
A Complete Treatment of 2-party SFE in the Information-Theoretic
Setting with Applications to Long-Term Security

Jörn Müller-Quade∗ and Dominik Raub†

April 11, 2008 18:05

Abstract

It is well known that general secure function evaluation (SFE) with information-theoretical (IT) security
is infeasible in the secure channels model in presence of a corrupted majority [Cle86, Kil91, Kus92, Kil00,
IKLP06, Kat06]. In particular these results extend to and are derived from the 2-party scenario, where any
corrupted party is already a corrupted majority. On the other hand [BT07] have recently demonstrated that
a wealth of interesting functions can be computed securely even in presence of a corrupted majority, at least
if one is willing to sacrifice robustness, thus raising interest in a general description of these functions.

In this work we give a complete combinatorial classification of 2-party functions, by their secure com-
putability under active, semi-honest, passive and quantum adversaries. Our treatment is constructive, in the
sense that, if a function is computable in a given setting, then we exhibit a protocol.

We then proceed to apply our results to gain insight into long-term security, where we admit computa-
tional assumptions for the duration of a computation, but require information-theoretical security (privacy)
once the computation is concluded.

1 Introduction

It is well known that information-theoretically (IT) secure general secure function evaluation (SFE) in presence
of a corrupted majority is infeasible in the secure channels model [Cle86, Kil91, Kus92, Kil00, IKLP06, Kat06].
In particular these results extend to and are derived from the 2-party scenario, where any corrupted party is
already a corrupted majority. On the other hand [BT07] have recently demonstrated that a wealth of interesting
functions can be computed securely even in presence of a corrupted majority, at least if one is willing to sacrifice
robustness, thus raising interest in a general description of these securely computable functions.

In this work we attempt a complete combinatorial classification of 2-party functions, by their secure com-
putability under different adversaries. In particular we consider active adversaries that may deviate arbitrarily
from the prescribed protocol, passive adversaries1 that may only observe a correct protocol execution and at-
tempt to extract extra information from the observed interaction, and semi-honest adversaries2 that are limited
in the same way passive adversaries are, but may substitute input and output values in order to gain extra infor-
mation. We also give some consideration to protocols that may employ a quantum channel and the associated
quantum adversaries. We describe the class of 2-party functions T2act that can be IT securely computed in pres-
ence of an active adversary, the class T2pas that can be IT securely computed in presence of a passive adversary,
and the class T2sh, that can be IT securely computed in presence of a semi-honest adversary and which is a

∗IAKS/EISS, Fakultät für Informatik, Universität Karlsruhe (TH), Germany, muellerq@ira.uka.de
†Information Security and Cryptography Research Group, Department of Computer Science, ETH Zurich, Switzerland,

raubd@inf.ethz.ch
1In the literature our notion of passive is also occasionally referred to as semi-honest.
2In the literature our notion of semi-honest is also sometimes referred to as weakly semi-honest or weakly passive.

1

superclass of T2act and T2pas. Our treatment is constructive, in the sense that, if a function f is computable in
a given setting, then our proofs allow to directly derive a secure protocol π computing f .

We then apply our results to long-term (LT) security. Long-term security (LTS) is achieved by protocols
which use computational assumptions only during the execution of a protocol and become IT secure afterwards.
As such coin flipping protocols and zero-knowledge (ZK) arguments are examples for protocols achieving long-
term security. Once these protocols have terminated all computational assumptions can be dropped without
impacting security. Both the uniformity of the random coins and the soundness of a ZK argument cannot be
invalidated post factum.

We provide a security model for LT security and prove that this notion of security lies strictly between
computational security and IT security. More concretely we show that the class of functions Tlts computable
with LT security in the secure channels model is exactly the class of functions Tsh computable with IT security
in presence of a semi-honest adversary in the secure channels model.

From our observations for the 2-party case, namely that T2act (T2sh (F2, we can then deduce that the
class of LT securely computable functions Tlts = Tsh in the secure channels model is strictly greater than the
class of actively IT securely computable functions Tact in the secure channels model, but does not encompass
all functions F. Furthermore we show that the class T2qu of all 2-party functions which can be computed
using quantum cryptography is strictly contained in T2sh. This gives rise to new impossibility results which
complement the well known No-Go Theorems of [May97, LC97].

The basic notion of LT security employed in this work allows for a corrupted party to abort the computation
in knowledge of the result. In other words we do not guarantee quit-fairness, where quit-fairness is the security
property that either all parties learn the result of the computation or nobody does. Indeed from [Cle90] we
know that quit-fairness cannot be achieved for general 2-party protocols.

However, computationally (CO) secure protocols can guarantee that only a designated one of the two parties
can prematurely abort the protocol after having learned the output [Gol04]. We call this property security
with designated aborter and show that it can be achieved for all functions in T2sh while preserving long-term
security, provided our computational assumption is sufficient for constructing CO secure oblivious transfer
(OT) that is also LT secure for one of the participants. As shown in [Gol04] enhanced trap-door one-way
permutations are an example of an assumption of sufficient strength. Astonishingly, CO secure OT is used in
our construction (where only one party is LT protected), even though OT itself cannot be realized with full LT
security. Moreover, we show that a protocol with LT security and designated abort for a specific function in
T2sh implies the existence of a protocol for CO secure OT.

1.1 Related Work

Kushilevitz [Kus92] describes the symmetric 2-party functions which can be computed with perfect security in
presence of an unbounded passive adversary. In this work we generalize the results of [Kus92] to the asymmet-
ric, statistical case, characterizing the class of functions T2pas which can IT securely be computed in presence
of a passive adversary. Our characterization of the classes T2sh and T2act, that deal with semi-honest and active
adversaries respectively, are in turn built on the characterization of the class T2pas. The impossibility result in
the quantum case makes use of a result of Kitaev showing the impossibility of quantum coin flipping which
is published in [ABDR04]. Some of the ideas presented in this work have already been sketched in [MQ05],
however, without proper formalization or proofs. In particular these are the generalization of [Kus92] to the
asymmetric, statistical case, connections to LT security and the quantum aspects discussed in this work. The
treatment of the class T2act of actively trivial functions, the discussion of designated aborters in the LT setting,
and the classification of 2-party functions are to the best of our knowledge original to this work.

Other works that deal with the computability of 2-party functions in the perfect or IT setting are [Kil91,
Kil00, BMM99, KMQ08]. However, these papers focus mostly on reducibility and completeness, while we are
more interested in computability in the plain setting and implications for LT security.

Everlasting security from temporary assumptions has been investigated in cryptographic research for some

2

time. It was shown that a bound on the memory available to the adversary allows to implement key exchange
protocols [CM97] and protocols for oblivious transfer [CCM02] which remain secure even if the memory
bound held only during the execution of the protocol. This idea has further been persued to achieve everlasting
security from a network of distributed servers providing randomness [Rab03]. In [DM04] it was shown that
using a computationally secure key exchange in the bounded storage model need not yield everlasting security.
For some time general quantum cryptographic protocols were sought which obtain everlasting security from
a temporary assumption. Such protocols are now generally accepted to be impossible [BCMS99]. Additional
assumptions, like a temporary bound on the quantum memory can again provide everlasting security for secure
computations [DFSS05].

In this paper we investigate the power of temporary computational assumptions in the standard model. This
is along the lines of [MQU07]. However in [MQU07] strong composability requirements are imposed under
which little is possible without additional setup assumptions, like the temporary availability of secure hardware.

2 Security Models

We use a simulation based stand-alone model of security (as opposed to a universally composable model) with
synchronous message passing where parties are connected via secure channels as for instance described in
[Gol04]. Security is defined by comparing, by means of a distinguisher D, a real protocol π that interacts with
an adversary E with an ideal functionality I that interacts with a simulator S. We generally demand that for
all adversaries E ∈ E there are simulators S(E) ∈ S such that for all distinguishers D ∈ D the advantage
∆D(S(E) ◦ I,E ◦π ◦R) = ∆(D(S(E) ◦ I),D(E ◦π ◦R)) < ε(κ) where ∆ denotes statistical distance, E , S, D
denote classes of algorithms and distinguishers make binary output. A more detailed treatment of the security
model can be found in Appendix A.

We consider both computational (CO) security, where distinguishers, adversaries and simulators must be
efficient3 (D, E ,S ⊆ Poly) and information-theoretic (IT) security where distinguishers, adversaries and sim-
ulators are arbitrary unbounded algorithms (D, E ,S ⊆ Algo). Furthermore, we investigate long-term (LT) se-
curity where adversaries and simulators must be efficient (E ,S ⊆ Poly) but distinguishers may be unbounded
(D ⊆ Algo), formalizing that we expect computational assumptions to hold only for the duration of the proto-
col. In all three cases the advantage ε(κ) is chosen to be negligible in the security parameter κ. If in the IT case
we fix an advantage of ε = 0 we arrive at perfect (PF) security. We may vary the IT and PF cases by demanding
efficient simulators (ITE, PFE).

We refine these security paradigms further by defining adversarial models, i.e. restrictions that we can
impose on the adversaries and simulators for any of the above paradigms. We discuss active (ACT) adversaries,
where adversaries and simulators are not restricted further; semi-honest (SH) adversaries, where adversaries in
the class Esh are restricted to generate messages according to the prescribed protocol π with the inputs provided
by the distinguisher D, and simulators are not restricted further; and passive (PA) adversaries, where adversaries
in the class Epas = Esh are restricted to generate messages according to the prescribed protocol π with the inputs
provided by the distinguisher D, and simulators in the class Spas are restricted to forward the inputs provided
by the distinguisher D to the ideal functionality I .

Security paradigms and adverserial models as defined above are combined by intersecting their defining
sets, i.e. semi-honest IT security is described by DIT

sh = DIT, S IT
sh = S IT ∩ Ssh, E IT

sh = E IT ∩ Esh, ε(κ) < negl
and denoted π <IT

sh I .
We can now formalize security requirements under each of the definitions above by providing an appropriate

ideal system.
3By efficient we mean polynomially bounded in the security parameter κ.

3

Let P = {P1, . . . , Pn} be a set of n parties4 and let Fn designate the set of all n-party functions

f :

{
X1 × . . .×Xn → Y1 × . . .× Yn

(x1, . . . , xn) 7→ f(x1, . . . , xn) = (y1, . . . , yn).
(1)

where the input and output sets X1, . . . ,Xn,Y1, . . . ,Yn ⊂ N for the n parties are finite. Furthermore, let
F :=

⋃
n≥1 Fn denote the set of all multi-party functions. Now let f ∈ Fn be a concrete function5 and let

E ⊂ P be a set of corrupted players.

Definition 2.1 (Security (with Robustness)). We define an ideal functionality If that formalizes computing f
securely (including robustness) as follows: First If (E) takes inputs xi ∈ Xi from each party Pi. If no valid
input is received from Pi then a default value xdef

i for xi is assumed. Now If (E) computes (y1, . . . , yn) =
f(x1, . . . , xn) and outputs yi to Pi for all Pi ∈ P. ♦

Unfortunately, in protocols tolerating a majority of dishonest parties robustness and even quit-fairness can-
not generally be guaranteed [Cle86, Cle90, IKLP06, Kat06]. In other words, an adversary can possibly abort
the protocol even after obtaining (part of) the protocol result, while preventing the honest parties from learning
their result. Although such a scenario is clearly less desirable then fair or even robust computation, we are still
interested in security in presence dishonest majorities. Thus, we devise an ideal system that explicitly allows
for this type of behavior:

Definition 2.2 (Security with Abort). We define an ideal functionality Iab
f (E) that formalizes computing a

function f securely with abort as follows: First Iab
f (E) takes inputs xi ∈ Xi from each party Pi. If no valid

input xi is received from Pi then a default value xdef
i for xi is assumed. Now Iab

f (E) computes (y1, . . . , yn) =
f(x1, . . . , xn) and outputs yi for Pi ∈ E to the ideal adversary (simulator) S. The ideal functionality Iab

f (E)
then awaits an input o ∈ {0, 1} from the the simulator S. On o = 1 the functionality Iab

f (E) distributes yi to all
parties Pi, on o = 0 it sends ⊥ to all parties Pi and terminates. ♦

As mentioned above, in protocols tolerating up to n − 1 out of n corrupted parties successful termination
cannot generally be guaranteed. A single corrupted party can possibly abort the protocol. However, it is also
known that CO secure SFE protocols can be designed in such a way that only a single party, to which we
refer as the designated aborter, can abort the protocol and (computationally) learn anything about the result
of the computation. In other words, only the designated aborter can abort the protocol conditional on his
output. Aborts from other players are no different from refusal to participate in the protocol. This notion of
computational security with designated aborter is of practical interest, because we may in an application setting
have a party which is not fully trusted but can be relied upon not to abort the protocol. We hence formalize this
notion in the following definition:

Definition 2.3 (Security with Designated Aborter (DA)). We define an ideal functionality I
des(j)
f (E) that for-

malizes securely computing a function f with designated aborter Pj as follows: First I
des(j)
f (E) takes inputs

xi ∈ Xi from each party Pi. If no valid input is received from Pi then a default value xdef
i for xi is assumed.

Now I
des(j)
f (E) computes (y1, . . . , yn) = f(x1, . . . , xn). If Pj ∈ E the functionality I

des(j)
f (E) outputs yi for

Pi ∈ E to the ideal adversary (simulator) S. Else it only outputs yj to Pj . I
des(j)
f (E) then awaits an input

o ∈ {0, 1} from the designated aborter Pj . On o = 1 the ideal system I
des(j)
f (E) distributes yi to all parties Pi,

on o = 0 it sends ⊥ to all parties and terminates.
We generally set j = 1 and drop it from the notation. ♦

4Throughout this work, we will mostly consider the case n = 2 and P = {PA, PB}.
5In this work we take the function f to be independent of the security parameter κ. This is the natural and most relevant case for

applications. Our proofs would however still hold for a family of functions fκ, where the input domain grows at most polynomially
fast in the security parameter κ.

4

Naturally we investigate how the notions of LT security and computational security with designated aborter
combine. To this end we define

Definition 2.4 (Long Term Security with Designated Aborter (LTS-DA)). A protocol π computes a function f
with long-term security with designated aborter (LTS-DA) if it computes f with CO security with designated
aborter and if the protocol π′ where the reply of an honest P1 after receiving its output is fixed to ok computes
f with LT security with abort. ♦

Note that in LTS-DA long-term protection of secrets is only guaranteed for protocols which terminate. In
case of an abort an adversary may, in the long term, learn intermediate results (by breaking the computational
assumption).

3 The Class of Passively Trivial Functions

Kushilevitz [Kus92] characterizes the symmetric 2-party functions that can be perfectly securely computed in
presence of a passive adversary. In this section, we generalize this result in two ways: First we admit asymmetric
functions, where the participants A and B may obtain different outputs. Second we consider passive IT security,
so we admit a statistically small (negligible) chance that security fails.

As already pointed out in the introduction, we discuss the secure evaluation of a function f which is inde-
pendent of the security parameter κ. This is the natural and most relevant case for applications. However, our
proofs still hold for a family of functions fκ, where the input domain XA × XB grows at most polynomially
fast in the security parameter κ. For function families fκ, where the input domain XA × XB grows superpoly-
nomially fast in the security parameter κ, we cannot make a statement, since, as pointed out in [Kus92], such
functions may require superpolynomially many rounds to compute, invalidating the inductive arguments over
negligible quantities employed in our proofs.

We begin by defining the class of 2-party functions that can securely be computed in presence of a passive
adversary:

Definition 3.1 (Passively Trivial). The class of 2-party functions f ∈ F2 for which an efficient protocol π ∈
Poly exists, implementing If with passive IT security is called the class of passively trivial functions T2pas. ♦

Before we describe the class of passively trivial functions T2pas combinatorially, we note that locally com-
putable functions are clearly passively trivial. For a function f : XA × XB → YA × YB and a projection
πi : YA × YB → Yi we write fi to denote πi ◦ f (i ∈ {A,B}). Now we can characterize the class of locally
computable functions:

Lemma 3.2 (Local Computability). A 2-party function f ∈ F2 is locally computable, without interaction
between the parties A and B, if and only if the results of each party are independent of the inputs of the other
party. In other words fB|XA×{xB} is constant for any xB ∈ XB and fA|{xA}×XB

is constant for any xA ∈ XA.
We call the set of locally computable functions T2loc.

The proof is trivial and left to the reader. The following combinatorial characterization of passively trivial
functions is then a generalization of the one by [Kus92] to the asymmetric setting.

Definition 3.3 (Passively Decomposable). A 2-party function f ∈ F2 is called passively decomposable if for
any restriction f | eXA× eXB

of f to subsets X̃A ⊆ XA, X̃B ⊆ XB we have

1. f | eXA× eXB
∈ T2loc locally computable or

2. there is a partition (K-cut) into non-empty sets X ′
A ∪ X ′′

A = X̃A such that for any xB ∈ X̃B we have
fB(X ′

A, xB) ∩ fB(X ′′
A, xB) = ∅ or

5

3. there is a partition (K-cut) into non-empty sets X ′
B ∪ X ′′

B = X̃B such that for any xA ∈ X̃A we have
fA(xA,X ′

B) ∩ fA(xA,X ′′
B) = ∅.

The set of passively decomposable functions will be called T′
2pas. ♦

Now we state that our combinatorial description indeed characterizes the passively trivial functions:

Lemma 3.4 (Passive Triviality). A 2-party function f ∈ F2 is passively trivial if and only if it is passively
decomposable. In short T2pas = T′

2pas. Furthermore, any function f ∈ T2pas can efficiently be computed with
perfect security.

The proof of this lemma can be found in Appendix B. It generalizes the proof of [Kus92] to the asymmetric,
statistical setting. Note that the first part of the proof is actually constructive in the sense that it inductively
describes a passively PF secure protocol πf for the function f ∈ T2pas = T′

2pas. This protocol πf is essentially
the same as in [Kus92]:

Let A and B have inputs a ∈ XA and b ∈ XB respectively. Wlog assume that there is a decomposition
XB = X (1)

B ∪̇X
(2)
B as described in Def. 3.3 (else interchange A and B). Then B determines the message

m1 ∈ {1, 2} such that B’s input b ∈ X (m1)
B and sends m1 to A. A and B then restrict the function f to

f |XA×X
(m1)
B

and proceed with a partition for f |XA×X
(m1)
B

in the same fashion. The process is iterated until the

parties arrive at a locally computable restriction of f , at which point they compute the output locally.
The round complexity of πf can be improved by using the finest possible decomposition, for instanceXB =

X (1)
B ∪̇ · · · ∪̇X

(u)
B , where the X (i)

B fulfill the criterion ∀xA ∈ XA, i 6= j : fA(xA,X (i)
B) ∩ fA(xA,X (j)

B) = ∅.
[Kus92] shows that the resulting protocol πf achieves the optimal round complexity for passive PF security.

4 The Class of Semi-Honestly Trivial Functions

Consider a LTS scenario, where during a protocol run we can rely on computational assumptions. Then, in
presence of an active adversary, we can force honest behavior using zero-knowledge arguments and uncondi-
tionally hiding bit-commitments. What we cannot prevent, however, is corrupted parties exchanging their inputs
for different ones. We call such behavior, where corrupted parties may change their input before beginning the
computation and try to obtain extra information but adhere to the protocol otherwise semi-honest.

A priori, this suggests stronger adversaries than the strictly passive adversary class Esh = Epas from the
definition of semi-honest security in Section 2, namely adversaries E that can exchange inputs provided by the
distinguisher D.

We show that such an apparently stronger definition of security is still equivalent to the definition of semi-
honest security in Section 2: Note that for the distinguisher classes D under consideration in this work, for any
distinguisher D ∈ D we find a distinguisher D′ = D ◦ σ ∈ D that incorporates the input substitution σ of
E = E′ ◦ σ. In other words we can find a passive adversary E′ ∈ Esh and a distinguisher D′ that yield the same
advantage as E and D. So the definition of semi-honest security from Section 2 is equivalent to the modified
definition.

Next, we define the set of semi-honestly trivial functions, that are computable in this setting:

Definition 4.1 (Semi-Honestly Trivial). The class of 2-party functions f ∈ F2 for which an efficient protocol
π ∈ Poly exists, implementing If with semi-honest IT security is called the class of semi-honestly trivial
functions T2sh. ♦

As the outputs for A and B are different, some inputs of A may be completely indistinguishable for B,
while one of these inputs may yield more information for A (and vice versa). More precisely, an input x of one
party, say A, to a function f is said to dominate another input x′ if the two inputs are indistinguishable for the

6

other party B and every two inputs of the other party B which can be distinguished by A by entering x′ can
also be distinguished by entering x (also see [KMQ08]).

The dominated input x′ gives less information than x and is not useful for a corrupted A. Along the same
lines an ideal adversary (simulator) can always use the dominating input x for simulation. As such the input
x′ is redundant. It makes no difference in terms of security, and we can eliminate it from the function f under
consideration. This procedure yields a redundancy-free version f̂ of f with new, smaller, dominating input
sets X̂A and X̂B . Precise definitions of dominance and redundancy-freeness can be found in Appendix C or
[KMQ08].

A function f and its redundancy-free version f̂ are mutually reducible with perfect security and using local
transformations only, i.e. without additional communication resources:

Lemma 4.2 (Local Mutual Reducibility). The function f and its redundancy-free version f̂ are locally mutually
reducible with perfect security (D, E ⊆ Algo) and efficient simulator (S ⊇ Poly), even in presence of an active
adversary, i.e. If <PFE

act If̂ <PFE
act If .

The proof of this lemma can be found in Appendix D. We are now ready to characterize the class of semi-
honestly trivial functions T2sh:

Lemma 4.3 (Semi-Honest Triviality). A 2-party function f ∈ F2 is semi-honestly trivial (f ∈ T2sh) iff the
redundancy-free version f̂ of f is passively trivial (f̂ ∈ T2pas). Furthermore any function f ∈ T2sh can be
computed efficiently with perfect security.

The proof of this lemma can be found in Appendix E. The functions f (5) and f (6) in Fig. 1 are examples
of not semi-honestly trivial functions taken from [Kus92]. The function f (6) is of particular interest as it is of
strictly less cryptographic strength as oblivious transfer.

5 The Class of Actively Trivial Functions

In this section we describe the class of all 2-party functions which can securely be computed in presence of an
unlimited active adversary. We will call this class of functions the class T2act of actively trivial functions. Our
combinatorial classification below implies that T2act is strictly contained in T2sh and hence the notion of LT
security lies strictly between IT security and CO security. Interestingly there are some useful functions in the
class T2act, e.g. f (7) in Fig. 1 which is a formalization of a Dutch flower auction, where the price is lowered in
every round until a party decides to buy.

Definition 5.1 (Actively Trivial). The class of 2-party functions f ∈ F2 for which an efficient protocol π ∈ Poly
exists, implementing If with active IT security is called the class of actively trivial functions T2act. ♦

We then give a combinatorial characterization of actively trivial functions:

Definition 5.2 (Actively Decomposable). A 2-party function f ∈ F2 is called actively decomposable, iff f̂ ∈
T̂2act. A function f ∈ F2 is in T̂2act if one of the following holds

1. f ∈ T2loc is locally computable;

2. there is a partition (T-cut) of XB = X ′
B ∪ X ′′

B such that f |XA×X ′
B
, f |XA×X ′′

B
∈ T̂2act and

∀ x′A, x′′A ∈ XA ∃xA ∈ XA∀ x′B ∈ X ′
B, x′′B ∈ X ′′

B : fA(x′A, x′B) 6= fA(x′A, x′′B) ∧
fB(x′A, x′B) = fB(xA, x′B) ∧ fB(x′′A, x′′B) = fB(xA, x′′B);

3. the above with parties A and B interchanged.

7

The set of passively decomposable functions f will be called T′
2act. ♦

The functions f (7) and f (8) in Fig. 1 are examples of actively trivial functions. Especially compare f (8)

with f (2) ∈ T2sh which is not actively trivial. The protocol used for computing actively trivial functions is the
same as in the passive case. The lines in the tables for f (7) and f (8) represent messages which are to be sent in
the protocol. Each message informs the other party on which side of the line the result lies. Intuitively speaking
the table becomes smaller for every message sent until the result is obtained. For both functions the party B
whose input fixes the column must start the protocol sending the message corresponding to the longest line in
the table.

We now state that active decomposability actually characterizes the actively trivial functions.

Theorem 5.3 (Active Triviality). A 2-party function f is actively trivial if and only if it is actively decompos-
able. In short T2act = T′

2act. Furthermore any function f ∈ T2act can be computed efficiently with perfect
security.

The proof of this theorem can be found in Appendix F.

6 Quantum Protocols

In this section we will relate the class T2sh of SH trivial two argument functions with the class of two argument
functions achievable by quantum cryptography in presence of an active adversary. A similar result has been
obtained by Louis Salvail, but is not published yet. For this result we have to adapt our model of security to
the quantum case. All machines except for the distinguisher D will be quantum machines able to exchange
quantum messages. The adversary will be unbounded. Furthermore, all inputs and outputs must be classical
and the distinguisher must try to distinguish the real and the ideal model on basis of this classical information.

Let T2qu denote the set of functions f ∈ F2 which can, with the help of a quantum channel, securely and
effciently be computed in presence of an unbounded adversary. Then the following result holds.

Theorem 6.1. The class T2qu of quantum trivial functions is strictly contained in the class of SH trivial func-
tions T2sh.

A proof of this theorem is sketched in Appendix G. The strict inclusion T2qu (T2sh gives rise to new
impossibility results. For instance, the function f (7) 6∈ T2sh in Fig. 1 cannot be computed by means of quantum
cryptography. An interesting still open question is the power of temporary computational assumptions together
with a quantum channel. It is known that this does not suffice to securely implement any function which could
in turn be used to implement an IT secure bit commitment. However a secure implementation of the function
f (7) in Fig. 1 is not precluded by this impossibility result.

7 Long-Term Security

In this section we characterize the class T2lts of 2-party functions that can be computed with long-term security
in presence of an active adversary. So we ask which functions f ∈ F2 can be securely computed, if we are
willing to make computational assumptions, but only for the duration of the protocol interaction. Once the
protocol has terminated we demand IT security.

We shall see that T2act (T2lts (F2. Indeed T2lts = T2sh, as unconditionally hiding bit-commitments
and perfect zero-knowledge arguments allow to turn protocols which are secure against unbounded semi-honest
attackers into LT secure protocols.

Theorem 7.1. Assuming the existence of one-way functions (OWF), the class T2lts of 2-party functions f which
can be computed with LT security in presence of an active adversary, i.e. f <LT

act Iab
f , is exactly the class of

functions T2sh that can be computed with IT security in presence of a semi-honest adversary.

8

A proof of this theorem is sketched in Appendix H. Also, note that this theorem is easily generalized to the
multi-party setting.

Against active adversaries robustness or even fairness can generally only be guaranteed for functions f ∈
T2act [Cle86, Cle90]. Thus we only demand that Iab

f be implemented, which allows a corrupted party to abort
the protocol after obtaining output and before the honest parties can generate output.

7.1 Long Term Security with designated Aborter

As mentioned above we cannot generally guarantee robustness or even fairness for a LT secure protocol πf

computing f ∈ T2lts. However, under stronger computational assumptions, we can guarantee that only a
specific designated party can abort the protocol after obtaining output and before the honest parties can generate
output. This may be of practical relevance where a specific party is not trusted, but can be relied upon not
to abort the protocol. For instance a party may have a vested interest in the successful termination of the
protocol regardless of the outcome. One may think of an auctioneer that gets paid only if the auction terminates
successfully. Or a party may act in an official capacity and cannot abort the protocol for legal reasons.

We will show that stronger guarantees of this type are obtainable if and only if the underlying computational
assumption allows for an oblivious transfer (OT) protocol which is LT secure against one of the participants.
Enhanced trapdoor one-way permutations are an example of such an assumption [Gol04]. It is generally be-
lieved that OT is not implied by OWFs, meaning that LT security with designated aborter requires strictly
stronger assumptions than plain LT security.

Lemma 7.2. Any SH trivial 2-party function f ∈ T2sh = T2lts can be computed using a protocol π which is
LTS-DA iff computational oblivious transfer LT-secure against one party (CO-OT+) exists.

A proof of this lemma is sketched in Appendix I.

8 Classification of 2-party Functions

Combining the results from this work and from [KMQ08], we arrive at a complete combinatorial classification
of the 2-party functions F2.

We first define an equivalence relation renaming ≡ on F2 by f (1) ≡ f (2) iff f (2) is obtained from f (1) by
locally renaming input and output values. A formal definition can be found in [KMQ08] or Appendix J. It is
easy to see that renamings are locally mutually reducible under all security paradigms considered in this work.
In particular f (1) ≡ f (2) implies If (1) <PFE

act If (2) <PFE
act If (1) and If (1) <PFE

pas If (2) <PFE
pas If (1) .

Next we define an equivalence relation matching on F2/ ≡ (and thereby on F2) by isolating inputs that lead
to identical behavior and regarding functions as matching if, after eliminating such trivially redundant inputs,
they are renamings:

Definition 8.1. Given a 2-party function f ∈ F2 we say xA matches x′A for inputs xA, x′A ∈ XA, iff xA

dominates x′A and x′A dominates xA. The matching relation is an equivalence relation on XA. By X̄A we
designate a set of representatives. X̄B is defined analogously.

We then call f̄ := f |X̄A×X̄B
the weakly redundancy-free version of f and for f (1), f (2) ∈ F2 we write

f (1) ∼= f (2) if f̄ (1) ≡ f̄ (2) Furthermore for xA ∈ XA and xB ∈ XB let x̄A ∈ X̄A and x̄B ∈ X̄B be the (unique)
elements that match xA respectively xB . ♦

Like the redundancy-free version f̂ of f , the weakly redundancy-free version f̄ of f is well defined up to
renaming. Before we can state the actual classification, we have to reiterate another result of [KMQ08]:

Theorem 8.2 (Complete Functions [KMQ08]). The classes C2act, C2sh and C2pas of actively, semi-honestly,
and passively complete 2-party functions are the classes of functions f ∈ F2 to which all other 2-party functions
can be securely reduced in presence of an active, semi-honest or passive adversary respectively.

9

The class C2pas consists of exactly the functions f ∈ F2 where

∃ a1, a2 ∈ XA, b1, b2 ∈ XB : fA(a1, b1) = fA(a1, b2) ∧ fB(a1, b1) = fB(a2, b1) ∧
(fA(a2, b1) 6= fA(a2, b2) ∨ fB(a1, b2) 6= fB(a2, b2)).

We refer to this combinatorial structure as minimal OT.
The classes C2act = C2sh consist of exactly the functions f ∈ F2 where f̂ ∈ C2pas.

Note that f ∈ C2pas iff f ∈ C2act or f̂ 6≡ f̄ . This is clear from Kraschewki’s result as stated above and from
the observation that f̂ 6≡ f̄ implies a minimal OT. We then arrive at the following

Theorem 8.3 (Classification). The class of 2-party functions is a disjoint union of three sets F2 = C2act ∪
T2act ∪Fnct

2act or F2 = C2sh ∪T2sh ∪Fnct
2sh or F2 = C2pas ∪T2pas ∪Fnct

2pas where nct stand for “neither complete
nor trivial”. Now

∅ 6= T2act,T2pas (T2act ∪ T2pas (T2sh (2)

∅ 6= Fnct
2pas (Fnct

2sh (Fnct
2act (3)

∅ 6= C2act = C2sh (C2pas (4)

The above results are directly derived from the combinatorial descriptions of the function classes that can
be found in the preceding sections and, as far as complete functions are concerned, in [KMQ08]. Additional
details and examples can be found in Appendix J.

9 Conclusions

We gave combinatorial characterizations of the classes T2act, T2sh, T2pas of 2-party functions that can be
computed with IT security in presence of an active, semi-honest and passive adversary respectively. These
characterizations are constructive in that they directly imply a protocol computing a computable function.

We then investigated the class T2lts of 2-party functions computable with long-term security. These are the
functions that can be computed with information theoretic security, provided the adversary is computationally
bounded during the execution of the protocol. That is, we rely on computational assumptions, but only for the
duration of the protocol execution. Thereafter, a failure of the computational assumptions may not compromise
security. As such LT security is a practically very appealing notion of security, since we are fairly confident that
our computational assumptions hold at present, but may have to deal with quantum computers, new factoring
algorithms and better hardware in the future. IT secure protocols do address these issues of course, but they
generally only offer security if a majority of the participants is honest. Security in absence of a honest majority
requires computational assumptions and if we are unwilling to rely on computational assumptions for our
security indefinitely, long-term security is the next best solution.

We showed that the class T2lts of functions computable with LT security is equal to the class T2sh of
functions computable with IT security in presence of a semi-honest adversary (This result generalizes straight-
forwardly to the multi-party case.). The equality T2lts = T2sh provides us with a combinatorial characterization
of the functions computable with LT security. Furthermore, from T2act (T2sh = T2lts (F2 we find that tem-
porary computational assumptions are indeed useful, as they allow us to compute strictly more functions under
an active adversary than would be possible with pure IT security.

Finally, we showed that the class T2qu of two argument functions which can be implemented with quantum
cryptography is strictly contained in T2sh. This looks like quantum cryptography is not of much use besides
establishing a secure channel, but this is jumping to conclusions. Quantum cryptography can solve classically
impossible problems in different models of security, like achieving a certain robustness to abort in a model with
guaranteed message delivery or implementing a key exchange which is deniable.

10

f (1) 0 1
0 0/0 0/0
1 0/0 1/0

f (2) 0 1
0 0 1
1 0 2
2 3 2

f (3) 0 1 2
0 0/0 1/1 1/0
1 0/0 2/2 2/0
2 3/3 2/2 2/0

f (4) 0 1 2 3
0 1/1 1/1 2/2 2/0
1 4/4 5/5 2/2 2/0
2 4/4 3/3 3/3 3/0

f (5) 0 1
0 0 0
1 0 1

f (6) 0 1 2
0 1 1 2
1 4 5 2
2 4 3 3

f (7) 4 2 0
3 4 3 3
1 4 2 1
0 4 2 0

f (8) 0 1
0 0 1
1 0 2
2 3 2
3 3 1

Figure 1: Examples. Inputs for A are shown to the right, inputs for B on top. For asymmetric functions, outputs
are denoted yA/yB; for symmetric functions only the common output of both parties is listed.

References

[ABDR04] Andris Ambainis, Harry Buhrman, Yevgeniy Dodis, and Hein Röhrig. Multiparty quantum coin
flipping. In IEEE Conference on Computational Complexity, pages 250–259. IEEE Computer
Society, 2004.

[BCMS99] Gilles Brassard, Claude Crépeau, Dominic Mayers, and Louis Salvail. Defeating classical bit
commitments with a quantum computer. Los Alamos preprint archive quant-ph/9806031, May
1999.

[BMM99] Amos Beimel, Tal Malkin, and Silvio Micali. The all-or-nothing nature of two-party secure com-
putation. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO’99, volume 1666 of
LNCS, pages 80–97. Springer, 1999.

[BT07] Anne Broadbent and Alain Tapp. Information-theoretic security without an honest majority. In
ASIACRYPT, pages 410–426, 2007.

[CCM02] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer with a memory-bounded
receiver. In 34th Annual ACM Symposium on Theory of Computing, Proceedings of STOC 2002,
pages 493–502. ACM Press, 2002.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty. In STOC ’86:
Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages 364–369,
New York, NY, USA, 1986. ACM Press.

[Cle90] Richard Cleve. Controlled gradual disclosure schemes for random bits and their applications.
In Gilles Brassard, editor, Advances in Cryptology, Proceedings of CRYPTO ’89, volume 435 of
Lecture Notes in Computer Science, pages 573–588. Springer-Verlag, 1990.

[CM97] Christian Cachin and Ueli Maurer. Unconditional security against memory-bounded adversaries.
In Burton S. Kaliski Jr., editor, Advances in Cryptology—CRYPTO ’97, volume 1294 of Lecture
Notes in Computer Science, pages 292–306. Springer-Verlag, 17–21 August 1997.

[DFSS05] Ivan Damgård, Serge Fehr, Louis Salvail, and Christian Schaffner. Cryptography in the bounded
quantum-storage model. In 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 449–458. IEEE Com-
puter Society, 2005.

11

[DM04] Stefan Dziembowski and Ueli M. Maurer. On generating the initial key in the bounded-storage
model. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and Applications of Cryptographic Techniques, In-
terlaken, Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Computer
Science, pages 126–137. Springer, 2004.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge Uni-
versity Press, 2004.

[HR07] Iftach Haitner and Omer Reingold. Statistically-hiding commitment from any one-way function.
In David S. Johnson and Uriel Feige, editors, STOC, pages 1–10. ACM, 2007.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining privacy with
guaranteed output delivery in secure multiparty computation. In C. Dwork, editor, Advances in
Cryptology — CRYPTO ’06, volume 4117 of Lecture Notes in Computer Science, pages 483–500.
Springer, 2006.

[Kat06] Jonathan Katz. On achieving the ”best of both worlds” in secure multiparty computation. Cryptol-
ogy ePrint Archive, Report 2006/455, 2006. http://eprint.iacr.org/.

[Kil91] Joe Kilian. A general completeness theorem for two-party games. In Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, STOC’91, pages 553–560, New York, 1991.
ACM Press.

[Kil00] Joe Kilian. More general completeness theorems for secure two-party computation. In Proceedings
of the 32nd Annual ACM Symposium on Theory of Computing, STOC’00, pages 316–324, New
York, 2000. ACM Press.

[KMQ08] Daniel Kraschewski and Jörn Müller-Quade. Completeness theorems with constructive proofs for
symmetric, asymmetric and general 2-party-functions. Unpublished Manuscript, 2008. Online
available at http://iks.ira.uka.de/eiss/completeness.

[Kus92] Eyal Kushilevitz. Privacy and communication complexity. SIAM Journal on Discrete Mathematics,
5(2):273–284, 1992.

[LC97] H.-K. Lo and H. F. Chau. Is quantum bit commitment really possible? Physical Review Letters,
78:3410 – 3413, 1997.

[May97] D. Mayers. Unconditionally secure bit commitment is impossible. Phys. Rev. Letters, 78:3414–
3417, 1997. A previous version was published at PhysComp96.

[MQ05] Jörn Müller-Quade. Temporary assumptions—quantum and classical. In The 2005 IEEE Infor-
mation Theory Workshop on Theory and Practice in Information-Theoretic Security, pages 31–33,
2005.

[MQU07] J. Müller-Quade and D. Unruh. Long-term security and universal composability. In Theory of
Cryptography, Proceedings of TCC 2004, Lecture Notes in Computer Science. Springer-Verlag,
2007. to appear.

[Rab03] Michael O. Rabin. Hyper-encryption by virtual satellite. Science Center Research Lecture Series,
December 2003. Online available at http://athome.harvard.edu/dh/hvs.html.

12

http://eprint.iacr.org/
http://iks.ira.uka.de/eiss/completeness
http://athome.harvard.edu/dh/hvs.html

A Security Models

We use a simulation based stand-alone model of security (as opposed to a universally composable model) with
synchronous message passing where parties are connected via secure channels as for instance described in
[Gol04]. Security is defined by comparing a real protocol with an ideal specification, where a trusted third
party computes the function in question.6 This comparison is done by means of a distinguisher D, that attempts
to tell the ideal and the real setting apart. In the following we give a more formal definition of security.

Let P = {P1, . . . , Pn} be a set of n parties and let Fn designate the set of all n-party functions

f :

{
X1 × . . .×Xn → Y1 × . . .× Yn

(x1, . . . , xn) 7→ f(x1, . . . , xn) = (y1, . . . , yn).
(5)

where the input and output sets X1, . . . ,Xn,Y1, . . . ,Yn ⊂ N for each of the n parties are finite. Furthermore
let F :=

⋃
n≥1 Fn denote the set of all multi-party functions. Now assume the parties in P wish to compute a

concrete function f ∈ Fn.7 Throughout this work, we will mostly consider the case n = 2 and P = {PA, PB}.
For convenience we often refer to parties by their index rather then by their full designation, writing for instance
A instead of PA.

We may now fix a set of corrupted parties E ⊂ P and an adversary E that controls them. The set honest
parties H not controlled by the adversary is then H := P \ E. Furthermore we define a distinguisher D that
determines the inputs xi for all parties and after termination of the protocol receives their respective outputs yi

(i ∈ H ∪ {E}) where we designate input and output of the adversary by xE and yE respectively.
In the real case the uncorrupted parties H := P\E now run protocol π on the given inputs with the adversary

E using (communication) resources R (in this work generally only a secure channel). The outputs of all parties
are passed to D. We write D(E ◦ πH ◦R) for this setup.

In the ideal case the specification and inputs of the adversary E are passed to a simulator S, the remaining
inputs are passed to the ideal functionality I (which may depend on the set of corrupted parties E). The outputs
of the uncorrupted parties H are given directly to D, the outputs of the corrupted parties E are passed to S,
which then produces outputs for D. We write D(S(E) ◦ I) for this setup.

Finally the distinguisher D has to output a bit d ∈ {0, 1}, which can be regarded as the distinguisher’s
guess if it is connected to the real system E ◦ π ◦ R or the ideal system S(E) ◦ I . The protocol π is then
regarded as secure with respect to the ideal specification I , if the distinguisher D has essentially no advantage
in distinguishing the two settings:

Definition A.1 ((Stand-Alone) Security). We call a protocol π ◦ R running on resources R stand-alone secure
with respect to the ideal system I under a given advantage function ε and classes D of distinguishers, E of
adversaries and S of simulators if and only if

∀E ⊂ P ∀E ∈ E ∃S ∈ S ∀D ∈ D :
∆D(S(E) ◦ I,E ◦ π ◦R)
= ∆(D(S(E) ◦ I),D(E ◦ π ◦R))
= |P (D(S(E) ◦ I) = 1)− P (D(E ◦ π ◦R) = 1)| < ε(κ)

where ∆ denotes statistical distance. We then say the protocol π running on resources R is as secure as the
ideal system I , written π ◦R < I . We generally omit the resources R if they are clear from the context. ♦

6For a treatment of long-term security in the universal composability setting see [MQU07].
7In this work we take the function f to be independent of the security parameter κ. This is the natural and most relevant case for

applications. Our proofs would however still hold for a family of functions fκ, where the input domain grows at most polynomially
fast in the security parameter κ.

13

Different security paradigms are now formalized by choosing specific sets D, E , S of distinguishers, adver-
saries and simulators and an advantage function ε(κ) or by specifying a specific ideal system If computing a
function f .

We consider both computational (CO) security, where distinguishers, adversaries and simulators must be
efficient8 (D, E ,S ⊆ Poly) and information-theoretic (IT) security where distinguishers, adversaries and sim-
ulators are arbitrary unbounded algorithms (D, E ,S ⊆ Algo). Furthermore, we investigate long-term (LT) se-
curity where adversaries and simulators must be efficient (E ,S ⊆ Poly) but distinguishers may be unbounded
(D ⊆ Algo), formalizing that we expect computational assumptions to hold only for the duration of the proto-
col. In all three cases the advantage ε(κ) is chosen to be negligible in the security parameter κ. Here ε(κ) being
negligible means

∀p ∈ Z[X] ∃κ0 ∈ N ∀κ ∈ N : κ > κ0 =⇒ ε(κ) <
1

p(κ)
,

and is denoted ε < negl and we write ε1 ≈ ε2 iff |ε1 ≈ ε2| < negl. If in the IT case we fix an advantage of
ε = 0 we arrive at perfect (PF) security. We may vary the IT and PF cases by demanding efficient simulators
(ITE, PFE).

In summary we consider the following basic security paradigms:

Perfect (PF) security: Distinguishers, adversaries and simulators are arbitrary algorithms DPF = EPF =
SPF = Algo, the advantage ε(κ) = 0 is zero. Notation: π <PF I .

Information-theoretic (IT) security: Distinguishers, adversaries and simulators are arbitrary algorithmsDIT =
E IT = S IT = Algo, the advantage ε(κ) < negl is negligible. Notation: π <IT I .

PF security with efficient simulator (PFE): Distinguishers and adversaries are arbitrary algorithms DPFE =
EPFE = Algo, simulators are efficient SPFE = Poly, the advantage ε(κ) = 0 is zero. Notation: π <PFE I .

IT security with efficient simulator (ITE): Distinguishers and adversaries are arbitrary algorithms DITE =
E ITE = Algo, simulators are efficient S ITE = Poly, the advantage ε(κ) < negl is negligible. Notation:
π <ITE I .

Computational (CO) security: Distinguishers, adversaries and simulators are efficientDCO = ECO = SCO =
Poly, the advantage ε(κ) < negl is negligible. Notation: π <CO I .

Long-term (LT) security: Distinguishers are arbitrary algorithmsDLT = Algo, adversaries and simulators are
efficient ELT = SLT = Poly, the advantage ε(κ) < negl is negligible. Notation: π <LT I .

Note that a first type of security given through D1, E1, S1 implies a second type of security given through D2,
E2, S2 if D1 ⊇ D2, E1 ⊇ E2, S1 ⊆ S2. We obtain the following implications

PFE −−−−→ ITE −−−−→ COy y
PF −−−−→ IT

(6)

We refine these security paradigms further by defining adversarial models, i.e. restrictions that we can
impose on the adversaries and simulators for any of the above paradigms:

Active (ACT) adversaries: Adversaries and simulators not restricted further, Eact = Sact = Algo.

Semi-honest (SH) adversaries: Adversaries in the class Esh are restricted to generate messages according to
the prescribed protocol π with the inputs provided by the distinguisher D, simulators are not restricted
further Sact = Algo.

8By efficient we mean polynomially bounded in the security parameter κ.

14

Passive (PA) adversaries: Adversaries in the class Epas = Esh are restricted to generate messages according
to the prescribed protocol π with the inputs provided by the distinguisher D, simulators in the class Spas
are restricted to forward the inputs provided by the distinguisher D to the ideal functionality I .

Security paradigms and adverserial models as defined above are combined by intersecting their defining sets,
i.e. semi-honest IT security is described by DIT

sh = DIT, S IT
sh = S IT ∩ Ssh, E IT

sh = E IT ∩ Esh, ε(κ) < negl and
denoted π <IT

sh I .
Among the adversarial models we find the following implications

act −−−−→ sh ←−−−− pas (7)

We can now formalize security requirements under each of the definitions above by providing an appropriate
ideal system. In the following we describe ideal systems that formalize

1. robustly computing a function f

2. non-robustly computing a function f (security with abort)

3. non-robustly computing a function f where only a specific party can abort (security with designated
aborter)

Let a function

f :

{
X1 × . . .×Xn → Y1 × . . .× Yn

(x1, . . . , xn) 7→ f(x1, . . . , xn) = (y1, . . . , yn)
(8)

with n inputs and n outputs, corresponding to the n parties in P, be given and E ⊂ P be a set of corrupted
players.

Definition A.2 (Security (with Robustness)). We define an ideal functionality If that formalizes computing f
securely (including robustness) as follows:

First If (E) takes inputs xi ∈ Xi from each party Pi. If no valid input is received from Pi then a default
value xdef

i for xi is assumed. Now If (E) computes (y1, . . . , yn) = f(x1, . . . , xn) and outputs yi to Pi for all
Pi ∈ P. ♦

Unfortunately, in protocols tolerating a majority of dishonest parties robustness and even quit-fairness can-
not generally be guaranteed [Cle86, Cle90, IKLP06, Kat06]. In other words, an adversary can possibly abort
the protocol even after obtaining (part of) the protocol result, while preventing the honest parties from learning
their result. Although such a scenario is clearly less desirable then fair or even robust computation, we are still
interested in security in presence dishonest majorities. Thus, we devise an ideal system that explicitly allows
for this type of behavior:

Definition A.3 (Security with Abort). We define an ideal functionality Iab
f (E) that formalizes computing a

function f securely with abort as follows:
First Iab

f (E) takes inputs xi ∈ Xi from each party Pi. If no valid input xi is received from Pi then a default
value xdef

i for xi is assumed. Now Iab
f (E) computes (y1, . . . , yn) = f(x1, . . . , xn) and outputs yi for Pi ∈ E to

the ideal adversary (simulator) S. The ideal functionality Iab
f (E) then awaits an input o ∈ {0, 1} from the the

simulator S. On o = 1 the functionality Iab
f (E) distributes yi to all parties Pi, on o = 0 it sends ⊥ to all parties

Pi and terminates. ♦

As mentioned above, in protocols tolerating up to n − 1 out of n corrupted parties successful termination
cannot generally be guaranteed. A single corrupted party can possibly abort the protocol. However, it is also
known that CO secure SFE protocols can be designed in such a way that only a single party, to which we
refer as the designated aborter, can abort the protocol and (computationally) learn anything about the result

15

of the computation. In other words, only the designated aborter can abort the protocol conditional on his
output. Aborts from other players are no different from refusal to participate in the protocol. This notion of
computational security with designated aborter is of practical interest, because we may in an application setting
have a party which is not fully trusted but can be relied upon not to abort the protocol. We hence formalize this
notion in the following definition:

Definition A.4 (Security with Designated Aborter (DA)). We define an ideal functionality I
des(j)
f (E) that for-

malizes securely computing a function f with designated aborter Pj as follows:
First I

des(j)
f (E) takes inputs xi ∈ Xi from each party Pi. If no valid input is received from Pi then a

default value xdef
i for xi is assumed. Now I

des(j)
f (E) computes (y1, . . . , yn) = f(x1, . . . , xn). If Pj ∈ E the

functionality I
des(j)
f (E) outputs yi for Pi ∈ E to the ideal adversary (simulator) S. Else it only outputs yj to

Pj . I
des(j)
f (E) then awaits an input o ∈ {0, 1} from the designated aborter Pj . On o = 1 the ideal system

I
des(j)
f (E) distributes yi to all parties Pi. On o = 0 I

des(j)
f (E) sends ⊥ to all parties and terminates.

We generally set j = 1 and drop it from the notation. ♦

Naturally we investigate how the notions of LT security and computational security with designated aborter
combine. To this end we define

Definition A.5 (Long Term Security with Designated Aborter (LTS-DA)). A protocol π computes a function f
with long-term security with designated aborter (LTS-DA) if it computes f with CO security with designated
aborter and if the protocol π′ where the reply of an honest P1 after receiving its output is fixed to ok computes
f with LT security with abort. ♦

Note that in LTS-DA a long-term protection of secrets is only guaranteed for protocols which terminate. In
case of an abort an adversary may in the long term learn intermediate results (by breaking the computational
assumption).

B Proof of Lemma 3.4

We have to show: f ∈ T2pas ⇐⇒ f ∈ T′
2pas. We address each implication separately.

f ∈ T′
2pas =⇒ f ∈ T2pas: We proceed by induction over the size of the input space |XA × XB|. Now

f ∈ T′
2pas implies that f is either f ∈ T2loc locally computable, in which case trivially f ∈ T2pas passively

trivial and we are done, or f has a K-cut.
In the second case, by definition of the class T′

2pas and wlog (else interchange A and B) the set XB has a

partition X (1)
B ,X (2)

B such that

∀xA ∈ XA : fA(xA,X (1)
B) ∩ fA(xA,X (2)

B) = ∅

and the functions f (1) := f |XA×X
(1)
B

, f (2) := f |XA×X
(2)
B

are f (1), f (2) ∈ T′
2pas. By induction hypothesis then

f (1), f (2) ∈ T2pas as |XA × X (i)
B | < |XA × XB| (i ∈ {1, 2}). As such, there are protocols π(1), π(2) passively

PF securely implementing If (1) , If (2) under simulators S(1),S(2).
We now construct a protocol π by defining a first round where B sends A a message m1 ∈ {1, 2} chosen

such that indicating wether B’s input b is b ∈ X (1)
B or b ∈ X (2)

B . Subsequently both parties proceed to run
π(m1).

It remains to prove this protocol π secure by providing a appropriate simulator S both for the case where A
is corrupted and for the case where B is corrupted.

16

We begin with corrupted A. The simulator SA fixes the randomness of the adversary E (which it uses as a
black-box) and feeds it the input xE provided by the distinguisher D. Then the simulator SA extracts the input
a from xE and inputs it to the ideal system If as prescribed for the passive setting, in return receiving output
yA = fA(a, b). Now as f ∈ T′

2pas we have fA(a,X (1)
B) ∩ fA(a,X (2)

B) = ∅. So the simulator SA can uniquely

determine m1 ∈ {1, 2} such that yA ∈ fA(a,X (m1)
B). Finally the simulator SA inputs m1 to the adversary E

and runs S
(m1)
A (E), forwarding all inputs and outputs. The correctness of the simulation stems from the fact

that the simulator SA can correctly discern the first message m1 from the output yA of the ideal functionality
If . After simulating this message, the remainder of the simulation can be delegated to the subsimulator S

(m1)
A

that is guaranteed by our inductive argument.
We now turn to corrupted B. The simulator SB fixes the randomness of the adversary E feeds it the input xE

provided by the distinguisher D and runs the adversary E until E outputs the message m1. Now the simulator
SB runs S

(m1)
B (E) simply forwarding all inputs and outputs. This simulates the real execution, as depending on

message m1 the protocol π(m1) is executed by the honest party A. The interaction with this protocol now is
faithfully simulated by S

(m1)
B .

Note that we actually prove passively PF security above. The computation of locally computable functions
is perfectly secure (induction base) and in the above argument, if the subsimulators are perfectly secure, so are
the resulting simulators (induction step).

f ∈ T2pas =⇒ f ∈ T′
2pas Towards a contradition assume a counterexample f ∈ T2pas minimal in the size

of the input space |XA×XB| such that f 6∈ T′
2pas. Now consider an arbitrary restriction f̃ := f | eXA× eXB

of f to

subsets X̃A ⊂ XA, X̃B ⊂ XB where at least one inclusion is strict. As f ∈ T2pas, so is f̃ ∈ T2pas. Indeed this
can be seen by using exactly the same protocol and simulator as for f , and merely restricting the input domain.
By the minimality of f we furthermore have f̃ ∈ T′

2pas. Hence, by the assumption f 6∈ T′
2pas the function f

cannot be locally computable and has no K-cut:

1. ∃x′A, x′′A ∈ XA, x′B, x′′B ∈ XB : fA(x′A, x′B) 6= fA(x′A, x′′B) ∨ fB(x′A, x′B) 6= fB(x′′A, x′B) and

2. for any partition X ′
A ∪ X ′′

A = XA there is an xB ∈ XB such that fB(X ′
A, xB) ∩ fB(X ′′

A, xB) 6= ∅ and

3. for any partition X ′
B ∪ X ′′

B = XB there is an xA ∈ XA such that fA(xA,X ′
B) ∩ fA(xA,X ′′

B) 6= ∅.

Now as f ∈ T2pas we have an efficient passively secure protocol π computing f . Then the number of
rounds of protocol π is bounded by a polynomial pπ(κ) in the security parameter κ. So we can wlog “pad” all
protocol executions with dummy messages to have the same length pπ(κ). Denote the inputs of A and B by
xA and xB and the random coins by cA and cB respectively. We then define the set of transcripts

Π :=π(XA,XB) = {t = m1,m2, . . . ,mpπ(κ) | ∃ xA, cA, xB, cB : t = π(xA, cA, xB, cB)} (9)

Πr :=π(XA,XB)|r = {t = m1,m2, . . . ,mr | ∃ mr+1, . . . ,mpπ(κ) : t, mr+1, . . . ,mpπ(κ) ∈ Π} (10)

={t = m1,m2, . . . ,mr | ∃ xA, cA, xB, cB : t = π(xA, cA, xB, cB)|r}

We define random variables XA, XB , YA, YB for the inputs and outputs of A and B respectively. Then we let
T ∈ Π denote the random variable for the transcript, and Tr ∈ Πr the random variable on transcript prefixes of
length r. We name the inputs XA = {a1, . . . , a|XA|} for A and XB = {b1, . . . , b|XB |} for B.

We show that for any ai ∈ XA and bj ∈ XB the statistical distance

∆(PrT |XA,XB
(·, a1, b1), PrT |XA,XB

(·, ai, bj)) < negl (11)

of the distributions PrT |XA,XB
(·, a1, b1) and PrT |XA,XB

(·, ai, bj) on the transcripts t ∈ Π is negligible in the
security parameter κ. We proceed by induction over the number of protocol rounds r and show that for any r

δr := max
i,j

∆(PrTr|XA,XB
(·, a1, b1), PrTr|XA,XB

(·, ai, bj)) < negl. (12)

17

As a base case serves r = 0 where Π0 = {ε} and thus

δ0 = max
i,j

∆(PrT0|XA,XB
(·, a1, b1), PrT0|XA,XB

(·, ai, bj)) = 0. (13)

As induction hypothesis we use δr−1 < negl.
Now let tr = (m1, . . . ,mr) ∈ Πr and define tr−1 = (m1, . . . ,mr−1) ∈ Πr−1. Wlog the message in

round r travels from B to A (the other case works analogously). Furthermore, as f 6∈ T′
2pas and minimal, f

has no K-cut as discussed above and (by point 3 above) we can impose an ordering on XB such that for any
1 < j ≤ |XB| there is an 1 ≤ k < j and an akj ∈ XA such that fA(akj , bk) = fA(akj , bj). By the security of
π we must have for any r that

∆(PrTr|XA,XB
(·, akj , bk), PrTr|XA,XB

(·, akj , bj)) < negl (14)

This is because a simulator SA for corrupted A sees exactly the same for inputs akj , bk and akj , bj and is thus
unable to emulate two non-negligibly different distributions of transcripts. Now, since the message mr travels
from B to A and we have

∆(PrTr|XA,XB
(·, a1, bk), PrTr|XA,XB

(·, akj , bk))

=
∑

tr∈Πr

|PrTr|XA,XB
(tr, a1, bk)− PrTr|XA,XB

(tr, akj , bk)|

=
∑

tr∈Πr

|PrMr|Tr−1,XB
(mr, tr−1, bk)PrTr−1|XA,XB

(tr−1, a1, bk)

− PrMr|Tr−1,XB
(mr, tr−1, bk)PrTr−1|XA,XB

(tr−1, akj , bk)|

=
∑

tr−1∈Πr−1

∑
mr

PrMr|Tr−1,XB
(mr, tr−1, bk)︸ ︷︷ ︸

=1

|PrTr−1|XA,XB
(tr−1, a1, bk)− PrTr−1|XA,XB

(tr−1, akj , bk)|
= ∆(PrTr−1|XA,XB

(·, a1, bk), PrTr−1|XA,XB
(·, akj , bk))

≤ ∆(PrTr−1|XA,XB
(·, a1, bk), PrTr−1|XA,XB

(·, a1, b1))

+ ∆(PrTr−1|XA,XB
(·, a1, b1), PrTr−1|XA,XB

(·, akj , bk))

≤ 2δr−1 < negl,

(15)

and analogously

∆(PrTr|XA,XB
(·, akj , bj), PrTr|XA,XB

(·, ai, bj)) (16)

=
∑

tr∈Πr

|PrTr|XA,XB
(tr, akj , bj)− PrTr|XA,XB

(tr, ai, bj)| (17)

≤ 2δr−1 < negl. (18)

18

so we find

∆(PrTr|XA,XB
(·, a1, bk), PrTr|XA,XB

(·, ai, bj)) (19)

=
∑

tr∈Πr

|PrTr|XA,XB
(tr, a1, bk)− PrTr|XA,XB

(tr, ai, bj)| (20)

=
∑

tr∈Πr

|PrTr|XA,XB
(tr, a1, bk)− PrTr|XA,XB

(tr, akj , bk) (21)

+ PrTr|XA,XB
(tr, akj , bk)− PrTr|XA,XB

(tr, akj , bj) (22)

+ PrTr|XA,XB
(tr, akj , bj)− PrTr|XA,XB

(tr, ai, bj)| (23)

≤
∑

tr∈Πr

|PrTr|XA,XB
(tr, a1, bk)− PrTr|XA,XB

(tr, akj , bk)| (24)

+
∑

tr∈Πr

|PrTr|XA,XB
(tr, akj , bk)− PrTr|XA,XB

(tr, akj , bj)| (25)

+
∑

tr∈Πr

|PrTr|XA,XB
(tr, akj , bj)− PrTr|XA,XB

(tr, ai, bj)| (26)

= ∆(PrTr|XA,XB
(·, a1, bk), PrTr|XA,XB

(·, akj , bk)) (27)

+ ∆(PrTr|XA,XB
(·, akj , bk), PrTr|XA,XB

(·, akj , bj)) (28)

+ ∆(PrTr|XA,XB
(·, akj , bj), PrTr|XA,XB

(·, ai, bj)) (29)
(14),(15),(16)

≤ negl + negl + negl (30)

Now by induction on j we finally obtain

∆(PrTr|XA,XB
(·, a1, b1), PrTr|XA,XB

(·, ai, bj)) < negl (31)

for any i, j and thus δr < negl. This concludes the induction step and thereby the proof of Eq. (11). Since
we operate with negligible quantities here, it is important to note that the induction chains are all of length at
most polynomial in the security parameter κ. But this is given, since we require the round number pπ(κ) to be
polynomially bounded and as for a given fixed function f the size of the input domains |XA| and |XB| are of
course constant in κ.

As f 6∈ T′
2pas it is in particular not locally computable. Hence there is wlog (else interchange A and B) an

a ∈ XA and b′, b′′ ∈ XB such that fA(a, b′) 6= fA(a, b′′). From the above Eq. (11) it readily follows that

∆(PrT |XA,XB
(·, a, b′), PrT |XA,XB

(·, a, b′′)) < negl. (32)

19

As the output of A is independent of B’s input given the transcript, i.e. PrYA|T,XA,XB
= PrYA|T,XA

we find the
following

∆(PrYA|XA,XB
(·, a, b′), PrYA|XA,XB

(·, a, b′′)) (33)

=
∑

yA∈YA

|PrYA|XA,XB
(yA, a, b′)− PrYA|XA,XB

(yA, a, b′′)| (34)

=
∑

yA∈YA

|
∑
t∈Π

PrYA,T |XA,XB
(yA, t, a, b′)−

∑
t∈Π

PrYA,T |XA,XB
(yA, t, a, b′′)| (35)

≤
∑

yA∈YA,t∈Π

|PrYA|T,XA,XB
(yA, t, a, b′)PrT |XA,XB

(t, a, b′) (36)

− PrYA|T,XA,XB
(yA, t, a, b′′)PrT |XA,XB

(t, a, b′′)|

=
∑

yA∈YA,t∈Π

|PrYA|T,XA
(yA, t, a)PrT |XA,XB

(t, a, b′)− PrYA|T,XA
(yA, t, a)PrT |XA,XB

(t, a, b′′)| (37)

=
∑

yA∈YA,t∈Π

PrYA|T,XA
(yA, t, a) |PrT |XA,XB

(t, a, b′)− PrT |XA,XB
(t, a, b′′)| (38)

=
∑
t∈Π

 ∑
yA∈YA

PrYA|T,XA
(yA, t, a)

 |PrT |XA,XB
(t, a, b′)− PrT |XA,XB

(t, a, b′′)| (39)

= ∆(PrT |XA,XB
(·, a, b′), PrT |XA,XB

(·, a, b′′)) < negl. (40)

This is in obvious contradiction to the correctness of the protocol π, so we must have f ∈ T2pas. Hence there
is no minimal counterexample and the claim is proven.

C Dominance and Redundancy-Freeness

Definition C.1 (Dominance, Redundancy-Freeness [KMQ08]). Given a 2-party function f : XA × XB →
YA × YB we say xA dominates x′A for xA, x′A ∈ XA, iff

1. for all xB ∈ XB: fB(xA, xB) = fB(x′A, xB) and

2. for all xB, x′B ∈ XB fA(x′A, xB) 6= fA(x′A, x′B) =⇒ fA(xA, xB) 6= fA(xA, x′B).

Analogously we define xB dominates x′B for xB, x′B ∈ XB .
We proceed to define sets of dominating inputs

X̃i := {X ⊆ Xi | ∀x′ ∈ Xi∃x ∈ X : x dominates x′}.

We define dominating sets X̂A, X̂B as (some) elements of minimal cardinality in X̃A, X̃B . We then call f̂ :=
f |X̂A×X̂B

the redundancy-free version of f . Furthermore for xA ∈ XA and xB ∈ XB let x̂A ∈ X̂A and

x̂B ∈ X̂B be the (unique) elements that dominate xA respectively xB . ♦

The redundancy-free version f̂ of f is then uniquely defined up to a renaming of input and output values
(also see Sec. 8). To see this, note that domination is a reflexive and transitive relation. Furthermore it is
antisymmetric up to renaming of input and output symbols. Hence two different dominating sets X̂i and X̂ ′

i are
simply sets of maximal elements under the domination relation and equal up to renaming of input and output
values.

20

D Proof of Lemma 4.2

We have to show that If and If̂ are locally mutually reducible. We prove each direction separately.
Let If be given. We implement If̂ using a protocol πf̂ that simply restricts the input space for If . Correct-

ness (for the all-honest case) is obvious. To prove security we have to provide a simulator S. We only consider
the case where A is corrupted, as the argument for corrupted B is fully analogous. The simulator SA simply
runs the adversary E until E produces an input a intended for If . SA then inputs â to If̂ and receives an output

ŷA = f̂A(â, b) where b is the input of honest B. Now by definition of â we have

1. fB(â, b) = fB(a, b) and

2. for all xB, x′B ∈ XB fA(a, xB) 6= fA(a, x′B) =⇒ fA(â, xB) 6= fA(â, x′B).

By the second point SA can deduce yA = f(a, b) from ŷA. The simulator SA then feeds yA to the adver-
sary E and forwards its output yE to the distinguisher D. This clearly results in a perfectly indistinguishable
interaction for E and hence in indistinguishable output yE. Due to the first point above the simulation is also
indistinguishable by B’s output yB , thus πf̂ ◦ If indeed perfectly securely implements If̂ and the simulator SA

is efficient.
Now let If̂ be given. We describe the protocol π for implementing If from If̂ by describing A’s protocol

πA. πB works analogously. The protocol πA takes input a and in turn inputs â to If̂ , receiving ŷA = f̂A(â, b̂)

in return. Now by definition of b̂ and f̂ we have ŷA = f̂A(â, b̂) = fA(â, b). By definition of â then for all
xB, x′B ∈ XB fA(a, xB) 6= fA(a, x′B) =⇒ fA(â, xB) 6= fA(â, x′B). Once again this implies that πA can
recover yA = f(a, b) from ŷA. Finally the protocol πA outputs yA to the distinguisher. The correctness of
the protocol for the all honest case is immediate. The security proof is also trivial: The simulator SA simply
restricts the input space for If to X̂A and analogously for B.

E Proof of Lemma 4.3

By Lem. 4.2 it is sufficient to show for redundancy-free functions f where f = f̂ that f ∈ T2sh ⇐⇒ f ∈
T2pas. For all other (not redundancy-free) functions we then find f ∈ T2sh

(4.2)⇐⇒ f̂ ∈ T2sh ⇐⇒ f̂ ∈ T2pas

as claimed. So in the following let f = f̂ be redundancy-free. We show f ∈ T2sh ⇐⇒ f ∈ T2pas by proving
the two implications separately.

f ∈ T2pas =⇒ f ∈ T2sh: Since passive security implies semi-honest security as shown in Section 2 this is
clear.

f ∈ T2sh =⇒ f ∈ T2pas: Towards a contradiction let f be redundancy free and f ∈ T2sh, but f 6∈ T2pas.
Now consider a corrupted A and an adversary E ∈ E IT

sh = E IT
pas. By definition of E IT

pas the adversary E runs the
protocol π for an input a received from the environment. Now a simulator S ∈ S IT

sh has to input some a′ ∈ XA

to If independently of B’s input b. Towards a contradiction assume a′ 6= a with non-negligible probability.
Then, as the function f is redundancy-free, there are two possibilities:

∃xB ∈ XB : fB(a, xB) 6= fB(a′, xB) or (41)

∃xB, x′B ∈ XB : fA(a, xB) 6= fA(a, x′B) ∧ fA(a′, xB) = fA(a′, x′B). (42)

The first equation directly leads to distinguishable outputs for B, so the second equation must hold with non-
negligible probability. Any adversary E under consideration runs the protocol πA as we are in the semi-honest
setting. We can wlog assume that E includes the protocol output yA in its output, as a simulator that works for

21

such an adversary E will also work if the protocol output yA is not included. Then in the real execution we find
yA = fA(a, b) with overwhelming probability, in the ideal execution though, with a simulator that chooses b
uniformly from {xB, x′B} we find yA 6= fA(a, b) with non-negligible probability as in the simulated setting the
simulator receives y′A = fA(a′, xB) = fA(a′, x′B) with non-negligible probability, rendering the simulated yA

independent of b. This is in contradiction to the indistiguishability of S(E) ◦ If and E ◦ π.
So with overwhelming probability S will input a to to If . But then S ∈ S IT

pas already, and π is a passively
secure protocol for If .

F Proof of Theorem 5.3

By Lem. 4.2 it is sufficient to show for redundancy-free functions f where f = f̂ that f ∈ T2act ⇐⇒ f ∈
T′

2act. For all other (not redundancy-free) functions we then find

f ∈ T2act
(4.2)⇐⇒ f̂ ∈ T2act ⇐⇒ f̂ ∈ T′

2act
(4.2)⇐⇒ f ∈ T′

2act (43)

so T2act = T′
2act as claimed. So in the following let f = f̂ be redundancy-free. We show f ∈ T2act ⇐⇒ f ∈

T′
2act by proving the two implications f ∈ T2act =⇒ f ∈ T′

2act and f ∈ T′
2act =⇒ f ∈ T2act separately.

f ∈ T′
2act =⇒ f ∈ T2act: This part of the proof is considerably simplified by use of the Symmetrization-

Lemma of [KMQ08]. Said lemma states that any redundancy-free 2-party function f , which is not complete for
2-party computation, is locally mutually reducible to a symmetric function sym(f), i.e. sym(f)A = sym(f)B .
Now we assumed f = f̂ redundancy-free and f ∈ T′

2act implies f ∈ T′
2pas = T2pas. As such f is not complete

[Kus92, KMQ08] and we have f ∈ T2act ⇐⇒ sym(f) ∈ T2act, so wlog we may assume f = sym(f) =
sym(f̂).

We prove f ∈ T′
2act =⇒ f ∈ T2act by induction over the size of the input space |XA × XB|. Now

f ∈ T′
2act implies that f is either f ∈ T2loc locally computable, in which case clearly f ∈ T2act actively trivial

and we are done, or f has a T-cut.
In the second case, by definition of the class T′

2act and wlog (else interchange A and B) the set XB has a
partition X (1)

B ∪ X (2)
B = XB such that

∀ x
(1)
A , x

(2)
A ∈ XA ∃xA ∈ XA ∀ x

(1)
B ∈ X (1)

B , x
(2)
B ∈ X (2)

B :

fA(x(1)
A , x

(1)
B) 6= fA(x(1)

A , x
(2)
B) ∧

fB(x(1)
A , x

(1)
B) = fB(xA, x

(1)
B) ∧ fB(x(2)

A , x
(2)
B) = fB(xA, x

(2)
B).

and the functions f (1) := f |XA×X
(1)
B

, f (2) := f |XA×X
(2)
B

are f (1), f (2) ∈ T′
2act. By induction hypothesis then

f (1), f (2) ∈ T2act as |XA × X (i)
B | < |XA × XB| (i ∈ {1, 2}). As such, there are protocols π(1), π(2) active PF

securely implementing If (1) , If (2) under simulators S(1),S(2).
We now construct a protocol π by defining a first protocol round where B sends A a message m1 ∈ {1, 2}

indicating whether B’s input b is b ∈ X (1)
B or b ∈ X (2)

B . If B sends no message, A just assumes m1 = 1.
Subsequently both parties proceed to run π(m1).

It remains to prove this protocol π secure by providing a appropriate simulator S both for the case where A
is corrupted and for the case where B is corrupted.

We begin with a corrupted A. SA fixes the randomness of the adversary E (which it uses as a black-box)
and feeds it the input xE provided by the distinguisher D. Then the simulator SA generates two copies E(1) and
E(2), feeding m1 = 1 to E(1) and m1 = 2 to E(2), and runs S

(1)
A (E(1)) and S

(2)
A (E(2)) until these simulators

22

produce inputs a(1) and a(2) for If (1) and If (2) respectively. Now by f ∈ T′
2act there is an a ∈ XA such that

∀ x
(1)
B ∈ X (1)

B , x
(2)
B ∈ X (2)

B :

fA(a(1), x
(1)
B) 6= fA(a(1), x

(2)
B) ∧

fB(a(1), x
(1)
B) = fB(a, x

(1)
B) ∧ fB(a(2), x

(2)
B) = fB(a, x

(2)
B).

The simulator SA inputs this a to If and receives an output (recall that f symmetric, i.e. fA = fB)

yA = fA(a, b) = fB(a, b) =

{
fB(a(1), b) if b ∈ X (1)

B

fB(a(2), b) if b ∈ X (2)
B

=

{
fA(a(1), b) if b ∈ X (1)

B

fA(a(2), b) if b ∈ X (2)
B

(44)

Now if yA ∈ fA(a,X (1)
B) then SA passes yA to S

(1)
A (E(1)) and returns the output of that subsimulator. Else

if yA ∈ fA(a,X (2)
B) then SA proceeds in the same way with S

(2)
A (E(2)). The correctness of the simulation is

obvious.
We now turn to a corrupted B. The simulator SB fixes the randomness of the adversary E, passes it the input

xE provided by the distinguisher D, and runs the adversary E until E outputs a message m1. If the adversary
makes no output m1 ∈ {1, 2} the simulator SB takes m1 = 1. Now the simulator SB runs S

(m1)
B (E) simply

forwarding all inputs and outputs. This simulates the real execution, as depending on message m1 the protocol
π(m1) is executed by the honest party A. The interaction with this protocol is then faithfully simulated by S

(m1)
B .

Note that we actually prove passive PF security above. The computation of locally computable functions is
perfectly secure (induction base) and in the above argument if the subsimulators are perfectly secure, so are the
resulting simulators (induction step).

f ∈ T2act =⇒ f ∈ T′
2act: Recall that wlog f = f̂ is redundancy-free. If f ∈ T2loc is locally computable

then f ∈ T′
2act and we are done. So consider an f 6∈ T2loc. We show that f has a T-cut and then apply an

inductive argument. As f is actively trivial we have f ∈ T2sh and f 6∈ T2loc, so f has a K-cut. Wlog we have
XB = X ′

B ∪ X ′′
B and

∀xA ∈ XA : fA(xA,X ′
B) ∩ fA(xA,X ′′

B) = ∅ (45)

Now for any xA ∈ XA and regardless of the a priori distribution PrXA,XB
on the inputs, as the function outputs

on X ′
B and X ′′

B differ, so must the protocol outputs yA for A with overwhelming probability. As a result the

23

statistical distance of the transcripts under input taken from xA,X ′
B or xA,X ′′

B must be overwhelming as well:

1− negl < ∆(PrYA|XA,XB
(·, xA,X ′

B), PrYA|XA,XB
(·, xA,X ′′

B)) (46)

=
∑

yA∈YA

|PrYA|XA,XB
(yA, xA,X ′

B)− PrYA|XA,XB
(yA, xA,X ′′

B)| (47)

=
∑

yA∈YA

|
∑
t∈Π

PrYA,T |XA,XB
(yA, t, xA,X ′

B)−
∑
t∈Π

PrYA,T |XA,XB
(yA, t, xA,X ′′

B)| (48)

≤
∑

yA∈YA,t∈Π

|PrYA|T,XA,XB
(yA, t, xA,X ′

B)PrT |XA,XB
(t, xA,X ′

B) (49)

− PrYA|T,XA,XB
(yA, t, xA,X ′′

B)PrT |XA,XB
(t, xA,X ′′

B)|

=
∑

yA∈YA,t∈Π

|PrYA|T,XA
(yA, t, xA)PrT |XA,XB

(t, xA,X ′
B) (50)

− PrYA|T,XA
(yA, t, xA)PrT |XA,XB

(t, xA,X ′′
B)|

=
∑

yA∈YA,t∈Π

PrYA|T,XA
(yA, t, xA) |PrT |XA,XB

(t, xA,X ′
B)− PrT |XA,XB

(t, xA,X ′′
B)| (51)

=
∑
t∈Π

∑
yA∈YA

PrYA|T,XA
(yA, t, xA)︸ ︷︷ ︸

=1

|PrT |XA,XB
(t, xA,X ′

B)− PrT |XA,XB
(t, xA,X ′′

B)| (52)

= ∆(PrT |XA,XB
(·, xA,X ′

B), PrT |XA,XB
(·, xA,X ′′

B)). (53)

Note, that being independent from the priori distribution PrXA,XB
, this result applies to all subsets of X ′

B , X ′′
B

as well. In particular for any x′B ∈ X ′
B , x′′B ∈ X ′′

B , xA ∈ XA

1− negl < ∆(PrYA|XA,XB
(·, xA, x′B), PrYA|XA,XB

(·, xA, x′′B)) (54)

≤ ∆(PrT |XA,XB
(·, xA, x′B), PrT |XA,XB

(·, xA, x′′B)). (55)

Now for any X ′
B ∪ X ′′

B = XB , a ∈ XA

∆(PrT0|XA,XB
(·, a,X ′

B), PrT0|XA,XB
(·, a,X ′′

B)) = 0. (56)

Hence considering all possible choices of values xA ∈ XA and cuts X ′
B ∪ X ′′

B = XB , as well as symmetrically
xB ∈ XB and cuts X ′

A ∪ X ′′
A = XA, there must be a minimal round number r for which there is a distribution

PrXA,XB
on the inputs such that we have

α :=∆(PrTr|XA,XB
(·, xA,X ′

B), PrTr|XA,XB
(·, xA,X ′′

B)) > ntcbl or (57)

∆(PrTr|XA,XB
(·,X ′

A, xB), PrTr|XA,XB
(·,X ′′

A, xB)) > ntcbl (58)

Wlog we assume that the minimum r is achieved for some particular xA ∈ XA and a cut X ′
B ∪ X ′′

B = XB .
Then, by minimality of the round number r, for all r′ < r

∀xB ∈ XB, xA ∈ XA, X ′
B ∪ X ′′

B = XB X ′
A ∪ X ′′

A = XA :
∆(PrTr′ |XA,XB

(·, xA,X ′
B), PrTr′ |XA,XB

(·, xA,X ′′
B)) < negl and (59)

∆(PrTr|XA,XB
(·,X ′

A, xB), PrTr|XA,XB
(·,X ′′

A, xB)) < negl.

So the message mr travels from B to A, as A cannot construct mr for lack of information about xB . So Eq. (59)
and Eq. (57) hold for the given cut X ′

B ∪ X ′′
B = XB and an arbitrary xA ∈ XA, as mr is constructed by B

without information about xA.
Furthermore note that we can find a cut X ′

B ∪ X ′′
B = XB such that the above holds for every distribution

PrXA,XB
on the inputs. This can be seen using a hybrid argument over the inputs.

We need to show now

24

1. X ′
B ∪ X ′′

B = XB constitutes a K-cut

2. X ′
B ∪ X ′′

B = XB constitutes a T-cut

3. the argument perpetuates inductively

The cutX ′
B∪X ′′

B = XB constitutes a K-cut. Towards a contradiction assume we have b′ ∈ X ′
B , b′′ ∈ X ′′

B ,
a ∈ XA such that fA(a, b′) = fA(a, b′′). Then for any simulated transcript TS

PrTS|XA,XB
(·, a, b′) = PrTS|XA,XB

(·, a, b′′) (60)

Now by security there exists a simulator S such that

∆(PrTS|XA,XB
(·, a, b′), PrT |XA,XB

(·, a, b′)) < negl, (61)

∆(PrTS|XA,XB
(·, a, b′′), PrT |XA,XB

(·, a, b′′)) < negl. (62)

Then by transitivity

∆(PrT |XA,XB
(·, a, b′), PrT |XA,XB

(·, a, b′′)) < negl (63)

which implies

∆(PrTr|XA,XB
(·, a, b′), PrTr|XA,XB

(·, a, b′′)) < negl (64)

in contradiction to Eq. (57).

The cut X ′
B ∪ X ′′

B = XB is a T-cut. Consider an a′′ ∈ XA and the cut X ′
B ∪ X ′′

B = XB from Eq. (57).
From Eq. (59) we have for any a′ ∈ XA

∆(PrTr|XA,XB
(·, a′,X ′

B), PrTr|XA,XB
(·, a′′,X ′

B)) < negl. (65)

Thus at round r the distribution of transcripts for different inputs of A differs still only negligibly. So with
overwhelming probability a corrupted A can choose (uniformly among the matching ones) a new random string
c′A such that under the random string c′A the input a′ is consistent with the transcript Tr observed so far. The
execution then proceeds according to π with the new values a′ as input and c′A as random string. We now fix an
a′ ∈ XA and name the procedure just described π′ and the induced transcript random variable T ′.

We find that the distributions on the transcript T ′ (and thus also the output distributions) resulting from this
procedure differ only negligibly from the transcript distributions obtained by initiating a normal protocol run
with input a′:

∆(PrT |XA,XB
(·, a′,X ′

B), PrT ′|XA,XB
(·, a′′,X ′

B)) (66)

=
∑
t∈Π

|PrT |XA,XB
(t, a′,X ′

B)− PrT ′|XA,XB
(t, a′′,X ′

B)| (67)

=
∑
t∈Π

|PrT |Tr,XA,XB
(t, tr, a′,X ′

B)PrTr|XA,XB
(t, a′,X ′

B) (68)

− PrT ′|T ′
r,XA,XB

(t, tr, a′′,X ′
B)PrT ′

r|XA,XB
(t, a′′,X ′

B)|

=
∑
t∈Π

|PrT |Tr,XA,XB
(t, tr, a′,X ′

B)PrTr|XA,XB
(t, a′,X ′

B) (69)

− PrT |Tr,XA,XB
(t, tr, a′,X ′

B)PrTr|XA,XB
(t, a′′,X ′

B)|

=
∑
t∈Π

PrT |Tr,XA,XB
(t, tr, a′,X ′

B)|PrTr|XA,XB
(t, a′,X ′

B)− PrTr|XA,XB
(t, a′′,X ′

B)| (70)

= ∆(PrTr|XA,XB
(·, a′,X ′

B), PrTr|XA,XB
(·, a′′,X ′

B)) < negl. (71)

25

We can proceed analogously for X ′′
B and thus have

∆(PrT |XA,XB
(·, a′,X ′

B), PrT ′|XA,XB
(·, a′′,X ′

B)) < negl, (72)

∆(PrT |XA,XB
(·, a′,X ′′

B), PrT ′|XA,XB
(·, a′′,X ′′

B)) < negl. (73)

A corrupted A may then mount the following attack: A executes π with input a up to round r, obtaining a
transcript tr. Now if PrTr|XA,XB

(tr, a′′,X ′
B) > PrTr|XA,XB

(tr, a′′,X ′′
B) (assuming uniform distribution on each

set X ′
B or X ′′

B of the partition) then A runs π′ and π else. The resulting output distributions are indistinguishable
(negligible statistical distance) from π(a′, XB) and π(a′′, XB) respectively as seen above. We designate this
protocol execution by π̆ and the induced random variable for the transcripts T̆ . Now take a distinguisher D that
with probability 1

2 each chooses XB from X ′
B or X ′′

B respectively with uniform distribution on each set X ′
B or

X ′′
B of the partition and provides A with no information.

Consider the conditional distribution of B’s output under the given adverserial A and distinguisher D where
we first take b′ ∈ X ′

B and then b′′ ∈ X ′′
B:

PrYB |XB
(y, b′) =

∑
t∈Π

PrYB |T̆ ,XB
(y, t, b′)PrT̆ |XB

(t, b′) (74)

=
∑
t∈Π

PrYB |T,XB
(y, t, b′)PrT̆ |XB

(t, b′) (75)

(59)
≈

∑
t∈Π

PrYB |T,XB
(y, t, b′)

(
1 + α

2
PrT |XA,XB

(t, a′, b′) +
1− α

2
PrT |XA,XB

(t, a′′, b′)
)

(76)

≈ 1 + α

2
PrYB |XA,XB

(y, a′, b′) +
1− α

2
PrYB |XA,XB

(y, a′′, b′) (77)

≈ 1 + α

2
1y=fB(a′,b′) +

1− α

2
1y=fB(a′′,b′); (78)

PrYB |XB
(y, b′′) =

∑
t∈Π

PrYB |T̆ ,XB
(y, t, b′′)PrT̆ |XB

(t, b′′) (79)

=
∑
t∈Π

PrYB |T,XB
(y, t, b′′)PrT̆ |XB

(t, b′′) (80)

(59)
≈

∑
t∈Π

PrYB |T,XB
(y, t, b′′)

(
1− α

2
PrT |XA,XB

(t, a′, b′′) +
1 + α

2
PrT |XA,XB

(t, a′′, b′′)
)

(81)

≈ 1− α

2
PrYB |XA,XB

(y, a′, b′′) +
1 + α

2
PrYB |XA,XB

(y, a′′, b′′) (82)

≈ 1− α

2
1y=fB(a′,b′′) +

1 + α

2
1y=fB(a′′,b′′). (83)

In the ideal setting and for the distinguisher D as described above, the input a of A as provided to the ideal
functionality by the simulator is independent of the input b of B. Thus we find for the conditional distribution
of the output Y I

B of B in the ideal case, both for b ∈ X ′
B and b ∈ X ′′

B

PrY I
B |XB

(y, b) =
∑

a∈XA : y=fB(a,b)

PrXA
(a) (84)

where the simulator can only adjust PrXA
(a).

By security of the protocol (simulatability) we must have a single distribution PrXA
such that

negl > ∆(PrYB |XB
(y, b′), PrY I

B |XB
(y, b′)) (85)

negl > ∆(PrYB |XB
(y, b′′), PrY I

B |XB
(y, b′′)) (86)

26

We can conclude that there is an a ∈ XA such that PrXA
(a) > ntcbl and fB(a, b′) = fB(a′, b′), fB(a, b′′) =

fB(a′′, b′′) for all b′ ∈ X ′
B and b′′ ∈ X ′′

B:

negl > ∆(PrYB |XB
(y, b′), PrY I

B |XB
(y, b′)) (87)

=
∑

y∈YB

|PrYB |XB
(y, b′)− PrY I

B |XB
(y, b′)| (88)

≈
∑

y∈YB

|1 + α

2
1y=f(a′,b′) +

1− α

2
1y=fB(a′′,b′) −

∑
a∈XA : y=fB(a,b′)

PrXA
(a)| (89)

=
∑

y∈YB

|1 + α

2
1y=f(a′,b′) +

1− α

2
1y=fB(a′′,b′) −

∑
a∈XA

PrXA
(a)1y=fB(a,b′)|. (90)

If fB|XA×X ′
B

or fB|XA×X ′′
B

are constant, then f already has a T-cut. So wlog we consider a′, a′′ ∈ XA such
that there is a b′ ∈ X ′

B and a b′′ ∈ X ′′
B where fB(a′, b′) 6= fB(a′′, b′) and fB(a′, b′′) 6= fB(a′′, b′′). But then the

obvious solution PrXA
(a′) ≈ 1+α

2 , PrXA
(a′′) ≈ 1−α

2 , PrXA
(a) ≈ 0 for a′ 6= a 6= a′′ leads to a contradiction

with

negl > ∆(PrYB |XB
(y, b′′), PrY I

B |XB
(y, b′′)) (91)

≈
∑

y∈YB

|1− α

2
1y=f(a′,b′′) +

1 + α

2
1y=fB(a′′,b′′) −

∑
a∈XA

PrXA
(a)1y=fB(a,b′′)|. (92)

So there must be an a ∈ XA where PrXA
(a) > ntcbl. But then also f(a, b′) = f(a′, b′), f(a, b′′) = f(a′′, b′′).

In fact, if there is only one such a, we find

PrXA
(a) ≈ α, (93)

PrXA
(a′) ≈ 1− α

2
, (94)

PrXA
(a′′) ≈ 1− α

2
. (95)

Extending the Argument Finally we need to show, that the argument presented above applies inductively
until we are left with locally computable restrictions of the original function.

To this end we consider f ′ = f |XA×X ′
B

and f ′′ = f |XA×X ′′
B

. Unfortunately we cannot readily conclude that
f ∈ T2act implies f ′, f ′′ ∈ T2act. Take for instance f ′ and some corrupted B. Then S simulates correctly for
If by security of π for f . On If ′ however the simulation may fail, as S may rely on making an input b ∈ X ′′

B to
If , which will be rejected by If ′ .

However, for our proof above we employ only a specific class E of adversaries, namely semi-honest ad-
versaries and adversaries that generally adhere to the protocol π, but possibly attempt to “switch” their in-
put. We show that security against this class E of adversaries already implies f ∈ T′

2act, so in particular
f ∈ T2act =⇒ f ∈ T′

2act. So it is sufficient to argue that both f ′ and f ′′ are indeed in the class T′′
2act of

functions secure against this specific subclass E of adversaries. Then we can proceed inductively or simply
argue by contraposition: Take an f ∈ T′′

2act, f 6∈ T′
2act where |XA × XB| minimal. We have shown that such

an f must have a T-cut decomposing f into f ′ and f ′′. Now f ′, f ′′ ∈ T′′
2act (this we show below) and hence

by minimality of f we have f ′, f ′′ ∈ T′
2act. But then f ′ ∈ T′

2act by definition of T′
2act in contradiction to the

choice of f . We hence find

f ∈ T2act =⇒ f ∈ T′′
2act =⇒ f ∈ T′

2act. (96)

So we need to show that f ′ and f ′′ are indeed in the class T′′
2act of functions secure against the subclass of

adversaries E used in the proof above. Now clearly for corrupted A we have f ′ and f ′′ as secure as f , since the

27

same simulators can be applied. For a corrupted B consider adversaries and distinguishers as in the argument
above where simply the set XA is replaced by X ′

B and the set XB by XA. Then the outcome Y of the real
protocol execution will be Y ∈ f(XA,X ′

B) with overwhelming probability. Now X ′
B ∪ X ′′

B = XB is a K-cut,
meaning

∀xA ∈ XA : f(xA,X ′
B) ∩ f(xA,X ′′

B) = ∅. (97)

But then, as S(B) is a valid simulator for If under π, S(B) must with overwhelming probability give an input
b ∈ X ′

B to If . Hence S(B) is actually a valid simulator for If ′ with respect to π. In other words f ′ ∈ T′′
2act.

G Proofsketch of Theorem 6.1

We first show T2qu 6= T2sh. Due to the impossibility of implementing unbiased coin flipping (Kitaev, quoted
in [ABDR04]) it is impossible to have XOR∈ T2qu (which is sufficient to implement coin flipping), however
XOR is in T2sh.

Next we sketch how to prove T2qu ⊆ T2sh. Towards a contradiction assume there is a function f ∈
T2qu \ T2sh. Then there is an effcient secure quantum protocol π for f , but no classical protocol secure against
a semi-honest adversary. We can assume f to be minimal in the size of the input space |XA × XB|. Then f
must already be redundancy-free and hence, according to Lemma 4.3 we have f 6∈ T2pas. This implies that f
does not have a K-cut.

The secure quantum protocol π runs in a polynomial number of rounds, and we can assume the number of
rounds to be padded to p(k) rounds independent of the inputs.

The proof will be by induction over the number of rounds, analogously to the proof of Lemma 3.4. However
we will have to consider measurements on the quantum data.

For round number r of a protocol π and a quantum non-demolition measurement9 M which measures
just one bit we define an adversary Er,M . This adversary honestly follows the protocol π until round r. In
round r (before sending or after receiving a message) the adversary Er,M performs the measurement M . Then
the adversary continues to honestly follow the protocol, however, his quantum data might be disturbed by the
measurement M and we have to see that this will remain undetected by the uncorrupted party with noticeable
probability:

A quantum state before a quantum non-demolition measurement yielding one bit of output and the quantum
state after the measurement have a noticeable overlap and the probability for any measurement to give iden-
tical results for the two states is noticeable. This noticeable probability upper bounds the probability that the
uncorrupted party will detect any difference between the behaviour of Er,M and honest behaviour.

Let the inputs xA, xB for the parties be chosen uniformly at random. According to the above discussion
of the probability with which the measurement performed by the adversary remains undetected we have that
for every input xA, xB the protocol π will not abort (i.e. terminate successfully) with noticeable probability.
We will next prove by induction that for these non-aborting protocol runs it holds that the bit measured by the
adversary is statistically independent of the input of the uncorrupted party. This will then lead to the desired
contradiction.

In round r = 0 before any message was sent any bit resulting from a measurement performed by the
adversary is statistically independent of the input of the uncorrupted party.

Now we take as induction hypothesis that no statistical difference could be observed by any adversary up
to round r. In round r + 1 a message is sent. If this message is sent by the adversary then still no statistical
difference can be detected, hence we only need to consider the case where the message in round r + 1 is
sent by the uncorrupted party to the adversary (for notational convenience we assume in the following that B
is the corrupted party). We assume that there is an adversary Er+1,M who can after receiving the message

9I.e. a textbook measurement which disturbs the quantum state just as much as required by the laws of quantum mechanics.

28

observe a statistical difference with respect to different inputs of the uncorrupted party. There is one party
which, if corrupted, would be able to observe the statistical difference first with a probability≥ 1/2 and we can
thus conclude that with a probability ≥ 1/2 the result of any measurement which could be performed on the
quantum data of the uncorrupted party is statistically independent of the input of the adversary (otherwise we
just change the roles of the parties). Hence the (noticeable) probability of observing this statistical difference
in round r + 1 is almost independent of the input of the adversary Er+1,M . Due to this statistical difference the
set of inputs XA of the uncorrupted party can be partitioned into two disjoint subsets X ′

A,X ′′
A (XA = X ′

A ∪X ′′
A)

such that the conditional probability of any input in X ′
A is noticeably higher than the conditional probability of

any input in X ′′
A given the measured bit. Since the function f has no K-cut there exist inputs x′A ∈ X ′

A and
x′′A ∈ X ′′

A for the uncorrupted party and an input xB for the adversary such that fB(x′A, xB) = fB(x′′A, xB).
So with noticeable probability the protocol will not abort and the adversary will have a noticeable advantage in
distinguishing x′A and x′′A while using input xB . This is impossible in an ideal model secure function evaluation
of f . We can conclude that for every adversary Er,M and every round r the bit measured by the adversary is
statistically independent of the input of the uncorrupted party.

However, there is an adversary who is looking at his output in the last round (and otherwise runs the
protocol). This adversary will be able to see a statistical difference with respect to the input of the uncorrupted
party or the function is locally computable. This contradicts the statistical independence of every measured bit
and concludes the proof.

H Proofsketch of Theorem 7.1

A LT secure protocol is already by definition secure against semi-honest adversaries.
Conversely, let f ∈ T2sh. We show that f ∈ T2lts by constructing a LT secure protocol for f . First, we

obtain an unconditionally hiding commitment scheme from the given OWF [HR07]. Then the parties commit
to their inputs and give a zero-knowledge argument of knowledge of their inputs. Now the parties execute the
semi-honestly secure protocol πf for f , that exists as f ∈ T2sh with the following modifications: After each
computation step they commit to the result and give a perfect ZK argument that it was computed correctly.
Instead of sending messages they now simply open commitments.

This procedure (computationally) binds the parties to correct protocol execution, (computationally) forcing
semi-honest behavior (or abort). On the other hand no additional information is flowing compared to the
original protocol πf , due to the unconditional hiding property of the commitment scheme and the perfect ZK
property of the arguments. Therefore the information theoretic security of the protocol against semi-honest
adversaries is maintained. In particular the security can not be violated anymore after protocol termination,
even by unbounded adversaries.

A simulator as demanded by the definition of security is easily constructed from the above. The proofs of
knowledge in the beginning of the protocol are used to extract an input. A simulator can then pass this input to
the ideal functionality and obtain output from the ideal functionality. The simulator then determines an input of
the honest party that is consistent with the input and output extracted from the adversary respectively received
from ideal functionality. Using this input the simulator can simulate a regular protocol execution toward the
adversary and use the output of the adversary as its own. Indistiguishability of such a simulation follows once
again directly from the above arguments.

I Proofsketch of Lemma 7.2

We show the two implications separately:

CO-OT+ =⇒ LTS-DA Let f ∈ T2sh be a SH trivial two party function. From Theorem 4.3 we obtain
a SH secure protocol π̃. We “pad” the protocol with dummy-messages, such that the number of rounds does

29

not depend on the inputs anymore. We view the resulting protocol as a distributed circuit, where the gates are
owned by A or B, depending on which party executes a specific computation. Communication is then nothing
else than a wire between gates owned by different parties.

From this distributed circuit we can obtain a computationally secure protocol for the function f using the
Goldreich compiler [Gol04], that (computationally) securely computes any circuit using a CO-OT+ functional-
ity.

As in the case of plain LT security each party first commits to their input using unconditionally hiding
bit-commitments and proofs knowledge of the input using a perfectly zero-knowledge argument of knowledge.
However, in the following, since we are interested in an LT secure protocol π for f with designated aborter
A, we need to take special care when applying these transformations. Concretely, we only use unconditionally
hiding bit-commitments and perfect zero-knowledge arguments and we take care to apply the CO-OT+ in such
a fashion that it is LT secure against B when computing a gate owned by A and LT secure against A when
computing a gate owned by B. When the protocol is complete, the result is first opened towards A, who opens
the result to B if it receives the inputs ok and terminates otherwise.

As shown in [Gol04] the protocol π computes f computationally securely and the designated abort property
is provided through the opening procedure, since as Goldreich shows no party learns anything until the opening
phase. It remains to argue the long-term security.

In π the structure of the underlying passively IT secure protocol π̃ is preserved. Due to the way we employ
CO-OT+, informationtheoretically, each party only receives information about inputs and outputs of gates it
computes itself in π̃. Therefore no party receives more information than in π̃, and after termination of the
protocol security, even against unbounded distinguishers, is guaranteed.

Simulators as demanded by the definition of security are easily constructed from the above. The proofs of
knowledge in the beginning of the protocol are used to extract an input. A simulator can then pass this input to
the ideal functionality and obtain output from the ideal functionality. The simulator then determines an input of
the honest party that is consistent with the input and output extracted from the adversary respectively received
from ideal functionality. Using this input the simulator can simulate a regular protocol execution toward the
adversary and use the output of the adversary as its own. Indistiguishability of such a simulation follows once
again directly from the above arguments.

LTS-DA =⇒ CO-OT+ Let xA, xB,0, xB,1 ∈ {0, 1} and consider the (symmetric) function

f(xA, xB,0, xB,1) = (98)((
(1⊕ xA)xB,0 ⊕ xAxB,1, xA

)
,
(
(1⊕ xA)xB,0 ⊕ xAxB,1, xA

))
.

A SH secure protocol for computing f is as follows: A sends xA to B (xA is part of the output anyway). B
computes f(xA, xB,0, xB,1) and sends the result to A, so f ∈ T2sh.

Now assume there is a protocol π computing f that is LTS-DA. We define the protocol π̃ as the protocol π
where A always inputs o = 0 (aborts) and B hence makes no output. We first show that π̃ is a computationally
secure OT protocol.

To this end, let S(E) be a simulator such that ∆D(π,S(E) ◦ Ides
f) negligible for all D ∈ DCO. Such a

simulator S exists by definition of LTS-DA. The same simulator S works for OT.
Corrupted B: Assume that ∆D′(π̃,S(E) ◦ OT) non-negligible. We now construct a distinguisher D, that

employs the same E and runs D′, but additionally has A input o = 0. Note that in both scenarios the view of E
remains identical, as does the information available to the simulator S. So, in contradiction to our assumption
D has non-negligible advantage.

Corrupted A: Assume that ∆D′(π̃,S(E) ◦ OT) non-negligible. We now construct a distinguisher D, that
employs the same E and runs D′ but suppresses the output of B by setting input o = 0 for A. Note that in
both scenarios the view of E remains identical, as does the information available to the simulator S. So, in
contradiction to our assumption D has non-negligible advantage.

30

It remains to show that π̃ is an OT protocol LT secure against A, so let A be corrupted. Now, by defini-
tion of LTS-DA there is a simulator S(E) such that ∆D(E ◦ π′,S(E) ◦ Iab

f) is negligible for all distinguishers
D ∈ DLT = Algo and where π′ is π with o = 1 fixed (A does not abort). Now we apply this simulator S to
OT, simply ignoring the abort flag o. Assume there is a computationally bounded adversary E and a compu-
tationally unbounded distinguisher D such that the advantage ∆D′(π̃,S(E) ◦ OT) is non-negligible. Note that
in both scenarios the view of E remains identical, as does the information available to the simulator S. So, in
contradiction to our assumption D has non-negligible advantage ∆D(E ◦ π′,S(E) ◦ Iab

f).

J Classification of 2-party Functions

Definition J.1 (Consistent Renaming [KMQ08]). A function f (1) ∈ F2 is a consistent renaming of a function
f (2) ∈ F2 iff there are

1. a bijective map σA : X (1)
A → X (2)

A ,

2. a bijective map σB : X (1)
B → X (2)

B ,

3. ∀a ∈ X (1)
A a bijective map σa : f

(1)
A (a,X (1)

B)→ f
(2)
A (σA(a),X (2)

B),

4. ∀b ∈ X (1)
B a bijective map σb : f

(1)
B (X (1)

A , b)→ f
(2)
B (X (2)

A , σB(b)).

We then say f (1) and f (2) are renamings: f (1) ≡ f (2). ♦

Note that in Theorem 8.3 we actually have

T2act \ T2pas = {f ∈ T2act | f̄ 6≡ f̂}
T2sh \ T2pas = {f ∈ T2sh | f̄ 6≡ f̂}

Fnct
2pas = {f ∈ Fnct

2sh | f̄ ≡ f̂}
Fnct

2act = Fnct
2sh ∪ (T2sh \ T2act)

C2pas = C2act ∪ {f ∈ F2 | f̂ 6≡ f̄}.

Using the examples in Fig. 1 we can illustrate that the inclusions of Theorem 8.3 are indeed proper:

f (1) ∈ T2act \ T2pas (C2pas \ C2act (99)

f (2) ∈ T2pas \ T2act (Fnct
2act \ Fnct

2sh (100)

f (3) ∈ T2sh \ T2act ∪ T2pas (101)

f (4) ∈ C2pas ∩ Fnct
2sh (C2pas \ C2act. (102)

31

	Introduction
	Related Work

	Security Models
	The Class of Passively Trivial Functions
	The Class of Semi-Honestly Trivial Functions
	The Class of Actively Trivial Functions
	Quantum Protocols
	Long-Term Security
	Long Term Security with designated Aborter

	Classification of 2-party Functions
	Conclusions
	Security Models
	Proof of Lemma 3.4
	Dominance and Redundancy-Freeness
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Theorem 5.3
	Proofsketch of Theorem 6.1
	Proofsketch of Theorem 7.1
	Proofsketch of Lemma 7.2
	Classification of 2-party Functions

