
A New Hash Family Obtained by Modifying the SHA-2 Family

Somitra Kumar Sanadhya and Palash Sarkar

Applied Statistics Unit,
Indian Statistical Institute,
203, B.T. Road, Kolkata,

India 700108.
somitra r@isical.ac.in, palash@isical.ac.in

Abstract. In this work, we study several properties of the SHA-2 design which have been utilized
in recent collision attacks against reduced round SHA-2. Small modifications to the SHA-2 design are
suggested to thwart these attacks. The modified round function provides the same resistance to lin-
earization attacks as the original SHA-2 round function, but, provides better resistance to non-linear
attacks. Our next contribution is to introduce the general idea of “multiple feed-forward” for the con-
struction of cryptographic hash functions. This can provide increased resistance to the Chabaud-Joux
type “perturbation-correction” collision attacks. The idea of feed-forward is taken further by introducing
the idea of feed-forward across message blocks leading to resistance against generic multi-collision attacks.
The net effect of the suggested changes to the SHA-2 design has insignificant impact on the efficiency of
computing the digest.

1 Introduction

Following the attacks on SHA-0 [1] and SHA-1 [20], the attention of the cryptanalysis community
has been directed to the SHA-2 family. Recent attacks against SHA-2 starting with [12], and followed
by [18, 16, 7, 17] have utilized certain previously unknown properties in the round function of SHA-2.
These have led to upto 24-step attacks against both SHA-256 and SHA-512. A unified combinatorial
description of the recent attacks on reduced-round SHA-2 can be found in our technical report [14].
While none of these attacks threaten any of the security properties of the full SHA-2 hash functions,
it is also true that some features of the compression function have been exploited in the attack. The
following four properties have been used in the recent step-reduced attacks.

1. The works in [5], [6], [10, 11] and [13] show that 9-round local collisions obtained using XOR
differentials hold with probability 2−39 or less for SHA-256. In contrast, the work of [12] shows
that 9-round local collisions using additive differentials can be obtained with probability 1/3 (and
improved to probability 1 in [18]). This suggests that the round function resists XOR differentials
better than additive differentials.

2. SHA-2 design uses 8 registers a to h, where a and e registers are nonlinearly updated while the
rest are simply copied. It turns out that there is a very simple relation by which the e-register
value at Step i can be controlled using only the a-register values at Step i to i − 4.

3. The round update function for the a-register uses an invertible linear transformation Σ0 while
that of the e-register uses an invertible linear transformation Σ1. Both Σ0 and Σ1 have 0 and −1
as fixed points.

4. The technique of perturbation-correction [1] is used to build the attacks. A 9-step local collision
is suitably placed between steps i and i + 8 and it is ensured that all message word differences
after Step i + 8 are zero.

We suggest methods to get around the above issues. The linear maps Σ0, Σ1 are modified to
affine maps Γ0, Γ1 to ensure that Γ0, Γ1 and Γ0 ⊕ Γ1 do not have any fixed points (along with a few

other properties). This takes care of the third point above. Simple but carefully considered changes
are suggested to the update function of the a and e-registers. These changes help in avoiding local
collisions of high probability based on additive differentials which have been obtained in [12] and [18].
These changes also lead to cancelling out the simple relation between the a and e-registers. As a
result, both the first and second points above are eliminated.

The resistance of the new round function to linearization attacks is the same as that provided
by the SHA-2 round function. In particular, the best linear local collision for the 256-bit case holds
with probability 2−39 as in the case of SHA-256. We argue later that the suggested changes provide
better resistance to recent non-linear attacks.

To tackle the fourth point, we introduce a new hash function design called multiple feed-forward.
This provides additional resistance to the perturbation-correction technique for finding collisions.
The SHA-family design uses a single feed-forward where the chaining value is added to the output
of composition of all the round functions. We suggest introducing several other feed-forward steps
where the feed-forward is alternately provided using addition and XOR. A consequence is that if
any 9-round local collision is placed within the first 16 steps, then there will be a step i within these
16 steps such that there will be a perturbation in the registers at Step i and this perturbation will
necessarily extend to steps beyond the first 16 steps. Since message words beyond the first 16 steps
are obtained using the message recursion, it will be difficult to cancel out the effect of such cascaded
perturbation. This improves the resistance to perturbation-correction attacks. Such resistance is
achieved at a marginal cost. The amortized cost of the new feed-forward steps is less than one t-bit
operation (add/XOR) per step, where t = 32 for SHA-256 and t = 64 for SHA-512.

The idea of feed-forward is taken one step further. We suggest the idea of providing feed-forward
across message blocks. The intuitive justification is that this provides an additional mechanism for
allowing the processing of the current block to depend on earlier blocks. Concrete suggestions are
given for the SHA-2 family. These improve the resistance of SHA-2 hash functions against generic
multi-collision attacks introduced in [8]. At a general level, our idea of feed-forward across message
blocks can be seen as a practical version of the wide-pipe design strategy suggested in [9].

We put together all the ideas and make a new proposal called SShash. A description is given in
Section 7 along with comparison of timing results to SHA-2. The implementation has been made by
modifying the implementation of SHA-2 available from [3]. Test vectors and the code for the 256-bit
variant of SShash are given in Section A.

Relation to the SHA-3 Competition. The NIST of USA is currently running a competition
to select a new hash standard called SHA-3 [4]. Around 60 candidates have been submitted to the
SHA-3 competition. Our proposal SShash has not been submitted to the SHA-3 competition.

According to NIST documentation [4], “NIST does not currently plan to withdraw SHA-2 or
remove it from the revised Secure Hash Standard”. So, scientific interest in SHA-2 is still very much
alive. Our proposal should be seen in this light. We have suggested some modifications to SHA-2
so as to resist the recent reduced-round attacks and also to achieve other desirable features. As is
the case in all designs of symmetric primitives, confidence in a primitive grows with the failure of
cryptanalytic efforts. The same is also true for our proposal. If SShash gets broken in the future,
then the procedure may throw some light on possible attacks on SHA-2. On the other hand, if the
design survives, then some lessons would have been learnt.

The new proposal is not a competitor for SHA-3 and hence will not be a standard. But, NIST
standards are of great interest worldwide. Consequently, there are users who would be interested in
knowing how to avoid the recent reduced-round attacks on SHA-2. If SShash can indeed achieve this,
then such users may consider using SShash for possible proprietary purposes.

2 The SHA-2 Hash Family

The newest members of SHA family of hash functions were standardized by US NIST in 2002 [19].
There are two functions in this standard: SHA-256 and SHA-512. In addition, the standard also
specifies their truncated versions as SHA-224 and SHA-384. The number in the name of the hash
function refers to the length of message digest produced by that function. Next we describe SHA-256
and SHA-512 in detail.

Eight registers are used in the evaluation of SHA-2. The initial values in the registers are specified
by an 8 × n bit IV, n=32 for SHA-256 and 64 for SHA-512. In Step i, the 8 registers are updated
from (ai−1, bi−1, ci−1, di−1, ei−1, fi−1, gi−1, hi−1) to (ai, bi, ci, di, ei, fi, gi, hi) according to the
following equation:

ai = Σ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

bi = ai−1

ci = bi−1

di = ci−1

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

fi = ei−1

gi = fi−1

hi = gi−1

(1)

The fIF and the fMAJ are three-variable boolean functions defined as:

fIF (x, y, z) = (x ∧ y) ⊕ (¬x ∧ z),
fMAJ(x, y, z) = (x ∧ y) ⊕ (y ∧ z) ⊕ (z ∧ x).

For SHA-256, the functions Σ0 and Σ1 are defined as:

Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x),
Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x).

For SHA-512, the corresponding functions are:

Σ0(x) = ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x),
Σ1(x) = ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x).

Round i uses a t-bit word Wi which is derived from the message and a constant word Ki. There
are 64 steps in SHA-256 and 80 in SHA-512. The hash function operates on a 512-bit (resp. 1024-bit)
message specified as 16 words of 32 (resp. 64) bits for SHA-256 (resp. SHA-512). Given the message
words m0, m1, . . . m15, the Wi ’s are computed using the Equation:

Wi =

{

mi for 0 ≤ i ≤ 15
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for 16 ≤ i ≤ 63 (or 80)

(2)

For SHA-256, the functions σ0 and σ1 are defined as:

σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x),
σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x).

And for SHA-512, they are defined as:

σ0(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x),
σ1(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x).

The IV = (a−1, b−1, c−1, d−1, e−1, f−1, g−1, h−1) is defined differently for SHA-224, SHA-256, SHA-384
and SHA-512. For details, see [19].

The output hash value of a one block (512-bit for SHA-256 and 1024-bit for SHA-512) message is
obtained by chaining the IV with the register values at the end of the final round. A similar strategy
is used for multi-block messages, where the IV for next block is taken as the hash output of the
previous block.

3 Some Insights into Recent Attacks on SHA-2

Local collisions for linearized version of SHA-2 were studied by Gilbert and Handschuh [5] and by
Sanadhya and Sarkar [13]. All these local collisions hold for the actual SHA-256 with probabilities
of about 2−39 or less. Using these local collisions, Mendel et al [10, 11] and later Sanadhya and
Sarkar [15] obtained collisions for 18 step SHA-256. We call attacks using local collisions for the
linearized version of SHA-2 as linear attacks.

Nikolić and Biryukov [12] presented a local collision which is valid for the actual SHA-256 func-
tion. The important point to note is that this local collision holds with probability of about 1/3.
Using similar methods, Sanadhya and Sarkar [18] obtained another local collision which holds with
probability 1. Extension of these attacks to obtain upto 24-round collisions for both SHA-256 and
SHA-512 have been given in [7, 17]. We call attacks using local collisions valid for the actual SHA-2
as nonlinear attacks.

We now discuss certain features of the SHA-2 design which facilitated collision attacks against
reduced round versions discussed earlier.

Linear vs. Nonlinear attacks. The only places where XOR is used in the SHA-2 design are in the
design of the transformations Σ0, Σ1 and σ0, σ1. Modular addition is much more extensively used in
the round function. To a certain extent, this explains the difference in probabilities between linear
and non-linear attacks.

Choice of the Transformations Σ0 and Σ1. Two transformations Σ0 and Σ1 are used in the
round function of SHA-2. These transformations are given in Section 2.

Consider the equations Σ0(x) = x and Σ1(x) = x. Any solution to these equations will give a
“fixed point” for the transformations Σ0 and Σ1. Since both these transformations use only XORs,
we can equivalently look at the equations (Σ0 ⊕ I32)(x) = 0 and (Σ1 ⊕ I32)(x) = 0 for SHA-256,
where I32 is the identity matrix of order 32. For SHA-512, the I32 needs to be replaced by I64.

For SHA-256, Σ0 ⊕ I32 has rank 31 but Σ1 ⊕ I32 has rank 29. The null space of Σ0 ⊕ I32

has basis {0xffffffff}, whereas the null space of Σ1 ⊕ I32 has basis {0x99999999, 0xaaaaaaaa,
0xcccccccc}. For SHA-512, the ranks of both Σ0 ⊕ I64 and Σ1 ⊕ I64 are 63 and the null space has
basis {0xffffffffffffffff}.

Fixed points of Σ0 and Σ1 for both SHA-256 and SHA-512 are shown in Table 1.
The analysis above shows that both Σ0 and Σ1 have common fixed points for both the functions

in the SHA-2 family. Moreover, the common fixed points have very simple structure as well: all the
bits are either zero or one when they are expressed as 32-bit (or 64-bit) quantities. The numeric
value of these common fixed points are 0 and −1. This is one of the crucial issues which provides

the nonlinear local collisions of high probability utilized in recent attacks.

Cross Dependence Equation. In the calculation of new register values, at each step of the SHA-2
hash family, registers b, c and d are merely copies of register a values of previous steps. Registers e

Table 1. Fixed points of Σ0 and Σ1 for SHA-256 and SHA-512.

Hash function Transformation Fixed Points

SHA-256 Σ0 {0x00000000, 0xffffffff}
Σ1 {0x00000000, 0xffffffff, 0x33333333, 0x55555555,

0x66666666, 0x99999999, 0xaaaaaaaa, 0xcccccccc}

SHA-512 Σ0 {0x0000000000000000, 0xffffffffffffffff}
Σ1 {0x0000000000000000, 0xffffffffffffffff}

and a are also related since most of the terms in their computation are common. Thus, we note that
ei can be computed solely from the register a values as shown below.

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

= di−1 + ai − Σ0(ai−1) − fMAJ(ai−1, bi−1, ci−1)

= ai−4 + ai − Σ0(ai−1) − fMAJ(ai−1, ai−2, ai−3). (3)

This relationship between these two register values, which we call the Cross Dependence Equation
(CDE), implies that if the a register values for five consecutive steps are known then the e register
for the last of these steps can be determined. This fact means that we can control the value of ei

from ai−4, a register value which was computed 4 steps earlier. The CDE was given this name in [16]
and it was earlier mentioned in [18]. A consequence of CDE is that it can be used to provide an
alternate description of SHA-2 round function. This was independently observed in [7].

The CDE allows an attacker to get simple relations between a and e registers by ensuring suitable
behaviour of fMAJ . Note that it is rather easy to control the differential behavior of fMAJ as utilized
in [12] and other related works. The CDE, therefore, reduces the utility of two register updates in
each round.

Local Collision and Message Expansion. The idea of perturbation-correction from [1] is used
to obtain a local collision. If a message difference (perturbation) is introduced at Step i, then it is
possible to define subsequent message differences such that the perturbation is cancelled at Step i+8.
This leads to a 9-step local collision. The idea of the NB attack and its extensions for obtaining an
r-round collision is the following. Choose a suitable i and place a local collision from Step i to i + 8.
Then ensure that δWj = 0 for j = i + 9, . . . , r − 1 leading to an r-round collision. This approach
succeeds because a perturbation introduced at some step can be “quickly” cancelled within a few
steps. Viewed another way, the introduced perturbation need not affect registers at Step j if j is
somewhat far from i, i.e., the perturbation does not have long-range effects.

4 Suggestions for Improvements to the SHA-2 Design

4.1 Using Affine Transformations in the Update Function

We suggest that the linear functions Σ0, Σ1 be replaced by affine functions Γ0 and Γ1 respectively
such that the following conditions are satisfied.

1. For all x ∈ {0, 1}t, Γi(x) 6= x or x, i = 0, 1.

2. For all x ∈ {0, 1}t, Γ0(x) 6= Γ1(x) or Γ1(x).

The first property is similar to one of the design criteria for the AES S-box [2]. This property ensures
that Γi have no fixed points or complementary fixed point. On the other hand, the second property
ensures that Γ0 and Γ1 do not agree upon any input; and also the output of one on any input cannot
be obtained by complementing the output of the other on the same input. The formulation of these
properties are motivated by the desire to avoid the situation where 0 and −1 are fixed points of both
Σ0 and Σ1.

Achieving the above properties requires a bit of linear algebra. Suppose, we define Γi(x) =
Σi(x)⊕bi, where b0,b1 are to be chosen such that the above two conditions are satisfied. Additionally,
we would like each of b0, b1 and b0 ⊕ b1 to be either balanced or nearly balanced.

Consider the first point for SHA-256: Γi(x) = x for some x implies (Σi⊕I32)x = bi and Γi(x) = x
for some x implies Γi(x) = (Σi ⊕ I32)x = bi. In other words, the first point holds if both bi and bi

are not in the column space of (Σi ⊕ I32). In a similar manner, it can be shown that the second point
holds if both b0 ⊕ b1 and b0 ⊕ b1 are not in the column space of (Σ0 ⊕ Σ1).

We computed many choices of b0 and b1 satisfying these constraints. Examples for SHA-256 are

b0 = 0xdcb2344c and b1 = 0x9b097671.

For SHA-512, examples are

b0 = 0x1762e66a04d6be32 and b1 = 0x12135c7549e2fcdd.

4.2 Mix of + and ⊕

In the design of the SHA-2 round function, the XOR operation is used a relatively lesser number
of times compared to modular addition. A better mix of + and ⊕ can be obtained by using + to
add Wi to obtain ai and using ⊕ to XOR Wi to obtain ei. This will mean that if we work with
XOR differentials, then it will be difficult to analyze the XOR differentials of the a-register; on the
other hand, if we work with modular differentials, then it will be difficult to analyze the modular
differentials of the e-register.

A property of the SHA-2 round function is that it is easy to fix ai−4, . . . , ai (using words
Wi−4, . . . ,Wi) to simple values and ensure that ei is also fixed to a simple value. This is because of the
CDE (3). An example of the simplification that is possible using the CDE is when ai−1 = ai−2 = 0.
In this case, ei = ai + ai−4, which is a rather simple relation.

To remove the above issues, we suggest the update functions to be the following.

ai = hi−1 ⊕ (Γ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) + Γ1(ei−1) + fIF (ei−1, fi−1, gi−1) + Ki + Wi)
bi = ai−1

ci = bi−1

di = ci−1

ei = (di−1 + Γ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki) ⊕ Wi

fi = ei−1

gi = fi−1

hi = gi−1.

(4)

Note that the term Ti−1 = Γ1(ei−1) + fIF (ei−1, fi−1, gi−1) + Ki is present in the computation of
both ai and ei. This common sub-expression need to be computed only once for each step. In the
SHA-2 compression function, the term Σ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi is common
to both ai and ei. Computing Γ requires one extra t-bit XOR operation, where t = 32 for SHA-256
and t = 64 for SHA-512. By our estimate, the round function given in (4) requires 6 extra t-bit

operations when compared to the SHA-2 round function. We expect this to have insignificant effect
on the efficiency. The actual efficiency depends on a large number of parameters such as cache size,
instruction pipelining, number of processor cores, etcetera.

New Cross-Dependence Relation. We have

Ti−1 = (ai ⊕ hi−1) − (Γ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) − Wi)

= (ei ⊕ Wi) − (di−1 + hi−1).

Consequently the new cross-dependence relation is the following.

ei = Wi ⊕ ((ai ⊕ hi−1) + (di−1 + hi−1) − (Γ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) − Wi)) (5)

The dependences on both Wi and hi−1 do not directly cancel out. As a result, it is impossible to
express ei solely in terms of ai−4 to ai. Going back to the previous example, if ai−1 = ai−2 = 0 (note
bi−1 = ai−2) then ei = Wi ⊕ ((ai ⊕ hi−1) + (di−1 + hi−1 + Wi −b0)) which has two alternations of +
and ⊕ and is a more complicated relation compared to the simple ei = ai + ai−4 that is obtained for
the SHA-2 compression function.

Resistance to Linear Attacks. Local collisions using linear approximations involve two steps. In
the first step, all additions are replaced by XORs and in the second step, the functions fMAJ and fIF

are replaced by suitable linear approximations [5, 13]. Then one considers the differential behaviour
of the resulting linear function and tries to obtain a local collision for the linearized version of the
round function.

Let ℓ1(x, y, z) and ℓ2(x, y, z) be linear approximations of fMAJ(x, y, z) and fIF (x, y, z). Further,
suppose all additions are replaced by XORs in the SHA-2 round function. Define ∆ai = a′i ⊕ ai,
where a′i and ai correspond to two different messages. Similarly, define ∆ of the other registers. Then
for the SHA-2 round function, we have,

∆ai = Σ0(∆ai−1) ⊕ ℓ1(∆ai−1, bi−1, ci−1) ⊕ Σ1(∆ei−1) ⊕ ℓ2(∆ei−1, fi−1, gi−1) ⊕ ∆hi−1 ⊕ ∆Wi; (6)

∆ei = ∆di−1 ⊕ Σ1(∆ei−1) ⊕ ℓ2(∆ei−1, fi−1, gi−1) ⊕ ∆hi−1 ⊕ ∆Wi. (7)

For the round function shown in (4), we have

Γ0(a
′

i−1) ⊕ Γ0(ai−1) = Σ0(a
′

i−1) ⊕ b0 ⊕ Σ0(ai−1) ⊕ b0

= Σ0(a
′

i−1) ⊕ Σ0(ai−1)

= Σ0(a
′

i−1 ⊕ ai−1)

= Σ0(∆ai−1).

A similar calculation shows that Γ1(e
′

i−1) ⊕ Γ1(ei−1) = Σ1(∆ei−1). Now, it is easy to see that the
expression for ∆ai and ∆ei for the round function shown in (4) are exactly those given by (6). As
a result, the entire analysis of linear approximations [5, 13] done for SHA-2 compression function
apply without any change to the new suggestion. In particular, this shows that the best linear local
collision holds with probability 2−39 for the new suggestion as for the SHA-256 compression function.

Resistance to Non-Linear Attacks. In the SHA-2 round function, we have

δei = δΣ1(ei−1) + δfIF (δei−1, δfi−1, δgi−1) + δdi−1 + δhi−1 + δWi

δai = δΣ0(ai−1) + δfMAJ(δai−1, δbi−1, δci−1) + δei − δdi−1.

As a result, introducing a message difference of w at the i-th step, i.e., δWi = w, makes δai = δei = w.
This is the starting step of the NB and later attacks. The next few message differences are used to
cancel out the difference introduced in ai and ei. Let us now consider the differential form for a and
e registers using the new suggestion.

δai = a′i − ai

= (h′

i−1 ⊕ (Γ0(a
′

i−1) + fMAJ(a′i−1, b
′

i−1, c
′

i−1) + Γ1(e
′

i−1) + fIF (e′i−1, f
′

i−1, g
′

i−1) + Ki + W ′

i))

−(hi−1 ⊕ (Γ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) + Γ1(ei−1) + fIF (ei−1, fi−1, gi−1) + Ki + Wi))

δei = e′i − ei

= ((d′i−1 + Γ1(e
′

i−1) + fIF (e′i−1, f
′

i−1, g
′

i−1) + h′

i−1 + Ki) ⊕ W ′

i)

−((di−1 + Γ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki) ⊕ Wi).

Suppose that we now introduce an additive difference of w in δWi, i.e., δWi = W ′

i − Wi = w. Then

δai = (c1 ⊕ (c2 + Wi + w)) − (c1 ⊕ (c2 + Wi)) 6= (c3 ⊕ (Wi + w)) − (c3 ⊕ Wi) = δei

where

c1 = hi−1,

c2 = Γ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) + Γ1(ei−1) + fIF (ei−1, fi−1, gi−1) + Ki,

c3 = di−1 + Γ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki.

Since i is the first place where the perturbation is introduced, the quantities corresponding to primed
and unprimed variables are same for (i − 1)st step, i.e., the quantities c1, c2 and c3 take the same
value for both primed and unprimed values.

One can notice that for the new suggestion, the expressions for δai and δei are not as simple
as that for SHA-2 compression functions. Introducing a perturbation of w through Wi does not
introduce the same perturbation in the a and e registers and neither of these perturbations is equal
to w. The analysis of a few more steps does not provide any means to cancel out the perturbations
of δai and δei. Consequently, there is no way to apply the NB type attack on this round function.
This is an improvement over the SHA-2 round function.

5 Multiple Feed Forward: A New Design Construct

We introduce the idea of multiple feed-forward, i.e., feed-forward at several places. This provides a
possible additional layer of resistance against perturbation-correction attacks.

The computation starts with a C (the initial value of which is IV) and suppose that the output
of step i is S(i). The SHA-2 compression function employs a single feed-forward, i.e., the output of
H is C + S(N−1) where N = 64 for SHA-256 and N = 80 for SHA-512.

Let t1 = 7, t2 = 14 and s = 16. We introduce new feed-forwards at steps t1+s×k1 and t2+s×k2,
where k1, k2 are positive integers. Let S(−1) = C. We use two sets of temporary registers T1 and T2,
i.e., each Ti consists of n = 8 t-bit words, where t = 32 for SHA-256 and t = 64 for SHA-512.

The algorithm for the compression function is shown in Figure 2. In the figure assume for the
moment that in the input T1 = T2 = 0nt and the output does not contain T1 and T2. The general
description allows the introduction of feed-forward across message blocks as explained in the next
section.

The following points are to be noted.

1. The feed-forward with C at Step N − 1 remains unchanged.
2. There are two feed-forward threads starting at t1 and t2. Both threads alternate the type of

feed-forward between + and ⊕. The first thread starts with +, while the second thread starts
with ⊕.

3. The choice of t1 and t2 ensures that if we take any interval of length 9 in the range 0 to 15, then
at least one of t1 or t2 will lie properly within the interval.

4. The choices of t1, t2 and s ensure that the sets {t1 + s×k1 : k1 ≥ 1} and {t2 + s×k2 : k2 ≥ 1} are
disjoint. (A sufficient condition for this is to have s to be co-prime to (t1 − t2).) So, at no step
will two feed-forward threads starting at t1 and t2 meet.

5. New feed-forward is not introduced at Step (N −1). Again, the choices of t1, t2 and s ensure this.
6. The amortized cost of the new feed-forwards is less than one t-bit operation (addition or XOR)

per step, where t is 32 for SHA-256 and 64 for SHA-512. In an efficient implementation with loop
unrolling, the conditional statements will not be required. The temporary registers T1 and T2 will
simply be added or XORed to the internal registers at the appropriate step.

For SHA-256, the line starting at t1 = 7 introduces feed-forwards at Steps 23, 39 and 55 and the
line starting at t2 = 14 introduces feed-forwards at Steps 30, 46 and 62. Additive feed-forward is used
at Steps 23 and 55 due to the first line and at Step 46 due to the second line. XOR feed-forward is
used at Step 39 due to the first line and at Steps 30 and 62 due to the second line. There is a total of
6 feed-forward steps requiring a total of 6× 8 = 48 32-bit add/XOR operations. Amortized over the
64 steps, the cost is 3/4th 32-bit operation per step. The feed-forwards for SHA-256 are illustrated
in Figure 1.

Fig. 1. Illustration of multiple feed-forward for SHA-256. There are two threads of feed-forwards, based on XOR and
modular addition. The original additive feed-forward from the input (marked as Step −1) to Step 63 is also retained.

+

7 23 39 55 63

6214 30 46
Step

⊕⊕

++ ⊕

+
-1 0

For SHA-512, the feed-forwards of the first line occur at Steps 23, 39, 55 and 71 with additive
feed-forwards at Steps 23 and 55 and XOR feed-forwards at Steps 39 and 71. The second line of
feed-forwards is introduced at Steps 30, 46, 62 and 78, with XOR at Steps 30 and 62 and addition
at Steps 46 and 78. Amortized over the 80 steps, the cost is 4/5th 64-bit operation (add/XOR) per
step.

The idea of multiple feed-forward is generic and can be used with other hash designs. Depending
on the number of registers, the number of free words and the total number of steps N , the value of
t1, t2 and s has to be chosen appropriately so as to ensure the properties described above.

Resistance to Perturbation-Correction Attacks. The basic idea of such an attack has been
discussed earlier. By our choice of t1 and t2, at least one of these will be properly contained in any
9-step local collision. Consequently, the registers at the corresponding step will have a difference.
Due to feed-forwards, this difference will be pushed out into the steps where the message words are
defined through message recursion. Since these words cannot be directly controlled, it will be difficult
to cancel out the introduced perturbation at these steps. The overall effect will be that the local
collision based perturbation-correction attack will become substantially more difficult to apply.

A Possible Drawback. There is a possibility that the idea of multiple feed-forward can be used to
attack the design. The feed-forward steps may be seen as providing possible control in the message
expansion region which can in fact be used to correct perturbations in the higher rounds. However, we
could not actually see how this could be done. At this point of time, we think multiple feed-forwards
actually create perturbations in the message expansion region rather than cancel them.

6 Feed-Forward Across Message Blocks

The idea of feed-forward can be extended to different message blocks. Let us go back to the construc-
tion in Section 5. After the first message block has been processed, three quantities are produced,
the chaining variable C and the quantities T1 and T2. But, T1 and T2 are not used further. These
two quantities are “lightweight” digests of the first message block. We suggest that these be used in
the processing of the second message block.

The processing of the second block starts with C as the IV and by the construction of Section 5,
the output of Step 7 is taken to be new T1 and the output of Step 14 is taken to be the new T2.
We modify this as follows. The new T1 is the XOR of the old T1 and the output of Step 7; and the
new T2 is the sum of the old T2 and the output of Step 14. The rest of the two feed-forward threads
are as before. Figure 2 shows the complete description. Note that at a general level, this idea of
feed-forward across message blocks is similar to the wide-pipe design strategy introduced in [9].

Fig. 2. Modified compression function with two feed-forward threads. Here t1 = 7, t2 = 14 and s = 16; Gi is the step
function.
Compress(reg, T1, T2, W)
1. parse W into 16 t-bit words W0, . . . , W15;
2. (W0, . . . , WN−1) = msgExpn(W0, . . . , W15);
3. S−1 = reg;
4. for i = 0, . . . , 15 do

5. S(i) ← Gi(S
(i−1), Wi);

6. if (i = 7) then T1 ← T1 ⊕ S(i); if (i = 14) then T2 ← T2 + S(i);
7. end for;
8. for i = 16, . . . , N − 1 do

9. S(i) = Gi(S
(i−1), Wi);

10. if ((i− t1) mod s = 0) then S(i) ← S(i) + T1; T1 = S(i);

11. if ((i− t1) mod 2s = 0) then S(i) ← S(i) ⊕ T1; T1 = S(i);

12. if ((i− t2) mod s = 0) then S(i) ← S(i) ⊕ T2; T2 = S(i);

13. if ((i− t2) mod 2s = 0) then S(i) ← S(i) + T2; T2 = S(i);
14. end for;

15. output (S(N−1) + reg, T1, T2).

The modification can still be considered to be within the MD framework. Let M (0), . . . ,M (ℓ)

be the message blocks (including padding with length). Let C(−1) = IV and T
(−1)
1 = T

(−1)
2 = 0nt.

There are ℓ invocations of the compression function, where the (i+1)st invocation of the compression

function takes (C(i), T
(i)
1 , T

(i)
2 ,M (i+1)) as input and produces a (C(i+1), T

(i+1)
1 , T

(i+1)
2) as output. Here

C(i), C(i+1) are the chaining variables; and T
(i)
1 , T

(i)
2 , T

(i+1)
1 , T

(i+1)
2 are the feed-forward quantities.

Viewed in this way, it is easy to prove as usual by backward induction that a collision for the
hash function leads to a collision for the compression function. Finding a pseudo collision for the
compression function defined in this manner may be easier than the compression function where
there is no feed-forward across message blocks. This is because one may choose T1 and T2 as suitable

values. However, the hashing starts with C(−1) = IV and T
(−1)
1 = T

(−1)
2 = 0nt, which fixes the initial

choice of T1 and T2.

Resistance to Multi-Collision Attacks. Let us now consider the effect of multi-collision at-
tacks [8]. This is a generic technique which applies to the MD type construction. Using r invocations
of generic collision finding algorithm on the compression function, it is possible to construct 2r mes-
sages which map to the same value. Suppose M1,M

′

1 are two distinct message blocks which (starting
from IV) map to the same value C1; and M2,M

′

2 are two distinct message blocks which starting from
C1 map to the same value C2. Then the four messages (M1,M2), (M1,M

′

2), (M ′

1,M2) and (M ′

1,M
′

2)
map to the same value C2. Since the output of the compression function consists of nt bits, the
generic algorithm will require 2 × 2nt/2 invocations of the compression function to find a collision.

Suppose we apply this to the new construction. The output of the compression function is the
chaining variable C as well as T1 and T2. Then we need distinct M1,M

′

1 which starting from IV

and T1 = T2 = 0nt map to same value C(1), T
(1)
1 , T

(1)
2 ; and distinct M2,M

′

2 which starting from

C(1), T
(1)
1 , T

(1)
2 map to the same value C(2), T

(2)
1 , T

(2)
2 . Then as before, we will have four messages

which map to the same value C(2), T
(2)
1 , T

(2)
2 . The advantage here is that the generic collision finding

algorithm now needs to be applied to a compression function whose output is 3nt bits. As a result,
the generic algorithm will require 2 × 23nt/2 invocations of the new compression function to find a
collision. This is more than 2n invocations and hence is not useful. (If a hash function produces n-bit
digests, then one can surely obtain a collision by applying the hash function to 2n +1 distinct inputs;
and one can obtain a collision with high probability by applying the hash function to 2n/2 inputs.)

On the other hand, suppose that M1,M
′

1 are such that starting from IV and T1 = T2 = 0nt, they

produce the same value for C(1) but not necessarily the same value for T
(1)
1 , T

(1)
2 , i.e., (T

(1)
1 , T

(1)
2) 6=

((T
(1)
1)′, (T

(1)
2)′). Further, suppose that M2,M

′

2 are such that M2 starting from C(1) and T
(1)
1 , T

(1)
2

produces the same C(2) that M ′

2 starting from C(1) and (T
(1)
1)′, (T

(1)
2)′ produces. This results in single

two-block collision between (M1,M
′

1) and (M2,M
′

2). But, now (M1,M2) does not produce the same
value as (M1,M

′

2). More generally, no two of the four possible messages produce the same value. This

is due to the difference in the intermediate feed-forward values, i.e., (T
(1)
1 , T

(1)
2) 6= ((T

(1)
1)′, (T

(1)
2)′).

To summarize, in a manner similar to the wide-pipe design strategy [9], extending feed-forward across
message blocks provides resistance to generic multi-collision attacks.

7 Design Specification and Implemenation

We describe the complete hash algorithm, which we call SShash. There are two main variants –
SShash-256 and SShash-512 with truncated versions SShash-224 and SShash-384 being obtained as
in SHA-2 [19].

Suppose M is a message to be hashed. We consider M to be a binary string of length λ and this
string is padded as in SHA-2, i.e., append the bit 1 to the message, followed by k zeros where k is
the smallest non-negative integer such that λ + 1 + k ≡ 14t mod 16t, with t = 32 for SShash-256 and
t = 64 for SShash-512. Then the 2t-bit binary representation of λ is appended. This makes the total
length of the padded message to be a multiple of 2t. The padded message is parsed into q 16t-bit
blocks M (1), . . . ,M (q).

The algorithm starts with 8 t-bit registers called the initialization vector IV; the IV for SShash-
256 is same as the IV for SHA-256 and the IV for SShash-512 is same as the IV for SHA-512. A
compression function Compress is used to process the message blocks and produce the digest in the
following manner.

SShash.
1. reg = IV; T1 = T2 = 08t;

2. for i = 1 to q do (reg, T1, T2) = Compress(reg, T1, T2,M
(i));

4. return reg;

The function Compress is shown in Figure 2. It takes as input 8 t-bit registers and a 16t-bit
message block. The message block is parsed into 16 t-bit words W0, . . . W15. These words are then
expanded into N t-bit words W0, . . . ,WN−1 using msgExpn. The message expansion for SShash-256
is the same as that for SHA-256 and the message expansion for SShash-512 is the same as that for
SHA-512. In particular, the value of N is 64 for SShash-256 and 80 for SShash-512. (Note. In the
above q refers to the number of message blocks, while N refers to the number of t-bit words after
the expansion of a single message block.)

The step function G is applied N times. This function G takes as input 8 t-bit registers (ai−1, . . . , hi−1)
and updates them using Wi to obtain (ai, . . . , hi). This updation is done as shown in (4). These up-
dations require the values of the t-bit constants K0, . . . ,KN−1. Again, these constant values are as
specified in SHA-2.

The above completes the description of the modified algorithm SShash. We have implemented
both SShash-256 and SShash-512. For this implementation, we modified the SHA-2 code available
at [3]. Macros for the compression function of SShash-256 is given in Appendix A. The code for
SShash-512 is similar and is not shown. Appendix A also provides test vectors for SShash.

Speed comparison of SShash with SHA-2 is shown in Table 2. The obtained speeds correspond
with our earlier stated intuition that the suggested modifications of SHA-2 to obtain SShash do not
affect the efficiency too much.

Table 2. Speed of SShash compared to SHA-2. For SHA-2, the implementation from [3] has been used and SShash

implementations have been obtained by modifying the SHA-2 implementations of [3]. The speed measurements are
given in cycles/byte and were obtained on a dual-core Pentium having two CPUs at 2.2 GHz and running Fedora.

SHA-256 SShash-256 SHA-512 SShash-512

19.3 22 13.6 14.0

8 Conclusions

In this work, we studied several properties of the SHA-2 design which were used in recent collision
attacks against reduced SHA-2. We have suggested modifications to the SHA-2 design so as to make
these attacks inapplicable. The modified SHA-2 design is almost as efficient as the original one.

We provided a generic construction of multiple feed-forward. This can be used to strengthen a
design against perturbation-correction collision finding attacks. Further, the idea of feed-forward over
several message blocks is suggested and shown to provide resistance to multi-collision attacks.

Acknowledgements

The authors wish to thank anonymous reviewers of ASIACCS 2009 for giving useful suggestions.

References

1. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo Krawczyk, editor, Advances in
Cryptology - CRYPTO 1998, 18th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 23-27, 1998, Proceedings, volume 1462 of Lecture Notes in Computer Science, pages 56–71. Springer, 1998.

2. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer,
2002.

3. Wei Dai. Crypto++ Library 5.5.2. http://www.cryptopp.com/.
4. Federal Register Vol. 72, No. 212. Announcing Request for Candidate Algorithm Nominations for a new Crypto-

graphic Hash Algorithm (SHA-3) Family. U.S. Department of Commerce, National Institute of Standards and Tech-
nology(NIST), November 2, 2007. Available at http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_

Nov07.pdf.
5. Henri Gilbert and Helena Handschuh. Security Analysis of SHA-256 and Sisters. In Mitsuru Matsui and Robert J.

Zuccherato, editors, Selected Areas in Cryptography, 10th Annual International Workshop, SAC 2003, Ottawa,
Canada, August 14-15, 2003, Revised Papers, volume 3006 of Lecture Notes in Computer Science, pages 175–193.
Springer, 2003.

6. Philip Hawkes, Michael Paddon, and Gregory G. Rose. On Corrective Patterns for the SHA-2 Family. Cryptology
eprint Archive, August 2004. Available at http://eprint.iacr.org/2004/207.

7. Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Christian Rechberger. Collisions and other Non-Random
Properties for Step-Reduced SHA-256. In Selected Areas in Cryptography, 15th Annual International Workshop,
SAC 2008, Revised Papers, 2008. To appear.

8. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In Matthew K.
Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 2004, Proceedings, volume 3152 of Lecture Notes in Computer Science,
pages 306–316. Springer, 2004.

9. Stefan Lucks. A failure-friendly design principle for hash functions. In Bimal K. Roy, editor, ASIACRYPT, volume
3788 of Lecture Notes in Computer Science, pages 474–494. Springer, 2005.

10. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of Step-Reduced SHA-
256. In Matthew J. B. Robshaw, editor, Fast Software Encryption, 13th International Workshop, FSE 2006, Graz,
Austria, March 15-17, 2006, Revised Selected Papers, volume 4047 of Lecture Notes in Computer Science, pages
126–143. Springer, 2006.

11. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of Step-Reduced SHA-
256. Cryptology eprint Archive, March 2008. Available at http://eprint.iacr.org/2008/130.

12. Ivica Nikolić and Alex Biryukov. Collisions for Step-Reduced SHA-256. In Kaisa Nyberg, editor, Fast Software
Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland, March 26-28, 2008, volume 5086 of
Lecture Notes in Computer Science, pages 1–16. Springer, 2008.

13. Somitra Kumar Sanadhya and Palash Sarkar. New Local Collisions for the SHA-2 Hash Family. In Kil-Hyun Nam
and Gwangsoo Rhee, editors, Information Security and Cryptology - ICISC 2007, 10th International Conference,
Seoul, Korea, November 29-30, 2007, Proceedings, volume 4817 of Lecture Notes in Computer Science, pages 193–
205. Springer, 2007.

14. Somitra Kumar Sanadhya and Palash Sarkar. A Combinatorial Analysis of Recent Attacks on Step Reduced SHA-2
Family. Cryptology ePrint Archive, Report 2008/271, 2008. http://eprint.iacr.org/2008/271.

15. Somitra Kumar Sanadhya and Palash Sarkar. Attacking Reduced Round SHA-256. In Steven Bellovin and Rosario
Gennaro, editors, Applied Cryptography and Network Security - ACNS 2008, 6th International Conference, New
York, NY, June 03-06, 2008, Proceedings, volume 5037 of Lecture Notes in Computer Science. Springer, 2008.

16. Somitra Kumar Sanadhya and Palash Sarkar. Deterministic Constructions of 21-Step Collisions for the SHA-2
Hash Family. In Editors, editor, Information Security, 11th International Conference, ISC 2008, Taipei, Taiwan,
September 2008, Proceedings, volume 5222 of Lecture Notes in Computer Science, pages 244–259. Springer, 2008.

17. Somitra Kumar Sanadhya and Palash Sarkar. New Collision Attacks Against Up To 24-step SHA-2 . In D.R.
Chowdhury, V. Rijmen, and A. Das, editors, Progress in Cryptology - INDOCRYPT 2008, 9th International Con-
ference on Cryptology in India, volume 5365 of Lecture Notes in Computer Science, pages 91–103. Springer, 2008.

18. Somitra Kumar Sanadhya and Palash Sarkar. Non-Linear Reduced Round Attacks Against SHA-2 Hash family.
In Yi Mu and Willy Susilo, editors, Information Security and Privacy - ACISP 2008, The 13th Australasian
Conference, Wollongong, Australia, 7-9 July 2008, Proceedings, volume 5107 of Lecture Notes in Computer Science.
Springer, 2008.

19. Secure Hash Standard. Federal Information Processing Standard Publication 180-2. U.S. Department of Commerce,
National Institute of Standards and Technology(NIST), 2002. Available at http://csrc.nist.gov/publications/
fips/fips180-2/fips180-2withchangenotice.pdf.

20. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In Victor Shoup, editor,
Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science, pages 17–36.
Springer, 2005.

A Compression Function for SShash-256

The required macros and the description of the compression function for SShash-256 are provided
below. Corresponding macros for SShash-512 are similar and hence not provided. Test vectors for
SShash-256 and SShash-512 are given in Table 3.

Table 3. Test vectors for SShash. The given digests are the outputs of SShash on the string “aaa”.

SShash-256 0x27ef472acd480e556be88c4b320008b278d1819fe297abdd97ed947a295e3eb4

SShash-512 0x47cd2dafcc070c317d242d027a2b3ec65345065dadbeff05cf88745a2a759c8f

ff67b38965dbd9fbc15280fe41415b8364fe8f46baf9dc60a5173912480ce916

#define word32 unsigned int

#define ROTR(x, n) (((x) >> (n)) | ((x) << (32-(n))))

#define SHR(x, n) ((x) >> (n))

#define NEW_SIG_0(x) (((ROTR(x,2)) ^ (ROTR(x,13)) ^ (ROTR(x,22))) ^ 0xdcb2344c)

#define NEW_SIG_1(x) (((ROTR(x,6)) ^ (ROTR(x,11)) ^ (ROTR(x,25))) ^ 0x9b097671)

#define sig_0(x) ((ROTR(x,7)) ^ (ROTR(x,18)) ^ (SHR(x,3)))

#define sig_1(x) ((ROTR(x,17)) ^ (ROTR(x,19)) ^ (SHR(x,10)))

#define CH(x,y,z) ((z)^((x)&((y)^(z))))

#define MAJ(x,y,z) (((x)&(y))|((z)&((x)|(y))))

#define a1(i) T[(0-i)&7]

#define b1(i) T[(1-i)&7]

#define c1(i) T[(2-i)&7]

#define d1(i) T[(3-i)&7]

#define e1(i) T[(4-i)&7]

#define f1(i) T[(5-i)&7]

#define g1(i) T[(6-i)&7]

#define h1(i) T[(7-i)&7]

#define FF_XOR_START(T) { \

T[0]^=a1(i); T[1]^=b1(i); T[2]^=c1(i); T[3]^=d1(i); \

T[4]^=e1(i); T[5]^=f1(i); T[6]^=g1(i); T[7]^=h1(i); \

}

#define FF_ADD_START(T) { \

T[0]+=a1(i); T[1]+=b1(i); T[2]+=c1(i); T[3]+=d1(i); \

T[4]+=e1(i); T[5]+=f1(i); T[6]+=g1(i); T[7]+=h1(i); \

}

#define FF_ADD(T) {\

a1(i) +=T[0]; b1(i) +=T[1]; c1(i) +=T[2]; d1(i) +=T[3]; \

e1(i) +=T[4]; f1(i) +=T[5]; g1(i) +=T[6]; h1(i) +=T[7]; \

T[0]=a1(i); T[1]=b1(i); T[2]=c1(i); T[3]=d1(i); T[4]=e1(i); \

T[5]=f1(i); T[6]=g1(i); T[7]=h1(i); \

}

#define FF_XOR(T) { \

a1(i) ^=T[0]; b1(i) ^=T[1]; c1(i) ^=T[2]; d1(i) ^=T[3]; \

e1(i) ^=T[4]; f1(i) ^=T[5]; g1(i) ^=T[6]; h1(i) ^=T[7]; \

T[0]=a1(i); T[1]=b1(i); T[2]=c1(i); T[3]=d1(i); T[4]=e1(i); \

T[5]=f1(i); T[6]=g1(i); T[7]=h1(i); \

}

#define FF_FINAL(REG) { \

REG[7] += h1(0); REG[6] += g1(0); REG[5] += f1(0); REG[4] += e1(0); \

REG[3] += d1(0); REG[2] += c1(0); REG[1] += b1(0); REG[0] += a1(0); \

}

#define R_0(i) { \

temp1 = NEW_SIG_1(e1(i))+CH(e1(i),f1(i),g1(i))+K[i]; \

temp2 = NEW_SIG_0(a1(i)) + MAJ(a1(i),b1(i),c1(i)); \

d1(i) += temp1 + h1(i); d1(i) ^= data[i]; \

h1(i) ^= temp1 + temp2 + data[i]; \

}

#define R_1(i) { \

temp1 = NEW_SIG_1(e1(i))+CH(e1(i),f1(i),g1(i))+K[i+16]; \

temp2 = NEW_SIG_0(a1(i)) + MAJ(a1(i),b1(i),c1(i)); \

d1(i) += temp1 + h1(i); d1(i) ^= W[i+16]; \

h1(i) ^= temp1 + temp2 + W[i+16]; \

}

#define R_2(i) { \

temp1 = NEW_SIG_1(e1(i))+CH(e1(i),f1(i),g1(i))+K[i+32]; \

temp2 = NEW_SIG_0(a1(i)) + MAJ(a1(i),b1(i),c1(i)); \

d1(i) += temp1 + h1(i); d1(i) ^= W[i+32]; \

h1(i) ^= temp1 + temp2 + W[i+32]; \

}

#define R_3(i) { \

temp1 = NEW_SIG_1(e1(i))+CH(e1(i),f1(i),g1(i))+K[i+48]; \

temp2 = NEW_SIG_0(a1(i)) + MAJ(a1(i),b1(i),c1(i)); \

d1(i) += temp1 + h1(i); d1(i) ^= W[i+48]; \

h1(i) ^= temp1 + temp2 + W[i+48]; \

}

compression_func(word32 *reg, const word32 *data){

word32 i, W[64], temp1, temp2, T[8];

static word32 T1[8]={0,0,0,0,0,0,0,0}, T2[8]={0,0,0,0,0,0,0,0};

memcpy(W,data,64);

for(i=16; i<64; i++)

W[i] = sig_1(W[i-2])+W[i-7]+sig_0(W[i-15])+W[i-16];

memcpy(T, reg, sizeof(T));

{

R_0(0); R_0(1); R_0(2); R_0(3);

R_0(4); R_0(5); R_0(6); R_0(7); FF_XOR_START(T1);

R_0(8); R_0(9); R_0(10); R_0(11);

R_0(12); R_0(13); R_0(14); FF_ADD_START(T2); R_0(15);

}

{

R_1(0); R_1(1); R_1(2); R_1(3);

R_1(4); R_1(5); R_1(6); R_1(7); FF_ADD(T1);

R_1(8); R_1(9); R_1(10); R_1(11);

R_1(12); R_1(13); R_1(14); FF_XOR(T2); R_1(15);

}

{

R_2(0); R_2(1); R_2(2); R_2(3);

R_2(4); R_2(5); R_2(6); R_2(7); FF_XOR(T1);

R_2(8); R_2(9); R_2(10); R_2(11);

R_2(12); R_2(13); R_2(14); FF_ADD(T2); R_2(15);

}

{

R_3(0); R_3(1); R_3(2); R_3(3);

R_3(4); R_3(5); R_3(6); R_3(7); FF_ADD(T1);

R_3(8); R_3(9); R_3(10); R_3(11);

R_3(12); R_3(13); R_3(14); FF_XOR(T2); R_3(15);

}

FF_FINAL(reg);

}

