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Abstract. In this paper we show that the twisted Ate pairing on elliptic curves can be
generalized to hyperelliptic curves, we also give a series of variations of the hyperelliptic
Ate and twisted Ate pairings. Using the hyperelliptic Ate pairing and twisted Ate
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obtain an interested result: For some hyperelliptic curves with high degree twist, using
this approach to compute Weil pairing will be faster than Tate pairing, Ate pairing etc.
all known pairings.
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1 Introduction

In recent years, the bilinear pairings have been found to be very useful in various
applications in cryptography and have allowed us to construct new cryptographic
primitives. The pairing based cyptosystems became one of the most attractive areas
of research in public key cryptography. Pairing computation is a key step in the
implementation of pairing based cyptosystems. Much effort was put in developing
fast algorithms to compute bilinear pairings.

Most fast algorithms are based on Miller’s algorithm [18] to compute the Weil
and Tate pairings on elliptic curves. Many efficient algorithms for implementing the
pairings on elliptic curves have been proposed [10]. Duursma and Lee [5] firstly gave
fast algorithms for implementing the pairings on curves of genus ≥ 2. This paper
opened a new line to improve Miller’s algorithm: Shortening the loop in Miller’s
algorithm. Barreto et.al. [1] extended Duursma and Lee’s loop shortening idea to
supersingular abelian varieties using the ηT approach. In [12], Hess et al. extended
the ηT pairing over ordinary curves, and proposed the Ate pairing and twisted Ate
pairing. The Miller loop in the two pairings can be reduced to T and Te respectively,
where T = t−1 and t is the Frobenius trace of the elliptic curve. More recently, several



2

variants of the Ate pairing were introduced thereby further reducing the loop length
in Millers algorithm, such as the optimized Ate pairing [17], the Atei pairings[21],
the R-ate pairing [15] and finally optimal pairings [20]. Granger et al. [8] generalized
the Ate pairing for elliptic curves to ordinary hyperelliptic curves. The hyperelliptic
Ate pairing has two good properties: Firstly, the loop length in Millers algorithm for
evaluating the pairing function is up to g times shorter than for the corresponding
Tate pairing, where g is the genus of the underlying curve C. Secondly, the pairing is
automatically reduced, that is, the final exponentiation required by the Tate pairing
can be omitted. Even those, Galbraith et al. [11] showed that hyperelliptic curves
usually less practical for pairings than elliptic curves.

There are many reasons such that hyperelliptic pairing (including Ate pairing) is
not fast than elliptic pairing [11]. For Ate pairing on ordinary elliptic curves, Matsuda
et al. [17] showed that the Ate pairing is always at least as fast as the Tate pairing
by providing the optimized versions of the Ate and the twisted Ate pairing. However,
currently, it seems to be more difficult to generate pairing-friendly non-supersingular
genus g curves over Fq. In [6], Freeman proposed the first explicit construction of
pairing- friendly genus 2 hyperelliptic curves over prime fields with ordinary Jacobians
by modeling on the Cocks-Pinch method for the elliptic curve case. Unfortunately, the
parameters for these curves are not very attractive for fast pairing implementation
(precisely, the size of r is too small compared with the size of q). In a recent paper [13],
Kawazoe and Takahashi presented two different approaches for explicitly constructing
pairing- friendly genus 2 curves of the type y2 = x5 + ax over Fq. Even Kawazoe et
al.’s genus 2 curves satisfy p ≈ r2(some one can achieve to p ≈ r3/2), it is better
than Freeman’s construction, but the hyperelliptic Ate pairing on these curves is no
any advantage than Tate pairing. Granger et al. [8] remained an open problem which
whether high degree twists can be utilised for hyperelliptic Ate pairing, Galbraith
et al. [11] also mentioned that if the twists of high degree can be exploited, the
hyperelliptic pairing maybe have advantage than elliptic curve case.

Since the Tate pairing can be computed more efficiently than the Weil pairing, the
researchers have mainly considered the Tate pairing computations. The Weil pairing
computation does not need the final exponentiation while it involves two Miller iter-
ation loops. Koblitz et al. [14] found that for very high security levels, such as 192
or 256 bits, the Weil pairing computation is sometimes faster than the Tate pairing.
However, Granger et al. [9] showed that the Tate pairing over ordinary elliptic curves
is more efficient than the Weil pairing for all security levels.

In this paper we will show that the twisted Ate pairing on elliptic curves can be
generalized to hyperelliptic curves, we also give a series of variations of the hyperellip-
tic Ate and twisted Ate pairings. Using the twisted hyperelliptic curves, we propose a
variant of Weil pairing, and obtain an interested result: For some hyperelliptic curves
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with high degree twist, to compute this variational Weil pairing maybe faster than
Tate pairing and Ate or Atei pairing.

The rest of this paper is organized as follows. Section 2 introduces some mathe-
matical preliminaries, including hyperelliptic Curves, Tate pairing and Ate pairing on
hyperelliptic Curves. Section 3 introduces the theory of twisting hyperelliptic curves
and gives some hyperelliptic Curves over prime field with high degree twist. Section 4
generalizes twisted Ate pairing on elliptic curves to hyperelliptic curves and analyzes
the efficiency of the computation of them. Section 5 gives a variant of hyperelliptic
Weil pairing based on twisted Ate pairings and analyzes its computation cost. Section
6 gives the conclusions.

2 Mathematical Preliminaries

2.1 The Tate-Lichtenbaum Pairing on Hyperelliptic Curves

Let Fq be the algebraic closure of the field Fq. A hyperelliptic curve C of genus g over
Fq with g ≥ 1 is given by the following equation:

C : y2 + h(x)y = f(x) (1)

where f(x) is a monic polynomial of degree 2g+1, h(x) is a polynomial of degree
at most g, and there is no solutions (x, y) ∈ Fq × Fq simultaneously satisfying the
equation y2 + h(x)y = f(x) and the partial derivative equations 2y + h(x) = 0 and
h′(x)y − f ′(x) = 0. So, C is an imaginary nonsingular hyperelliptic curve and has
only one point P∞ at infinity.

For any algebraic extension Fqk of Fq consider the set

C(Fqk) := {(x, y) ∈ Fqk × Fqk |y2 + h(x)y = f(x)} ∪ {P∞},

called the set of Fqk-rational points on C.
Let P = (x, y) be a finite point on hyperelliptic curve C, hyperelliptic involution

ι of P defined by ι(P ) = (x, −y − h(x)) , ι(P ) = P∞. The set C(Fqk) for g ≥ 2 does
not form a group, but we can embed C into an abelian variety of dimension g called
the Jacobian of C and denoted by JC which isomorphic to the divisor class group
of degree zero Pic0C . The Jacobian of C defined over Fqk is given by JC(Fqk) that is
isomorphic to the divisor class group of degree zero Pic0C(Fqk) od C over Fqk . Let O
be the identity of JC .

We fix a subgroup of JC(Fq) of some order r. We say that this subgroup has
embedding degree k if the order r divides qk − 1, but does not divide qi − 1 for any
0 < i < k. This implies that the r−th roots of unity µr are contained in Fqk and
in no strictly smaller extension of Fq. For cryptographic application, r should be a
(large) prime with r|#JC(Fq) and gcd(r, q) = 1. Let JC(Fqk)[r] be the r-torsion group
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and JC(Fqk)/rJC(Fqk) be the quotient group. Then the Tate-Lichtenbaum pairing is
a well defined, non-degenerate, bilinear pairing [7]

〈·, ·〉r : JC(Fqk)[r]× JC(Fqk)/rJC(Fqk)→ F∗

qk/(F
∗

qk)r,

defined as follows: letD1 ∈ JC(Fqk)[r] andD2 ∈ JC(Fqk) and letD1 be represented

by a divisor D1 and D2 by a divisor D2 with supp(D1) ∩ supp(D2) = ∅. There is a
rational function fr,D1 ∈ Fqk(C) such that div(fr,D1) = rD1 − [r]D1 = rD1. The

Tate-Lichtenbaum pairing of two divisor classes D1 and D2 is then defined as

〈D1, D2〉r = fr,D1(D2) =
∏

P∈C(Fq)

fr,D1(P )ordP (D2),

Note that the pairing as detailed above is only defined up to r-th powers. In
practice, many pairing-based protocols require a unique pairing value instead of a
whole coset. Hence one defines the reduced pairing as

e(D1, D2) = 〈D1, D2〉
(qk−1)/r
r ∈ µr ⊂ F∗

qk

The reduced pairing has an important property: for any positive integer N with r|N
and N |qk − 1, we have

e(D1, D2) = 〈D1, D2〉
(qk−1)/r
r = 〈D1, D2〉

(qk−1)/N
N

2.2 Miller’s Algorithm

The main task in computation of 〈·, ·〉r is constructing the rational function fr,D1 and
evaluating fr,D1(D2) with div(fr,D1) = rD1 for divisors D1 and D2. Miller described
a fast algorithm to compute evaluations of fr,D1(D2) for divisors on elliptic curves
in [18]. The algorithm can be also adapted to compute the pairing on hyperelliptic
curves.

Let GiD1,jD1 be a rational function with

div(GiD1,jD1) = iD1 + jD1 − (iD1 ⊕ jD1)

where ⊕ is the group law on JC and (iD1 ⊕ jD1) is reduced. Miller’s algorithm
constructs the rational function fr,D1 based on the following iterative formula:

fi+j,D1 = fi,D1fj,D1GiD1,jD1.

Miller’s algorithm is described in Algorithm 1. For the detailed version of Miller’s
algorithm for hyperelliptic curves, please refer to [8].
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Algorithm 1 Miller’s Algorithm for Hyperelliptic Curves

Input: r =
∑n

i=0 li2
i, where li ∈ {0, 1}. D1 ∈ JC(Fqk)[r], D2 ∈ JC(Fqk) repre-

sented by D1 and D2 with supp(D1) ∩ supp(D2) = ∅.
Output: fr,D1(D2)
1. T ← D1, f ← 1
2. for i = n− 1, n− 2, ..., 1, 0 do
2.1 Compute T ′ and GT,T (x, y) such that T ′ = 2T − div(GT,T )

2.2 f ← f 2 ·GT,T (D2), T ← [2]T
2.3 if li = 1 then
2.4 Compute T ′ and GT,D1(x, y) such that T ′ = T +D1 − div(GT,D1)
2.4 f ← f ·GT,D1(D2), T ← T ⊕D1

3. return f

2.3 Ate Pairing on Hyperelliptic Curves

An important improving technique in pairing computation is reducing the iteration
loops in Miller’s algorithm. The Ate pairing on ordinary elliptic curves by Hess et al.
[12], which is a generalization of Eta pairing, can be computed using only log2 r/ϕ(k)
basic Miller iterations. Granger et al. [8] generalized the Ate pairing for elliptic curves
to ordinary hyperelliptic curves.

Let π be the q-power Frobenius map on C and Frobenius endomorphism on JC
and define ρ(D) the unique reduced divisor in D. We have the following theorem:

Theorem 1 ([8]). Let C be a hyperelliptic curve over Fq and r|#JC(Fq) a large

prime. Let G1 = JC [r] ∩Ker(π − [1]) and G2 = JC [r] ∩Ker(π − [q]), then

a(·, ·) : G2 ×G1 → µr : (D2, D1)→ fq,D2(D1)

with D2 = ρ(D2) and D1 ∈ D1 such that supp(D1) ∩ supp(D2) = ∅, defines a

non-degenerate, bilinear pairing called the hyperelliptic Ate pairing. Furthermore, the

relation with the reduced Tate-Lichtenbaum pairing is as follows:

e(D2, D1) = a(D2, D1)
kqk−1

.

The most important property of the Ate pairings is that no final exponentiation
is necessary.

3 Twisting Hyperelliptic Curves

Let C be a curve with genus g defined over a field K. A curve C ′ over K that is
isomorphic to C, is called a twist of C. Furthermore, we call C ′ is a twist of degree
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d of C if there exists an isomorphism φ : C ′ → C defined over Kd, here Kd is a d-th
algebraic extension of K and d is minimal. For every curve C defined over a field
K, the set of its twists Twist(C/K) is the set of K-isomorphism classes of curves
C ′/K that are K-isomorphic to C. As discussed in Theorem 2.2 of [19], there is a
bijection between Twist(C/K) and the cohomology set H 1(GK , Aut(C)). In other
words, the twists of C/K (up to K-ismorphism) are in one-to-one correspondence
with the elements of the cohomology set H1(GK , Aut(C)). Here GK is the Galois
group of an algebraic closure K/K.

This bijection give us a way to construct the twist curve of given curve C: Consider
the map

ξ : GK → Aut(C) defined by ξ(σ) = φσφ−1.

It turns out that ξ(σ) is a 1-cocycle, that is, it satisfies the equality ξστ = (ξσ)
τ ξτ

(here σ, τ ∈ GK). Then the cohomology class of ξ is uniquely determined by the
K-isomorphism class of C. For more detail, see [19, Theorem X.2.2]

To construct the twist curve of given curve C over a field K, we should compute
the automorphisms group Aut(C) of C. For the hyperelliptic curve C, and any finite
field, the Aut(C) andH1(GK , Aut(C)) can be computed using Magma [16]. For curves
C/K of genus 2 given by hyperelliptic equations, the possible reduced groups of
automorphisms were determined by Bolza in terms of their invariants [2, pag. 70], and
the structure of the corresponding groups can be found in [3]. The picture, outside
from characteristics 2, 3 and 5, is the following: the group Aut(C) is isomorphic to
one of the groups

C2, V4, D8, D12, 2D12, S̃4, C10.

Here Cn denotes the cyclic group of order n, V4 is the Klein 4-group, Dn is the
dihedral group of order n, and 2D12, S̃4 are certain 2-coverings of the dihedral and
symmetric groups D12 and S4, respectively. These groups can be identified with a
subgroup of GL2(K) which is closed by the Galois action of the group GK . Based on
this, Cardona [3] computed the number of curves of genus 2 defined over a finite field
K of odd characteristic up to isomorphisms defined over K.

The degree d of the twist of a curve C depends on the order of the element
of Aut(C), i.e., if C ′ is a degree d twist of C, then Aut(C) must contain an ele-
ment of order d. However, if Char(K) > 5, Aut(C) always is a subgroup of one of
C2, V4, D8, D12, 2D12, S̃4, C10. So for Char(K) > 5, only d = 1, 2, 3, 4, 5, 6, 8, 10 are
possible. Therefor, for the curves of genus 2, the highest degree of twist is 10, and
then is 8.

For the cryptographic application, we only concern the high degree twist. So, we
can consider the curves of genus 2 with group of automorphisms isomorphic to S̃4

and C10. For a finite field Fp, here p = 1 mod 8, the curve of form

C1 : y2 = x5 + ax
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has automorphisms group C8 ⊂ S̃4. We can construct a degree 8 twist of C1.

d = 8 : C ′
1 : y2 = x5 + aλx, (x, y)→ (λ

1
4x, λ

5
8 y)

Here λ ∈ Fp is not l-th power residue in Fp, for l ∈ {1, 2, 4, 8}.
For a finite field Fp, here p = 1 mod 5, the curve of form

C2 : y2 = x5 + a

has automorphisms group C10. We can construct a degree 10 twist of C2.

d = 10 : C ′
2 : y2 = x5 + aλ, (x, y)→ (λ

1
5x, λ

1
2 y)

Here λ ∈ Fp is not l-th power residue in Fp, for l ∈ {1, 2, 5, 10}.
If we want to get higher than 10 degree twist, we should use larger g. For example,

when g = 3, for the type hyperelliptic curve:

y2 = x7 + a

we can get a twist with degree 14 over Fp (here p = 1 mod 7):

y2 = x7 + aλ, (x, y)→ (λ
1
7x, λ

1
2 y)

When g = 4, for the type hyperelliptic curve:

y2 = x9 + ax

we can get a twist with degree 16 over Fp (here p = 1 mod 16):

y2 = x9 + aλx, (x, y)→ (λ
1
8x, λ

9
16 y)

4 Twisted Hyperelliptic Ate Pairing

The hyperelliptic Ate pairing is defined on G2 × G1, here G2 was defined as G2 =
JC [r] ∩ Ker(π − [q]), i.e., the q-eigenspace of Frobenius on JC [r]. The operations in
G2 are performed over Fqk . As elliptic curve case, we want to investigate if we can
admit the twist curve to define the hyperelliptic Ate pairing on G1 ×G2.

Firstly, for D1 ∈ G1 = JC [r] ∩ Ker(π − [1]) and D2 ∈ G2 = JC [r] ∩Ker(π − [q]),
from the reduced Tate-Lichtenbaum Pairing, we have

e(D1, D2) = fqk,D1
(D2) (2)

and

fqk,D1
=

k−1∏

i=0

(fq,[qi]D1
)q

k−i−1
(3)

The proofs are same as Lemma 3 and 4 in [8].
From the Lemma 5 in [8], we also have the following lemma:
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Lemma 1. Let D be a reduced divisor and ψ a purely inseparable map on C with

ψ(P∞) = P∞. Then ψ(D) is also reduced and we can take

fn,ψ(D) ◦ ψ = f
deg(ψ)
n,D .

So, the important step to define the hyperelliptic Ate pairing on G1×G2 is to construct
the purely inseparable map ψ, such that: (1). ψ(D) = [qi]D, D ∈ G1. (2). G2 is fixed
under ψ. To give such map ψ, we will use twist curve and reconsider the representation
of the group G2.

Let C be a hyperelliptic curve over Fq and r|#JC(Fq) be a large prime. k is the
embedding degree. C ′ is the degree d twist of C. There is an isomorphism

[·] : µd → Aut(C) : ξ → [ξ].

The action of [ξ] on C and JC will be presented later on the concrete curve. Set
m = gcd(k, d), e = k/m. Since k is the minimal value such that r divides qk− 1, then
the group JC(Fqe) has order divisible by r, but not r2. C has a degree d twist, so,
there is a unique degree m twist C0 of C over Fqe such that r|#JC0(Fqe) (Actually,
when k = d, C0 is also the degree me = d twist of C over Fq, i.e., C0 = C ′). [ξm]
defines an automorphism on C0, so on JC0(Fqe). Therefor, we have

JC0(Fqe) ' Ker([ξm]πe − 1).

Define ψ = [ξm]πe and

G2 = JC [r] ∩Ker([ξm]πe − 1).

Since

Ker(π − 1) ∩Ker([ξm]πe − 1) = P∞,

so, π acts as multiplication by q on G2. ψ = [ξm]πe acts as identity on G2, therefor,
[ξm] acts as multiplication by q−e on G2. Since JC [r] = G1 ×G2 and [ξm] has degree
1, we conclude that [ξm] acts as multiplication by qe on G1, i.e., for D1 ∈ G1, we have

[ξm]D1 = [qe]D1.

Now, for D1 ∈ G1 = JC [r] ∩Ker(π − [1]) and D2 ∈ G2 = JC [r] ∩Ker([ξm]πe − 1),
we can compute

e(D1, D2) = fqk,D1
(D2)
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as follows:

fqk,D1
(D2) = fqem,D1(D2)

=

m−1∏

i=0

(fqe,[(qe)i]D1
)q

e(m−i−1)
(D2)

=

m−1∏

i=0

(fqe,[[ξm]i]D1
◦ [ξm]i ◦ πei)(D2)

=

m−1∏

i=0

fqe,D1(D2)
qeiqe(m−i−1)

= fqe,D1(D2)
∑m−1

i=0 qeiqe(m−i−1)

= fqe,D1(D2)
mqe(m−1)

This means that fqe,D1(D2) defines a non-degenerate, bilinear pairing, we called
the hyperelliptic twisted Ate pairing. Note that, if qe is not modular r, then the final
exponentiation in the hyperelliptic twisted Ate pairing is not needed.

To sum up, we have the following theorem about hyperelliptic twisted Ate pairing.

Theorem 2. Let C be a hyperelliptic curve over Fq which has a degree d twisted

curve C ′ and r|#JC(Fq) be a large prime. Let k be the embedding degree and m =
gcd(k, d), e = k/m. Let G1 = JC [r] ∩ Ker(π − [1]) and G2 = JC [r] ∩ Ker(π − [q]) =
JC [r] ∩Ker([ξm]πe − 1), then

t(D1, D2) = fqe,D1(D2)

with D1 ∈ D1 and D2 = ρ(D2) such that supp(D1)∩supp(D2) = ∅, defines a non-

degenerate, bilinear pairing called the hyperelliptic twisted Ate pairing. Furthermore,

the relation with the reduced Tate-Lichtenbaum pairing is as follows:

e(D1, D2) = t(D1, D2)
∑m−1

i=0 qeiqe(m−i−1)
= t(D1, D2)

mqe(m−1)
.

Like the case in elliptic curve [21], we can generalize hyperelliptic Ate and twisted
Ate pairing to generalized Ate and twisted Ate pairing.

Theorem 3. For G1 = JC [r] ∩Ker(π − [1]) and G2 = JC [r] ∩Ker(π − [q]), then

f(q mod r),D2
(D1)

qk
−1
r

f(qe mod r),D1
(D2)

qk
−1
r

are still pairings , called them Optimised hyperelliptic Ate and twisted Ate pairings.
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Proof . Assume that q = lr + w, i.e., w = q mod r, then we have

fq,D2 = flr+w,D2

= flr,D2 · fw,D2 ·GlrD2,wD2

= f lr,D2
· fw,D2 ·GO,wD2

Note that we define GO,wD2(D1) = 1, so,

fq,D2(D1)
qk

−1
r = (f lr,D2

(D1)fw,D2(D1))
qk

−1
r = e(D2, D1)

lfw,D2(D1)
qk

−1
r

Therefor,

f(q mod r),D2
(D1)

qk
−1
r

is still a pairing.
Similar proof can be used to the twisted Ate pairing case. �

Theorem 4. For G1 = JC [r] ∩Ker(π − [1]) and G2 = JC [r] ∩Ker(π − [q]),

f(qi mod r),D2
(D1)

qk
−1
r

and

f(qei mod r),D1
(D2)

qk
−1
r

are all still pairing, called the generalized hyperelliptic Ate pairing and generalized

hyperelliptic twisted Ate pairing, respectively.

These generalized hyperelliptic Ate and twisted Ate pairing should need the final
exponentiation to obtain the unique pairing value.

All of these variants have a common goal, namely to make the length of the loop
in Miller’s algorithm as small as possible.

In the practice, we will consider the evaluation os f(P∞). Using the same approach
in [8], let u∞ be a fixed Fq-rational uniformizer at P∞, then for any function f ∈
Fq(C)∗ we define lc∞(f) to be the leading coefficient of f as a Laurent series in u∞.
So when f is defined at P∞ we have f(P∞) = lc∞(f) independent of the uniformizer
chosen. Using Magma[16], we can verify that these pairings are all bilinear.

The first example of pairing-friendly genus 2 curves with ordinary Jacobians was
given by D. Freeman [6]. However, the parameters for these curves are not very
attractive for fast pairing implementation, the size of r is too small compared with the
size of q, it is q ≈ r4. Kawazoe and Takahashi [13] presented two different approaches
for explicitly constructing pairing- friendly genus 2 curves of the type y2 = x5 + ax
over prime field. Even Kawazoe et al.’s genus 2 curves are much better than Freeman’s
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construction, because p ≈ r2(some one can achieve to p ≈ r3/2), but the hyperelliptic
Ate pairing on these curves is still no any advantage than Tate pairing although
hyperelliptic Ate pairing is no final exponentiation. This is why we should consider
Theorem 3 currently.

However, when we use the twist curve, the optimised hyperelliptic twisted Ate
pairing will be comparable with Tate pairing. We use some curves presented in [13] to
construct hyperelliptic twisted Ate pairing and generalized hyperelliptic twisted Ate
pairing.

Consider the hyperelliptic curve

C : y2 = x5 + 13x

over Fq, where
q = 2669983802997210222084850526785640020780789525915521898198107208
80440889507772121638755455925409.
From [13], we know that #JC(Fq) has a prime factor

r = 730750819774027608217118960060276298985251336001,

and the embedding degree k = 8. As discussed in Section 3, this curve has a twist
with degree 8:

C ′ : y2 = x5 + 13λx, (x, y)→ (λ
1
4x, λ

5
8 y)

Here λ ∈ Fp is not l-th power residue in Fq, for l ∈ {1, 2, 4, 8}.
As presented in [4], [ξ] : P = (x, y)→ [ξ](P ) = (ζ2

8x, ζ8y) ( ζ8 ∈ Fp is a primitive 8-
th root of unity) is an automorphism of curve C, it induces an efficient automorphism
of order 8 on JC as follows:

[ξ] : [x2 + u1x+ u0, v1x+ v0]→ [x2 + ζ2
8u1x+ ζ4

8u0, ζ
−1
8 v1x+ ζ8v0]

[x+ u0, v0]→ [x+ ζ2
8u0, ζ8v0]

[O]→ [O]

So, we have k = 8, d = 8,m = gcd(k, d) = 8, e = k/m = 1, and the hyperelliptic
twisted Ate pairing is defined as

t(D1, D2) = fq,D1(D2),

here D1 ∈ G1 = JC [r] ∩ Ker(π − [1]) and D2 ∈ G2 = JC [r] ∩Ker(π − [q]) = JC [r] ∩
Ker([ξ]π − 1). It is easy to compute that q3 mod r = 1099511628193 ≈ r1/ϕ(8), so
the generalized hyperelliptic twisted Ate pairing tAte3 is defined as

tAte3(D1, D2) = fq3 mod r,D1
(D2)

qk
−1
r = f1099511628193,D1 (D2)

qk
−1
r .
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This generalized hyperelliptic twisted Ate pairing has a miller loop of length of r1/ϕ(8).
We also consider another curve in [13],

C : y2 = x5 + 2x

over Fq, where

q = 444292483637841082598410015665493978083277385484222711267571600830352907
and r = 1467186828927128936514540199634172027208104690001.

k = 24, d = 8,m = gcd(k, d) = 8, e = k/m = 3. It is easy to compute that
q11 mod r = 1049085 ≈ r1/ϕ(24), so the generalized hyperelliptic Ate pairing Ate3 is
defined as

Ate11(D2, D1) = f1049085,D2(D1)
qk

−1
r .

For these known pairing-friendly hyperelliptic curves, the minimal value of q i

mod r is as small as ≈ r1/ϕ(k). Therefore, the generalized hyperelliptic Ate pairing
and twisted Ate pairing which have the minimal of qi mod r can be computed more
efficient than the original Ate pairing. When the embedding degree k of pairing-
friendly hyperelliptic curve equals to the twist degree d, and the minimal value of q i

mod r is as small as ≈ r1/ϕ(k), then the generalized hyperelliptic twisted Ate pairing
tAtei will be most efficient in Tate pairing, Ate pairing and generalized hyperelliptic
Ate and twisted Ate pairings.

5 Weil Pairing Computation using Twisted Ate Pairing

The Weil pairing is defined to be a non-degenerate bilinear map

ew(·, ·) : JC(Fqk)[r]× JC(Fqk)[r]→ µr,

which

ew(D1, D2) = (−1)r
fr,D1(D2)

fr,D2(D1)
.

The Weil pairing computation does not need the final exponentiation while it involves
two Miller iteration loops. In this section, we investigate how to speed up the Weil
pairing computations with twisted curve. Similar to the Ate pairing, the new variants
based on the Weil pairing are proposed with short Miller iteration loops. Computing
the new variants of the Weil pairing maybe the fastest than computing all the known
pairings under some certain conditions.

For qej, let q(ej)a − 1 = Lr, r2 - q(ej)a − 1. Define qejr = qej mod r
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Theorem 5.
f
qej
r ,D1

(D2)

f
qej
r ,D2

(D1)

is a fixed power of Weil pairing, called twisted Weil pairing.

Proof . From

ew(D1, D2) = (−1)r
fr,D1(D2)

fr,D2(D1)

gcd(L, q(ej)a − 1) = 1, we have

fr,D1
(D2)

fr,D2
(D1) = (

fr,D1(D2)

fr,D2(D1)
)L·(L

−1 mod r)

= (
fLr,D1(D2)

fLr,D2(D1)
)(L

−1 mod r)

= (
fq(ej)a−1,D1

(D2)

fq(ej)a−1,D2
(D1)

)(L
−1 mod r)

= (
fq(ej)a,D1

(D2)

fq(ej)a,D2
(D1)

)(L
−1 mod r)

= (
fqej ,D1

(D2)

fqej ,D2
(D1)

)aq
(ej)(a−1) ·(L−1 mod r)

= (
f
lr+qej

r ,D1
(D2)

f
lr+qej

r ,D2
(D1)

)aq
(ej)(a−1)·(L−1 mod r)

= (
flr,D1(D2)

flr,D2(D1)

f
qej
r ,D1

(D2)

f
qej
r ,D2

(D1)
)aq

(ej)(a−1) ·(L−1 mod r)

= (ew(D1, D2)
l ·
f
qej
r ,D1

(D2)

f
qej
r ,D2

(D1)
)aq

(ej)(a−1) ·(L−1 mod r)

So, we have

f
qej
r ,D1

(D2)

f
qej
r ,D2

(D1)
= ew(D1, D2)

c

Here c = L · (aq(ej)(a−1))−1 − l mod r. �

For example, we consider the curve in Section 4, C : y2 = x5+13x over Fq, and k =
8, d = 8,m = gcd(k, d) = 8, e = k/m = 1, when j = 3, q3 mod r = 1099511628193
≈ r1/ϕ(8), then the twisted Weil pairing can be defined as

tw(D1, D2) =
f1099511628193,D1 (D2)

f1099511628193,D2 (D1)
.



14

In [22], Zhao and Zhang discussed the twisted Weil pairing in elliptic curve case.
Because the degree d of twists of ordinary elliptic curves over Fq, Char(Fq) ≥ 5 only
2, 3, 4, 6 are possible [19], the minimal value of (qi mod r) or (qei mod r) is only
as small as r1/2. In this case, the computation cost of fqei mod r,Q(P ) is lager than
the computation of final exponentiation. So, the Miller loop of twisted Weil pairing is
only half of that required for the Weil pairing and it is clear that the elliptic twisted
Weil pairing is computed slower than other pairings, such as Tate pairing and Ate
pairing, etc.

The Miller loop length of hyperelliptic Ate pairing only can be up to g times
shorter than for the Tate pairing. For some big genus curves with very high degree
twists , we can have ϕ(d) > 2g(Note that many of the computational assumptions in
pairing based cryptography can be solved in subexponential time, hence it may not
be necessary to restrict to very small genus g), then the twisted Weil pairing has more
shorter Miller loop length, and therefor faster than hyperelliptic Ate pairing. For a
very special case that t = qj mod r ≈ r1/ϕ(k)=r1/ϕ(d) is very small, then computing
ft,D2(D1) maybe faster than the computation of the final exponentiation, in this case,
computing the twisted Weil pairing maybe faster than computing Tate pairing and
Ate pairing etc. all the known pairings.

6 Conclusion

In this paper we show that the twisted Ate pairing on elliptic curves can be generalized
to hyperelliptic curves, we also give a series of variations of the hyperelliptic Ate and
twisted Ate pairings. Using the hyperelliptic Ate pairing and twisted Ate pairing,
we propose a new approach to speed up the Weil pairing computation, and obtain
an interested result: For some hyperelliptic curves with high degree twist, computing
the Weil pairing using this approach maybe the fastest in computing all the known
pairings.

Acknowledgements

I am grateful to Xibin Lin for helpful discussions and his implementation.

References
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