
Attacking Step Reduced SHA-2 Family in a Unified Framework

Somitra Kumar Sanadhya⋆ and Palash Sarkar

Applied Statistics Unit,
Indian Statistical Institute,
203, B.T. Road, Kolkata,

India 700108.
somitra r@isical.ac.in, palash@isical.ac.in

19th June 2008

Abstract. In this work, we make a detailed analysis of local collisions and their applicability to obtain
collisions for step reduced SHA-2 hash family. Our analysis explains previously reported collisions for up to
22-step SHA-2 hash functions with probability one.
We provide new and improved attacks against 23 and 24-step SHA-256 using a local collision given by
Sanadhya and Sarkar (SS) at ACISP ’08. The computational efforts for the 23-step and 24-step attacks are
respectively 212.5 and 228.5 calls to the corresponding step reduced SHA-256. Using a look-up table having
232 entries the computational effort for finding 24-step collisions can be reduced to 214.5 calls. We exhibit
colliding message pairs for both the 23 and 24-step attacks. The previous work on 23 and 24-step SHA-256
attacks is due to Indesteege et al. and utilizes the local collision presented by Nikolić and Biryukov (NB)
at FSE ’08. The reported computational efforts are 218 and 228.5 respectively. The previous 23 and 24-step
attacks first constructed a pseudo-collision and later converted it into a collision for the reduced round SHA-
256. We show that this two step procedure is unnecessary. Although these attacks improve upon the existing
reduced round SHA-256 attacks, they do not threaten the security of the full SHA-2 family.
Keywords: SHA-2 family, reduced round collisions, cryptanalysis.

1 Introduction

Cryptanalysis of SHA-2 family has recently gained momentum due to the important work of Nikolić
and Biryukov [5]. Prior work on finding collisions for step reduced SHA-256 was done in [3,4] and [8].
These earlier works used local collisions valid for the XOR linearized version of SHA-256 from [1] and
[7]. On the other hand, the work [5] used a local collision which is valid for the actual SHA-256.

The authors in [5] developed techniques to handle nonlinear functions and the message expansion
of SHA-2 to obtain collisions for up to 21-step SHA-256. The 21-step attack of [5] succeeded with
probability 2−19. Using similar techniques, but utilizing a different local collision, [10] showed an attack
against 20-step SHA-2 which succeeds with probability one and an attack against 21-step SHA-256
which succeeds with probability 2−15. Further work [9,6] developed collision attacks against 21 and 22
step SHA-2 family which succeed with probability one. Very recently, Indesteege et al. [2] have developed
attacks against 23 and 24 step SHA-256. They utilize the local collision from [5] in these attacks.

Our contributions. We consider all 9-step local collisions using additive differentials in a general
and unified framework. Using a combinatorial analysis, the local collisions from [5] and [10] are obtained
as special cases. We show how the general analysis can be used to explain recently obtained collisions
for up to 22-step SHA-2 with probability one.

Collisions for 23 and 24-step SHA-256 are described. Our analysis shows that both the NB and the
SS local collisions can be used for this purpose. The 23-step collision using the SS local collision requires

⋆ This author is supported by the Ministry of Information Technology, Govt. of India.



212.5 calls to 23-step SHA-256. This improves upon the previously reported effort of 218 calls obtained
in [2] using the NB local collision.

The computational effort for the 24-step collisions is 228.5 calls to 24-step SHA-256. While this equals
the previously reported computational effort [2], we present complete details of our method including a
guess-then-verify algorithm to solve a nonlinear equation arising in the analysis. This equation can also
be solved using a table look-up. This brings down the computational cost of obtaining 24-step SHA-256
collisions to 214.5 while requiring a look-up table having 232 entries, where each entry consists of 8 bytes.

Examples of 23 and 24-step collisions are presented. For the case of 23-step collisions, two examples
are presented. The first one uses a local collision from Steps 8 to 15, while the second one uses a local
collision from Steps 9 to 16. The second 23-step collision can be seen as a simplified application of the
technique for obtaining 24-step collisions.

The work in [2] describes 23 and 24-step collisions as a two-part procedure; first obtain a pseudo-
collision and then convert it into a collision. In contrast, our analysis is direct and shows that such a
two-part description is unnecessary. A summary of results on collision attacks against reduced SHA-2
family is given in Table 1.

Table 1. Summary of results against reduced SHA-2 family. Effort is expressed as either the probability
of success or as the number of calls to the respective reduced round hash function.

Work Hash Function Steps Effort Local Collision Attack Type
Prob. Calls utilized

[3,4] SHA-256 18 ∗ GH [1] Linear

[8] SHA-256 18 ∗∗ SS5 [7] ”

[5] SHA-256 20 1

3
NB [5] Non-linear

21 2−19 ” ”

[10] SHA-256/SHA-512 18,20 1 1 SS [10] ”
SHA-256 21 2−15 ” ”

[9] SHA-256/SHA-512 21 1 1 ” ”

[6] SHA-256/SHA-512 22 1 1 ” ”

[2] SHA-256 23 218 NB [5] ”
24 228.5 ” ”

This work SHA-256 23 212.5 SS [10]/NB [5] ”
24 228.5 ” ”
24 214.5 † ” ”

∗ It is mentioned in [3,4] that the effort is 20 but no details are provided.
∗∗ Effort is given as running a C-program for about 30–40 minutes on a standard PC.

† A table containing 232 entries, each entry of size 8 bytes, is required.

2 Preliminaries

In this paper we use the following notation:



• Message words: Wi ∈ {0, 1}n, W ′

i ∈ {0, 1}n; n is 32 for SHA-256 and 64 for SHA-512.
• Colliding message pair: {W0, W1, W2, . . . W15} and {W ′

0, W ′

1, W ′

2, . . .W ′

15}.
• Expanded message pair: {W0, W1, W2, . . . WN−1} and {W ′

0, W ′

1, W ′

2, . . . W ′

N−1
}.

The number of steps N is 64 for SHA-256 and 80 for SHA-512.
• The internal registers for the two messages at step i: REGi = {ai, . . . , hi} and REG′

i = {a′i, . . . , h
′

i}.
• ROTRk(x): Right rotation of an n-bit string x by k bits.
• SHRk(x): Right shift of an n-bit string x by k bits.
• ⊕: bitwise XOR; +,−: addition and subtraction modulo 2n.
• δX = X ′ − X where X is an n-bit quantity.

2.1 SHA-2 Hash Family

Eight registers are used in the evaluation of SHA-2. In Step i, the 8 registers are updated from (ai−1,
bi−1, ci−1, di−1, ei−1, fi−1, gi−1, hi−1) to (ai, bi, ci, di, ei, fi, gi, hi). For more details, see Section B.

By the form of the round update function, we have the following relation.

Cross Dependence Equation (CDE).

ei = ai + ai−4 − Σ0(ai−1) − fMAJ(ai−1, ai−2, ai−3). (1)

Later, we make extensive use of this relation. Note that a special case of this equation was first utilized
in Section 6.1 of [10]. The equation in the form above was used in [9] and [6]. This equation can be used
to show that the SHA-2 state update can be rewritten in terms of only one state variable. This fact was
independently observed in [2].

3 A General Non-Linear Differential Path

We use a differential technique to find a 9-round local collision. The idea is to use modular differentials
which was first used for SHA-2 by Nikolić and Biryukov [5]. Given a word w, we define

x = −δΣi
0(w) − δfMAJ(w, 0, 0); y = −δf i+1

MAJ(0, w, 0); z = −δf i+2

MAJ(0, 0, w). (2)

The general differential path and corresponding message differences are shown in Table 2.

Table 2. General 9-step nonlinear local collision for SHA-256.

Differential Path Message Word Differences

Step i δWi δai δbi δci δdi δei δfi δgi δhi

i − 1 0 0 0 0 0 0 0 0 0

i w w 0 0 0 w 0 0 0

i + 1 δWi+1 0 w 0 0 x w 0 0

i + 2 δWi+2 0 0 w 0 y x w 0

i + 3 δWi+3 0 0 0 w z y x w

i + 4 δWi+4 0 0 0 0 w z y x

i + 5 δWi+5 0 0 0 0 0 w z y

i + 6 δWi+6 0 0 0 0 0 0 w z

i + 7 δWi+7 0 0 0 0 0 0 0 w

i + 8 δWi+8 0 0 0 0 0 0 0 0

δWi = w;
δWi+1 = x − δΣi

1(w) − δf i

IF (w, 0, 0);
δWi+2 = y − δΣi+1

1 (x) − δf i+1

IF
(x, w, 0);

δWi+3 = z − δΣi+2

1 (y) − δf i+2

IF
(y, x, w);

δWi+4 = −w − δΣi+3

1 (z) − δf i+3

IF
(z, y, x);

δWi+5 = −x − δΣi+4

1 (w) − δf i+4

IF
(w, z, y);

δWi+6 = −y − δf i+5

IF
(0, w, z);

δWi+7 = −z − δf i+6

IF
(0, 0, w);

δWi+8 = −w.



The important thing to note about the differential path shown in Table 2 is that it puts no restrictions
on the actual message words Wi, . . . ,Wi+8 and W ′

i , . . . ,W
′

i+8
. Starting at any value for the registers a

to h, and using any given non-zero w, and any Wi, . . . ,Wi+8, we simply run the compression function
step-by-step and define the words x, y, z, the respective δWis and consequently the respective W ′

i s. All
the steps are deterministic and hence with probability one, we obtain W ′

i s which collide with Wis.

The expression for x has the term δΣi
0(w). This map is invariant on 0 and −1. Consequently, by

setting either (w = 1 and ai = −1) or (w = −1 and ai = 0), we can achieve δΣi
0(w) = w. The condition

(w = −1 and ai = 0) is the dual of the condition (w = 1 and ai = −1) in the following sense. We have
defined δX = X ′−X and so δWi = w means W ′

i = W +w; if we had defined δX to be X −X ′, then W ′

i

would have been W −w. Consequently, without loss of generality one can ignore the case −w. Majority
function can be simplified by ensuring that two of its inputs are equal. This rule can be used to simplify
the expressions of x, y and z to values such as 0 or −1.

The Nikolić-Biryukov (NB) local collision [5]. A special case of Table 2 is obtained by putting
(w, x, y, z) = (1,−1, 0, 0). This was the first reported local collision for SHA-2 using modular differen-
tials [5]. We will call this the NB local collision.

The Sanadhya-Sarkar (SS) Differential Path [10]. The case from Table 2 obtained by putting
z = 0 was studied in [10]. The special case of (w, x, y, z) = (1,−1,−1, 0) turned out to be important
in [10] and it is also important in the current work. We will call this the SS local collision.

After simplifying the values of x, y and z, it is possible to simplify the expressions for some of the
δWis. We are interested in obtaining conditions to ensure that some of the δWis are zero. For example,
the condition z = 0 and ei+6 = −1 ensures δWi+7 = 0; while the condition (ei+5 = 0 and y = −z) or
(ei+5 = −1 and y = −w) ensures δWi+6 = 0. The conditions for achieving δWi+4 = δWi+5 = 0 are a
little more complicated. The complete details for the simplification of δΣ0; Majority and the δWis are
given in Section C.

3.1 Obtaining up to 22-Round Collisions

For obtaining collisions with more than 16 rounds, we need to consider the message expansion. The
initial free words are W0, . . . ,W15 and from W16 onwards, the words are computed using the message
expansion recursion given by (14). For clarity some initial words are shown in Table 3.

Table 3. Message expansion from W16 to W26.

W16 = σ1(W14) + W9 + σ0(W1) + W0

W17 = σ1(W15) + W10 + σ0(W2) + W1

W18 = σ1(W16) + W11 + σ0(W3) + W2

W19 = σ1(W17) + W12 + σ0(W4) + W3

W20 = σ1(W18) + W13 + σ0(W5) + W4

W21 = σ1(W19) + W14 + σ0(W6) + W5

W22 = σ1(W20) + W15 + σ0(W7) + W6

W23 = σ1(W21) + W16 + σ0(W8) + W7

W24 = σ1(W22) + W17 + σ0(W9) + W8

W25 = σ1(W23) + W18 + σ0(W10) + W9

W26 = σ1(W24) + W19 + σ0(W11) + W10



The basic technique is to place a single local collision from steps i to i + 8 for a suitably chosen i
and then ensure that message expansion does not interfere with this collision. All δWj with 0 ≤ j ≤ 15
and j /∈ {i, i + 1, . . . , i + 8} are set to 0. Doing this does not place any constraint on either W0, . . . ,W15

or on W ′

0, . . . ,W
′

15.
Additionally, some δWk with k ∈ {i, i + 1, . . . , i + 8} are also set to 0. This requires setting some of

the ais and ejs to specific values. This is achieved by setting the message word for the corresponding
round to a specific value. Note, however, that using a single message word we cannot set both a and e
registers to desired values. Also, by the CDE (Equation 1), fixing ai−4 to ai sets ei to a fixed value.

18-Round Collisions [10]. Deterministic 18-round collisions are easy to obtain by setting i = 3 (i.e.,
the local collision spans from i = 3 to i + 8 = 11) and ensuring δWi+6 and δWi+7 are both zeros. For
example, if y = z = 0, then the setting ei+5 = 0 and ei+6 = −1 ensures δWi+6 = δWi+7 = 0 for any
choice of w.

20-Round Collisions [5,10]. Deterministic 20-round collisions can be obtained by setting i = 5 (i.e.,
the local collision spans from i = 5 to i + 8 = 13) and ensuring δWi+4 = δWi+5 = δWi+6 = δWi+7 = 0.
Details of how this can be done is described in Section D.1.

21-Round Collisions [9]. Nikolić-Biryukov show how to find local collisions for SHA-256 with prob-
ability 2−19 using (w, x, y, z) = (1,−1, 0, 0). This was improved to probability 2−15 using (w, x, y, z) =
(1,−1,−1, 0) in [10]. But, none of these works could provide 21-round SHA-512 collisions.

In a later work [9], deterministic 21-round collisions were shown for both SHA-256 and SHA-512
using (w, x, y, z) = (1,−1,−1, 0). In [9], it was also shown that the NB local collision, i.e., (w, x, y, z) =
(1,−1, 0, 0) is unlikely to produce 21-step SHA-512 collisions. Some details of the deterministic 21-round
collisions are given in Section D.2.

22-Round Collisions [6]. The technique of [9] was extended to obtain deterministic 22-round collisions
in [6]. Some details of how this can be done is given in Section D.3. Again, it is unlikely that the NB
local collision can be used to produce 22-step SHA-512 collisions [6].

4 A General Idea for Obtaining 23 and 24-Round Collisions

Obtaining deterministic collisions up to 22 rounds did not require the (single) local collision to extend
beyond step 15. For obtaining collisions for more number of rounds, we will need to start the local
collision at Step 8 (or farther) and hence the local collision will end at Step 16 (or farther). This will
require us to analyze the message expansion more carefully.

For obtaining collisions up to 22 rounds, we also needed to consider message expansion. But, following
Nikolić-Biryukov, we ensured that there were no differences in message words from Step 16 onwards.
However, now that we consider the local collision to end at Step 16 (or farther), this will necessarily
mean that one or more δWi (for i ≥ 16) will be non-zero. This will require a modification of the Nikolić-
Biryukov strategy. Instead of requiring δWi = 0 for i ≥ 16, we will require δWi = 0 for a few i’s after
the local collision ends. So, supposing that the local collision ends at Step 16 and we want a 23-round
collision, then δW16 is necessarily −w and we will require δW17 = · · · = δW22 = 0.

In the rest of the paper, we will only consider SHA-256 and not SHA-512. The techniques depend
to some extent on the nature of the expansion function σ1 used in SHA-256. More importantly, we
require to solve some nonlinear equations involving 32-bit quantities. The differential properties of σ1

are summarized in Section B.1. For SHA-512, this will involve 64-bit quantities and hence solving such
equations will be much more difficult.



4.1 A Class of Local Collisions

A local collision of the type shown in Table 2 is completely determined by the values of w, x, y and z
and the values of δWi to δWi+8. We need to consider some special values for the δW s. Let

(δWi, . . . , δWi+8) = (w,−w, δ1, δ2, 0, 0, 0, u,−w). (3)

The value of u is either 0 or w and the values of δ1 and δ2 will be explained later. Using the form of the
δW s from Table 2, Equation 3 gives rise to the following 9 equations.

(A) δWi = = w;
(B) δWi+1 = x − δΣi

1(w) − δf i
IF (w, 0, 0) = −w;

(C) δWi+2 = y − δΣi+1
1

(x) − δf i+1

IF (x,w, 0) = δ1;

(D) δWi+3 = z − δΣi+2
1

(y) − δf i+2

IF (y, x,w) = δ2;

(E) δWi+4 = −w − δΣi+3
1

(z) − δf i+3

IF (z, y, x) = 0;

(F) δWi+5 = −x − δΣi+4
1

(w) − δf i+4

IF (w, z, y) = 0;

(G) δWi+6 = −y − δf i+4

IF (0, w, z) = 0;

(H) δWi+7 = −z − δf i+4

IF (0, 0, w) = u;
(I) δWi+8 = = −w.

The values of x, y and z from (2) are the following.

x = −δΣi
0(w) − δfMAJ(w, 0, 0); y = −δf i+1

MAJ(0, w, 0); z = −δf i+2

MAJ(0, 0, w).

We now set conditions on the values for a and the e registers to obtain desired values for x, y and z and
also to satisfy the values of δW s. The following are easy to verify.

1. If ai = −1 and ai−1 = ai−2 = α, then x = −1.
2. If ai+1 = ai−1, then y = 0; if ai+1 = ai−1, then y = −1.
3. If ai+2 = ai+1, then z = 0; if ai+2 = ai+1, then z = −1.

Note. In the following, we will only consider z = 0. (Equations arising from the case z = −1 are more
complicated and require further analysis.) So, we will have ai+2 = ai+1. Let this common value be β.
Further, if β = α, then y = 0 and if β = α, then y = −1. These and other values of a and e registers
are shown in Table 4.

Table 4. Values of a and e register for the δW s given by (3) to hold. We have w = 1, x = −1 and
z = 0. If β = α, then y = 0, while if β = α, then y = −1. If y = 0, then λ = α − Σ0(α), while
if y = −1, then λ = α + α + 1 − Σ0(α). The value of u is either 0 or w. By the CDE, we have
λ = β + α − Σ0(β) − fMAJ(β,−1, α). Thus, the independent quantities are α, γ and µ.

index i − 2 i − 1 i i + 1 i + 2 i + 3 i + 4 i + 5 i + 6

a α α −1 β β

e γ γ + 1 −1 µ λ λ + y −1 y −1 − u

The values shown in Table 4 have been chosen so that the conditions on δWi+1 and δWi+5 to δWi+7

hold with probability one. Consider, for example, δWi+1. From (B), we have

δWi+1 = x − δΣi
1(w) − δf i

IF (w, 0, 0)



= x − (Σ1(ei + w) − Σ1(ei)) − (fIF (ei + w, ei−1, ei−2) − fIF (ei, ei−1, ei−2))

= −1 − (0 − (−1)) − (ei−2 − ei−1)

= −2 − γ + γ + 1

= −1.

Similarly, Equations (F), (G) and (H) can be verified. Equations (C), (D) and (E) on the other hand
give rise to the following conditions on the values of α, γ and µ.

δ1 = y − Σ1(µ + x) + Σ1(µ) − fIF (µ + x, 0, γ + 1) + fIF (µ,−1, γ + 1)
δ2 = −Σ1(λ + y) + Σ1(λ) − fIF (λ + y, µ + x, 0) + fIF (λ, µ,−1)
w = −fIF (λ + y, λ + y, µ + x) + fIF (λ + y, λ, µ).







(4)

The special case of these equations with y = 0 have been reported in [2] and a method for solving them
has been discussed. For the case y = −1, the following strategy (which is somewhat similar to the case
y = 0 given in [2]) can be used to solve the equations.

– The third equation has a solution if and only if both λ and µ are odd.

– Given that the third equation holds, the second equation simplifies to δ2 = −Σ1(λ − 1) + Σ1(λ) +
(λ − 1). For odd values of δ occurring in the distribution of σ1(W )−σ1(W −1), it is possible to solve
this equation for odd λ. The maximum value of freqδ for odd δ is 216. One example is δ = ff006001

as shown in Table 10. (As mentioned earlier, if freqδ > 216, then δ is even and for such values of δ,
we could not find any odd λ satisfying the second equation.)

– Given such a λ, it is possible to invert the equation λ = α+α+1−Σ0(α) to obtain a suitable value
of α.

– Now, we choose a γ and obtain an odd µ such that the first equation holds.

Solving all the three equations for α, γ and µ can be done in a few seconds on a current PC. Examples
are provided in Table 5.

Table 5. Values leading to collisions for different number of rounds. Here w = 1, x = y = −1 and z = 0.
The value of i denotes the start point of the local collision, i.e., the local collision is placed from Step i
to i + 8.

(# rnds, i) δ1 δ2 u α λ γ µ

(23, 8) 0 ff006001 0 32b308b2 051f9f7f 684e62b7 041fff81

(23, 9)
(24, 10)

00006000 ff006001 1 32b308b2 051f9f7f 98e3923b fbe05f81

5 23-Round Collisions

We show that by suitably placing a local collision of the type described in Section 4.1 and using proper
values for α, γ and µ, it is possible to obtain several 23-round collisions for SHA-256.



5.1 Case i = 8

The local collision is started at i = 8 and ends at i = 16. We have w = 1, x = −1, z = 0 and we choose
y = −1 by setting β = α. Also, we set u = 0 and δ1 = 0. We need to choose a suitable value for δ2

which is the value of δWi+3 = δW11. For this case, we let δ = δ2.
Since the local collision ends at Step 16, it necessarily follows that δW16 = −1. Consequently, we

need to consider δW18 to ensure that it is zero. Since the collisions starts at i = 8, all δWj for 0 ≤ j ≤ 7
are zero. Consequently, we can write δW18 = δσ1(W16)+δW11, where δσ1(W16) = σ1(W16−1)−σ1(W16).
So, for δW18 to be zero, we need δW11 = −δσ1(W16), so that δW11 should be one of the values which
occur in the distribution of σ1(W )−σ1(W −1) for some W . Table 5 shows an example of solution of (4)
in this case.

Obtaining proper values for the constants only ensures that the local collision holds from Steps i
to i + 8 as expected. It does not, however, guarantee that the reduced round collision holds. In the
present case, we need to have δW18 to be zero. This will happen only if W16 takes a value such that
σ1(W16 − 1) − σ1(W16) is equal to −δ. This can be ensured probabilistically in the following manner.
The δ that we have used (shown in Table 5) is such that freqδ = 216 and so by trying approximately
216 possible random choices of W0 and W1 we expect a proper value for W16 and hence, a 23-round
collision. This shows that it is possible to obtain a 23-round collision with probability 2−16. In [2], the
corresponding probability is 2−19. So, our technique is an improvement.

Since i = 8, from Table 4, we see that a6 to a10 get defined and e6 to e14 get defined. Using CDE,
the values of e9 down to e6 is set by fixing values of a5 down to a2. In other words, the values of a2 to
a10 are fixed. Now, consider

e14 = Σ1(e13) + fIF (e13, e12, e11) + a10 + e10 + K14 + W14.

Note that in this equation all values other than W14 have already been fixed. So, W14 and hence σ1(W14)
is also fixed. Now, from the update function of the a register, we can write

W9 = a9 − Σ0(a8) − fMAJ(a8, a7, a6) − Σ1(e8) − fIF (e8, e7, e6) − e5 − K9.

In the right hand side, all quantities other than e5 have fixed values. Using CDE,

e5 = a5 + a1 − Σ0(a4) − fMAJ(a4, a3, a2).

Again in the right hand side, all quantities other than a1 have fixed values. So, we can write W9 = C−a1,
where C is a fixed value. (This relation has already been observed in [2].)

Now,

a1 = Σ0(a0) + fMAJ(a0, b0, c0) + Σ1(e0) + fIF (e0, f0, g0) + h0 + K1 + W1

where a0 and e0 depend on W0 whereas b0, c0, f0, g0 and h0 depend only on IV and hence are constants.
Thus, we can write a1 = Φ(W0) + W1, where

Φ(W0) = Σ0(a0) + fMAJ(a0, b0, c0) + Σ1(e0) + fIF (e0, f0, g0) + h0 + K1.

We write Φ(W0) to emphasize that this depends only on W0. At this point, we can write

W16 = σ1(W14) + W9 + σ0(W1) + W0

= σ1(W14) + C − Φ(W0) − W1 + σ0(W1) + W0

= D − Φ(W0) − W1 + σ0(W1) + W0.



There are 216 values of W16 for which σ(W16 − 1)− σ(W16) equals δ. So, we have to solve this equation
for W0 and W1 such that W16 is one of these 216 possible values. The simplest way to do this is to try
out random choices of W0 and W1 until W16 takes one of the desired values. On an average, success is
obtained after 216 trials. Each trial corresponds to about a single step of SHA-256 computation. So, the
total cost of finding suitable W0 and W1 is about 212.5 tries of 23-step SHA-256 computations.

For each such solution (W0,W1) and an arbitrary choice of W15 we obtain a 23-round collision for
SHA-256. Note that after W0 and W1 has been obtained everything else is deterministic, i.e., no random
tries are required. The task of obtaining a suitable W0 and W1 can be viewed as a pre-computation of
the type required to find the values of α, γ and µ. Then, the actual task of finding collisions becomes
deterministic. An example of a collision obtained using this method is given in Table 6.

5.2 Case i = 9

It is possible to place the local collision from Step 9 to Step 17 and then perform an analysis to show
that it is possible to deterministically obtain 23-step collisions for both y = 0 and y = −1. We do not
provide these details, since essentially the same technique with an additional constraint is required for
24-round collision for which we provide complete details. An example of a collision obtained using this
method is given in Table 7.

5.3 Relation to the 23-Round Collision from [2]

The NB local collision (i.e., (w, x, y, z) = (1,−1, 0, 0)) has been used in [2]. The local collision was placed
from Step 9 to Step 17. It was remarked in [2] that they were not able to use the local collision with
(w, x, y, z) = (1,−1,−1, 0) (i.e., the SS local collision) to obtain 23-round collisions.

In comparison, we have shown that the SS local collision gives rise to two kinds of 23-round collision.
The first one is obtained by placing the local collision from Steps 8 to 16, and the second one is obtained
by placing the local collision from Steps 9 to 17. Examples of both kinds are given in the Appendix.

The description of the attack in [2] is quite complicated. First they consider a 23-round pseudo-
collision which is next converted into 23-round collision. This two-step procedure is unnecessary. Our
detailed combinatorial analysis allows us to directly describe the attacks. In fact, our analytical frame-
work can also be used to explain how one may obtain a 23-round collision from the NB local collision
by placing a local collision from Steps 9 to 17. We omit the details since a lot of it would be repetitive.

6 24-Round Collisions

Note. In this and the next section, we will be working with the SS local collision, i.e., with (w, x, y, z) =
(1,−1,−1, 0). (The same analysis also goes through with small changes for the NB local collision, i.e.,
with (w, x, y, z) = (1,−1, 0, 0) which has been used in [2].)

The local collision described in Section 4.1 is placed from Step i = 10 to Step i+8 = 18 with w = 1,
x = y = −1, z = 0 and u = 1. The values of δ1, δ2 as well as suitable values of α, γ and µ need to be
chosen.

Since, the collision ends at Step 18 and u = 1, we will have δW17 = 1 and δW18 − 1. As a result,
to ensure δW19 = δW20 = 0, we need to have δ1 = δW12 = −(σ1(W17 + 1) − σ1(W17)) and δ2 =
δW13 = −(σ1(W18 − 1) − σ1(W18)). Based on the differential behaviour of σ1 described in Section B.1,
we should try to choose δ1 and δ2 such that freq

−δ1
and freqδ2

are as high as possible. (Here −δ1 denotes
−δ1 mod 232.) But, at the same time, the chosen δ1 and δ2 must be such that (4) are satisfied.



As mentioned earlier, if we choose δ2 such that freqδ2
> 216, then it is not possible to solve (4). So

we choose δ2 = ff006001 with freqδ2
= 216. Also, we choose δ1 = 00006000 so that −δ1 = ffffa000

and freq
−δ1

= 229 + 226. For these values of δ1 and δ2, it is possible to solve (4) to obtain suitable α, γ
and µ, which in turn determine β = α and λ. An example of these values is shown in Table 5. The same
values also hold for obtaining 23-step collision by placing a local collision from Step 9 to 17.

Now we consider Table 4. This table tells us what the values of the different a and e-registers need
to be. Since messages up to W15 are free, we can set values for a and e registers up to Step 15. But, we
see that e16 = −1 − u = −2. This can be achieved by setting W16 to

W16 = e16 − Σ1(e15) − fIF (e15, e14, e13) − a12 − e12 − K16. (5)

Since we want e16 = −2 and all other values on the right hand side are constants, we have that W16 is
a constant value. On the other hand, W16 is defined by message recursion. So, we have to ensure that
W16 takes the correct value. In addition, we need to ensure that W17 and W18 take values such that
σ1(W17 + 1) − σ1(W17) = −δ1 and σ1(W18 − 1) − σ1(W18) = −δ2.

Since i = 10, from Table 4, we see that a8 to a12 have to be set to fixed values and e8 to e16 have
to be set to fixed values. Using CDE, the values of e11 down to e8 are determined by a7 to a4. So, the
values of a0 to a3 are free and correspondingly the choices of words W0 to W3 are free.

We have already seen that W16 is a fixed value. Note that

W14 = e14 − Σ1(e13) − fIF (e13, e12, e11) − a10 − e10 − K14

W15 = e15 − Σ1(e14) − fIF (e14, e13, e12) − a11 − e11 − K15.

}

(6)

Since for both equations, all the quantities on the right hand side are fixed values, so are W14 and W15.
Using CDE twice, we can write

W9 = −W1 + C4 + fMAJ(a4, a3, a2) − Φ0

W10 = −W2 + C5 + fMAJ(a5, a4, a3) − Φ1

W11 = −W3 + C6 + fMAJ(a6, a5, a4) − Φ2







(7)

where

Ci = ei+5 − Σ1(ei+4) − fIF (ei+4, ei+3, ei+2) − 2ai+1 − Ki+5 + Σ0(ai)
Φi = Σ0(ai) + fMAJ(ai, bi, ci) + Σ1(ei) + fIF (ei, fi, gi) + hi + Ki+1.

}

(8)

Using the expressions for W9,W10 and W11 we obtain the following expressions for W16,W17 and W18.

W16 = σ1(W14) + C4 − W1 + fMAJ(a4, a3, a2) − Φ0 + σ0(W1) + W0

W17 = σ1(W15) + C5 − W2 + fMAJ(a5, a4, a3) − Φ1 + σ0(W2) + W1

W18 = σ1(W16) + C6 − W3 + fMAJ(a6, a5, a4) − Φ2 + σ0(W3) + W2.







(9)

We need to ensure that W16 has the desired value given by (5) and that W17 and W18 take values which
lead to desired values for δσ1(W17) and δσ1(W18) as explained above.

The only free quantities are W0 to W3 which determine a0 to a3. The value of C4 depends on e8,
e7 and e6, where e8 has a fixed value and e7 and e6 are in turn determined using CDE by a3 and a2.
Similarly, C5 is determined by e9, e8 and e7; where e9, e8 have fixed values and e7 is determined using
a3. The value of C6 on the other hand is fixed. Coming to the Φ values, Φ0 is determined only by W0;
Φ1 determined by W0 and W1; and Φ2 determined by W0,W1 and W2. Let

D = W16 − (σ1(W14) + C4 + fMAJ(a4, a3, a2) − Φ0 + W0). (10)



If we fix W0 and a3, a2, then the value of D gets fixed and we need to find W1 such that the following
equation holds.

D = −W1 + σ0(W1). (11)

A guess-then-verify algorithm can be used to solve this equation. By guessing a total of 18 bits (15 least
significant bits of W1 and three other possible carry bits), it is possible to reconstruct the entire W1 and
then verify whether the reconstructed value is correct. Thus, by trying a total of 218 combinations, it is
possible to determine whether (11) has a solution and if so to find all possible solutions. The algorithm
is given in Section E. (We note that in [2], it has been remarked that by guessing the least 15 bits of
W1 the entire W1 can be reconstructed and with probability 2−14 it is going to be correct. No details
are provided; in particular, the guess-then-verify algorithm that we provide in Section E is not present
in [2].)

In our experiments we found that for almost every other value of D, Equation (11) has solutions,
the number of solutions being one or two. So, for a random choice of D, we consider (11) to hold with
probability ≈ 1.

Solving (11) using table look-up. An alternative approach would be to use a pre-computed table.
For each of the 232 possible W1s, prepare a table of entries (W1,−W1 + σ0(W1)) sorted on the second
column. Then all solutions (if there are any) for (11) can be found by a simple look-up into the table
using D. The table would have 232 entries and if a proper index structure is used, then the look-up can
be done very fast. We have not implemented this method.

Given a1, b1, . . . , h1 and a2 the value of W2 gets uniquely defined; similarly, given a2, b2, . . . , h2 and
a3, the value of W3 gets uniquely defined. The equations are the following.

W2 = a2 − (Σ0(a1) + fMAJ(a1, b1, c1) + h1 + Σ1(e1) + fIF (e1, f1, g1) + K2)
W3 = a3 − (Σ0(a2) + fMAJ(a2, b2, c2) + h2 + Σ1(e2) + fIF (e2, f2, g2) + K3)

}

(12)

The strategy for determining suitable W0, . . . ,W3 is the following.

1. Make random choices for W0 and a2, a3.
2. Run SHA-256 with W0 and determine Φ0.
3. From a3 and a2 determine e7 and e6 using CDE.
4. Determine C4 using (8) and then D using (10).
5. Solve (11) for W1 using the guess-then-verify algorithm in Section E.
6. Run SHA-256 with W1 to define a1, . . . , h1.
7. Determine Φ1 using (8) and then W2 using (12).
8. Run SHA-256 with W2 to define a2, . . . , h2.
9. Determine Φ2 using (8) and then W3 using (12).
10. Compute W17 and W18 using (9).
11. If σ1(W17 + 1) − σ1(W17) = −δ1 and σ1(W18 − 1) − σ1(W18) = δ2, then return W0,W1,W2 and W3.

The values of W0,W1,W2 and W3 returned by this procedure ensure that the local collision ends properly
at Step 18 and that δWj = 0 for j = 19, . . . , 23. This provides a 24-round collision. An example of a
collision obtained using this method is given in Table 8.

Estimate of computation effort. Step 5 involves a computation of 218 operations, where each
operation is much faster than a single step of SHA-256; by our assessment the time for each operation
is around 2−4 times the cost of a single step of SHA-256. Thus, the time for Step 5 is about 214 single
SHA-256 steps.



By the choice of δ1, the equality σ1(W17 + 1) − σ1(W17) = −δ1 holds roughly with probability 2−3

while by the choice of δ2 the equality σ1(W18 − 1) − σ1(W18) = δ2 holds roughly with probability 2−16

and we obtain success in Step 11 with roughly 2−19 probability. So, the entire procedure needs to be
carried out around 219 times to obtain a collision.

The time for executing the entire procedure once is about (214 + 3) single SHA-256 steps which is
about 29.5 24-step SHA-256 computations. Hence, success is obtained after about 228.5 24-step SHA-256
computations. In our experiments, we found that the computation effort required to find W0, . . . ,W3

actually turns out to less than the estimated effort of 228.5 24-step SHA-256 computations. The value
of 228.5 matches the figure given in [2]. But, [2] does not provide the detailed analysis of their cost.

If (11) is solved using a table look-up, then the cost estimate changes quite a lot. The cost of Step 5
reduces to about a single SHA-256 step so that the overall cost reduces to about 214.5 24-step SHA-256
computations. The trade-off is that we need to use a look-up table having 232 entries.

6.1 More Number of Steps

The method of attack described so far cannot be meaningfully extended beyond 24 steps as already
mentioned in [2]. This is due to the fact that every extra step will introduce a new condition on the
previous message words. The 24-step collision already utilized the freedom in the first message word
W0. To have a 25-step collision by starting the local collision at Step i = 11, will introduce impossibility
in ensuring that the message word difference δW16 = 0. This is explained below.

As shown in Section 4.1, the local collision is {w,−w, δ1, δ2, 0, 0, 0, u, w}. If we start this local collision
at Step i = 11, then δW15 = δW16 = δW17 = 0. Now from the message recursion of SHA-2, we have:

W16 = σ1(W14) + W9 + σ0(W1) + W0.

All the terms in the above equation, except W14, are zero. Therefore this equation cannot be satisfied
by this local collision. Similar reasons apply for longer round collisions.

Perhaps more fundamentally the problem is that, we are using only a single local collision. Since
the local collision is nonlinear in nature, it is difficult to combine two or more such collisions. Further
progress in analysis of step-reduced SHA-256 collisions will require some method to combined more
than one (linear or non-linear) local collision.

Note: The work [2] acknowledges the VIC computer cluster of K.U. Leuven for obtaining most of
their experimental results. Not having access to such excellent computational resources, we used only
a standard PC. This necessitated a detailed and careful analysis of the nonlinear equations and the
computational effort to solve them.

Acknowledgements

We would like to thank Sebastiaan Indesteege for pointing out that the extended attacks beyond 24 steps
utilizing a single local collision will not work. Such “attacks” were described in the previous version.
Section 6.1 is based on Sebastiaan’s comments.

References

1. Henri Gilbert and Helena Handschuh. Security Analysis of SHA-256 and Sisters. In Mitsuru Matsui and Robert J.
Zuccherato, editors, Selected Areas in Cryptography, 10th Annual International Workshop, SAC 2003, Ottawa, Canada,

August 14-15, 2003, Revised Papers, volume 3006 of Lecture Notes in Computer Science, pages 175–193. Springer, 2003.



2. Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Christian Rechberger. Collisions and other Non-
Random Properties for Step-Reduced SHA-256. Cryptology eprint Archive, April 2008. Available at
http://eprint.iacr.org/2008/131 .

3. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of Step-Reduced SHA-256.
In Matthew J. B. Robshaw, editor, Fast Software Encryption, 13th International Workshop, FSE 2006, Graz, Austria,

March 15-17, 2006, Revised Selected Papers, volume 4047 of Lecture Notes in Computer Science, pages 126–143.
Springer, 2006.

4. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of Step-Reduced SHA-256.
Cryptology eprint Archive, March 2008. Available at http://eprint.iacr.org/2008/130.

5. Ivica Nikolić and Alex Biryukov. Collisions for Step-Reduced SHA-256. In Kaisa Nyberg, editor, Fast Software En-

cryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland, March 26-28, 2008, volume Pre-proceedings
version of Lecture Notes in Computer Science, pages 1–16. Springer, 2008.

6. Somitra Kumar Sanadhya and Palash Sarkar. Collision attacks against 22-step SHA-512. Communicated.

7. Somitra Kumar Sanadhya and Palash Sarkar. New Local Collisions for the SHA-2 Hash Family. In Kil-Hyun Nam
and Gwangsoo Rhee, editors, Information Security and Cryptology - ICISC 2007, 10th International Conference,

Seoul, Korea, November 29-30, 2007, Proceedings, volume 4817 of Lecture Notes in Computer Science, pages 193–205.
Springer, 2007.

8. Somitra Kumar Sanadhya and Palash Sarkar. Attacking Reduced Round SHA-256. In Steven Bellovin and Rosario
Gennaro, editors, Applied Cryptography and Network Security - ACNS 2008, 6th International Conference, New York,

NY, June 03-06, 2008, Proceedings, volume 5037 of Lecture Notes in Computer Science, pages 130–143. Springer, 2008.

9. Somitra Kumar Sanadhya and Palash Sarkar. Deterministic Constructions of 21-Step Collisions for the SHA-2 Hash
Family. In Tzong-Chen Wu and Chin-Laung Lei, editors, Information Security - ISC 2008, 11th International Confer-

ence, Taipei, Taiwan, September 15-18, 2008, Proceedings, volume To appear of Lecture Notes in Computer Science.
Springer, 2008.

10. Somitra Kumar Sanadhya and Palash Sarkar. Non-Linear Reduced Round Attacks Against SHA-2 Hash family. In
Yi Mu and Willy Susilo, editors, Information Security and Privacy - ACISP 2008, The 13th Australasian Conference,

Wollongong, Australia, 7-9 July 2008, Proceedings, volume To appear of Lecture Notes in Computer Science. Springer,
2008.

A Colliding Message Pairs

Examples of colliding message pairs for 23-step and 24-step SHA-256 using the standard IV are shown
in Tables 6, 7 and 8.

B Details of the SHA-2 Hash Family

Eight registers are used in the evaluation of SHA-2. The initial value in the registers is specified by an
8 × n bit IV, n=32 for SHA-256 and n = 64 for SHA-512. In Step i, the 8 registers are updated from
(ai−1, bi−1, ci−1, di−1, ei−1, fi−1, gi−1, hi−1) to (ai, bi, ci, di, ei, fi, gi, hi) according to the following
Equations:

ai = Σ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) + Σ1(ei−1)
+fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

bi = ai−1

ci = bi−1

di = ci−1

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1)
+hi−1 + Ki + Wi

fi = ei−1

gi = fi−1

hi = gi−1































































(13)

http://eprint.iacr.org/2008/131
http://eprint.iacr.org/2008/130


Table 6. Colliding message pair for 23-step SHA-256 with standard IV. These messages utilize a single
local collision starting at Step i = 8.

W1 0-7 122060e3 000f813f d92d3fc6 ea4a475f fb0c6581 dc4558c4 d86428b4 6e2ca576

8-15 c8d597bf 6372d4c2 ddbd721c 79d654c4 f0064002 a894b7b6 91b7628e 3224db20

W2 0-7 122060e3 000f813f d92d3fc6 ea4a475f fb0c6581 dc4558c4 d86428b4 6e2ca576

8-15 c8d597c0 6372d4c1 ddbd721c 78d6b4c5 f0064002 a894b7b6 91b7628e 3224db20

Table 7. Colliding message pair for 23-step SHA-256 with standard IV. These messages utilize a single
local collision starting at Step i = 9.

W1 0-7 c201bef2 14cc32c9 3b80da44 d8212037 8987161d a790cb4a 53b8d726 89e9a288

8-15 3edd76e0 05f41ddc 9ebc0fc3 e099698a 2eaec58f e7060b78 95d7030d 6bf777c0

W2 0-7 c201bef2 14cc32c9 3b80da44 d8212037 8987161d a790cb4a 53b8d726 89e9a288

8-15 3edd76e0 05f41ddd 9ebc0fc2 e099c98a 2daf2590 e7060b78 95d7030d 6bf777c0

Table 8. Colliding message pair for 24-step SHA-256 with standard IV. These messages utilize a single
local collision starting at Step i = 10.

W1 0-7 657adf63 06c066d7 90f0b709 95a3e1d1 c3017f24 fad6c2bf dff43685 6abff0da

8-15 e6cfc63f de8fb4c1 c20ca05b f74815cc c2e789d9 208e7105 cc08b6cf 70171840

W2 0-7 657adf63 06c066d7 90f0b709 95a3e1d1 c3017f24 fad6c2bf dff43685 6abff0da

8-15 e6cfc63f de8fb4c1 c20ca05c f74815cb c2e7e9d9 1f8ed106 cc08b6cf 70171840

The functions fIF and the fMAJ are three variable boolean functions defined as:

fIF (x, y, z) = (x ∧ y) ⊕ (¬x ∧ z),
fMAJ(x, y, z) = (x ∧ y) ⊕ (y ∧ z) ⊕ (z ∧ x).

For SHA-256, the functions Σ0 and Σ1 are defined as:

Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x),
Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x).

For SHA-512, the corresponding functions are:

Σ0(x) = ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x),
Σ1(x) = ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x).

For a t-bit words α, β, γ and integer i, we use the short-hands given in Table 9.

Table 9. Some useful short-hands.

δΣ
i

1(α) = Σ1(ei + α) − Σ1(ei)

= Σ1(e
′
i) − Σ1(ei).

δΣ
i

0(α) = Σ0(ai + α) − Σ0(ai)

= Σ0(a
′
i) − Σ0(ai).

δf
i

IF (α, β, γ) = fIF (ei + α, fi + β, gi + γ) − fIF (ei, fi, gi)

= fIF (e′i, f
′
i , g

′
i) − fIF (ei, fi, gi).

δf
i

MAJ (α, β, γ) = fMAJ (ai + α, bi + β, ci + γ) − fIF (ai, bi, ci)

= fMAJ (a′
i, b

′
i, c

′
i) − fIF (ai, bi, ci).

Given the message words W0,W1, . . . ,W15, for i ≥ 16, Wi is computed as follows.

Wi = σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 (14)



For SHA-256, the functions σ0 and σ1 are defined as:

σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x),
σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x).

And for SHA-512, they are defined as:

σ0(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x),
σ1(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x).

B.1 Differential Properties of σ1

The linear function σ1 of SHA-256 used in the message expansion has very poor differential properties
with respect to modular addition. Consider the distribution of δ = σ1(W )−σ1(W −1) as W ranges over
all 232 values. It has already been observed in [2] that δ takes only 6181 values and there are several
values of δ which occur for more than 229 or more values of W .

Let freqδ be the number of W such that δ = σ1(W ) − σ1(W − 1). It is quite easy to prepare a list
of (δ, freqδ) values. For each of the 232 values of W , compute δ = σ1(W ) − σ1(W − 1). If this δ has
been obtained earlier, then increment the frequency for this δ; else insert (δ, freqδ = 1) into the list. To
do this efficiently, we need a suitable index structure for searching and inserting into the list. A height
balanced tree (or AVL tree) is the optimal solution; but, for the current application, a simple (data
structure) hash technique is good enough and is the technique we implemented.

Some values of (δ, freqδ) are given in Table 10. Interestingly, we have observed that if freqδ is greater
than 216, then δ is always even.

Table 10. Some examples of high frequency values of δ = σ1(W ) − σ1(W − 1).

δ freqδ δ freqδ

ffff6000 229 + 226 + 225 0000a000 229 + 226 + 225

ffffa000 229 + 226 00006000 229 + 226

ff006001 216 ff005fff 216

C Simplifications

The differential path by itself is not useful for obtaining longer round collisions. To do this, we need to
simplify the expressions and obtain conditions, as was done by Nikolić-Biryukov [5]. This is done using
several rules which are actually sufficient conditions. The rules and their consequences are described
below.

C.1 Simplifying δΣ0

There is only one occurrence of Σ0 in all the expressions and that is in the expression for x. In both SHA-
256 and SHA-512, Σ0 is a linear operator which is invariant only on 0 and −1. Note that −1 = ffffffff

for SHA-256 and −1 = ffffffffffffffff for SHA-512.
Since δΣi

0(w) = Σ0(ai + w)−Σ0(ai) an easy way to satisfy this is to ensure that both ai and ai + w
are either 0 or −1.



Rule 1: Ensure that δΣi
0(w) = w by either (w = 1 and ai = −1) or (w = −1 and ai = 0).

C.2 Simplifying Majority

The output of fMAJ(a, b, c) can be predicted with probability one if two of the inputs are equal. Based
on this, we make the following rule.

Rule 2: Simplify each occurrence of fMAJ by making two of the inputs equal.

This rule has several consequences. The function fMAJ is used only in the definitions of x, y and z.
Consider, for example x which, after the application of Rule 1, is equal to

x = −w − fMAJ(ai + w, ai−1, ai−2) + fMAJ(ai, ai−1, ai−2).

There are three ways to apply Rule 2 to this occurrence of fMAJ . These are:

1. Set ai−1 = ai−2 which implies x = −w;

2. set ai−1 = ai + w, ai = ai−2 which implies that x = −2w;

3. set ai−2 = ai + w, ai = ai−1 which also implies that x = −2w.

So applying Rule 2 to x implies that either x = −w (in which case ai−1 = ai−2) or x = −2w (in which
case either (ai−1 = ai + w and ai = ai−2) or (ai−2 = ai + w and ai = ai−1).

Similar reasoning applies to the expressions for y and z. Now, if we simultaneously apply Rule 2 to
all the three occurrences of fMAJ , then there are eight possible values of (w, x, y, z) which are listed
as Cases (I) to (VIII) in Table 11. The related sufficient conditions are given in Table 12, where we
consider only the case w = 1, ai = −1, since the other case w = −1, ai = 0 is the dual of the first one.

Table 11. Different cases for (w, x, y, z).

(I) (II) (III) (IV)

(w,−w, 0, 0) (w,−w, 0,−w) (w,−w,−w, 0) (w,−w,−w,−w)

(V) (VI) (VII) (VIII)

(w,−2w, 0, 0) (w,−2w, 0,−w) (w,−2w,−w, 0) (w,−2w,−w,−w)

C.3 Simplifying δWi+4 to δWi+7

The expression for δWi+4 involves δΣi+3
1

(z) and δf i+3

IF (z, y, x). By imposing certain conditions, it is
possible to simplify both these expressions.

Joint simplification of the above two quantities is possible by ensuring that both ei+3 and ei+3 + z
are either 0 or −1. If z = 0, then ei+3 can be either 0 or −1. If z = −w, then we choose ei+3 = 0 if w = 1;
and ei+3 = −1 if w = −1. Similarly, simplification of δWi+5 is possible by ensuring that both w and
ei+4 + w are either 0 or −1. For δWi+6 and δWi+7 we respectively ensure that ei+5 and ei+6 are either
0 or −1. The effect of these simplifications is summarized in Table 13. In particular, the simplifying
conditions and the resulting values of the respective δW s are shown.



Table 12. Result of applying Rules 1 and 2. For this table, we have w = 1 and ai = −1.

Case ai−2 ai−1 ai ai+1 ai+2 ei+2 ei+1

I α α −1 α α −Σ0(α) + α 1 + ai−3

II(a) 0 0 −1 0 −1 −1 1 + ai−3

II(b) −1 −1 −1 −1 0 1 1 + ai−3

III(a) −1 −1 −1 0 0 0 2 + ai−3

III(b) 0 0 −1 −1 −1 1 ai−3

IV(a) −1 −1 −1 0 −1 −1 2 + ai−3

IV(b) 0 0 −1 −1 0 2 ai−3

V(a) −1 0 −1 0 0 −1 2 + ai−3

V(b) 0 −1 −1 −1 −1 1 1 + ai−3

VI(a) −1 0 −1 0 −1 −2 2 + ai−3

VI(b) 0 −1 −1 −1 0 2 1 + ai−3

VII(a) −1 0 −1 −1 −1 0 1 + ai−3

VII(b) 0 −1 −1 0 0 1 2 + ai−3

VIII(a) −1 0 −1 −1 0 1 1 + ai−3

VIII(b) 0 −1 −1 0 −1 −1 2 + ai−3

Table 13. Summary of simplifying conditions for δWi+4 to δWi+7. The simplifications for δWi+4 and
δWi+5 require Rules 1 and 2, whereas the simplifications for δWi+6 and δWi+7 do not require these
rules.

δW Condition(s) Value of δW

δWi+4

z = 0, ei+3 = 0 −w − x

z = 0, ei+3 = −1 −w − y

w = 1, z = −w, ei+3 = 0 ei+1 − ei+2 + y

δWi+5 w = 1, ei+4 = −1 −w − x − y + ei+3 − ei+2

δWi+6

ei+5 = 0 −y − z

ei+5 = −1 −y − w

δWi+7

ei+6 = 0 −w − z

ei+6 = −1 −z



D Details of up to 22-Round Collisions

D.1 20-Round Collisions [5,10]

Deterministic 20-round collisions can be obtained by setting i = 5 (i.e., the local collision spans from
i = 5 to i+8 = 13) and ensuring δWi+4 = δWi+5 = δWi+6 = δWi+7 = 0. The conditions for individually
setting any of these to 0 are given in Table 13.

In the present case, we need to consider how to simultaneously set all of these to 0. In this situation,
some conditions become infeasible. More precisely, certain conditions for obtaining δWi+4 = 0 are
incompatible with certain conditions for obtaining δWi+5 = 0. The possible conditions for ensuring
these two δW s to be zero are given in Table 14. In particular, we see that z = 0 in all cases.

Table 14. Conditions for setting δWi+4 = δWi+5 = 0.

Case w x y z ei+2 ei+3 ei+4 Extra Condition

A 1 −1 0 0 0 0 −1 Case I

B 1 −1 −1 0 1 0 −1 Case III (b)

C 1 −2 −1 0 1 0 −1 Case VII (b)

D 1 −1 −1 0 0 −1 −1 Case III (a)

E 1 −2 0 0 1 −1 −1 Case V (b)

F 1 −2 −1 0 1 −1 −1 Case VII (b)

The conditions for setting δWi+6 = 0 and δWi+7 = 0 do not cause any conflict with other conditions.
The set of conditions required for setting δWi+4 = δWi+5 = δWi+6 = δWi+7 = 0 are summarized in
Table 15.

Table 15. Conditions for setting δWi+4 = δWi+5 = δWi+6 = δWi+7 = 0.

A row of Table 14
AND

(ei+5 = 0 and y = −z) or (ei+5 = −1 and y = −w)
AND

ei+6 = −1.

Note. Tables 14 and 15 show that it is possible to deterministically set all the four δW s to zero using the
Nikolić-Biryukov local collision. Consequently, it is possible to obtain deterministic 20-round collision
using this local collision. This was not done in [5] but mentioned in [10] later.

D.2 21-Round Collisions [9]

We set i = 6, i.e., the local collision spans from i = 6 to i + 8 = 14. As in the case of 20-round collision,
we set δWi+4 = δWi+5 = δWi+6 = δWi+7 = 0 by a suitable set of conditions given by Table 15.

Let δσ1(δWi) denote σ1(Wi + δWi) − σ1(Wi). We have δW14 = δWi+8 = −w and so

δW16 = δ{σ1(W14) + W9} = δσ1(δW14) + δW9.



We now consider δW9 = Wi+3 which by the differential path is equal to z−δΣi+2
1

(y)−δf i+2

IF (y, x,w). To
simplify this, we choose rows from Table 14 such that both ei+2 and ei+2+y are either 0 or −1. These are
rows A and D. In the case of row D, we have δW9 = −e7 + e6 +2; whereas for row A, we get δW9 = −1.
It is possible to deterministically satisfy the case for row D. However, row A cannot be used in the
attack. This is due to the fact that there does not exist any word X such that σ0(X)− σ0(X − 1) = −1
either for SHA-256 or for SHA-512.

Since i = 6, rows of Tables 12 corresponding to rows A and D of Table 14 ensure that a4, a5, a6, a7,
a8 and e8 are all fixed to particular values. Due to CDE, we can now use a3 to set e7 to any specific
value and then use a2 to set e6 to any specific value.

Now, the following strategy is used to ensure that δW16 = 0. Choose an arbitrary value for W14 and
compute δ to be

δ = δσ1(δW14)

= σ1(W14 + δW14) − σ1(W14)

= σ1(W14 − w) − σ1(W14).

Choose W2 and W3 to set a2 and a3 such that e7 − e6 = −δ. This ensures that δW16 = 0 and hence,
provides a deterministic 21-round collision.

It is possible to obtain deterministic 21-round collision by placing the SS local collision from Steps 7
to 15. Set i = 7 so that the local collision spans steps i = 7 to i + 8 = 15. In this case, set δWi+4 =
δWi+5 = δWi+6 = 0 the sufficient condition for this being any row of Table 14 AND ((ei+5 = 0, y = −z)
or (ei+5 = −1, y = −w)). This ensures δW11 = δW12 = δW13 = 0. Now

δW16 = σ1(δW14) + δW9,

δW17 = σ1(δW15) + δW10.

We have δW15 = −w and by setting ei+6 = 0, we also have δW14 = −w. Also,

W9 = Wi+2 = y − δΣi+1
1

(x) − δf i+1

IF (x,w, 0)

W10 = Wi+3 = −δΣi+2
1

(y) − δf i+2

IF (y, x,w).

To simplify δW10 = δWi+3 we choose rows from Table 14 such that both ei+2 and ei+2 + y are either 0
or −1. These are rows A and D. Similarly, to simplify δW9 = δWi+2, in row A we choose ei+1 = 0 and
in row D, we choose ei+1 = −1.

The overall strategy is now the following. Choose arbitrary values for W14 and W15 and compute
δ1 = δσ1(δW14) and δ2 = δσ1(δW15), where δW14 = δW15 = −w. Now set δW9 = −δ1 and W10 = −δ2

using W3 and W4 to set a3 and a4 and hence, using CDE to set e7 and e8 to desired values. This can
be done deterministically.

D.3 22-Round Collisions [6]

Set i = 7 so that the local collision spans from i = 7 to i+8 = 15. Use sufficient conditions from Table 15
to ensure that δWi+4 = δWi+5 = δWi+6 = δWi+7 = 0. This ensures that δWj = 0 for j = 18, 19, 20, 21
provided δW16 = δW17 = 0. To ensure δW16 = 0, we need to set δW9 = δWi+2 = 0 and δW17 = 0 if we
can ensure δσ1(δW15) + δW10 = 0.

So, apart from the conditions required to set δWi+4 = δWi+5 = δWi+6 = δWi+7 = 0, we need
sufficient conditions to set δW9 = δWi+2 = 0 and to set δσ1(δW15) + δW10 = 0.



To simplify δW10 = δWi+3 we need to choose both ei+2 and ei+2 + y to be 0 or −1. These imply
that we have to use either row A or row D of Table 14. For reasons similar to the case of 21-step attack,
only row D can be utilized for the attack. The rest of the strategy is similar to the previously described
collisions.

Choose an arbitrary value for W15 and set δ1 = δσ1(δW15) where δW15 = −w. Then use W4 to set a4

such that due to CDE, e8 gets set to a particular value required to ensure that δW10 = −δ1. Similarly,
use W3 to set a3 such that due to CDE, e7 gets set to a particular value required to ensure that δW9 = 0.
Both of these can be done deterministically, giving rise to deterministic 22-round collisions.

E Guess-Then-Verify Algorithm for Solving (11)

For the ease of notation, in this section we will use W instead of W1. Consider Table 1 where the
structure of W and σ0(W ) is shown. We have −W + σ0(W ) = D, where D = (d31, . . . , d0) is a 32-bit
constant. For 31 ≥ k ≥ l ≥ 0, we will use the notation X[k, l] to denote bits xk, . . . , xl of the 32-bit
quantity X.

We explain how the guess-then-verify attack proceeds. Suppose that we guess W [14, 0]. Let X =
D +W and Y = (W [14, 0] ≫ 3)⊕ (W [14, 0] ≫ 7). Then W [25, 18] = (X ⊕Y )&(ff). Having determined
W [25, 18] we next determine W [29, 26] using positions 22 to 19 of Table 1. This time, however, there
may have been a possible carry into the 19th bit and we need to account for that. Let c0 be a bit.
Define X = (D ≫ 19) + (W [25, 18] ≫ 1) + c0 and Y = (W [14, 0] ≫ 5) ⊕ (W [25, 18] ≫ 4). Then
W [29, 26] = (X ⊕ Y )&(f). This illustrates the general idea and can be extended to determine the other
bits. Once the entire W has been determined we need to verify whether −W + σ0(W ) = D. The entire
algorithm is shown in Figure 2. This algorithm involves guessing W [14, 0] and bits c0, c1, c2, which is
a total of 18 bits. If the equation D = −W + σ0(W ) does not have any solution, then none will be
returned by this algorithm; on the other hand, if there is a solution or there are more than one solutions,
then all solutions will be returned. A total of 218 operations are required. The time for each operation
is significantly less than the time for a single SHA-256 step and by our assessment it is about 2−4 times
the time for a single SHA-256 step.



Fig. 1. Structure of W and σ0(W ).

W w31 w30 w29 w28 w27 w26 w25 w24 w23 w22 w21 w20 w19 w18 w17 w16

W ≫ 3 0 0 0 w31 w30 w29 w28 w27 w26 w25 w24 w23 w22 w21 w20 w19

W ≫ 7 w6 w5 w4 w3 w2 w1 w0 w31 w30 w29 w28 w27 w26 w25 w24 w23

W ≫ 18 w17 w16 w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4 w3 w2

W w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4 w3 w2 w1 w0

W ≫ 3 w18 w17 w16 w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4 w3

W ≫ 7 w22 w21 w20 w19 w18 w17 w16 w15 w14 w13 w12 w11 w10 w9 w8 w7

W ≫ 18 w1 w0 w31 w30 w29 w28 w27 w26 w25 w24 w23 w22 w21 w20 w19 w18

Fig. 2. A guess-then-verify algorithm for solving D = −W + σ0(W ).

1. Guess W [14, 0].
2. Let X = D + W and Y = (W [14, 0] ≫ 3) ⊕ (W [14, 0]) ≫ 7

and set W [25, 18] = (X ⊕ Y )&(ff).
3. Guess c0.
4. Let X = (D ≫ 19) + (W [25, 18] ≫ 1) + c0 and Y = (W [14, 0] ≫ 5) ⊕ (W [25, 18] ≫ 4)

and set W [29, 26] = (X ⊕ Y )&(f).
5. Guess c1.
6. Let X = (D ≫ 23) + (W [25, 18] ≫ 6) + c1 and Y = (W [14, 0] ≫ 9) ⊕ (W [29, 26] ≫ 4)

and set W [31, 20] = (X ⊕ Y )&(3).
7. Guess c2.
8. Let X = (D ≫ 8) + (W [14, 0] ≫ 8) + c2 and Y = (W [14, 0] ≫ 11) ⊕ (W [29, 26])

and set W [31, 20] = (X ⊕ Y )&(7).
9. If −W + σ0(W ) = D, then output W as one solution.


	Attacking Step Reduced SHA-2 Family in a Unified Framework

