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Abstract. In this work, we study several properties of the SHA-2 design which have been utilized in
recent collision attacks against reduced SHA-2. We suggest small modifications to the SHA-2 design to
thwart these attacks. The cost of SHA-2 evaluations does not change significantly due to our modifications
but the new design provides resistance to the recent collision attacks.

Further, we describe an easy method of exhibiting non-randomness of the compression functions of the
entire SHA family, that is SHA-0, SHA-1 and all the hash functions in SHA-2. Specifically, we show
that given any IV1 and any pair of messages M1 and M2, an IV2 can be easily and deterministically
constructed such that the relation H(IV1, M1)− IV1 = H(IV2, M2)− IV2 holds. For a truly random hash
function H outputting a k-bit digest, such a relation should hold with probability 2−k.

We introduce the general idea of “multiple feed-forward” in the context of construction of cryptographic
hash functions. When used in SHA designs, this technique removes the non-randomness mentioned earlier.
Perhaps more importantly, it provides increased resistance to the Chabaud-Joux type “perturbation-
correction” collision attacks. The idea of feed-forward is taken further by introducing the idea of feed-
forward across message blocks. This provides quantifiably better resistance to Joux type generic multi-
collision attacks. For example, with our modification of SHA-256, finding 2r messages which map to the
same value will require r × 2384 invocations of the compression function.

1 Introduction

Following the attacks on SHA-0 [1] and SHA-1 [16], the attention of the cryptanalysis community
has been directed to the SHA-2 family. Recent attacks against SHA-2 starting with [10], and followed
by [14] and [6], have utilized certain previously unknown properties in the round function of SHA-2.
These have led to 22-step attacks [11] against SHA-512 and 24-step attacks [6] against SHA-256.
While none of these attacks threaten any of the security properties of the full SHA-2 hash functions,
it is also true that the features of the compression function that have been exploited in the attack
are undesirable. In view of the NIST call for potential SHA-3 proposals [3], it is of interest to take a
closer look at the undesirable features and consider methods for eliminating them. One of the goals of
this work is to carry out this task. The following four properties have been used in the step-reduced
attacks.

1. The works in [4], [5], [8,9] and [12] show that 9-round local collisions obtained using XOR differ-
entials hold with probability 2−39 or less. In contrast, the work of [10] shows that 9-round local
collisions using additive differentials hold with probability 1/3 (and improved to probability 1
in [14]). This shows that the round function design is biased to resist XOR differentials.

2. SHA-2 design uses 8 registers a to h, where a and e registers are nonlinearly updated while the
rest are simply copied. It turns out that there is a very simple relation by which the e-register
value at Step i can be controlled using only the a-register values at Step i to i − 4.

⋆ This author is supported by the Ministry of Information Technology, Govt. of India.



3. The round update function for the a-register uses an invertible linear transformation Σ0 while
that of the e-register uses an invertible linear transformation Σ1. Both Σ0 and Σ1 have 0 and −1
as fixed points. This considerably helps the attacks.

4. The technique of perturbation-correction [1] is used to build the attacks. A 9-step local collision
is suitably placed between steps i and i + 8 and it is ensured that all message word differences
after Step i + 8 are zero.

Based on the above four properties, we describe methods to overcome them. The linear maps Σ0, Σ1

are modified to affine maps Γ0, Γ1 to ensure that Γ0, Γ1 and Γ0 ⊕ Γ1 do not have any fixed points
(along with a few other properties). This takes care of the third point above.

By introducing simple changes to the update function of the a and e-registers, we improve the
resistance to additive differentials. These changes also lead to cancelling out the simple relation
between the a and e-registers. As a result, both the first and second points above are eliminated.

Recently, at the rump session of Eurocrypt ’08, Yu and Wang showed the non-randomness of
SHA-256 round function using a 33-step differential path. In contrast, we show that it is almost
trivial to exhibit the non-randomness of any compression function H(IV,M) of the SHA family. As
an example, we show that if M is the message “The round function of the SHA-2 family is random”;
M ′ is the message “The round function of the SHA-2 family is not random”; IVstd is the IV specified
in the standard, then it is easy to obtain an IV

′ such that H(IVstd,M)− IVstd = H(IV′,M ′)− IV
′. For

SHA-256, we provide the corresponding IV
′. If H was a true random function, then such a relation

would hold with probability 2−256 for SHA-256 and 2−512 for SHA-512. In fact, if the update function
of a stream cipher satisfied such a property, it would be considered broken.

We introduce a new hash function design construct called multiple feed-forward to eliminate the
above easily exhibited non-randomness as also to provide additional resistance to the perturbation-
correction technique mentioned above. The SHA-family design uses a single feed-forward where the
IV is added to the output of composition of all the round functions. We suggest introducing several
other feed-forward steps where the feed-forward is alternately provided using addition and XOR. A
consequence is that if any 9-round local collision is placed within the first 16 steps, then there will be
a step i within these 16 steps such that there will be a perturbation in the registers at Step i and this
perturbation will necessarily extend to steps beyond the first 16 steps. Since message words beyond
the first 16 steps are obtained using the message recursion, it will be very difficult to cancel out
the effect of such cascaded perturbation. This significantly improves the resistance to perturbation-
correction attacks. Such resistance is achieved at a marginal cost. The amortized cost of the new
feed-forward steps is less than one t-bit operation (add/XOR) per step, where t = 32 for SHA-256
and t = 64 for SHA-512.

The idea of feed-forward is taken one step further. We suggest the idea of providing feed-forward
across message blocks. The intuitive justification is that this provides an additional mechanism for
allowing the processing of the current block to depend on earlier blocks. Concrete suggestions are
given for the SHA-2 family. These improve the resistance of SHA-2 hash functions against generic
multi-collision attacks introduced in [7]. For example, for SHA-256, finding 2r messages which map
to the same value requires r × 2128 invocations of the compression function. With our suggestion
for modifying the SHA-256 hash function this increases to r × 2384 invocations of the compression
function.

2 Overview of and Insights into Attacks Against SHA-2

Local collisions for linearized version of SHA-2 were studied by Gilbert and Handschuh [4] and by
Sanadhya and Sarkar [12]. All these local collisions hold for the actual SHA-256 with probabilities of
about 2−39 or less. Using these local collisions, Mendel et al. [8,9] and later Sanadhya and Sarkar [13]



obtained collisions for 18 step SHA-256. We call attacks using local collisions for the linearized version
of SHA-2 as linear attacks.

Nikolić and Biryukov [10] presented a local collision which is valid for the actual SHA-256 function.
The important point to note is that this local collision holds with probability of about 1/3. Using
this local collision, the authors showed collisions for 21-step SHA-256 with probability about 2−19.
Using similar methods, Sanadhya and Sarkar [14] obtained another local collision which holds with
probability 1. Extension of these attacks to 22-step collisions with probability one for both SHA-256
and SHA-512 have been given in [11]. Very recently, Indesteege et al. [6] have presented collisions
for 23 and 24 step SHA-256 requiring computation effort of around 218 and 228.5 appropriately step-
reduced SHA-256 hash calls. We call attacks using local collisions valid for the actual SHA-2 as
nonlinear attacks.

We now discuss certain features of the SHA-2 design which facilitated collision attacks against
reduced round versions discussed earlier.

Linear vs. Nonlinear attacks: The success probabilities of the linear attacks are very low in
comparison to the nonlinear attacks. This is due to the huge difference in the success probability of
the local collisions for these two types of attack. The successful collision attacks against SHA-0 [1] and
SHA-1 [16] had utilized local collisions which are valid for the linearized versions of the corresponding
hash functions. This indicates that the low success probability of the linear local collisions for SHA-2
could have been a design criterion. This is achieved in SHA-2 by using modular addition (modulo
232 in SHA-256 and modulo 264 in SHA-512) in several places in the round function. In fact, the only
places where XOR addition is utilized in the SHA-2 design are in the design of the transformations
Σ0, Σ1 and σ0, σ1.

Choice of the Transformations Σ0 and Σ1: Two transformations Σ0 and Σ1 are used in the
round function of SHA-2. These transformations are given in Section A. We first note that all the
four linear transformations are invertible.

Now consider the equations Σ0(x) = x and Σ1(x) = x. Any solution to these equation will give a
“fixed point” for the transformations Σ0 and Σ1. Since both these transformations use only XORs,
we can equivalently look at the equations (Σ0 ⊕ I32)(x) = 0 and (Σ1 ⊕ I32)(x) = 0 for SHA-256,
where I32 is the identity matrix of order 32. For SHA-512, the I32 needs to be replaced by I64.

For SHA-256, Σ0 ⊕ I32 has rank 31 but Σ1 ⊕ I32 has rank 29. The null space of Σ0 ⊕ I32

has basis {0xffffffff}, whereas the null space of Σ1 ⊕ I32 has basis {0x99999999, 0xaaaaaaaa,
0xcccccccc}. For SHA-512, the ranks of both Σ0 ⊕ I64 and Σ1 ⊕ I64 are 63 and the null space has
basis {0xffffffffffffffff}.

Fixed points of Σ0 and Σ1 for both SHA-256 and SHA-512 are shown in Table 1.

Table 1. Fixed points of Σ0 and Σ1 for SHA-256 and SHA-512.

Hash function Transformation Fixed Points

SHA-256 Σ0 {0x00000000, 0xffffffff}
Σ1 {0x00000000, 0xffffffff, 0x33333333, 0x55555555,

0x66666666, 0x99999999, 0xaaaaaaaa, 0xcccccccc}

SHA-512 Σ0 {0x0000000000000000, 0xffffffffffffffff}
Σ1 {0x0000000000000000, 0xffffffffffffffff}

The analysis above shows that both Σ0 and Σ1 have common fixed points for all functions in
the SHA-2 family. Moreover, the common fixed points have very simple structure as well: all the bits



are either zero or one when they are expressed as 32-bit (or 64-bit) quantities. The numeric value of
these common fixed points is 0 and −1. This is the crucial issue which enables the high probability
nonlinear local collisions utilized in recent attacks.

Choice of the Transformations σ0 and σ1: Two transformations σ0 and σ1 are used in the
message expansion of SHA-2. They are given in Section A. Since both these transformations are
GF(2) linear, they can be equivalently represented as matrices. We note that both σ0 and σ1 for SHA-
256 as well as for SHA-512 are full rank matrices. Despite the fact that both these transformations
have equal rank, their differential behaviour is not uniform. The transformation σ1 is highly biased.
In particular, for SHA-256, the expression σ1(x + 1) − σ1(x) takes only 6181 distinct values for all
232 choices of x. In contrast, the differential range of σ0 has much more uniform spread. This highly
skewed behaviour of σ1 was also noted in [6] recently.

Cross Dependence Equation: In the calculation of new register values at each step of the SHA-2
hash family, registers b, c and d are merely copies of register a values of previous steps. Registers e
and a are also related since most of the terms in their computation are common. Thus, we note that
ei can be computed solely from the register a values as shown below.

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

= di−1 + ai − Σ0(ai−1) − fMAJ(ai−1, bi−1, ci−1)

= ai−4 + ai − Σ0(ai−1) − fMAJ(ai−1, ai−2, ai−3). (1)

This relationship between these two register values, which we call the Cross Dependence Equation
(CDE), implies that if the a register values for five consecutive steps are known then the e register
for the last of these steps can be determined. This fact means that we can control the value of ei

from ai−4, a register value which was computed 4 steps earlier. This fact can also be used to provide
an alternate description of SHA-2 round function as in [6].

The SHA-0/1 design used the updation of only one register in the round function. In contrast,
the SHA-2 designers chose to update two registers in each round. The CDE allows an attacker to
get simple relations between a and e registers by ensuring suitable behaviour of fMAJ . Note that it
is rather easy to control the differential behavior of fMAJ as utilized in [10] and other related works.
The CDE, therefore, reduces the utility of two register updates in each round.

Local collision and message expansion: The idea of perturbation-correction from [1] is used
to obtain a local collision. If a message difference (perturbation) is introduced at Step i, then it is
possible to define subsequent message differences such that the perturbation is cancelled at Step i+8.
This leads to a 9-step local collision. The idea of the NB attack and its extension for obtaining an
r-round collision is the following. Choose a suitable i and place a local collision from Step i to i + 8.
Then ensure that δWj = 0 for j = i + 9, . . . , r − 1 leading to an r-round collision. This approach
succeeds because a perturbation introduced at some step can be “quickly” cancelled within a few
steps. Viewed another way, the introduced perturbation need not affect registers at Step j if j is
somewhat far from i, i.e., the perturbation does not have long range effects.

2.1 Illustrations

We now illustrate the role of some of the features pointed above in recent reduced round attacks
against SHA-2. Later, we suggest modifications to the SHA-2 design to take care of these weaknesses.



Role of fixed points of Σ0, Σ1: We provide a brief overview of some steps of the recent attack
against reduced SHA-256 from [10].

The essential idea is to use two different messages such that both produce the same register
value after some steps of the SHA-256 function. Let the two messages (after message expansion) be
denoted by {W0,W1, . . . W63} and {W ′

0,W
′

1, . . . W
′

63}. The register values corresponding to the two
messages after running through r steps be denoted by {ar, br, . . . hr} and {a′r, b

′

r, . . . h
′

r} respectively.
Let the modular difference of two registers be denoted by δp = p′ − p (mod 232), where p could be
any of the registers used in SHA-2.

If two message words Wi and W ′

i = Wi + 1 (mod 232) are run through a step of SHA-256, then
the resulting register values will satisfy the following relation: δai = δei = 1 and δbi = δci = δdi =
δfi = δgi = δhi = 0. That is, a′i = ai + 1, e′i = ei + 1 and b′i = bi, c′i = ci, d′i = di, f ′

i = fi, g′i = gi,
h′

i = hi.
For the next step, it is possible to choose δWi+1 such that δai+1 = 0 and δei+1 = −1. To highlight

the SHA-2 design issues on which this step hinges, we briefly explain it below.
Using (3) with the values of the registers at the ith step, we get:

δai+1 = Σ0(ai + 1) − Σ0(ai) + fMAJ(ai + 1, bi, ci) − fMAJ(ai, bi, ci) + Σ1(ei + 1) − Σ1(ei)

+fIF (ei + 1, fi, gi) − fIF (ei, fi, gi) + δWi+1;

δei+1 = Σ1(ei + 1) − Σ1(ei) + fIF (ei + 1, fi, gi) − fIF (ei, fi, gi) + δWi+1.

The fMAJ terms can be cancelled by ensuring bi = ci, i.e. ai−1 = ai−2. The δΣ0 and δΣ1 terms can
be simplified by ensuring that ai = ei = −1. These choices of ai and ei imply that a′i = e′i = 0. Both
0 and −1 are fixed points of both Σ0 and Σ1, therefore Σ0(ai + 1)−Σ0(ai) = Σ1(ei + 1)−Σ1(ei) =
1. With these simplifications, we get:

δai+1 = 1 + 0 + 1 + fIF (0, fi, gi) − fIF (−1, fi, gi) + δWi+1

= 2 + gi − fi + δWi+1;

δei+1 = 1 + fIF (0, fi, gi) − fIF (−1, fi, gi) + δWi+1

= 1 + gi − fi + δWi+1.

Now choosing δWi+1 = −2−gi +fi, we get the desired register differences δai+1 = 0 and δei+1 = −1.
Similarly, further steps of the attack in [10] can be obtained. For complete details of the attack,

refer to [10].

Role of Cross Dependence Equation: In [11], an algorithm is developed for attacking 22-step
SHA-2 hash family deterministically. The essential idea is to set e register values by fixing the a
register values of previous 5 steps suitably.

Linear vs Nonlinear attacks: The previous works on attacking reduced round SHA-256 using
linear attacks [8,9], [13] could only succeed in obtaining 18-step collisions. In comparison, the attack
of Nikolić and Biryukov [10], and later works [11] and [6] based on it, succeeded in obtaining 22
and 24-step collisions respectively. The success probability of these non-linear attacks is much higher
than the earlier linear attacks. This shows that the SHA-2 design can resist XOR based differential
attacks much more than modular addition based differential attacks.

Handling message expansion: The attack of Nikolić and Biryukov [10] used a single local collision
and chose this local collisions in such a way that it produces no difference in the message words from
the end of the local collision to Step 20. This way they could obtain 20-step collisions for SHA-256
with the same probability as the success probability of a single local collision. Using similar ideas



they extended their 20-step attack to 21-steps. Later, using the same technique, works [11] and [6]
extended this attack up to 22 and 24-steps respectively. The central issue of these attacks is that the
differing register values during the progress of the local collision do not have any role to play in the
later steps.

3 Exhibiting Non-randomness of the SHA Family

We first discuss the design of SHA-0/1 and SHA-2 hash functions in a generalized form. Using this
general design, we later show non-randomness of the compression functions of the entire SHA family.

3.1 Structure of the SHA Family of Hash Functions

The internal state S consists of n t-bit words, while a message block M consists of m t-bit words.
The compression function H(S,M) maps (m + n) t-bit words to n t-bit words. The form of the
compression function H(S,M) is H(S,M) = G(S,M) + S, where G(S,M) produces as output n
t-bit words. The addition of G(S,M) and S is the component-wise addition of n t-bit words modulo
2t. This addition is usually called “feed-forward”.

The function G(S,M) has a complex nonlinear structure and consists of successive applications
of r functions G0, . . . , Gr−1 to S. Each Gi takes as input a state S consisting of n t-bit words and
another t-bit word W and produces as output n t-bit words. By an extension of notation, for i > j,
we use Gi,j to denote the output obtained by the successive application of Gi . . . , Gj . So, Gi,j will
take as input a state S consisting of n t-bit words and (j − i) t-bit words and produce as output n
t-bit words.

A message block M consists of t-bit words M0, . . . ,Mm−1. A recurrence relation R expands
M to r t-bit words W0, . . . ,Wr−1 in the following manner: Wi = Mi, for 0 ≤ i ≤ m − 1; and
Wi = R(Wi−m, . . . ,Wi−1) for m ≤ i ≤ r − 1.

The value of G(S,M) is defined as follows: S(0) = G0(S,W0); and for 0 < i ≤ r − 1, S(i) =
Gi(S(i−1),Wi). The output of G(S,M) is defined to be S(r−1). By our earlier notation, G(S,M) =
G0,r−1(S,W0, . . . ,Wr−1).

3.2 Non-Randomness of SHA Family

Using the notation defined above, we now exhibit non-randomness of the SHA family compression
functions. We use the following fact about the SHA family.

Fact 1. Each Gi is efficiently invertible, i.e., given n t-bit words S and a t-bit word W , it is easy
to obtain n t-bit words T , such that S = Gi(T,W ). (Further, this T is unique; though we do not
require the uniqueness in our analysis.)

Theorem 1. Given any two message blocks M , M ′; any IV; and any T = (T0, . . . , Tn−1) where the

Tis are t-bit words, it is possible to deterministically construct an IV
′, such that H(IV,M) + T =

H(IV′,M ′) − IV
′. The computation cost is approximately two invocations of H.

Proof. Given IV and M , compute H(IV,M) and let S = T + H(IV,M). From M ′, use the message
recursion R to obtain r t-bit words W ′

0, . . . ,W
′

r−1.
Set (S(r−1))′ = S. Now use Fact 1 in the following manner. Given (S(r−1))′ and W ′

r−1 invert Gr−1

to obtain (S(r−2))′ such that (S(r−1))′ = Gr−1((S
(r−2))′,W ′

r−1). This inverts G for one step. Now use
Fact 1 repeatedly to obtain (S(0))′, . . . , (S(r−2))′, (S(r−1))′ such that (S(i))′ = Gi((S

(i−1))′,W ′

i ) for
1 ≤ i ≤ r − 1. Finally, use Fact 1 once more to obtain IV

′ such that (S(0))′ = G0(IV
′,W ′

0). This is
our required IV

′.



We now have G(IV′,M ′) = S = T + H(IV,M). Recall that H(IV′,M ′) = G(IV′,M ′) + IV
′ from

which the first part of the result follows.

One invocation of H is required to compute H(IV,M). The cost of carrying out the other part of
the computation is to expand the message once and to invert each of the Gis. For the SHA family,
inverting a Gi is as efficient as computing it in the forward direction. Hence, the computation cost
is one invocation of G which is approximately equal to one invocation of H. ⊓⊔

By choosing T appropriately, we obtain different variations.

1. If T = (032, . . . , 032), then H(IV,M) = H(IV′,M ′) − IV
′.

2. If T = −H(IV,M), then H(IV′,M ′) = IV
′. In other words, this means that given any message

M ′ it is possible to efficiently obtain with probability one, an IV
′ such that H(IV′,M ′) = IV

′.

3. If T = −IV, then H(IV,M) − H(IV′,M ′) = IV − IV
′.

Note. In contrast to Point 2 above, if H were a random function, then given M , the probability of
obtaining an IV such that H(IV,M) = IV would be 1/2nt. This shows the nonrandom behaviour of
the SHA-family compression functions. Similarly, for the other two points also, if we consider H() to
be a random function, then the probability that these hold is 1/2nt.

Yu-Wang non-randomness: At the rump session of Eurocrypt 2008, Yu and Wang showed the
non-randomness of the compression function up to 39-step SHA-256 using a 33-step differential path.
From our result it can be seen that if the intention is only to show non-random behaviour of the
compression function, then this can be easily done. Of course, a differential path maybe more useful
since it has potential applications to finding collisions.

In Table 2, we show an example message pair and an IV pair for SHA-256 such that H(IVstd,M1)
−IVstd = H(IV′,M2) −IV

′. The two messages and the first IV are specified a-priori and IV
′ is obtained

deterministically. Similar examples can be constructed for SHA-512 and SHA-0/1 as well.

Table 2. Example showing the non-randomness of the round function of SHA-256. The two messages
M1 and M2 with the initial register values IV1 and IV2 satisfy the relation H(M1, IV1) − IV1 =
H(M2, IV2) − IV2. In this example, IV1 is the standard IV for SHA-256. Given any M1, M2 and IV1,
the IV2 can be computed deterministically.

M1 The round function of the SHA-2 family is random.

IV1 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

H1 99767f0a 3659a88f 96c8b0bd 566bb6d7 df45fb3f 8daf752b 594ad309 858ba623

H1 − IV1 2f6c98a3 7af1fa0a 5a59bd4b b11bc19d 8e37a8c0 f2aa0c9f 39c6f95e 29aad90a

M2 The round function of the SHA-2 family is not random.

IV2 d44068db e5bac254 bfa4cc74 48edbcce b5eb7040 9b83ebae e7c6d942 452ea6c9

H2 03ad017e 60acbc5e 19fe89bf fa097e6b 44231900 8e2df84d 218dd2a0 6ed97fd3

H2 − IV2 2f6c98a3 7af1fa0a 5a59bd4b b11bc19d 8e37a8c0 f2aa0c9f 39c6f95e 29aad90a

3.3 Comments on the exhibited Non-randomness

1. The property that we have shown does not affect any of the conventional security notions of
a hash function. Namely, it does not affect collision resistance, pre-image resistance or pseudo
versions of both these properties.



2. If the compression function was defined to be G(IV,M) instead of H(IV,M) = G(IV,M) + IV,
then our technique would have exhibited pseudo-collisions for the compression function. In other
words, resistance against pseudo-collisions is obtained due to the feed-forward, i.e., the addition
of IV, and not by the nonlinear complexities of the round function of G. We do not know whether
this is an intended property or a design oversight.

3. A hash function may be used in many situations and in many ways which a designer may not
even anticipate. Our result provides a caution against such indiscriminate use of the SHA family.

4. One common use of a hash function is to produce a “random looking string” or to “kill off
algebraic structure or patterns” by hashing a string having more structure. Our result show that
the SHA-family compression functions do not behave as “randomly” as one might expect.

Does our technique apply to any other hash function? If Fact 1 holds for the hash function
in question, then the technique indeed applies. In particular, it is applicable for SHA-0, SHA-1 and
the entire SHA-2 family. However, there are designs for which the technique will not work. Examples
are RIPEMD-160 and Rumba20. In the former, there are two parallel strands of computations which
are then combined at the end. For our technique to work, it would have to work in a synchronized
manner on both the strands. This does not seem to be simple. For Rumba20, the output is the XOR
of four invocations of Salsa20. Again, it is not clear how to apply the present technique to this design.

The problem with the SHA design. Given M and the final output S of G, it is easy to invert
G to obtain an IV, such that G(IV,M) = S. In other words, for every fixed M , G( . ,M) is an easily
invertible function. We do not see any intuitive reason why a compression function should satisfy
such a property or even why such a feature should be considered desirable. As mentioned above,
such easy invertibility is not a feature of RIPEMD-160 or Rumba20. It may not be present in other
hash functions also; we have not looked at all the known designs.

4 Improving the SHA-2 design

4.1 Improving Affine Transformations in the Update Function

We suggest that the linear functions Σ0, Σ1 be replaced by affine functions Γ0 and Γ1 respectively
such that the following conditions are satisfied.

1. For all x ∈ {0, 1}t, Γi(x) 6= x or x.

2. For no x ∈ {0, 1}t, Γ0(x) 6= Γ1(x) or Γ1(x).

The first property is similar to one of the design criteria for the AES S-box [2].

Achieving the above properties requires a bit of linear algebra. Suppose, we define Γi(x) =
Σi(x)+bi, where b0,b1 are to be chosen such that the above two conditions are satisfied. Additionally,
we would like both b0 and b1 as well as b0 ⊕ b1 are all either balanced or nearly balanced.

Consider the first point for SHA-256: Γi(x) = x for some x implies (Σi⊕I32)x = bi and Γi(x) = x
for some x implies Γi(x) = (Σi ⊕ I32)x = bi. In other words, the first point holds if both bi and bi

are not in the column space of (Σi ⊕ I32). In a similar manner, it can be shown that the second point
holds if both b0 ⊕ b1 and b0 ⊕ b1 are not in the column space of (Σ0 ⊕ Σ1).

We computed many choices of b0 and b1 satisfying these constraints. Examples for SHA-256 are

b0 = 0xdcb2344c and b1 = 0x9b097671.

For SHA-512, examples are

b0 = 0x1762e66a04d6be32 and b1 = 0x12135c7549e2fcdd.



4.2 Mix of + and ⊕

For the compression function of SHA-2, it is possible to obtain a 9-round local collision using modular
differentials with probability one while using XOR differentials the probability of 9-round local colli-
sion is at most 2−39. This shows that the round function design is heavily biased towards protection
against XOR differentials. A better mix of + and ⊕ can be obtained by using + to add Wi to obtain
ai and using ⊕ to XOR Wi to obtain ei. This will mean that if we work with XOR differentials,
then it will be difficult to analyze the XOR differentials of the a-register; on the other hand, if we
work with modular differentials, then it will be difficult to analyze the modular differentials of the
e-register.

The second property of the compression function is that it is easy to fix ai−4, . . . , ai (using words
Wi−4, . . . ,Wi) to simple values and ensure that ei is also fixed to a simple value. This is because
of the CDE (1). An example of the simplification possible is having ai−1 = ai−2 = 0. In this case,
ei = ai + ai−4, which is a rather simple relation.

To remove the above two issues, we suggest the update functions to be the following.

ai = hi−1 ⊕ (Γ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) + Γ1(ei−1) + fIF (ei−1, fi−1, gi−1) + Ki + Wi)
bi = ai−1

ci = bi−1

di = ci−1

ei = (di−1 + Γ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki) ⊕ Wi

fi = ei−1

gi = fi−1

hi = gi−1.

Note that the term Ti−1 = Γ1(ei−1)+fIF (ei−1, fi−1, gi−1)+Ki is present in the computation of both
ai and ei. This common sub-expression need to be computed only once for each step. In the SHA-2
compression function, the term Σ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi is common to both
ai and ei. Our new definition and the SHA-2 definition have similar computational complexity. Using
this, we have

Ti−1 = (ai ⊕ hi−1) − (Γ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) − Wi)

= (ei ⊕ Wi) − (di−1 + hi−1).

Consequently,

ei = Wi ⊕ ((ai ⊕ hi−1) + (di−1 + hi−1) − (Γ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) − Wi)) (2)

The dependences on both Wi and hi−1 do not directly cancel out. As a result, it is not possible to
express ei solely in terms of ai−4 to ai. Going back to the previous example, if ai−1 = ai−2 = 0 (note
bi−1 = ai−2) then ei = Wi ⊕ ((ai ⊕ hi−1) + (di−1 + hi−1 − Wi − b)) which has two alternations of +
and ⊕ and is a more complicated relation compared to the simple ei = ai + ai−4 that is obtained for
the SHA-2 compression function.

5 Multiple Feed Forward: A New Design Construct

We have noted that resistance against pseudo-collisions of the compression function is provided by
the feed-forward. This has led us to explore the effect of feed-forward further. We introduce the idea
of multiple feed-forward, i.e., feed-forward at several places. For one thing, this prevents the trivial
exhibition of the non-randomness behaviour mentioned earlier. Second, it provides an additional
layer of resistance against the perturbation-correction technique. These issues are discussed later.



The computation starts with a C (the initial value of which is IV) and suppose that the output
of step i is S(i). The SHA-2 compression function employs a single feed-forward, i.e., the output of
H is C + S(N−1) where N = 64 for SHA-256 and N = 80 for SHA-512.

Let t1 = 7, t2 = 14 and s = 16. We introduce new feed-forwards at steps t1+s×k1 and t2+s×k2,
where k1, k2 are positive integers. Let S(−1) = C. We use two sets of temporary registers T1 and T2,
i.e., each Ti consists of n = 8 t-bit words, where t = 32 for SHA-256 and t = 64 for SHA-512.

The algorithm for the compression function is shown in Figure 2. In the figure assume for the
moment that in the input T1 = T2 = 0nt and the output does not contain T1 and T2. The general
description allows the introduction of feed-forward across message blocks as explained in the next
section.

The following points are to be noted.

1. The feed-forward with the C after N steps remains unchanged.

2. There are two feed-forward threads starting at t1 and t2. Both threads alternate the type of
feed-forward between + and ⊕. The first line starts with +, while the second line starts with ⊕.

3. The choice of s ensures that the sets {t1 + s× k1 : k1 ≥ 1} and {t2 + s× k2 : k2 ≥ 1} are disjoint.
So, at no step will two feed-forward threads starting at t1 and t2 meet.

4. New feed-forward is not introduced at Step (N −1). Again, the choices of t1, t2 and s ensure this.

5. The amortized cost of the new feed-forwards is less than one t-bit operation (addition or XOR)
per step, where t is 32 for SHA-256 and 64 for SHA-512.

The choice of t1 and t2 ensures that if we take any interval of length 9 in the range 0 to 15, then
at least one of t1 or t2 will lie properly within the interval. In an efficient implementation with loop
unrolling, the conditional statements will not be required. The temporary registers T1 and T2 will
simply be added or XORed to the internal registers at the appropriate step.

For SHA-256, the line starting at t1 = 7 introduces feed-forwards at Steps 23, 39 and 55 and the
line starting at t2 = 14 introduces feed-forwards at Steps 30, 46 and 62. Additive feed-forward is
used at Steps 23 and 55 due to the first line and at Step 46 due to the second line. XOR feed-forward
is used at Step 39 due to the first line and at Steps 30 and 62 due to the second line. There are a
total of 6 feed-forward steps requiring a total of 6 × 8 = 48 32-bit add/XOR operations. Amortized
over the 64 steps, the cost is 3/4th 32-bit operation per step. The feed-forwards for SHA-256 are
illustrated in Figure 1.

Fig. 1. Illustration of multiple feed-forward for SHA-256. There are two threads of feed-forwards,
based on XOR and modular addition. The original additive feed-forward from Step 0 to Step 63 is
also retained.
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For SHA-512, the feed-forwards of the first line occur at Steps 23, 39, 55 and 71 with additive
feed-forwards at Steps 23 and 55 and XOR feed-forwards at Steps 39 and 71. The second line of
feed-forwards is introduced at Steps 30, 46, 62 and 78, with XOR at Steps 30 and 62 and additive



at Steps 46 and 78. Amortized over the 80 steps, the cost is 4/5th 64-bit operation (add/XOR) per
step.

The idea of multiple feed-forward is generic and can be used with other hash designs. Depending
on the number of registers, the number of free words and the total number of steps N , the value of
t1, t2 and s has to be chosen appropriately so as to ensure the properties described above.

Non-random behaviour: The first thing to note is that this makes the function G difficult to invert
and removes the trivially non-random behaviour discussed earlier. Similar effect can be achieved
using two parallel threads with separate recursions for message expansion. (This has been done in
RIPEMD-160.) However, when executed sequentially, the time required would be doubled (unless
the number of rounds is reduced). In comparison, the increase in computation cost is only marginal
in the case of multiple feed-forward – less than one t-bit operation per step. Also, the change to the
compression function design is minimal.

Resistance to perturbation-correction attacks: The basic idea of such an attack has been
discussed earlier. By our choice of t1 and t2, at least one of these will be properly contained in any
9-step local collision. Consequently, the registers at the corresponding step will have a difference.
Due to feed-forwards, this difference will be pushed out into the steps where the message words are
defined through message recursion. Since these words cannot be directly controlled, it will be difficult
to cancel out the introduced perturbation at these steps. The overall effect will be that the local
collision based perturbation-correction attack will become substantially more difficult to apply.

6 Feed-Forward Across Message Blocks

The idea of feed-forward can be extended to different message blocks. Let us go back to the construc-
tion in Section 5. After the first message block has been processed, three quantities are produced,
the chaining variable C and the quantities T1 and T2. But, T1 and T2 are not used further. These
two quantities are “lightweight” digests of the first message block. We suggest that these be used in
the processing of the second message block.

The processing of the second block starts with C as the IV and by the construction of Section 5,
the output of Step 7 is taken to be new T1 and the output of Step 14 is taken to be the new T2. We
modify this as follows. The new T1 is the XOR of the old T1 and the output of Step 7; and the new
T2 is the sum of the old T2 and the output of Step 14. The rest of the two feed-forward threads are
as before. Figure 2 shows the description.

6.1 Merkle-Damg̊ard (MD) Iteration

The modification can still be considered to be within the MD framework. Let M (0), . . . ,M (ℓ) be the

message blocks (including padding with length). Let C(−1) = IV and T
(−1)
1 = T

(−1)
2 = 0nt. There

are ℓ invocations of the compression function, where the (i + 1)st invocation of the compression

function takes (C(i), T
(i)
1 , T

(i)
2 ,M (i+1)) as input and produces a (C(i+1), T

(i+1)
1 , T

(i+1)
2 ) as output. Here

C(i), C(i+1) are the chaining variables; and T
(i)
1 , T

(i)
2 , T

(i+1)
1 , T

(i+1)
2 are the feed-forward quantities.

Viewed in this way, it is easy to prove as usual by backward induction that a collision for the
hash function leads to a collision for the compression function. Finding a pseudo collision for the
compression function defined in this manner may be easier to find than the compression function
where there is no feed-forward across message blocks. This is because one may choose T1 and T2 to

suitable values. However, the hashing starts with C(−1) = IV and T
(−1)
1 = T

(−1)
2 = 0nt, which fixes

the initial choice of T1 and T2. Hence, finding actual collisions for the new hash function is no easier
than finding collisions without feed-forward across message blocks.



Fig. 2. Modified compression function with two feed-forward threads. Here t1 = 7, t2 = 14 and
s = 16; Gi is the step function.

Input: C, T1, T2, W0, . . . , WN−1.
1. for i = 0, . . . , 15 do

2. S(i) ← Gi(S
(i−1), Wi);

3. if (i = 7) then T1 ← T1 ⊕ S(i); if (i = 14) then T2 ← T2 + S(i);
4. end for;
5. for i = 16, . . . , N − 1 do

6. S(i) = Gi(S
(i−1), Wi);

7. if ((i− t1) mod s = 0) then S(i) ← S(i) + T1; T1 = S(i);

8. if ((i− t1) mod 2s = 0) then S(i) ← S(i) ⊕ T1; T1 = S(i);

9. if ((i− t2) mod s = 0) then S(i) ← S(i) ⊕ T2; T2 = S(i);

10. if ((i− t2) mod 2s = 0) then S(i) ← S(i) + T2; T2 = S(i);
11. end for;

12. output (S(N−1) + C, T1, T2).

6.2 Multi-Collision Attacks

Let us now consider the effect of multi-collision attacks [7]. This is a generic technique which ap-
plies to the MD type construction. Using r invocations of generic collision finding algorithm on the
compression function, it is possible to construct 2r messages which map to the same value. Suppose
M1,M

′

1 are two distinct message blocks which (starting from IV) map to the same value C1; and
M2,M

′

2 are two distinct message blocks which starting from C1 map to the same value C2. Then
the four message (M1,M2), (M1,M

′

2), (M ′

1,M2) and (M ′

1,M
′

2) map to the same value C2. Since the
output of the compression function consists of nt bits, the generic algorithm will require 2 × 2nt/2

invocations of the compression function to find a collision.

Suppose we apply this to the new construction. The output of the compression function is the
chaining variable C as well as T1 and T2. Then we need distinct M1,M

′

1 which starting from IV

and T1 = T2 = 0nt map to same value C(1), T
(1)
1 , T

(1)
2 ; and distinct M2,M

′

2 which starting from

C(1), T
(1)
1 , T

(1)
2 map to the same value C(2), T

(2)
1 , T

(2)
2 . Then as before, we will have four messages

which map to the same value C(2), T
(2)
1 , T

(2)
2 . The advantage here is that the generic collision finding

algorithm now needs to be applied to a compression function whose output is 3nt bits. As a result,
the generic algorithm will require 2 × 23nt/2 invocations of the new compression function to find a
collision. This is better than 2 × 2nt/2 invocations required in the usual case. The number 23nt/2 of
invocations can be increased by using more suitable feed-forward threads.

On the other hand, suppose that M1,M
′

1 are such that starting from IV and T1 = T2 = 0nt, they

produce the same value for C(1) but not necessarily the same value for T
(1)
1 , T

(1)
2 , i.e., (T

(1)
1 , T

(1)
2 ) 6=

((T
(1)
1 )′, (T

(1)
2 )′). Further, suppose that M2,M

′

2 are such that M2 starting from C(1) and T
(1)
1 , T

(1)
2

produces the same C(2) that M ′

2 starting from C(1) and (T
(1)
1 )′, (T

(1)
2 )′ produces. This results in single

two-block collision between (M1,M
′

1) and (M2,M
′

2). But, now (M1,M2) does not produce the same
value as (M1,M

′

2). More generally no two of the four possible messages produce the same value. This

is due to the difference in the intermediate feed-forward values, i.e., (T
(1)
1 , T

(1)
2 ) 6= ((T

(1)
1 )′, (T

(1)
2 )′).

To summarize, extending feed-forward across message blocks quantifiably increases the resis-
tance to generic multi-collision attacks. Using two feed-forward threads, the cost of finding 2r multi-
collisions is r×23nt/2 invocations of the compression function. Without feed-forward, the requirement
is r × 2nt/2 invocations. More generally, using κ suitable feed-forward threads will make the cost of
finding 2r multi-collisions equal to r × 2(κ+1)nt/2 invocations of the compression function.



7 Conclusions

In this work, we studied several properties of the SHA-2 design which were used in recent collision
attacks against reduced SHA-2. We have suggested modifications to the SHA-2 design so as to make
these attacks inapplicable. The modified SHA-2 design is almost as efficient as the original one. We
showed a property of the round functions of the SHA family which causes non-randomness in the
entire SHA family.

We provided a generic construction of multiple feed-forward. This can be used to strengthen
a design against perturbation-correction collision finding attacks. Further, the idea of feed-forward
over several message blocks is suggested and shown to provide quantifiable better resistance to multi-
collision attacks.

Hopefully, this work will lead to better understanding of the SHA designs and lead to improved
construction of next generation hash functions.
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A The SHA-2 Hash Family

The newest members of SHA family of hash functions were standardized by US NIST in 2002 [15].
There are 2 differently designed functions in this standard: the SHA-256 and SHA-512. In addition,
the standard also specifies their truncated versions as SHA-224 and SHA-384. The number in the
name of the hash function refers to the length of message digest produced by that function. Next we
describe SHA-256 and SHA-512 in detail.

Eight registers are used in the evaluation of SHA-2. The initial values in the registers are specified
by an 8 × n bit IV, n=32 for SHA-256 and 64 for SHA-512. In Step i, the 8 registers are updated
from (ai−1, bi−1, ci−1, di−1, ei−1, fi−1, gi−1, hi−1) to (ai, bi, ci, di, ei, fi, gi, hi) according to the
following equation:

ai = Σ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) + Σ1(ei−1)
+fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

bi = ai−1

ci = bi−1

di = ci−1

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1)
+hi−1 + Ki + Wi

fi = ei−1

gi = fi−1

hi = gi−1
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(3)

The fIF and the fMAJ are three variable boolean functions defined as:

fIF (x, y, z) = (x ∧ y) ⊕ (¬x ∧ z),
fMAJ(x, y, z) = (x ∧ y) ⊕ (y ∧ z) ⊕ (z ∧ x).

For SHA-256, the functions Σ0 and Σ1 are defined as:

Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x),
Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x).

For SHA-512, the corresponding functions are:

Σ0(x) = ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x),
Σ1(x) = ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x).

Round i uses a t-bit word Wi which is derived from the message and a constant word Ki. There
are 64 steps in SHA-256 and 80 in SHA-512. The hash function operates on a 512-bit (resp. 1024-bit)

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf


message specified as 16 words of 32 (resp. 64) bits for SHA-256 (resp. SHA-512). Given the message
words m0, m1, . . . m15, the Wi ’s are computed using the Equation:

Wi =

{

mi for 0 ≤ i ≤ 15
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for 16 ≤ i ≤ 63 (or 80)

(4)

For SHA-256, the functions σ0 and σ1 are defined as:

σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x),
σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x).

And for SHA-512, they are defined as:

σ0(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x),
σ1(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x).

The IV = (a−1, b−1, c−1, d−1, e−1, f−1, g−1, h−1) is defined differently for SHA-224, SHA-256, SHA-384
and SHA-512. For details, see [15].

The output hash value of a one block (512-bit for SHA-256 and 1024-bit for SHA-512) message is
obtained by chaining the IV with the register values at the end of the final round. A similar strategy
is used for multi-block messages, where the IV for next block is taken as the hash output of the
previous block.
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