
Collision attacks against 22-step SHA-512

Somitra Kumar Sanadhya⋆ and Palash Sarkar

Applied Statistics Unit,
Indian Statistical Institute,
203, B.T. Road, Kolkata,

India 700108.
somitra r@isical.ac.in, palash@isical.ac.in

3rd April 2008

Abstract. In this work, we present two attacks against 22-step SHA-512. Our first attack succeeds with
probability about 2−8 whereas the second attack is deterministic. To construct the attack, we use a
single local collision and handle conditions on the colliding pair of messages. All but one condition can
be satisfied deterministically in our first attack while in the second attack all conditions can be satisfied
deterministically. There are four free words in our second attack and hence we get exactly 2256 collisions
for 22-step SHA-512.

Recently, attacks against up to 24-step SHA-256 have been reported in the literature which use a local
collision given earlier by Nikolić and Biryukov at FSE’08. We provide evidence which shows that using
this local collision is unlikely to produce collisions for step reduced SHA-512. Consequently, our attacks
are currently the best against reduced round SHA-512. The same attacks also work against SHA-256.
Since our second attack is a deterministic construction, it is also the best attack against 22-step SHA-256.

Keywords: Cryptanalysis, SHA-2 hash family, reduced round attacks

1 Introduction

At FSE ’08, Nikolić and Biryukov [2] presented attacks against 20-step SHA-256 and 21-step SHA-
256. Their 20-step attack succeeds with probability about 1/3 and 21-step attack with probability
about 2−19. Using the local collision of [2], Indesteege et al. [1] developed 23-step and 24-step attacks
against SHA-256. We note that no 22-step or more attack against SHA-512 has been published in the
literature till date. In this work, we present two attacks against 22-step SHA-256 and 22-step SHA-
512. We use two variations of another local collision, given recently by Sanadhya and Sarkar [4], to
develop our two attacks. The first one is a probabilistic attack while the second one is deterministic.
We also show that the 22, 23 and 24 step SHA-256 attacks described in [1] (in various versions) are
not likely to succeed against SHA-512.

2 Notation

In this paper we use the following notation:

⋆ This author is supported by the Ministry of Information Technology, Govt. of India.

• Message words: Wi ∈ {0, 1}n, W ′
i ∈ {0, 1}n; n is 32 for SHA-256 and 64 for SHA-512.

• Colliding message pair: {W0, W1, W2, . . .W15} and {W ′
0, W ′

1, W ′
2, . . .W ′

15}.
• Expanded message pair: {W0, W1, W2, . . .WN−1} and {W ′

0, W ′
1, W ′

2, . . .W ′
N−1

}. The
number of steps N is 64 for SHA-256 and 80 for SHA-512.

• The internal registers for the two messages at step i: REGi = {ai, . . . , hi} and REG’i =
{a′i, . . . , h

′
i}.

• ROTRk(x): Right rotation of an n-bit string x by k bits.
• SHRk(x): Right shift of an n-bit string x by k bits.
• ⊕: bitwise XOR.
• +,−: addition and subtraction modulo 2n.
• δX = X ′ − X where X is an n-bit quantity.
• δΣ1(ei) = Σ1(e

′
i) − Σ1(ei).

• δΣ0(ai) = Σ0(a
′
i) − Σ0(ai).

• δf i
MAJ(x, y, z): Output difference of the fMAJ function in step i when its inputs differ

by x, y and z. That is, δf i
MAJ(x, y, z) = fMAJ(ai + x, bi + y, ci + z) − fMAJ(ai, bi, ci).

• δf i
IF (x, y, z): Output difference of the fIF function in step i when its inputs differ by x, y

and z. That is, δf i
IF (x, y, z) = fIF (ei + x, fi + y, gi + z) − fIF (ei, fi, gi).

3 The SHA-2 Hash Family

The SHA-2 hash function was standardized by NIST in 2002 [5]. There are 2 differently designed
functions in this standard: the SHA-256 and SHA-512. The number in the name of the hash function
refers to the length of message digest produced by that function. Next we briefly describe the structure
of SHA-2.

Eight registers are used in the evaluation of SHA-2. The initial value in the registers is specified
by an 8 × n bit IV, n=32 for SHA-256 and 64 for SHA-512. In Step i, the 8 registers are updated
from (ai−1, bi−1, ci−1, di−1, ei−1, fi−1, gi−1, hi−1) to (ai, bi, ci, di, ei, fi, gi, hi) according to the
following Equations:

ai = Σ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1)
+hi−1 + Ki + Wi

bi = ai−1

ci = bi−1

di = ci−1

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

fi = ei−1

gi = fi−1

hi = gi−1























































(1)

The initial register values {a−1, b−1, . . . h−1} are specified by the IV. The fIF and the fMAJ are three
variable bitwise boolean functions defined as:

fIF (x, y, z) = (x ∧ y) ⊕ (¬x ∧ z),
fMAJ(x, y, z) = (x ∧ y) ⊕ (y ∧ z) ⊕ (z ∧ x).

For SHA-256, the functions Σ0 and Σ1 are defined as:

Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x),
Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x).

For SHA-512, the corresponding functions are:

Σ0(x) = ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x),
Σ1(x) = ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x).

Round i uses a n-bit word Wi which is derived from the message and a constant word Ki. There
are N = 64 steps in SHA-256 and N = 80 steps in SHA-512. The hash function operates on a 512-bit
(resp. 1024-bit) block specified as 16 words of 32 (resp. 64) bits for SHA-256 (resp. SHA-512). Given
the message words m0, m1, . . . m15, the Wi ’s are computed using the Equation:

Wi =

{

mi for 0 ≤ i ≤ 15
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for 16 ≤ i ≤ (N − 1)

(2)

For SHA-256, the functions σ0 and σ1 are defined as:

σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x),
σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x).

And for SHA-512, they are defined as:

σ0(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x),
σ1(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x).

The IV = (a−1, b−1, c−1, d−1, e−1, f−1, g−1, h−1) is defined by the standard to be some random looking
constant words.

The output hash value of a one block (512-bit for SHA-256 and 1024-bit for SHA-512) message
is obtained by chaining the IV with the register values at the end of the final round as per the
Merkle-Damg̊ard construction. A similar strategy is used for multi-block messages, where the IV for
next block is taken as the hash output of the previous block. For complete details of the SHA-2
family, see [5].

An important relationship between register values From Equation 1, we get:

ei = ai−4 + ai − Σ0(ai−1) − fMAJ(ai−1, ai−2, ai−3). (3)

We call this relationship “the cross dependence equation (CDE)”.

4 Nonlinear Local Collision for SHA-2

We use two variations of a 9-step non-linear local collision for our attacks. This local collision was
given recently by Sanadhya and Sarkar [4]. This local collision starts by introducing a perturbation
message difference of 1 in the first message word. Next eight message words are chosen suitably
to obtain the desired differential path. Table 1 shows the local collision used. The message word
differences are different for the two variations of the local collision. Columns headed I and II under
δWi in Table 1 show the message word differences for the first and the second variations of the local
collision respectively.

In the local collision, the registers (ai−1, . . . , hi−1) and Wi are inputs to Step i of the hash
evaluation and this step outputs the registers (ai, . . . , hi).

4.1 Conditions on the Differential Path of Table 1 for the First Attack (Column I)

The message word differences, δWi+1, δWi+2, δWi+3 and δWi+7 are computed from the following
equations:

δWi+1 = −1 − δf i
IF (1, 0, 0) − δΣ1(ei), (4)

δWi+2 = −1 − δf i+1

IF (−1, 1, 0) − δΣ1(ei+1), (5)

δWi+3 = −δf i+2

IF (−1,−1, 1) − δΣ1(ei+2), (6)

Table 1. The 9-step Sanadhya-Sarkar local collision [4] used in the present work. Our two attacks use unequal message
word differences to achieve the same differential path.

Step δWi Register differences
I II δai δbi δci δdi δei δfi δgi δhi

i − 1 0 0 0 0 0 0 0 0 0 0

i 1 1 1 0 0 0 1 0 0 0

i + 1 δWi+1 δWi+1 0 1 0 0 −1 1 0 0

i + 2 δWi+2 0 0 0 1 0 −1 −1 1 0

i + 3 δWi+3 δWi+3 0 0 0 1 0 −1 −1 1

i + 4 0 0 0 0 0 0 1 0 −1 −1

i + 5 0 0 0 0 0 0 0 1 0 −1

i + 6 0 0 0 0 0 0 0 0 1 0

i + 7 δWi+7 0 0 0 0 0 0 0 0 1

i + 8 −1 −1 0 0 0 0 0 0 0 0

δWi+7 = −δf i+6

IF (0, 0, 1). (7)

Intermediate registers need to satisfy the following conditions:

ai−2 = ai−1 = ai = −1, ai+1 = ai+2 = 0,

ei+2 = 0, ei+3 = ei+4 = ei+5 = −1. (8)

All the conditions in Equation 8 can be deterministically satisfied by choosing message words care-
fully. This ensures the success probability of 1 for this local collision. These conditions can be derived
in the same way as in [2]. The same local collision has also been used by Sanadhya and Sarkar recently
to attack 20-step SHA-512 in [4] and 21-step SHA-512 in [3]. The derivation of these conditions is
similar to the derivation of conditions for the next variation of the local collision that is used in
Section 4.2 ahead.

Satisfying the conditions Note that, using Equation 1, the message word Wk can be chosen to
set either ak or ek to a desired value. Therefore the conditions on ai−2, ai−1, ai, ai+1, ai+2, ei+3, ei+4

and ei+5 can be satisfied deterministically. After this, we are left with condition on ei+2 only. Next
we show that this condition is satisfied automatically.

From Equation 3, we get:

ei+2 = ai−2 + ai+2 − Σ0(ai+1) − fMAJ(ai+1, ai, ai−1)

= −1 + 0 − Σ0(0) − fMAJ(0,−1,−1)

= 0.

4.2 Conditions on the Differential Path of Table 1 for the second attack (Column II)

The message word differences, δWi+1 and δWi+3 are computed from the following equations:

δWi+1 = −1 − δf i
IF (1, 0, 0) − δΣ1(ei), (9)

δWi+3 = −δf i+2

IF (−1,−1, 1) − δΣ1(ei+2). (10)

Intermediate registers need to satisfy the following conditions:

ai−3 = −2, ai−2 = ai−1 = ai = −1, ai+1 = ai+2 = 0,

ei+1 = 0, ei+2 = 0, ei+3 = ei+4 = ei+5 = ei+6 = −1,

ei − ei−1 + 1 = 0. (11)

All the conditions in Equation 11 can be deterministically satisfied by choosing message words
carefully. This ensures the success probability of 1 for this local collision. These conditions can be
derived in the same way as in [2]. Detailed derivation of these conditions is provided in Section A.

Satisfying the conditions As in Section 4.1, conditions on ai−3, ai−2, ai−1, ai, ai+2, ei+3, ei+4,
ei+5 and ei+6 can be satisfied deterministically. After this, we are left with conditions on ei+1, ei+2

and ei only. Two out of these three conditions are satisfied automatically as shown next.
From Equation 3, we get:

ei+1 = ai−3 + ai+1 − Σ0(ai) − fMAJ(ai, ai−1, ai−2)

= −2 + 0 − Σ0(−1) − fMAJ(−1,−1,−1)

= 0.

Similarly, we get ei+2 = 0. Now we consider the last remaining condition ei − ei−1 + 1 = 0. Using
Equation 3, we get:

0 = 1 + ei − ei−1

= 1 + (ai−4 + ai − Σ0(ai−1) − fMAJ(ai−1, ai−2, ai−3))

−(ai−5 + ai−1 − Σ0(ai−2) − fMAJ(ai−2, ai−3, ai−4))

= ai−4 − ai−5 + 2 + fMAJ(−1,−2, ai−4).

This implies,
ai−5 = ai−4 + 2 + fMAJ(−1,−2, ai−4). (12)

Equation 12 defines the register value ai−5 in terms of the register value ai−4. But ai−4 will be
computed only after ai−5 is available. To resolve this, we first choose any arbitrary value for ai−4

first and then compute the required value of ai−5. From Equation 1, we can ensure the deterministic
success of the required condition using the free words Wi−5 and Wi−4.

Note Even though both local collisions hold with probability 1, it does not imply that they give rise
to collisions on higher number of rounds with probability 1. The difference will become clear later
when we discuss the two attacks.

5 The Probabilistic Attack

In [2], a single local collision spanning from Step 6 to Step 14 is used and a 21-step collision for
SHA-256 is obtained probabilistically. We use a similar method for our attack but this time we use
the local collision of Table 1 spanning from Step 8 to Step 16. Message words are given by Column
(I). The SHA-2 design has freedom of message words W0 to W15 only. The rest of the message words
are generated by message recursion. Therefore we put restrictions on the messages chosen so that
the word W16 has the desired differential behaviour.

First of all, note that the local collision starts from Step 8. It can be seen from the structure of
the local collision that δW8 = 1 and δW12 = δW13 = δW14 = 0. In addition, δW16 is expected to be
−1. Messages outside the span of the local collision are taken to have zero differentials. Therefore
δWi = 0 for i ∈ {0, 1, 2, 3, 4, 5, 6, 7}. Consider the first 6 steps of message expansion for SHA-2 next.

W16 = σ1(W14) + W9 + σ0(W1) + W0,
W17 = σ1(W15) + W10 + σ0(W2) + W1,

W18 = σ1(W16) + W11 + σ0(W3) + W2,

W19 = σ1(W17) + W12 + σ0(W4) + W3,

W20 = σ1(W18) + W13 + σ0(W5) + W4,

W21 = σ1(W19) + W14 + σ0(W6) + W5.



































(13)

Terms which may have non-zero differentials in the above equations are underlined. To obtain
22-step collisions in SHA-2, it is sufficient to ensure that the following conditions are satisfied:

1. δW9 = −1 so that δW16 = −1 and the local collision terminates at Step 16 as desired.

2. δ{σ1(W15) + W10} = 0 so that δW17 = 0.

3. δ{σ1(W16) + W11} = 0 so that δW18 = 0.

Conditions 2 and 3 above ensure that next 3 steps of the message expansion will not produce any
difference, and we will have a 22-step collision.

We satisfy each of the three conditions above one by one.

5.1 Ensuring δ{σ1(W15) + W10} = 0

We need the following condition to be satisfied:

σ1(W15) − σ1(W15 + δW15) = δW10. (14)

The local collision defines the register values e12 = e13 = −1 and the difference δW15 as follows:

δW15 = −δf14
IF (0, 0, 1)

= −fIF (e14, f14, g14 + 1) + fIF (e14, f14, g14)

= −fIF (e14, e13, e12 + 1) + fIF (e14, e13, e12)

= −fIF (e14,−1,−1 + 1) + fIF (e14,−1,−1)

= −fIF (e14,−1, 0) + fIF (e14,−1,−1)

= −e14 + (−1)

= −(e14 + 1).

It can be seen from Equation 1 that e14 can be governed by W14. The message word W14 is free and
hence we can have any value of e14, and consequently any value of δW15, by appropriate choice of
W14.

Next, suppose W15 = −δW15. In this case, Equation 14 gives σ1(W15) − σ1(0) = δW10. That is,
σ1(W15) = δW10.

The difference δW10 will be available after Step 10 of the hash evaluation for the two messages.
At that point itself, we can choose W15 = σ−1

1
(δW10) and δW15 = −W15. This implies that we need

e14 = σ−1

1
(δW10) − 1. This allows the satisfaction of the required condition deterministically.

The particular solution suggested above will work only if we can invert the 32 × 32 bit map σ1

for SHA-256 and the 64× 64 bit map σ1 for SHA-512. We note that the map σ1 is a linear function.
Therefore σ1(x) can be expressed as multiplication of a matrix with x. For both these hash functions,
the corresponding matrix is of full rank. Therefore σ1 is indeed invertible.

5.2 Ensuring δW9 = −1

As already remarked, having δW9 = −1 ensures that δW16 = −1. This will terminate the local
collision successfully if other conditions have been fulfilled.

From the condition of the local collision, we have that:

δW9 = −1 − f8
IF (1, 0, 0) − δΣ1(e8)

= −1 − fIF (e8 + 1, f8, g8) + fIF (e8, f8, g8) − Σ1(e8 + 1) + Σ1(e8)

= −1 − fIF (e8 + 1, e7, e6) + fIF (e8, e7, e6) − Σ1(e8 + 1) + Σ1(e8).

If we can have e8 = −1 then the above expression can be simplified considerably. We also have
from the conditions of the local collision that a6 = a7 = a8 = −1. Therefore, from the CDE, we have
that:

e8 = a4 + a8 − Σ1(a7) − fMAJ(a7, a6, a5)

= a4 − 1 − Σ1(−1) − fMAJ(−1,−1, a5)

= a4 − 1 + 1 + 1

= a4 + 1.

Hence, to get e8 = −1, we will set a4 = −2. This can be achieved since a4 can be influenced by
the message word W4.

When e8 = −1, then the expression for δW9 simplifies to:

δW9 = −1 − fIF (0, e7, e6) + fIF (−1, e7, e6) − Σ1(0) + Σ1(−1)

= −1 − e6 + e7 − 0 + (−1)

= e7 − e6 − 2. (15)

The CDE can also be used for e7. In this case, we get:

e7 = a3 + a7 − Σ0(a6) − fMAJ(a6, a5, a4)

= a3 − 1 − Σ0(−1) − fMAJ(−1, a5,−2)

= a3 − 1 + 1 − fMAJ(−1, a5,−2)

= a3 − fMAJ(−1, a5,−2).

Suppose we also choose a3 = −1, then the CDE for e6 gives:

e6 = a2 + a6 − Σ0(a5) − fMAJ(a5, a4, a3)

= a2 − 1 − Σ0(a5) − fMAJ(a5,−2,−1).

Hence, we get:

e7 − e6 − 1 = a3 − a2 + Σ0(a5) − fMAJ(−1, a5,−2) + fMAJ(a5,−2,−1)

= −1 − a2 + Σ0(a5).

From Equation 15, getting δW9 = −1 means getting e7 − e6 − 1 = 0. The above expression
simplifies this condition to −1 − a2 + Σ0(a5) = 0.

This is a kind of dependency which can be solved in a deterministic way. The message words
W2 and W5 are both free. Using the word W5 we can obtain any desired value of a5. Let a5 be
fixed a-priori to a value α. This implies, we need a2 = Σ0(α) − 1. The free word W2 can be used to
obtain this value which will be available to us a-priori. Therefore it is possible to satisfy the condition
δW9 = δW16 = −1 in a deterministic way.

5.3 Ensuring δ{σ1(W16) + W11} = 0

We need the following condition to be satisfied:

σ1(W16) − σ1(W16 − 1) = δW11. (16)

In Equation 16 above, we have assumed that δW16 = −1. The satisfaction of this condition for δW16

has already been discussed.

We consider the right hand side of Equation 16 now.

δW11 = −δf10
IF (−1,−1, 1) − δΣ1(e10)

= −fIF (e10 − 1, f10 − 1, g10 + 1) + fIF (e10, f10, g10) − Σ1(e10 − 1) + Σ1(e10)

= −fIF (e10 − 1, e9 − 1, e8 + 1) + fIF (e10, e9, e8) − Σ1(e10 − 1) + Σ1(e10)

= −fIF (−1, e9 − 1, e8 + 1) + fIF (0, e9, e8) − Σ1(−1) + Σ1(0)

= −(e9 − 1) + e8 − (−1) + 0

= −e9 + e8 + 2.

By using the CDE for e9 and e8, the above expression can be simplified to:

δW11 = −(a5 + 1).

The register value a5 has already been chosen to be an a-priori fixed value α so that the condition
δW9 = −1 is satisfied. Note that we have not yet specified the exact value of α.

Refer to Equation 13 for W16. The message word W16 is derived from words W0, W1, W9 and
W14. We have generated words W9 and W14 in some specific ways to satisfy conditions on the desired
differential path. However, words W0 and W1 are allowed to be random. This suggests that the word
W16 should be random. It is interesting to note that despite the apparent randomness of W16, the

term σ1(W16) − σ1(W16 − 1) is highly non-random.

We observe that some values of σ1(W16) − σ1(W16 − 1) occur very frequently. Some such values
of this term are listed in Table 2.

Table 2. Some frequently occurring values of σ1(W16) − σ1(W16 − 1) for SHA-256 and SHA-512.

SHA-256 SHA-512

1 0001a000 2 fffe2000 1 ffffdfffffffffe8 2 ffffe00000000008

3 00602000 4 005a3000 3 0000dffffffffff8 4 00001ffffffffff8

5 fffca000 6 00006000 5 0006200000000098 6 0000200000000028

7 ffffa000 8 00002000 7 ffffdfffffffffa8 8 ffff200000000038

We want to have a value of σ1(W16) − σ1(W16 − 1) = β (say) such that it is equal to δW11. The
term δW11 is equal to −(a5 + 1). Thus we want a5 = −β − 1. We had chosen a5 to be an arbitrary
value α earlier. Now we choose a specific value of α which is equal to −β − 1, where β is one of the
values from Table 2. If a run of the attack produces the correct value of δσ1(W16) then this step has
been satisfied, otherwise we repeat the process. We observe that this step succeeds with very high
probability and within few runs of the attack, we get the desired value of δσ1(W16). This is the only
step in the attack which requires probabilistic satisfaction. All the other conditions can be fulfilled
deterministically.

5.4 Summary of conditions required for the first attack

The local collision is started from Step 8 and ends at Step 16. The register values and some of the
message words/ differences must be as listed below. First two sets of conditions below are imposed
by the local collision used. Refer to Equation 8 where the starting step of the local collision is i = 8.
Next four sets of conditions are required to have the message expansion steps from Step 16 to Step
21 to behave as desired.

1. a6 = a7 = a8 = −1, a9 = a10 = 0.

2. e10 = 0, e11 = e12 = e13 = −1.
3. W15 = σ−1

1
(δW10), e14 = σ−1

1
(δW10) − 1.

4. e8 = −1, a4 = −2, a3 = −1.
5. a5 = α, a2 = Σ0(α) − 1, where α = −β − 1 and β is one of the values from Table 2.
6. Hope to get: σ1(W16) − σ1(W16 − 1) = β.

5.5 Algorithm to obtain 22-step collisions

Recall that Equation 1 is used at Step i of the hash evaluation. Registers (ai−1, bi−1, . . . hi−1) are
available at this step and the output register ai or ei can be controlled by selecting Wi suitably.
For instance, if we wish to make ai to be zero, then we can calculate the suitable value of Wi from
Equation 1 which will make this happen. We define two functions which return the required message
word Wi to set the register value ai or ei to desired values, say desired a and desired e, at Step
i. Equation 1 provides the definitions of these two functions.

1. W to set register A(Step i, desired a, Current State {ai−1, bi−1, . . . hi−1}) :
= (desired a −Σ0(ai−1)− fMAJ(ai−1, bi−1, ci−1)−Σ1(ei−1)− fIF (ei−1, fi−1, gi−1)−hi−1 −Ki)

2. W to set register E(Step i, desired e, Current State {ai−1, bi−1, . . . hi−1}) :
= (desired e −di−1 − Σ1(ei−1) −fIF (ei−1, fi−1, gi−1) − hi−1 − Ki)

The algorithm to obtain message pairs leading to 22-step collisions for SHA-2 family in described
in Table 3.

5.6 Success probability of the attack

All but one condition of the 22-step attack described above can be fulfilled deterministically. The only
step left is to satisfy δσ1(W16) = δW11. This step is also likely to succeed if we choose a suitable β value
in the attack. We used β = 0001a000 for the 22-step SHA-256 attack and β = ffffdfffffffffe8

for the 22-step SHA-512 attack. For these chosen values, our 22-step SHA-256 attack succeeds with
average probability of 2−4.86 and our 22-step SHA-512 attack succeeds with average probability
of 2−5.46. The worst case probability for these attacks were 2−7.05 and 2−7.92 respectively. All the
probability estimates are experimental values averaged over 215 trials. It appears possible to use some
other suitable value of β and improve on the success probability. We have not yet experimented with
a large number of values of β.

6 The Deterministic Attack

In Section 5, a single local collision spanning from Step 8 to 16 was used. In contrast, this time
we use the second variation (i.e., the message words are given by Column (II)) of the same local
collision spanning from Step 7 to Step 15. The SHA-2 design has freedom of message words W0 to
W15. Since the local collision spans this range only, we can deterministically satisfy all the conditions
from Equation 11. The message words after Step 16 are generated by message expansion. The local
collision is chosen in such a way that the message expansion produces no difference in words Wi and
W ′

i for i ∈ {16, 17, . . . 21}. This results in a deterministic 22-step attack. We explain this fact below.
First of all, note that the local collision starts from Step 7 and ends at Step 15. It can be

seen from the structure of the local collision that δW7 = 1, δW15 = −1 and δW9 = δW11 =
δW12 = δW13 = δW14 = 0. Messages outside the span of the local collision are taken to have zero
differentials. Therefore δWi = 0 for i ∈ {0, 1, 2, 3, 4, 5, 6}. Next consider the first 6 steps of message
expansion for SHA-2 from (13). To obtain 22-step collisions in SHA-2, it is sufficient to ensure that
δ{σ1(W15)+W10} = 0 so that δW17 = 0. This also ensures that next 4 steps of the message expansion
do not produce any difference, and we have a 22-step collision.

Table 3. Probabilistic algorithm to obtain message pairs leading to collisions for 22-step SHA-2. This corresponds to
our first attack.

external W to set register A(Step i, desired a, Current State {ai−1, bi−1, . . . hi−1}) :
Returns the required message Wi to be used in step i so that ai is set to the given value.

external W to set register E(Step i, desired e, Current State {ai−1, bi−1, . . . hi−1}) :
Returns the required message Wi to be used in step i so that ei is set to the given value.

First Message words:
1. Select W0 and W1 randomly.
2. Choose α = −β − 1 where β is one of the values from Table 2.
3. Run Steps 0 and 1 of hash evaluation to define {a1, b1, . . . h1}.
4. Choose W2 = W to set register A(2, Σ0(α) − 1, {a1, b1, . . . h1}).
5. Run Step 2 of hash evaluation to define {a2, b2, . . . h2}.
6. Choose W3 = W to set register A(3, −1, {a2, b2, . . . h2}).
7. Run Step 3 of hash evaluation to define {a3, b3, . . . h3}.
8. Choose W4 = W to set register A(4, −2, {a3, b3, . . . h3}).
9. Run Step 4 of hash evaluation to define {a4, b4, . . . h4}.
10. Choose W5 = W to set register A(5, α, {a4, b4, . . . h4}).
11. Run Step 5 of hash evaluation to define {a5, b5, . . . h5}.
12. Choose W6 = W to set register A(6, −1, {a5, b5, . . . h5}).
13. Run Step 6 of hash evaluation to define {a6, b6, . . . h6}.
14. Choose W7 = W to set register A(7, −1, {a6, b6, . . . h6}).
15. Run Step 7 of hash evaluation to define {a7, b7, . . . h7}.
16. Choose W8 = W to set register A(8, −1, {a7, b7, . . . h7}).
17. Run Step 8 of hash evaluation to define {a8, b8, . . . h8}.
18. Choose W9 = W to set register A(9, 0, {a8, b8, . . . h8}).
19. Run Step 9 of hash evaluation to define {a9, b9, . . . h9}.
20. Compute δW10 = −1 − fIF (e9 − 1, f9 + 1, g9) + fIF (e9, f9, g9) − Σ1(e9 − 1) + Σ1(e9). (Refer Equation 5)
21. Choose W10 = W to set register A(10, 0, {a9, b9, . . . h9}).
22. Run Step 10 of hash evaluation to define {a10, b10, . . . h10}.
23. Choose W11 = W to set register E(11, −1, {a10, b10, . . . h10}).
24. Run Step 11 of hash evaluation to define {a11, b11, . . . h11}.
25. Choose W12 = W to set register E(12, −1, {a11, b11, . . . h11}).
26. Run Step 12 of hash evaluation to define {a12, b12, . . . h12}.
27. Choose W13 = W to set register E(13, −1, {a12, b12, . . . h12}).
28. Run Step 13 of hash evaluation to define {a13, b13, . . . h13}.
29. Choose W14 = W to set register E(14, σ−1

1 (δW10) − 1, {a12, b12, . . . h12}).
30. Run Step 14 of hash evaluation to define {a14, b14, . . . h14}.
31. Choose W15 = σ−1

1 (δW10).
32. Run Step 15 of hash evaluation to define {a15, b15, . . . h15}.
33. Compute W16 = σ1(W14) + W9 + σ0(W1) + W0.
34. If σ1(W16) − σ1(W16 − 1) = β then the attack has succeeded, hence proceed to

compute the second message. Otherwise go back to Step 1 above.

Second message words:
35. Define δWi = 0 for i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14}.
36. Define δW8 = 1 and δW9 = δW16 = −1. Step 20 above has already defined δW10

37. Define δW11 = −fIF (e10 − 1, f10 − 1, g10 + 1) + fIF (e10, f10, g10) − Σ1(e10 − 1) + Σ1(e10). (Refer Equation 6)
38. Define δW15 = −W15.
39. Compute W ′

i = Wi + δWi for 0 ≤ i ≤ 15.

6.1 Ensuring δ{σ1(W15) + W10} = 0

Since δW15 = −1, we need the following condition to be satisfied:

σ1(W15) − σ1(W15 − 1) = δW10. (17)

The local collision defines the register values as per Equation 11. The message word difference δW10

is defined by Equation 10. Simplifying this expression (where the starting step i = 7), we get:

δW10 = −δf9
IF (−1,−1, 1) − Σ1(e9)

= −fIF (e9 − 1, f9 − 1, g9 + 1) + fIF (e9, f9, g9) − Σ1(e9 − 1) + Σ1(e9)

= −fIF (e9 − 1, e8 − 1, e7 + 1) + fIF (e9, e8, e7) − Σ1(e9 − 1) + Σ1(e9)

= −fIF (−1,−1, e7 + 1) + fIF (0, 0, e7) − Σ1(−1) + Σ1(0)

= −(−1) + e7 − (−1) + 0

= e7 + 2.

Using the CDE, we can express the right hand side of the above expression as:

e7 + 2 = a3 + a7 − Σ0(a6) − fMAJ(a6, a5, a4) + 2

= a3 + (−1) − Σ0(−1) − fMAJ(−1,−1,−2) + 2

= a3 − 1 − (−1) − (−1) + 2

= a3 + 3.

In satisfying Equation 12, we needed to choose any arbitrary value of ai−4 = a3 first. The above
analysis implies that we can deterministically satisfy δ(σ1(W15) + W10) as follows:

1. Choose any arbitrary value for W15. This defines the difference σ1(W15)− σ1(W15 − 1). Let it be
called “DELTA”.

2. From Equation 17, δW10 must take the value DELTA. This can be obtained by setting a3 =
DELTA− 3.

Using the functions defined in Section 5.5, the algorithm for obtaining colliding message pairs is
described in Table 4.

7 Infeasibility of the Nikolić and Biryukov Local Collision for
SHA-512

In the previous section, we described a deterministic attack against 22-step SHA-2 using a local
collision different from the one described by Nikolić and Biryukov [2]. This local collision has recently
been used to attack 22, 23 and 24-step SHA-256 in different versions of [1]. The authors of [1] remark
that their attacks should also succeed against SHA-512. We show this to be unlikely, i.e., we show
that it is unlikely that the Nikolić-Biryukov local collision can be used to obtain 22, 23 or 24-step
SHA-512 collisions.

The Nikolić-Biryukov local collision is shown in Table 5.

7.1 Conditions on the Diff. Path of Table 5

The message word differences δWi+1, δWi+2 and δWi+3 are computed from the following equations:

δWi+1 = −1 − δf i
IF (1, 0, 0) − δΣ1(ei), (18)

δWi+2 = −δf i+1

IF (−1, 1, 0) − δΣ1(ei+1), (19)

Table 4. Deterministic algorithm to obtain message pairs leading to collisions for 22-step SHA-2. This corresponds to
our second attack.

external W to set register A(Step i, desired a, Current State {ai−1, bi−1, . . . hi−1}) :
Returns the required message Wi to be used in step i so that ai is set to the given value.

external W to set register E(Step i, desired e, Current State {ai−1, bi−1, . . . hi−1}) :
Returns the required message Wi to be used in step i so that ei is set to the given value.

First Message words:
1. Select W0, W1, W14 and W15 randomly.
2. Set DELTA = σ1(W15) − σ1(W15 − 1).
3. Run Steps 0 and 1 of hash evaluation to define {a1, b1, . . . h1}.
4. Choose W2 = W to set register A(2, DELTA− 1 + fMAJ (−1,−2, DELTA− 3), {a1, b1, . . . h1}).
5. Run Step 2 of hash evaluation to define {a2, b2, . . . h2}.
6. Choose W3 = W to set register A(3, DELTA− 3, {a2, b2, . . . h2}).
7. Run Step 3 of hash evaluation to define {a3, b3, . . . h3}.
8. Choose W4 = W to set register A(4, −2, {a3, b3, . . . h3}).
9. Run Step 4 of hash evaluation to define {a4, b4, . . . h4}.
10. Choose W5 = W to set register A(5, −1, {a4, b4, . . . h4}).
11. Run Step 5 of hash evaluation to define {a5, b5, . . . h5}.
12. Choose W6 = W to set register A(6, −1, {a5, b5, . . . h5}).
13. Run Step 6 of hash evaluation to define {a6, b6, . . . h6}.
14. Choose W7 = W to set register A(7, −1, {a6, b6, . . . h6}).
15. Run Step 7 of hash evaluation to define {a7, b7, . . . h7}.
16. Choose W8 = W to set register A(8, 0, {a7, b7, . . . h7}).
17. Run Step 8 of hash evaluation to define {a8, b8, . . . h8}.
18. Choose W9 = W to set register A(9, 0, {a8, b8, . . . h8}).
19. Run Step 9 of hash evaluation to define {a9, b9, . . . h9}.
20. Choose W10 = W to set register E(10, −1, {a9, b9, . . . h9}).
21. Run Step 10 of hash evaluation to define {a10, b10, . . . h10}.
22. Choose W11 = W to set register E(11, −1, {a10, b10, . . . h10}).
23. Run Step 11 of hash evaluation to define {a11, b11, . . . h11}.
24. Choose W12 = W to set register E(12, −1, {a11, b11, . . . h11}).
25. Run Step 12 of hash evaluation to define {a12, b12, . . . h12}.
26. Choose W13 = W to set register E(13, −1, {a12, b12, . . . h12}).

Second message words:
27. Define δWi = 0 for i ∈ {0, 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14}.
28. Define δW7 = 1 and δW15 = −1.
29. Define δW8 = −1 − fIF (e7 + 1, f7, g7) + fIF (e7, f7, g7) − Σ1(e7 + 1) + Σ1(e7). (Refer Equation 9)
30. Define δW10 = −fIF (e9 − 1, f9 − 1, g9 + 1) + fIF (e9, f9, g9) − Σ1(e9 − 1) + Σ1(e9). (Refer Equation 10)
31. Compute W ′

i = Wi + δWi for 0 ≤ i ≤ 15.

Table 5. The 9-step local collision due to Nikolić and Biryukov.

Step i δWi δai δbi δci δdi δei δfi δgi δhi

i − 1 0 0 0 0 0 0 0 0 0

i 1 1 0 0 0 1 0 0 0

i + 1 δWi+1 0 1 0 0 −1 1 0 0

i + 2 δWi+2 0 0 1 0 0 −1 1 0

i + 3 δWi+3 0 0 0 1 0 0 −1 1

i + 4 0 0 0 0 0 1 0 0 −1

i + 5 0 0 0 0 0 0 1 0 0

i + 6 0 0 0 0 0 0 0 1 0

i + 7 0 0 0 0 0 0 0 0 1

i + 8 −1 0 0 0 0 0 0 0 0

δWi+3 = −δf i+2

IF (0,−1, 1). (20)

Intermediate registers need to satisfy the following conditions:

ai−2 = ai−1 = ai+1 = ai+2, ai = −1,

ei+2 = ei+3, ei+4 = −1, ei+5 = 0, ei+6 = −1. (21)

In addition, an extra condition needs to be satisfied:

δf i+3

IF (0, 0,−1) = −1. (22)

All the conditions in Equation 21 can be deterministically satisfied by choosing message words
carefully, but the condition in Equation 22 needs to be satisfied probabilistically. This causes the
success probability of 1/3 for this local collision. For details refer to [2]. Note that our notation and
indexing of the steps is different from [2].

7.2 Analysis of this local collision

An earlier version of [1] described a 22-step attack on SHA-256 by using the Nikolić-Biryukov local
collision spanning from Steps 8 to 16. The 23 and 24 step attacks against SHA-256 avilable in the
current version of [1] are obtained by shifting the local collision by one step and two steps respectively.
To summarize, by spanning the Nikolić-Biryukov local collision between Step i and Step i +8, SHA-
256 has been attacked upto i + 14 steps.

Since the local collison ends at Step i + 8, from the differential path of the local collision, we
require the difference in the message word δWi+8 to be −1. The basic idea, due to Nikolić and
Biryukov [2], is to ensure that the message word differences are all zero after the local collision ends.
This will ensure that the two messages will not introduce any difference in the registers. Therefore
all the attacks in [1] require that δWi+9 = δWi+10 = . . .= δWi+14 = 0.

Now consider the second step after the local collision has ended. It can be seen from Equation 13
that we require δ(σ1(Wi+8) + Wi+3) = 0 to ensure that δWi+10 = 0. Recall that the local collision is
started from Step i and δWi+3 is given by Equation 20.

Note that the attacks described in [1] first construct a pseudo-collision and then extend it to a
collision for reduced round SHA-256. Regardless of this different attack strategy, the satisfaction of
the condition δWi+10 = 0 will be required for the success of their (i + 14)-step attack, either for
SHA-256 or for SHA-512.

We now show the difficulty of finding values of δWi+3 and δσ1(Wi+8) which are of the same order
of magnitude. The values of δWi+3 are biased towards small magnitudes. In contrast, the values of
σ1(Wi+8)−σ1(Wi+8−1) for SHA-512 are biased towards large magnitudes. This makes it difficult to
achieve equality of the two terms as required to ensure δWi+10 = 0. Now we provide concrete proofs
for these facts.

Magnitude of δWi+3 values: We first state two results which help in understanding the bias of
δWi+3 in this case. In the discussion that follows, we use Xi to denote the ith bit of a 64-bit quantity
X. We also use the convention that the index of the least significant bit is 0.

Proposition 1 Pr[Pj 6= (P + 1)j] = 1/2j , where the probability is taken over random P .

Proposition 2 If two numbers X and Y are such that Xi 6= Yi and Xi−1 = Yi−1, then |X − Y | ≥
2i−1 + 1.

Next we prove that the probability that the absolute value of δWi+3, when using Nikolić-Biryukov
local collision, is larger than 2j is bounded above by 1/2j−1.

Lemma 1 If the Nikolić-Biryukov local collision is started at Step i, then Pr[|δWi+3| ≥ 2j] < 1/2j−1.

Proof. Since the local collision is started from step i, the message difference δWi+3 is given by
Equation 20. This equation gives:

δWi+3 = −δf i+2

IF (0,−1, 1),
= −fIF (ei+2, fi+2 − 1, gi+2 + 1) + fIF (ei+2, fi+2, gi+2),
= −fIF (ei+2, ei+1 − 1, ei + 1) + fIF (ei+2, ei+1, ei).

The two fIF terms in the computation above have the same first argument ei+2. The second and
the third arguments have a modular difference of ±1. If the jth bit of ei+2 is 1 then the two fIF

functions will select the corresponding bit from the middle argument, else from the third argument.

Let A = fIF (ei+2, ei+1 − 1, ei + 1) and B = fIF (ei+2, ei+1, ei). Further, let Pn be the event that
An 6= Bn. The event δWi+3 ≥ 2j can happen if and only if at least one of the bits j, j + 1, . . . 63 of
δWi+3 is 1, i.e., if and only if at least one of the events Pj , Pj+1, . . . P63 holds.

Now we are ready to bound the probability of the required event. In the fourth step below, we
use the fact that fIF (a, b, c) = b if a = 1 and = c if a = 0.

Pr[δWi+3 ≥ 2j] = Pr[
⋃

i≥j

Pi]

≤
∑

i≥j

Pr[Pi]

=
∑

i≥j

(Pr[(ei+2)i = 0] · Pr[Pi|((ei+2)i = 0)] + Pr[(ei+2)i = 1] · Pr[Pi|((ei+2)i = 1)])

=
∑

i≥j

(

1

2
· Pr[(ei + 1)i 6= ei] +

1

2
· Pr[(ei+1 − 1)i 6= ei+1]

)

=
1

2
·
∑

i≥j

(

1

2i
+

1

2i

)

(Using Proposition 1)

<
1

2j−1
.

This proves the Lemma. ⊓⊔

Magnitude of σ1(W) − σ1(W − 1) values: We now look at the distribution of values of
σ1(W) − σ1(W − 1) for random choices of W . The function σ1 is defined for SHA-512 as:

σ1(W) = ROTR19(W) ⊕ ROTR61(W) ⊕ SHR6(W). (23)

Let the 64-bit word W be specified as (w63, w62, . . . , w1, w0) where w0 is the least significant bit of
W . Then σ1(W) can be expressed as bit-wise XOR of three quantities. By using the combinatorial
structure of the function σ1 and partial search using a computer program, it is possible to prove the
following lemma.

Lemma 2 For the function σ1 used in SHA-512,

|σ1(W) − σ1(W − 1)| ≥ (242 + 239 + 238 + 236 − 23),

where W is any 64-bit word.

For detailed proof of this lemma, refer to [3].

7.3 Infeasibility of the attacks described in [1] for SHA-512

From Lemma 1, we get that the probability that a value of δWi+3 produced when using this local
collision is larger than 242 is less than 1/241. That is, on average one will require 241 or more
attempts with the differential path to get a value of δWi+3 which is larger than 242. On the other
hand, Lemma 2 shows that all the values of σ1(Wi+8) − σ1(Wi+8 − 1) will be larger than 242.

In addition, in our analysis we observe that the term σ1(Wi+8) − σ1(Wi+8 − 1) for any value of
Wi+8 has a peculiar and patterned structure which is far from random. Our experiments support
this view further. For instance, we experimentally observed that this difference of σ1 terms has a
large trail of zero bits or a large trail of one bits in the middle. The number of ones or zeros in the
continuous sequence are almost always between 20 to 35. Further, there are many 64-bit words which
occur repeatedly as the value of this term for different choices of Wi+8. Also, some values are never
achieved. It is not clear whether it is possible to achieve such a strongly structured pattern in δWi+3

and ensure δWi+10 = 0 with the use of the Nikolić-Biryukov local collision for SHA-512.
Note that this local collision succeeds for the SHA-256 case because the choice of the two rotation

values used in the σ1 function for SHA-256 are not far apart. This causes most of the bits to overlap
over nearby bits and the bias of the term σ1(Wi+8)− σ1(Wi+8 − 1) is not as skewed as in the case of
SHA-512.

8 Some Concluding Remarks

In this work we have presented two attacks against 22-step SHA-2. Our first attack is probabilistic
while the second attack is deterministic. Both these attacks can be successfully used to find collisions
for 22-step SHA-512. To the best of our knowledge, these are the currently best attacks against
SHA-512. The previous approach, due to Nikolić and Biryukov [2] have been used to find 23 and
24-round collisions for SHA-256 in [1]. In contrast, we show that the Nikolić-Biryukov approach is
unlikely to succeed in obtaining 22, 23 or 24-round SHA-512 collisions.

References

1. Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Christian Rechberger. Collisions and other Non-Random
Properties for Step-Reduced SHA-256. Cryptology eprint Archive, April 2008. Available at http://eprint.iacr.

org/2008/131.
2. Ivica Nikolić and Alex Biryukov. Collisions for Step-Reduced SHA-256. In Kaisa Nyberg, editor, Fast Software

Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland, March 26-28, 2008, volume Pre-
proceedings version of Lecture Notes in Computer Science, pages 1–16. Springer, 2008.

3. Somitra Kumar Sanadhya and Palash Sarkar. Deterministic Constructions of 21-Step Collisions for the SHA-2 Hash
Family. In Tzong-Chen Wu and Chin-Laung Lei, editors, Information Security, 11th International Conference, ISC

2008, Taipei, Taiwan, September 15-18, 2008, Proceedings, volume To appear of Lecture Notes in Computer Science.
Springer, 2008.

4. Somitra Kumar Sanadhya and Palash Sarkar. Non-Linear Reduced Round Attacks Against SHA-2 Hash family. In
Yi Mu and Willy Susilo, editors, Information Security and Privacy - ACISP 2008, The 13th Australasian Confer-

ence, Wollongong, Australia, 7-9 July 2008, Proceedings, volume To appear of Lecture Notes in Computer Science.
Springer, 2008.

5. Secure Hash Standard. Federal Information Processing Standard Publication 180-2. U.S. Department of Commerce,
National Institute of Standards and Technology(NIST), 2002. Available at http://csrc.nist.gov/publications/
fips/fips180-2/fips180-2withchangenotice.pdf.

A Message Word Differences for Table 1, Column (II)

In Step i of SHA-2, only the registers ai and ei are computed. Rest of the registers are copies of the
old ones. Therefore we focus on these two register evaluations only. From Equation 1, we get:

δei = δWi + δΣ1(ei−1) + δfIF (δei−1, δfi−1, δgi−1) + δdi−1 + δhi−1, (24)

δai = δWi + δΣ0(ai−1) + δfMAJ(δai−1, δbi−1, δci−1) + δΣ1(ei−1) +

δfIF (δei−1, δfi−1, δgi−1) + δhi−1,

= δΣ0(ai−1) + δfMAJ(δai−1, δbi−1, δci−1) + δei − δdi−1. (25)

We now try to satisfy the restriction imposed by the differential path of Table 1 by defining
suitable difference of the message words in various steps.

Step i : If δWi = 1, then this difference will propagate to both the registers ai and ei.

Step (i+1) : At this step a′i−ai = e′i−ei = 1. We want δai+1 = 0 and δei+1 = −1. From Equations 25
and 24, we get:

δai+1 = 0 = δΣ0(ai) + δf i
MAJ(1, 0, 0) + δΣ1(ei) + δf i

IF (1, 0, 0) + δWi+1,

δei+1 = −1 = δΣ1(ei) + δf i
IF (1, 0, 0) + δWi+1.

The conditions above translate to:

−1 = −δΣ0(ai) − δf i
MAJ(1, 0, 0), (26)

δWi+1 = −1 − δf i
IF (1, 0, 0) − δΣ1(ei). (27)

Step (i+2) : At this step δWi+2 = 0, b′i+1
− bi+1 = f ′

i+1
− fi+1 = 1 and e′i+1

− ei+1 = −1. We want
δai+2 = 0 and δei+2 = −1. From Equations 25 and 24, we get:

δai+2 = 0 = δf i+1

MAJ(0, 1, 0) + δΣ1(ei+1) + δf i+1

IF (−1, 1, 0) + 0,

δei+2 = −1 = δΣ1(ei+1) + δf i+1

IF (−1, 1, 0) + 0.

The conditions above translate to:

−1 = −δf i+1

MAJ(0, 1, 0), (28)

0 = −1 − δf i+1

IF (−1, 1, 0) − δΣ1(ei+1). (29)

Step (i+3) : At this step c′i+2 − ci+2 = g′i+2 − gi+2 = 1, e′i+2 − ei+2 = −1 and f ′
i+2 − fi+2 = −1.

We want δai+3 = 0 and δei+3 = 0. From Equations 25 and 24, we get:

δai+3 = 0 = δf i+2

MAJ(0, 0, 1) + δΣ1(ei+2) + δf i+2

IF (−1,−1, 1) + δWi+3,

δei+3 = 0 = δΣ1(ei+2) + δf i+2

IF (−1,−1, 1) + δWi+3.

The conditions above translate to:

δf i+2

MAJ(0, 0, 1) = 0, (30)

δWi+3 = −δf i+2

IF (−1,−1, 1) − δΣ1(ei+2). (31)

Step (i+4) : At this step δWi+4 = 0, d′i+3
−di+3 = h′

i+3
−hi+3 = 1, f ′

i+3
−fi+3 = −1 and g′i+3

−gi+3

= −1. We want δai+4 = 0 and δei+4 = 1. From Equations 25 and 24, we get:

δai+4 = 0 = δf i+3

IF (0,−1,−1) + 1 + 0,

δei+4 = 1 = δf i+3

IF (0,−1,−1) + 1 + 1 + 0.

The conditions above translate to:

0 = −1 − δf i+3

IF (0,−1,−1). (32)

Step (i+5) : At this step δWi+5 = 0, e′i+4
− ei+4 = 1, g′i+4

− gi+4 = −1 and h′
i+4

− hi+4 = −1. We
want δai+5 = δei+5 = 0. From Equations 25 and 24, we get:

δai+5 = 0 = δΣ1(ei+4) + δf i+4

IF (1, 0,−1) − 1 + 0,

δei+5 = 0 = δΣ1(ei+4) + δf i+4

IF (1, 0,−1) − 1 + 0.

The conditions above translate to:

0 = 1 − δf i+4

IF (1, 0,−1) − δΣ1(ei+4). (33)

Step (i+6) : At this step δWi+6 = 0, f ′
i+5

− fi+5 = 1 and h′
i+5

− hi+5 = −1. We want δai+6 =
δei+6 = 0. From Equations 25 and 24, we get:

δai+6 = 0 = δf i+5

IF (0, 1, 0) − 1 + 0,

δei+6 = 0 = δf i+5

IF (0, 1, 0) − 1 + 0.

The conditions above translate to:

0 = 1 − δf i+5

IF (0, 1, 0). (34)

Step (i+7) : At this step δWi+7 = 0, g′i+6
−gi+6 = x. We want δai+7 = δei+7 = 0. From Equations 25

and 24, we get:

δai+7 = 0 = δf i+6

IF (0, 0, 1) + 0,

δei+7 = 0 = δf i+6

IF (0, 0, 1) + 0.

The conditions above translate to:

0 = −δf i+6

IF (0, 0, 1). (35)

Step (i+8) : At this step h′
i+7

−hi+7 = 1. We want δai+8 = δei+8 = 0. This will happen as desired
if we have:

δWi+8 = −1. (36)

A.1 Solution of Equations

To find the local collision, we need message pairs which will satisfy Equations 26 to 36. We use
techniques similar to [2] to derive sufficient conditions to ensure these.

– Equation 26 is satisfied if we have ai = −1 (and hence from the differential path a′i = 0) and
ai−1 = ai−2. This ensures that the δΣ0 term propagates a difference of −1 and δf i

MAJ = 0.
– Equation 28 is satisfied by ensuring that ai+1 = 0, ai = ai−1 = −1 (and hence from the differential

path a′i = 0).
– Equation 30 is satisfied by ensuring ai+2 = ai+1.
– Equation 32 is satisfied if δf i+3

IF (0,−1,−1) = −1. This happens as desired if we have ei+3 = −1
so that the middle argument of f i+3

IF is selected which has a difference of −1.
– Equation 33 is satisfied if δΣ1(ei+4) = 1 and δf i+4

IF (1, 0, −1) = 0. The condition on Σ1(ei+4) is
satisfied if we can have ei+4 = −1 and e′i+4

= 0. For the δf i+4

IF condition, we need:

f i+4

IF (ei+4 + 1, ei+3, ei+2 − 1) − f i+4

IF (ei+4, ei+3, ei+2) = 0

⇒ f i+4

IF (0, ei+3, ei+2 − 1) − f i+4

IF (−1, ei+3, ei+2) = 0

⇒ ei+2 − 1 = ei+3.

Since ei+3 has already been taken to be −1, we need ei+2 = 0.

– Equation 34 is satisfied if δf i+5

IF (0, 1, 0) = 1. This condition implies:

f i+5

IF (ei+5, ei+4 + 1, ei+3) − f i+5

IF (ei+5, ei+4, ei+3) = 1.

Since the middle term of f i+5

IF has a difference of 1 which we want to be propagated, we need to
ensure ei+5 = −1. This causes the middle term to be selected by the fIF function.

– Equation 35 is satisfied if the fIF always selects its middle argument which has zero difference.
This will happen if we have ei+6 = −1.

– Equation 29 is satisfied if

0 = −1 − δf i+1

IF (−1, 1, 0) − δΣ1(ei+1)

= −1 − fIF (ei+1 − 1, ei + 1, ei−1) + fIF (ei+1, ei, ei−1) − Σ1(ei+1 − 1) + Σ1(ei+1).

From Section 4.2, we have that ei+1 = 0. Therefore the above condition simplifies to:

0 = −1 − fIF (−1, ei + 1, ei−1) + fIF (0, ei, ei−1) − Σ1(−1) + Σ1(0)

= −1 − (ei + 1) + ei−1 − (−1) + 0

= −1 − ei + ei−1.

– Equations 27, 31 and 36 merely define message word differences. No condition is imposed by
them.

The conditions derived above correspond to Equations 9, 10 and 11.

B Colliding message pairs

Colliding message pairs for 22-step SHA-512 and 22-step SHA-256 generated by the algorithm of
Tables 3 and 4 are provided in Tables 6, 7, 8 and 9 respectively.

Table 6. Colliding message pair for 22-step SHA-512 with standard IV. These messages have been generated using the
algorithm of Table 3.

W1 0-3 0000000000000000 550b57fb514c9b79 cff1882089fc9d67 2810605c1bd7ed0c

4-7 75ad3c8a1c93c5ed f20d9ad5246bd372 24bfb9a1eb7aceff f15320a1acd4b2f0

8-11 92aaca629e0027df fe30a1bcb92fedda db6c1a412c9b4d4d aaf3823c2a004b1f

12-15 8d41a28b0d847693 7f212e01c4e96937 7eeeca5c84ba3bda 1acad103aa814e0e

W2 0-3 0000000000000000 550b57fb514c9b79 cff1882089fc9d67 2810605c1bd7ed0c

4-7 75ad3c8a1c93c5ed f20d9ad5246bd372 24bfb9a1eb7aceff f15320a1acd4b2f0

8-11 92aaca629e0027e0 fe30a1bcb92fedd9 db687a412d1b4d65 aaf3623c2a004b07

12-15 8d41a28b0d847693 7f212e01c4e96937 7eeeca5c84ba3bda 0000000000000000

Table 7. Colliding message pair for 22-step SHA-256 with standard IV. These messages have been generated using the
algorithm of Table 3.

W1 0-7 00000000 6b1525df ba8df484 6dd804eb d048b076 762152d2 ca960cd9 01e340a9

8-15 03fa80ac c787b892 e2e01390 aaf3823e 8d41a28e 7f22ee02 7c625999 183e603f

W2 0-7 00000000 6b1525df ba8df484 6dd804eb d048b076 762152d2 ca960cd9 01e340a9

8-15 03fa80ad c787b891 defe7410 aaf5223e 8d41a28e 7f22ee02 7c625999 00000000

Table 8. Colliding message pair for 22-step SHA-512 with standard IV. These messages have been generated using the
algorithm of Table 4.

W1 0-3 0000000000000000 0000000000000000 c2bc8e9a85e2eb5a 6d623c5d5a2a1442

4-7 cd38e6dee1458de7 acb73305cddb1207 148f31a512bbade5 ecd66ba86d4ab7e9

8-11 92aafb1e9cfa1fcb 533c19b80a7c8968 e3ce7a41b11b4d75 aef3823c2a004b20

12-15 8d41a28b0d847692 7f214e01c4e96950 0000000000000000 0000000000000000

W2 0-3 0000000000000000 0000000000000000 c2bc8e9a85e2eb5a 6d623c5d5a2a1442

4-7 cd38e6dee1458de7 acb73305cddb1207 148f31a512bbade5 ecd66ba86d4ab7ea

8-11 90668fd7ec6718ee 533c19b80a7c8968 dfce7a41b11b4d76 aef3823c2a004b20

12-15 8d41a28b0d847692 7f214e01c4e96950 0000000000000000 ffffffffffffffff

Table 9. Colliding message pair for 22-step SHA-256 with standard IV. These messages have been generated using the
algorithm of Table 4.

W1 0-7 00000000 00000000 0be293bf 99c539c9 1c672194 99b6a58a 5bf1d0ae 0a9a18d3

8-15 0c18cf1c 329b3e6e dc4e7a43 ab33823f 8d41a28d 7f214e03 00000000 00000000

W2 0-7 00000000 00000000 0be293bf 99c539c9 1c672194 99b6a58a 5bf1d0ae 0a9a18d4

8-15 07d56809 329b3e6e dc0e7a44 ab33823f 8d41a28d 7f214e03 00000000 ffffffff

