hash the tuple, S selects n random non-zero keys from F denotes by keyS
i,j ,

for 1 ≤ i ≤ n.

3. For each 1 ≤ j ≤ n, S sends the set βS and the (n2 + t) tuple (xS
1,j , x

S
2,j , . . . , x

S
n2+t,j to

R along wire fj and the 2-tuple (keyS
i,j , α

S
i,j) to R along wire fi, 1 ≤ i ≤ n, where αS

i,j =

hash(keyS
i,j ; x

S
1,j , x

S
2,j , . . . , x

S
n2+t,j).

Computation by R at the end of Phase II:

1. For each 1 ≤ j ≤ n, R receives the set βR
j and the (n2 + t) tuple (xR

1,j , x
R
2,j , . . . , x

R
n2+t,j) along wire fj

and the 2-tuple (keyR
i,j , α

R
i,j) along wire fi, 1 ≤ i ≤ n.

2. R divides the top band {f1, f2, . . . , fn} into subsets F1,F2, . . . ,Fk, where k ≤ t + 1, such that for
any l, m, p with 1 ≤ l ≤ k, 1 ≤ m, p ≤ n and fm, fp ∈ Fl, we have: (a) βR

m = βR
p ; (b) αR

m,p =

hash(keyR
m,p; xR

1,p, xR
2,p, . . . , xR

n2+t,p); (c) αR
p,m = hash(keyR

p,m; xR
1,m, xR

2,m, . . . , xR
n2+t,m).

3. For Fl, let fm ∈ Fl and βR
m = {(rR

j,l, γ
R
j,l) : 1 ≤ j ≤ u}. R computes the set

Bl = {j : γR
j,l = hash(rR

j,l; y
R
1,j , y

R
2,j , . . . , y

S
n2+1,j), 1 ≤ j ≤ u}

If |Fl|+ |Bl| ≤ t then S decides that Fl is unacceptable set, otherwise Fl is acceptable set.

Table 10: First two phases of Protocol ΠPad

In the worst case, in R’s view, there can be at most t+1 acceptable sets because the adversary can
control at most t wires in the top band. So there can be t acceptable sets, corresponding to t corrupted
wires and one acceptable set corresponding to all the honest wires in the top band. The Phase III of
the protocol is shown in Table 11.

Theorem 4 If the entire bottom band is corrupted then ΠPad securely establishes a random non-zero
pad of size Θ(n2κ) bits between S and R with very high probability. Otherwise, it establishes a random
non-zero pad of size Θ(n3κ) bits between S and R with very high probability. In either case, the protocol
terminates in six phases and communicates O(n3κ) bits.

Proof: Follows from the protocol description and properties of hash and EXTRAND. 2

4 URMT with Constant Factor Overhead

Let u ≤ t and n = max(2t − u + 1, t + 1). Then we present an URMT protocol called ΠURMT which
sends a message mS containing ` field elements by communicating O(`) field elements with very high
probability, where ` = (t − u

2 + 1)n2 = Θ(n3). The total communication complexity of the protocol is
O(n3) field elements and the protocol terminates in O(u) phases. The principle behind the protocol is
to create a win-win situation as follows: if the adversary corrupts at most t− u

2 wires in the top band,
then R recovers the message from the information which it receives from the honest wires in the top
band. On the other hand, if more than t− u

2 wires are corrupted in the top band, then majority wires
in the bottom band will be honest and so both S and R comes to know about the identity of corrupted
wires in the top band by using the honest wires in the bottom band. Now using this information, S
can re-send mS so that R can recover it correctly.

As a part of pre-processing step, S and R securely establishes Θ(n) random non-zero elements
from F with each other in advance with very high probability by executing the three phase protocol
Πexisting

modified. Let the set of these elements be denoted by K. The elements in K will be used by S and R
as authentication and hash keys to reliably exchange the outcome of certain steps during the execution
of the protocol ΠURMT . Note that elements in K need not be distinct, but they are randomly selected
from F. We assume that initially all the elements in K are marked as ”unused”. Each time S (R)

10

Phase III: R to S: For each acceptable set Fl and corresponding set Bl, R does the following:

1. R concatenates the first n2 elements from (n2 + 1) and (n2 + t) tuples, which it had sent and received
over the wires in Bl and Fl respectively. Let VR

l denotes the resultant vector.

2. Corresponding to vector VR
l , R selects a random non-zero hash key KR

l from F. R then computes the
2-tuple (KR

l , γR
l = hash(KR

l ;VR
l)). R then sends Bl,Fl and the 2-tuple (KR

l , γR
l) to S through all the

wires in Bl.

Computation by S at the end of Phase III: Now using the hash value(s) received from R, S tries to
find whether there exists at least one uncorrupted wire in the bottom band. For this, S does the following:

1. Let S receives the index set FS
j,l and BS

j,l and the 2-tuple (KS
j,l, γ

S
j,l) along wire bj , 1 ≤ j ≤ u for

1 ≤ l ≤ t + 1. If for some j ≤ u and some l ≤ t + 1, |FS
j,l|+ |BS

j,l| ≤ t, then S concludes that wire bj is
corrupted and neglects all the values received along bj .

2. If FS
j,l, BS

j,l and the tuple (KS
j,l, γ

S
j,l) is not neglected in the previous step (i.e., bj is not discarded), then

after knowing the index of the wires in FS
j,l and BS

j,l, S computes his version of the vector VS
j,l. Here

VS
j,l denotes the concatenation of first n2 values from the (n2 + 1) and (n2 + t) tuples, which S had

received and sent over the wires in BS
j,l and FS

j,l respectively. S now checks γS
j,l

?
= hash(KS

j,l;VS
j,l).

3. If the test in the last step succeeds for some l ≤ t + 1 and j ≤ u, then S concludes that the tuples
that are exchanged along the wires in BS

j,l and FS
j,l are correctly established between S and R. S now

applies EXTRAND to VS
j,l to generate a vector PS

1 of size tn2. Finally S terminates the protocol by

sending a special predefined ”success” value from F, along with the index of the wires in the set BS
j,l

and FS
j,l to R by executing the protocol Πexisting

modified. R securely (and hence correctly) receives these

indexes with very high probability and computes his version of PR
1 and terminates. Since Πexisting

modified

takes three phases, the protocol will terminate at the end of Phase VI.

4. If the test in step 3 fails for all l and j, then S concludes that entire bottom band is corrupted. In this
case, S sends a special ”failure” value from F to R by executing the three phase Πexisting

modified protocol.

Parallely, S establishes a secure pad PS
2 of size Θ(n2u) with R by executing single phase Protocol Π.

At the end of Πexisting
modified, R will know that the entire bottom band is corrupted. Parallely at the end

of Π, R will output PR
2 , with which very high probability is same as PS

2 . Since Πexisting
modified takes three

phases, the protocol will terminate at the end of Phase VI.

Table 11: Phase III in Protocol ΠPad

needs a key(s) for hashing or authentication, then the first ”unused” element(s) from K is/are selected
as key(s). In order to do the verification, R (S) also uses the same element(s) from K as keys. Once
the verification is done, the element(s) is/are marked as ”used” Thus we can view K as a global set,
which is parallely used and updated by both S and R.

Let mS = [mS
1,1 mS

1,2 . . . mS
1,n2 mS

2,1 mS
2,2 . . . mS

2,n2 . . . mS
t−u

2
+1,1 mS

t−u
2
+1,2 . . . mS

t−u
2
+1,n2] be the

message. S constructs an array BS of size n× n2 from mS in the same way as in protocol Π with the
following modifications: S first constructs the array AS of size (t − u

2 + 1) × n2 from mS, where the
jth, 1 ≤ j ≤ (t − u

2 + 1) row of AS is [mS
j,1 mS

j,2 . . . mS
j,n2]. By considering the elements in individual

columns as distinct points, S interpolates the unique (t− u
2) degree polynomial passing through them.

S then further evaluates the interpolated polynomials at additional (t − u
2) values of x and gets the

array BS. Now by considering the elements along jth, 1 ≤ j ≤ n row of BS as coefficients, S constructs
FS

j (x) of degree n2 − 1. First two phases of ΠURMT is shown in Table 12.

Phase I: S to R: Along wire fj , 1 ≤ j ≤ n, S sends to R the polynomial FS
j (x), a random non-zero value

αS
j and n tuple [vS

1j vS
2j . . . vS

nj] where vS
ij = FS

i (αS
j), 1 ≤ i ≤ n.

Phase II: R to S

1. Let R receives FR
j (x), the value αR

j and the n tuple [vR
1j vR

2j . . . vR
nj] along wire fj , 1 ≤ j ≤ n.

2. For 1 ≤ j ≤ n, R computes Supportj = |{i : FR
j (αR

i) = vR
ji}|. Let PR denotes the set of wires fj , such

that Supportj ≥ (t− u
2

+1). In addition, R constructs a directed graph GR = (VR, ER), called conflict

graph, where VR = {f1, f2, . . . , fn} and arc (fi, fj) ∈ ER if FR
i (αR

j) 6= vR
ij .

3. Corresponding to graph GR, R constructs a conflict list YR of five tuples where for each arc (fi, fj) ∈
ER, there exists a five tuple (fi, fj , α

R
j , FR

i (αR
j), vR

ij) in YR. R sends YR to S through bottom band.

Table 12: First two phases of protocol ΠURMT

11

Before proceeding further, we prove the following claim.

Claim 3 Let fi be a wire which has delivered incorrect FR
i (x) 6= FS

i (x) to R and fj be an honest wire.
Then with very high probability (fi, fj) ∈ ER.

Proof: Since fj is honest, it correctly delivers αR
j = αS

j and vR
ij = vS

ij = FS
i (αS

j) to R. If FR
i (x) 6=

FS
i (x), then in order that (fi, fj) 6∈ ER, FR

i (αR
j) = vR

ij = FS
i (αR

j). But this can happen with probability
at most n2−1

|F| because αS
j is randomly selected from F and FR

i (x) 6= FS
i (x) can have same value at atmost

n2 − 1 such α’s as both are of degree n2 − 1. Since |F| = poly(κ)2κ, this probability is negligible. 2

Now S considers the conflict list which it receives identically through at least u
2 + 1 wires. If S does

not receives any conflict list identically through at least u
2 + 1 wires, then S concludes that at least

u
2 + 1 wires are corrupted in the bottom band, which further implies that at most t− u

2 − 1 wires are
corrupted in the top band. In this case, the protocol proceeds as shown in Table 13.

Phase III: S to R: By selecting two elements from K as authentication keys, S authenticates an unique
special predetermined signal ”terminate” and sends to R. R receives the signal correctly with very high
probability and concludes that at most t − u

2
wires have delivered incorrect values during Phase I. So by

using the polynomials received along the first t− u
2

+ 1 wires in PR during Phase I, R constructs the array

BR. From BR, R recovers mR and terminates.

Table 13: Execution of ΠURMT if S does not receives u
2 + 1 identical conflict lists

The correctness of the protocol in this execution sequence is proved in Lemma 3.

Lemma 3 If S does not receives the same conflict list through at least u
2 + 1 wires then with very high

probability, R correctly recovers mS from the polynomials delivered by the wires in PR.

Proof: If S does not receive the same conflict list through at least u
2 + 1 wires then it implies that at

least u
2 + 1 wires in the bottom band are corrupted which further implies that at most t− u

2 − 1 wires
in the top band are corrupted. So, with very high probability, the wires in the set PR have correctly
delivered the polynomials during Phase I. This is because if some wire fj in the top band has delivered
FR

j (x) 6= FS
j (x) during Phase I, then fj can be supported by at most t− u

2 − 1 wires in the top band
(which are corrupted) and with very high probability, fj will be contradicted by all the honest wires in
the top band, implying Supportj = t − u

2 − 1 which further implies that fj 6∈ PR. Since there are at
least (2t−u+1)− (t− u

2 − 1) = t− u
2 +2 wires in the top band, these wires will always be in PR. Now

by using the polynomials received over the wires in PR, R can correctly reconstruct the array BS and
hence AS. This is because, any (t− u

2 + 1) correct polynomials are enough to reconstruct BS. 2

If at the end of Phase III, S receives the same conflict list, say YS through at least u
2 + 1 wires, then

S does the following: let the five tuples in YS be of the form (fi, fj , α
′R
j , F ′R

i (α′Rj), v′Rij). For each such

four tuple, S checks α′Rj
?= αS

j and vS
ij

?= v′Rij . If any of these test fails then S concludes that wire fj

has delivered incorrect values to R during Phase I and adds fj to a list LS
fault. On the other hand, if

both the test passes then S checks FS
i (αS

j) ?= F ′R
i (α′Rj). If the test fails then S concludes that wire fi

has delivered incorrect F ′R
i (x) 6= FS

i (x) to R during Phase I and adds fi to LS
fault. Note that S does

not know whether YS is a genuine conflict list and is indeed sent by R. But still S computes LS
fault.

S now finds the cardinality of list LS
fault. Now there are two possible cases. If |LS

fault| ≤ (t − u
2),

then S concludes that at least t− u
2 +1 wires have delivered correct polynomial during Phase I. S then

performs the same computation as shown in Table 13. The correctness of the protocol in this execution
sequence is proved in Lemma 4.

Lemma 4 If |LS
fault| ≤ (t − u

2), then with very high probability, R can correctly recover mS from the
polynomials delivered by the wires in PR.

Proof: If YS 6= YR, then the lemma follows using the same argument as in the proof of Lemma 3.
This is because now at least u

2 + 1 wires in the bottom band are corrupted. We now consider the case
when YS = YR. From Claim 3, if a corrupted wire fi has delivered incorrect FR

i (x) 6= FS
i (x) to R

and fj is an honest wire, then with very high probability (fi, fj) ∈ ER. Correspondingly, there will be

12

a 5-tuple present in YR and hence in YS. From this 5-tuple, S will easily find out that R has received
incorrect polynomial over fj . Thus, if YS = YR, then S will come to know the exact identity of all the
corrupted wires which delivered incorrect polynomials during Phase I and they will be present in list
LS

fault. Since |LS
fault| ≤ (t− u

2), this implies that at most t− u
2 polynomials were delivered incorrectly

and hence at least t− u
2 +1 polynomials were delivered correctly which will be present in PR. The rest

of the proof now follows using similar argument as in Lemma 3. 2

If |LS
fault| ≥ (t − u

2 + 1), then S further communicates with R to find whether YS was indeed sent by
R. For this, S and R executes the steps as shown in Table 14.

Phase III: S to R: S selects 2|LS
fault| elements from the set K as authentications keys and using them au-

thenticates each element of LS
fault by using URauth function. Let LS

faultauth
denotes the set of corresponding

authenticated values. S then sends (YS, LS
fault, L

S
faultauth

) to R through top band.

Phase IV: R to S: Let R receives (YR
j , LR

faultj
, LR

faultj,auth
) from S along wire fj , 1 ≤ j ≤ n. From these

values, R now tries to find out whether S has correctly received the original YR over more that u
2

+ 1 wires

during Phase I, and if yes, then the corresponding LS
fault. For this, R does the following:

1. For each 1 ≤ j ≤ n, R checks YR
j

?
= YR and |LR

faultj
| ≥ (t − u

2
+ 1). In any of the test fails, then R

neglects all the values received along fj . Otherwise, R applies the URauth function to each element of
LR

faultj
by using the same keys from K, which were used by S to authenticate LS

fault and computes the

set L
′R
faultj,auth

. R then checks L
′R
faultj,auth

?
= LR

faultj,auth
. If the test fails then again R discards the

values received along fj .

2. If as a result of previous step, R has discarded the values along all the wires in the top band, then
R concludes that S has not received original YR over more that u

2
+ 1 wires during Phase I, which

further implies that at most t − u
2
− 1 wires were corrupted in the top band during Phase I. So R

recovers mR by using the polynomials received over the first t − u
2

+ 1 wires in PR during Phase I.
Moreover, by selecting next two ”unused” elements k1, k2 from K as authentication keys, R computes
response1 = URauth(”terminate”; k1, k2) where ”terminate” is an unique pre-defined special element
from F. R then send the tuple (”terminate”, response1) to S through the bottom band and terminates.

3. If during step 1, there exists a j ∈ {1, 2, . . . , n} such that YR
j = YR, |LR

faultj
| ≥ (t − u

2
+ 1) and

L
′R
faultj,auth

= LR
faultj,auth

, then R concludes that S has correctly received original YR over more that
u
2

+ 1 wires during Phase I and LR
faultj

is the corresponding Lfault sent by S. So R removes the wires

in LR
faultj

from his view for further computation and communication. Note that if there are more than

one such j (whose probability is negligible), then R arbitrarily selects one. Now by selecting k1, k2

from K as authentication keys, R computes response2 = URauth(”continue”; k1, k2) where ”continue”
is an unique pre-defined special element from F. R then send the tuple (”continue”, response2) to S
through the bottom band.

Computation by S at the end of Phase IV: S checks whether it is getting any 2-tuple identically over

at least u
2

+ 1 wires. If not, then S concludes that R has recovered mR and terminates. On the other hand,

if S receives a 2-tuple say (xS
1 , yS

1) over u
2

+ 1 wires, then S verifies yS
1

?
= URauth(xS

1 ; k1, k2). If the test fails,

then S again concludes that R has recovered mR and terminates. On the other hand, if the test succeeds then

S further checks xS
1

?
= ”terminate”. If yes, then S again concludes that R has recovered mR and terminates.

If no then S concludes that YS was indeed sent by R.

Table 14: Execution of ΠURMT if |LS
fault| ≥ (t− u

2 + 1)

Before proceeding further, we prove the following lemma.

Lemma 5 If |LS
fault| ≥ (t− u

2 + 1), then at the end of Phase III in Table 14 one of the following will
happen:

1. If S has ”not” received the original YR over more that u
2 + 1 wires during Phase I, then with

very high probability R will be able to detect this. Moreover R will be able to correctly recover mR

by using the polynomials received over the wires in PR with very high probability.

2. If S has received the original YR over more that u
2 + 1 wires during Phase I, then R will be able

to detect this. Moreover, with very high probability, R will correctly receive LS
fault, from which it

will come to know the identity of at least |LS
fault| corrupted wires in the top band.

Proof: Follows from the protocol description and properties of URauth function. 2

13

If at the end of Phase IV in Table 14, S recovers ”continue” signal from R then S removes the
wires in LS

fault from further computation and communication. S now knows that in both S and R’s
view, there are n − |LS

fault| wires in the top band, of which at most t − |LS
fault| could be corrupted.

Since |LS
fault| ≥ (t− u

2 + 1), in S and R’s view, there are at most t− u
2 wires in the top band, of which

at most u
2 − 1 could be corrupted. Moreover, both S and R now knows that there exists at least u

2 + 1
honest wires in the bottom band. S now proceeds to re-send mS. For this, out of the t − u

2 in their
view, both S and R considers only the first u

2 wires. Without loss of generality, let these be the wires
f1, f2, . . . , fu

2
. Now both S and R knows that at least one wire among these u

2 wires is honest. S now
re-sends mS by executing the steps given in Table 15. This will take Θ(u) phases.

S divides mS into blocks BS
1 , BS

2 , . . . , BS
u
2
, each of size |mS|

u
2

. Moreover S and R initializes variables wcS =

1, bcS = 1 and wcR = 1, bcR = 1 respectively. S and R now executes the following steps:

1. While (wcS ≤ u
2
− 1) and (all the blocks of mS are not sent) do

(a) S sends the block BS
bcS to R only over wire fwcS in the top band.

(b) Let R receives BR
bcR along wire fwcR . Now by selecting kbc from the set K as hash key, R

computes xR
bc = hash(kbc; B

R
bcR) and sends xR

bc to S through the bottom band.

(c) S correctly receives xR
bc through at least u

2
+ 1 wires (recall that in this case majority wires in

bottom band are honest) and verifies xR
bc

?
= hash(kbc; B

S
bcS). If the test fails then S concludes

that wire fwcS has delivered incorrect BS
bcS to R. So S increments wcS by one. Moreover, S

authenticates an unique pre-defined special ”increment-wire” element from F by using two keys
from the set K and sends it to R through the top band. R correctly receives the signal with very
high probability and accordingly increments wcR by one.

On the other hand, if the test succeeds then S concludes that wire fwcS has delivered correct
BS

bcS to R. So S increments bcS by one. Moreover, S authenticates an unique pre-defined special
”increment-block” value from F by using two keys from the set K and sends it to R through the
top band. R correctly receives the signal with very high probability and accordingly increments
bcR by one.

2. If all the blocks of mS are sent then both S and R terminates. Otherwise S concatenates all the
remaining blocks of mS and sends to R through wire f u

2
and terminates. R correctly receives these

blocks and terminates.

Table 15: Execution of ΠURMT to re-send mS

Lemma 6 If the original conflict list YR is correctly received by S over more than u
2 + 1 wires during

Phase II and if the corresponding |LS
fault| ≥ (t− u

2 + 1), then with very high probability, S will be able
to correctly re-send mS by executing the steps in Table 15. Moreover this requires a communication
overhead of O(|mS|) field elements.

Proof: Follows from the protocol description and the properties of hash function. 2

We thus have the following theorem:

Theorem 5 If mS is a message containing ` field elements where ` ≥ (t− u
2 + 1)n2, then there exists

an O(u) phase URMT protocol which reliably sends mS with very high probability by communicating
O(`) field elements. In terms of bits, the protocol sends `κ bits by communicating O(`κ) bits.

Remark 1 In protocol ΠURMT , we have assumed that u ≤ t. If u > t, then we can modify the protocol
to reliably send a message containing (u

2 +1)n2 = Θ(n3) field elements with a communication overhead
of O(n3) field elements.

5 Upper Bound on the Communication Complexity of USMT

We now design an O(u) phase USMT protocol called ΠUSMT , which sends a message MS containing
` field elements by communicating O(n3) field elements with very high probability. If the full bottom
band is corrupted then ` = Θ(n2u), otherwise ` = Θ(n3). The protocol uses ΠPad and ΠURMT as
black-box. The protocol is given in Table 16.

14

1. Depending upon whether the full bottom band is corrupted or not, S and R securely establishes a
random non-zero one time pad Pad of length Θ(n2u) or Θ(n3) with very high probability by executing
the protocol ΠPad.

2. If Pad is of length Θ(n2u), then S selects a secret message MS of length Θ(n2u). S then computes
C = MS⊕Pad and reliably sends C to R with very high probability by executing the protocol ΠURMT .
R correctly receives C with very high probability and recovers MR = C ⊕ Pad. On the other hand, if
Pad is of length Θ(n3), then S and R does the same computation, except that MS and C (and hence
MR) will be of length Θ(n3).

Table 16: An O(u) phase USMT protocol ΠUSMT

Theorem 6 Protocol ΠUSMT is an O(u) phase USMT protocol with a communication complexity of
O(n3) field elements. In terms of bits, the protocol sends either Θ(n2uκ) or Θ(n3κ) bits by communi-
cating O(n3κ) bits.

6 Lower Bound on the Communication Complexity of USMT

An obvious lower bound on the communication complexity of URMT protocols to send a message
containing ` field elements is Ω(`). Since, we have already shown that this bound is tight by designing
the URMT protocol ΠURMT , we need not have to prove the lower bound for URMT protocols. Similarly,
if at least one wire in the bottom band is uncorrupted, then Ω(`) is a trivial lower bound on the
communication complexity of any USMT protocol which securely sends ` field elements. Again, since
we have already shown that this bound is tight by designing protocol ΠUSMT (which securely sends `
field elements by communicating ` field elements if there exists at least one uncorrupted wire in the
bottom band), we need not have to prove the lower bound for this case. We now prove the lower bound
on the communication complexity of USMT protocols where the entire bottom band is corrupted.

Theorem 7 Suppose there exists u ≤ t wires in the bottom band and n = max(2t− u + 1, t + 1) wires
in the top band. Moreover, the entire bottom band is corrupted. Then any multiphase USMT protocol
to send a message MS containing ` field elements from F, needs to communicate Ω(n`

u) field elements.
In terms of bits, the protocol needs to communicate Ω(n`

u κ) bits to send `κ bits.

Proof: Note that if u > t, then at least one wire in the bottom band is uncorrupted and so the lower
bound of Ω(`) holds. So, we consider the case where u ≤ t. Suppose both S and R in advance knows
that the entire bottom band is corrupted. Under this assumption, any multiphase USMT protocol
virtually reduces to a single phase USMT protocol, where S is connected to R by n = 2t− u + 1 wires,
of which at most t − u are corrupted. Since perfect secrecy is required in USMT, the data sent along
the n wires in any single phase USMT protocol must be such that data on any set of (t− u) wires has
no information about the secret message, otherwise the adversary will also know the secret message by
passively listening the contents of these wires. Similarly, the data sent over any (n − (t − u)) honest
wires during the protocol has full information about the secret message. The latter requirement ensures
that even if the adversary simply blocks/corrupts all the data that he can, the secret message is not
lost and therefore the receiver’s ability to recover the message is not completely ruled out.

Let Xi denotes the ith share of some valid distribution scheme and let m denote the secret message
containing ` field elements chosen from F`. For any subset A ⊆ {1, 2 . . . n} let XA denote the set of
variables {Xi|i ∈ A}. Then the secret m and the shares Xi are random variables. For a random variable
X, let H(X) denote its entropy [4]. Roughly speaking, entropy quantifies the information contained
in a message, usually in bits or symbols. Since m is drawn uniformly at random from F`, we have
H(m) = `. Since in any single phase USMT protocol, the data sent along any set B consisting of
(n− (t− u)) honest wires have full information about m, we have H(m|XB) = 0.

Consider any subset A ⊂ B such that |A| = (t − u). Since the data sent along the wires in A is
insufficient to retrieve any information about the message m we get H(m|XA) = H(m). From the chain
rule of the entropy [4], for any two random variable X1, X2, we have H(X1, X2) = H(X2)+H(X1|X2).
Here H(X1, X2) denotes the joint entropy of X1, X2. Informally, the joint entropy measures how
much entropy is contained in a joint system of two random variables. Similarly, H(X1|X2) denotes
conditional entropy of X1 on X2. Informally, it quantifies the remaining entropy (i.e. uncertainty)

15

of X1 given that the value of a second random variable X2 is known. Substituting X1 = m|XA and
X2 = XB−A, we get H(m|XA, XB−A) = H(XB−A) + H(m|XA|XB−A). From the properties of joint
entropy [4], for any two variables X1, X2, we have H(X1, X2) ≥ H(X1) and H(X1, X2) ≥ H(X2). Thus,
H(m|XA, XB−A) ≥ H(m|XA). Thus we get

H(m|XA) ≤ H(m|XA|XB−A) + H(XB−A)
≤ 0 + H(XB−A) because m can be known completely from XA and XB−A

Consequently, H(m) ≤ H(XB−A) because H(m|XA) = H(m). Therefore for all the sets C of cardinality
|B| − |A| = ((n− (t− u))− (t− u)) = n− 2(t− u), we have

H(XC) ≥ H(m) ⇒
∑

i∈C

H(Xi) ≥ H(m)

Summing the above equation over all possible sets of size n− 2(t− u) we get

∑

C

∑

i∈C

H(Xi) ≥
(

n

n− 2(t− u)

)
H(m)

Now in all the possible
(

n
n−2(t−u)

)
subsets of size n − 2(t − u), each of the term H(Xi), 1 ≤ i ≤ n will

appear
(

n−1
n−2(t−u)−1

)
times. So we get

(
n− 1

n− 2(t− u)− 1

) n∑

i=1

H(Xi) ≥
(

n

n− 2(t− u)

)
H(m.)

Thus
n∑

i=1

H(Xi) ≥ n

n− 2(t− u)
`.since H(m) = `

Since
∑n

i=1 H(Xi) defines the information content over n wires, which is sent during any single phase
USMT protocol, the lower bound on the communication complexity of any single phase USMT protocol
is Ω

(
n`

n−2(t−u)

)
= Ω

(
n`
u

)
. This completes the theorem. 2

The lower bound proved in Theorem 7 is tight. Specifically, if the entire bottom band is corrupted,
then the USMT protocol ΠUSMT sends ` field elements by communicating O(n`

u) field elements where
` = Θ(n2u).

7 Conclusion and Open Problems

In this paper we have proved the lower bound on the communication complexity of URMT and USMT
protocols in directed networks. Moreover, we have shown that our bounds are tight by designing
communication optimal URMT and USMT protocol, which are first of their kind. It would be interesting
to reduce the phase complexity of our URMT and USMT protocols.

References

[1] Z. Beerliová-Trub́ıniová and M. Hirt. Efficient multi-party computation with dispute control. In
Proc. of TCC, pages 305–328, 2006.

[2] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10,
1988.

[3] D. Chaum, C. Crpeau, and I. Damg̊ard. Multiparty unconditionally secure protocols (extended
abstract). In Proc. of FOCS 1988, pages 11–19, 1988.

[4] T. H. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, 2004.

16

[5] Y. Desmedt and Y. Wang. Perfectly secure message transmission revisited. In Proc. of Advances
in Cryptology: Eurocrypt 2002, LNCS 2332, pages 502–517. Springer-Verlag, 2003.

[6] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. JACM,
40(1):17–47, 1993.

[7] M. Franklin and R. Wright. Secure communication in minimal connectivity models. Journal of
Cryptology, 13(1):9–30, 2000.

[8] Arpita Patra, Ashish Choudhary, Kannan Srinathan, and C. Pandu Rangan. Unconditionally re-
liable and secure message transmission in undirected synchronous networks: Possibility, feasibility
and optimality. Cryptology ePrint Archive, Report 2008/141, 2008.

[9] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In STOC, pages 73–85, 1989.

[10] B. Shanker, P. Gopal, K. Srinathan, and C. Pandu Rangan. Unconditional reliable message trans-
mision in directed networks. In Proc. of SODA 2008.

[11] K. Srinathan, A. Narayanan, and C. Pandu Rangan. Optimal perfectly secure message transmis-
sion. In Proc. of Advances in Cryptology: CRYPTO 2004, LNCS 3152, pages 545–561. Springer-
Verlag, 2004.

[12] Y. Wang and Y. Desmedt. Perfectly secure message transmission revisited. IEEE Transactions on
Information Theory. Manuscript. Available at www.sis.uncc.edu/∼yonwang/.

[13] A. C. Yao. Protocols for secure computations. In Proc. of 23rd IEEE FOCS, pages 160–164, 1982.

17

