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Abstract

We consider the problem of building robust fuzzy extractors, which allow two parties holding
similar random variables W , W ′ to agree on a secret key R in the presence of an active adversary.
Robust fuzzy extractors were defined by Dodis et al. in Crypto 2006 to be noninteractive, i.e.,
only one message P , which can be modified by an unbounded adversary, can pass from one party
to the other. This allows them to be used by a single party at different points in time (e.g.,
for key recovery or biometric authentication), but also presents an additional challenge: what
if R is used, and thus possibly observed by the adversary, before the adversary has a chance
to modify P . Fuzzy extractors secure against such a strong attack are called post-application
robust.

We construct a fuzzy extractor with post-application robustness that extracts a shared secret
key of up to (2m− n)/2 bits (depending on error-tolerance and security parameters), where n
is the bit-length and m is the entropy of W . The previously best known result, also of Dodis et
al., extracted up to (2m− n)/3 bits (depending on the same parameters).

1 Introduction

Consider the following scenario. A user Charlie has a secret w that he wants to use to encrypt and
authenticate his hard drive. However, w is not a uniformly random key; rather, it is a string with
some amount of entropy from the point of view of any adversary A. Naturally, Charlie uses an
extractor [NZ96], which is a tool for converting entropic strings into uniform ones. An extractor
Ext is an algorithm that takes the entropic string w and a uniformly random seed i, and computes
R = Ext(w; i) that is (almost) uniformly random even given i.

It may be problematic for Charlie to memorize or store the uniformly random R (this is in
contrast to w, which can be, for example, a long passphrase already known to Charlie, his biometric,
or a physical token, such as a physical one-way function [PRTG02]). Rather, in order to decrypt
the hard drive, Charlie can use i again to recompute R = Ext(w; i). The advantage of storing i
rather than R is that i need not be secret, and thus can be written, for example, on an unencrypted
portion of the hard drive.

Even though the storage of i need not be secret, the authenticity of i is very important. If A
could modify i to i′, then Charlie would extract some related key R′, and any guarantee on the
integrity of the hard drive would vanish, because typical encryption and authentication schemes do
not provide any security guarantees under related-key attacks. To authenticate i, Charlie would
need to use some secret key, but the only secret he has is w.
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This brings us to the problem of building robust extractors: ones in which the authenticity of the
seed can be verified at reconstruction time. A robust extractor has two procedures: a randomized
Gen(w), which generates (R,P ) such that R is uniform even given P (think of P as containing the
seed i as well as some authentication information), and Rep(w,P ′), which reproduces R if P ′ = P
and outputs ⊥ with high probability for an adversarially produced P ′ 6= P .

Note that in the above scenario, the adversary A, before attempting to produce P ′ 6= P , gets to
see the value P and how the value R is used for encryption and authentication. Because we want
robust fuzzy extractors to be secure for a wide variety of applications, we do not wish to restrict
how R is used and, therefore, what information about R is available to A. Rather, we will require
that A has low probability of getting Rep(w,P ′) to not output ⊥ even if A is given both P and R.
This strong notion of security is known as post-application robustness.

An additional challenge may be that the value w when Gen is run is slightly different from the
value w′ available when Rep is run: for example, the user may make a typo in a long passphrase,
or a biometric reading may differ slightly. Extractors that can tolerate such differences and still
reproduce R exactly are called fuzzy [DORS08]. Fuzzy extractors are obtained by adding error-
correcting information to P , to enable Rep to compensate for errors in w ′. The specific constructions
depend on the kinds of errors that can occur (e.g., Hamming errors, edit distance errors, etc.).

Robust (fuzzy) extractors are useful not only in the single-party setting described above, but also
in interactive settings, where two parties are trying to derive a key from a shared (slightly different
in the fuzzy case) secret w that either is nonuniform or about which some limited information is
known to the adversary A. One party, Alice, can run Gen to obtain (R,P ) and send P to the
other party, Bob, who can run Rep to also obtain R. However, if A is actively interfering with
the channel between Alice and Bob and modifying P , it is important to ensure that Bob detects
the modification rather than derives a different key R′. Moreover, unless Alice can be sure that
Bob truly received P before she starts using R in a communication, post-application robustness is
needed.

Prior Work. Fuzzy extractors, defined in [DORS08], are essentially the noninteractive variant
of privacy amplification and information reconciliation protocols, considered in multiple works,
including [Wyn75, BBR88, Mau93, BBCM95]. Robust (fuzzy) extractors, defined in [BDK+05,
DKRS06], are the noninteractive variant of privacy amplification (and information reconciliation)
secure against active adversaries [Mau97, MW97, Wol98, MW03, RW03, RW04].

Let the length of w be n and the entropy of w be m. Post-application robust fuzzy extractors
cannot extract anything out of w if m < n/2, because an extractor with post-application robustness
implies an information-theoretically secure message authentication code (MAC) with w as the
key1, which is impossible if m < n/2 (see [DS02] for impossibility of deterministic MACs if m <
n/2 and its extension by [Wic08] to randomized MACs). Without any set-up assumptions, the
only previously known post-application robust extractor, due to [DKRS06], extracts R of length
2
3(m − n/2 − log 1

δ ) (or even less if R is required to be very close to uniform), where δ is the
probability that the adversary violates robustness. Making it fuzzy further reduces the length of R
by an amount related to the error-tolerance. (With set-up assumptions, one can do much better:
the construction of [CDF+08] extracts almost the entire entropy m, reduced by an amount related
to security and, in the fuzzy case, to error-tolerance. However, this construction assumes that a
nonsecret uniformly random string is already known to both parties, and that the distribution on

1The MAC is obtained by extracting R, using it as a key to any standard information-theoretic MAC (e.g., [WC81]),
and sending P along with the tag to the verifier
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w, including adversarial knowledge about w, is independent of this string.)

Our Results. The robust extractor construction of [DKRS06] is parameterized by a value v that
can be decreased in order to obtain a longer R. In fact, as shown in [DKRS06], a smaller v can be
used for pre-application robustness (a weaker security notion, in which A gets P but not R). We
show in Theorem 2 that the post-application-robustness analysis of [DKRS06] is essentially tight,
and if v is decreased, the construction becomes insecure.

Instead, in Section 3, we propose a new construction of an extractor with post-application
robustness that extracts R of length m− n/2− log 1

δ , improving the previous result by a factor of
3/2 (more if R is required to be very close to uniform). While this is only a constant-factor increase,
in scenarios where secret randomness is scarce it can make a crucial difference. Like [DKRS06], we
make no additional set-up assumptions. Computationally, our construction is slightly more efficient
than the construction of [DKRS06]. Our improved robust extractor translates into an improved
robust fuzzy extractor using the techniques of [DKRS06], with the same factor of 3/2 improvement.

In addition, we show (in Section 3.2) a slight improvement for the pre-application robust version
of the extractor of [DKRS06], applicable when the extracted string must be particularly close to
uniform.

2 Preliminaries

Notation. For binary strings a, b, a||b denotes their concatenation, |a| denotes the length of a. For
a binary string a, for we denote by [a]ji , the substring b = aiai+1 . . . aj . If S is a set, x← S means
that x is chosen uniformly from S. If X is a probability distribution (or a random variable), then
x← X means that x is chosen according to distribution X. If X and Y are two random variables,
then X × Y denotes the product distribution (obtained by sampling X and Y independently). All
logarithms are base 2.

Random Variables, Entropy, Extractors. Let Ul denote the uniform distribution on {0, 1}l.
Let X1, X2 be two probability distributions over some set S. Their statistical distance is

SD (X1, X2)
def

= max
T⊆S
{Pr[X1 ∈ T ]− Pr[X2 ∈ T ]} =

1

2

∑

s∈S

∣∣∣∣Pr
X1

[s]− Pr
X2

[s]

∣∣∣∣

(they are said to be ε-close if SD (X1, X2) ≤ ε). We will use the following lemma on statistical
distance that was proven in [DKRS08]:

Lemma 1. For any joint distribution (A,B) and distributions C and D over the ranges of A and
B respectively, if SD ((A,B), C ×D) ≤ α, then SD((A,B), C ×B) ≤ 2α.

Min-entropy. The min-entropy of a random variable W is H∞(W ) = − log(maxw Pr[W = w])
(all logarithms are base 2, unless specified otherwise). Following [DORS08], for a joint distribution
(W,E), define the (average) conditional min-entropy of W given E as

H̃∞(W | E) = − log( E
e←E

(2−H∞(W |E=e)))

(here the expectation is taken over e for which Pr[E = e] is nonzero). A computationally unbounded
adversary who receives the value of E cannot find the correct value of W with probability greater

than 2−
eH∞(W |E). We will use the following lemma from [DORS08]:
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Lemma 2. Let A,B,C be random variables. If B has at most 2λ possible values, then the fol-
lowing holds: H̃∞(A|B,C) ≥ H̃∞((A,B)|C) − λ ≥ H̃∞(A|C) − λ. In particular, H̃∞(A|B) ≥
H∞((A,B))− λ ≥ H∞(A)− λ.

Because in this paper the adversary is sometimes assumed to have some external information
E about Alice and Bob’s secrets, we need the following variant, defined in [DORS08, Definition 2],
of the definition of strong extractors of [NZ96]:

Definition 1. Let Ext : {0, 1}n → {0, 1}l be a polynomial time probabilistic function that uses r
bits of randomness. We say that Ext is an average-case (n,m, l, ε)-strong extractor if for all pairs
of random variables (W,E) such that w ∈ W is an n-bit string and H̃∞(W | E) ≥ m, we have
SD ((Ext(W ;X), X,E), (Ul , X,E)) ≤ ε, where X is the uniform distribution over {0, 1}r .

Any strong extractor can be made average-case with a slight increase in input entropy [DORS08,
Section 2.5]. We should note that some strong extractors, such as universal hash functions [CW79,
HILL99] discussed next, generalize without any loss to average-case.

The Leftover Hash Lemma We first recall the notion of universal hashing [CW79]:

Definition 2. A family of efficient functions H =
{
hi : {0, 1}n → {0, 1}`

}
i∈I

is universal if for all

distinct x, x′ we have Pri←I [hi(x) = hi(x
′)] ≤ 2−l.

H is pairwise independent if for all distinct x, x′ and all y, y′ it holds that Pri∈I [hi(x) = y ∧
hi(x

′) = y′] ≤ 2−2`. ♦

Lemma 3 (Leftover Hash Lemma, average-case version [DORS08]). For `,m, ε > 0, H
is a strong (m, ε) average-case extractor (where the index of the hash function is the seed to the
extractor) if H is universal and ` ≤ m + 2− 2 log 1

ε .

This Lemma easily generalizes to the case when H is allowed to depend on the extra information
E about the input X. In other words, every function in H takes an additional input e, and the
family H is universal for every fixed value of e.

Secure Sketches and Fuzzy Extractors. We start by reviewing the definitions of secure
sketches and fuzzy extractors from [DORS08]. Let M be a metric space with distance function
dis (we will generally denote by n the length of each element in M). Informally, a secure sketch
enables recovery of a string w ∈ M from any “close” string w ′ ∈ M without leaking too much
information about w.

Definition 3. An (m, m̃, t)-secure sketch is a pair of efficient randomized procedures (SS,SRec)
s.t.:

1. The sketching procedure SS on input w ∈ M returns a bit string s ∈ {0, 1}∗. The recovery
procedure SRec takes an element w′ ∈M and s ∈ {0, 1}∗.

2. Correctness: If dis(w,w′) ≤ t then SRec(w′,SS(w)) = w.

3. Security: For any distribution W over M with min-entropy m, the (average) min-entropy
of W conditioned on s does not decrease very much. Specifically, if H∞(W ) ≥ m then
H̃∞(W | SS(W )) ≥ m̃.

The quantity m− m̃ is called the entropy loss of the secure sketch. ♦
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In this paper, we will construct a robust fuzzy extractor for the binary Hamming metric using se-
cure sketches for the same metric. We will briefly review the syndrome construction from [DORS08,
Construction 3] that we use (see also references therein for its previous incarnations). Consider an
efficiently decodable [n, n− k, 2t+1] linear error-correcting code C. The sketch s = SS(w) consists
of the k-bit syndrome w with respect to C. We will use the fact that s is a (deterministic) linear
function of w and that the entropy loss is at most |s| = k bits in the construction of our robust
fuzzy extractor for the Hamming metric.

We note that, as was shown in [DKRS06], the secure sketch construction for the set difference
metric of [DORS08] can be used to extend the robust fuzzy extractor construction in the Hamming
metric to the set difference metric.

While a secure sketch enables recovery of a string w from a close string w ′, a fuzzy extractor
extracts a close-to-uniform string R and allows the precise reconstruction of R from any string w ′

close to w.

Definition 4. An (m, `, t, ε)-fuzzy extractor is a pair of efficient randomized procedures (Gen,Rep)
with the following properties:

1. The generation procedure Gen, on input w ∈M, outputs an extracted string R ∈ {0, 1}` and
a helper string P ∈ {0, 1}∗. The reproduction procedure Rep takes an element w ′ ∈ M and
a string P ∈ {0, 1}∗ as inputs.

2. Correctness: If dis(w,w′) ≤ t and (R,P )← Gen(w), then Rep(w′, P ) = R.

3. Security: For any distribution W overM with min-entropy m, the string R is close to uniform
even conditioned on the value of P . Formally, if H∞(W ) ≥ m and (R,P ) ← Gen(W ), then
we have SD ((R,P ), U` × P ) ≤ ε. ♦

Note that fuzzy extractors allow the information P to be revealed to an adversary without
compromising the security of the extracted random string R. However, they provide no guarantee
when the adversary is active. Robust fuzzy extractors defined (and constructed) in [DKRS06]
formalize the notion of security against active adversaries. We review the definition below.

If W,W ′ are two (correlated) random variables over a metric space M, we say dis(W,W ′) ≤ t
if the distance between W and W ′ is at most t with probability one. We call (W,W ′) a (t,m)-pair
if dis(W,W ′) ≤ t and H∞(W ) ≥ m.

Definition 5. An (m, `, t, ε)-fuzzy extractor has post-application (resp., pre-application) robustness
δ if for all (t,m)-pairs (W,W ′) and all adversaries A, the probability that the following experiment
outputs “success” is at most δ: sample (w,w′) from (W,W ′); let (R,P ) = Gen(w); let P̃ = A(R,P )
(resp., P̃ = A(P )); output “success” if P̃ 6= P and Rep(w′, P̃ ) 6=⊥. ♦

We note that the above definitions can be easily extended to give average-case fuzzy extractors
(where the adversary has some external information E correlated with W ), and that our construc-
tions satisfy those stronger definitions, as well.

3 The New Robust Extractor

In this section we present our new extractor with post-application robustness. We extend it to
a robust fuzzy extractor in Section 5. Our approach is similar to that of [DKRS06]; a detailed
comparison is given in Section 4.
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Starting point: key agreement secure against a passive adversary. Recall that a strong
extractor allows extraction of a string that appears uniform to an adversary even given the presence
of the seed used for extraction. Therefore, a natural way of achieving key agreement in the errorless
case is for Alice to pick a random seed i for a strong extractor and send it to Bob (in the clear).
They could then use R = Ext(w; i) as the shared key. As long as the adversary is passive, the
shared key looks uniform to her. However, such a protocol can be rendered completely insecure
when executed in the presence of an active adversary because A could adversarially modify i to
i′ such that R′ extracted by Bob has no entropy. To prevent such malicious modification of i we
will require Alice to send an authentication of i (along with i) to Bob. In our construction, we
authenticate i using w as the key and then extract from w using i as the seed. Details follow.

Construction. For the rest of the paper we will let w ∈ {0, 1}n. We will assume that n is
even (if not, drop one bit of w, reducing its entropy by at most 1). To compute Gen(w), let a

be the first half of w and b the second: a = [w]
n/2
1 , b = [w]nn/2+1. View a,b as elements of F2n/2 .

Let v = n −m + log 1
δ , where δ is the desired robustness. Choose a random i ∈ F2n/2 . Compute

y = ia + b. Let σ consist of the first v bits of y and the extracted key R consist of the rest of y:

σ = [y]v1, R = [y]
n/2
v+1. Output P = (i, σ).

Gen(w):

1. Let a = [w]
n/2
1 , b = [w]nn/2+1

2. Select a random i← F2n/2

3. Set σ = [ia + b]v1, R = [ia + b]
n/2
v+1 and output P = (i, σ)

Rep(w,P ′ = (i′, σ′)):

1. Let a = [w]
n/2
1 , b = [w]nn/2+1

2. If σ′ = [i′a + b]v1 then compute R′ = [i′a + b]
n/2
v+1 else output ⊥

Theorem 1. Let M = {0, 1}n. Setting v = n/2 − `, the above construction is an (m, `, 0, ε) −
fuzzy extractor with robustness δ, for any m, `, ε, δ satisfying ` ≤ m − n/2 − log 1

δ as long as m ≥
n/2 + 2 log 1

ε .

If ε is so low that the constraint m ≥ n/2 + 2 log 1
ε is not satisfied, then the construction can

be modified as shown in Section 3.1.

Proof. Extraction. Our goal is to show that R is nearly uniform given P . To do so, we first show
that the function hi(a, b) = (σ,R) is a universal hash family. Indeed, for (a, b) 6= (a′, b′) consider

Pr
i

[hi(a, b) = hi(a
′, b′)] = Pr

i
[ia + b = ia′ + b′]

= Pr
i

[i(a− a′) = (b− b′)]

≤ 2−n/2 .

To see the last inequality recall that (a, b) 6= (a′, b′). Therefore, if a = a′, then b 6= b′ making the
Pri[i(a− a′) = (b− b′)] = 0. If a 6= a′, then there is a unique i = (b− b′)/(a− a′) that satisfies the
equality. Since i is chosen randomly from F2n/2 , the probability of the specific i occurring is 2−n/2.
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Because |(R, σ)| = n/2, Lemma 3 gives us SD
(
(R,P ), U|R| × U|P |

)
≤ ε/2 as long as n/2 ≤

m + 2 − 2 log 2
ε , or, equivalently, (R,P ) is 2(n/2−m)/2−1-close to U|R| × U|P |. Applying Lemma 1

to A = R, B = P , C = Un
2
−v, D = Un

2
× Uv, we get that (R,P ) is ε-close to U( n

2
)−v × P , for

ε = 2(n/2−m)/2. From here it follows that for extraction to be possible, m ≥ n/2 + 2 log 1
ε .

Post-Application Robustness. In the post-application robustness security game, the adversary
A on receiving (P = (i, σ), R) (generated according to procedure Gen) outputs P ′ = (i′, σ′), and is
considered successful if (P ′ 6= P ) ∧ [i′a + b]v1 = σ′. In our analysis, we will assume that i′ 6= i. We
claim that this does not reduce A’s success probability. Indeed, if i′ = i then, for P ′ 6= P to hold,
A would have to output σ′ 6= σ. However, when i′ = i, Rep would output ⊥ unless σ′ = σ.

In our analysis, we allow A to be deterministic. This is without loss of generality since we allow
an unbounded adversary. We also allow A to arbitrarily fix i. This makes the result only stronger
since we demonstrate robustness for a worst-case choice of i.

Since i is fixed and A is deterministic, (σ,R) determines the transcript tr = (i, σ,R, i ′, σ′). For
any particular tr, let Succtr be the event that the transcript is tr and A wins, i.e., that ia + b =
σ||R ∧ [i′a + b]v1 = σ′. We denote by Badtr the set of w = a||b that make Succtr true. For any tr,
Prw[Succtr] ≤ |Badtr|2

−m, because each w in Badtr occurs with probability at most 2−m. We now
partition the set Badtr into 2` disjoint sets, indexed by R′ ∈ {0, 1}`:

BadR′

tr

def

= {w |w ∈ Badtr ∧ [i′a + b]`v+1 = R′}

= {w | (ia + b = σ||R) ∧ (i′a + b = σ′||R′)}

For a particular value of (tr, R′), w = a||b is uniquely determined by the constraints that define
the above set Therefore, |BadR′

tr | = 1. Since Badtr =
⋃

R′∈{0,1}` BadR′

tr , we get |Badtr| ≤ 2` = 2n/2−v.
From here it follows that

Pr[Succtr] ≤ |Badtr|2
−m ≤ 2n/2−v−m .

Pr[Succtr] measures the probability that the transcript is tr and A succeeds. To find out the
probability that A succeeds, we need to simply add Pr[Succtr] over all possible tr. Since a transcript
is completely determined by σ,R, the total number of possible transcripts is 2 |σ|+|R| = 2n/2 and,
therefore, A’s probability of success is at most 2n−v−m.

To achieve δ-robustness, we need to set v to at least n−m + log 1
δ . From here it follows that

` = n
2 − v ≤ 1

2 (2m− n− 2 log 1
δ ).

3.1 Getting Closer to Uniform

If ε is so low that the constraint m ≥ n/2 + 2 log 1
ε is not satisfied, then in our construction we can

simply shorten R by β = n/2+2 log 1
ε −m bits, as follows: keep v = n−m+log 1

δ (regardless of `),

and let R = [ia+ b]`+v
v+1, for any ` ≤ 2m−n− log 1

δ − 2 log 1
ε . This keeps σ the same, but shortens R

enough for the leftover hash lemma to work. The proof remains essentially the same, except that

to prove robustness, we will give the remaining bits [ia + b]
n/2
`+v+1 for free to A.

3.2 Improving the construction of [DKRS06] When the Uniformity Constraint
Dominates

The construction of Dodis et al. [DKRS06] parses w as two strings a and b of lengths n− v and v,
respectively. The values σ,R are computed as σ = [ia]v1 + b and R = [ia]nv+1; P = (i, σ). In order to
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get R to be uniform given P , the value v is increased until the leftover hash lemma can be applied
to (R, σ). However, we observe that this unnecessarily increases the length of σ (i.e., for every bit
added to v, two bits are subtracted from R). Instead, we propose to improve this construction
with essentially the same technique as we use for our construction in Section 3.1. The idea is to
simply shorten R without increasing the length of σ. This improvement applies to both pre- and
post-application robustness.

For post-application robustness, suppose the uniformity constraint dominates, i.e., 2 log 1
ε >

(2m − n + log 1
δ )/3. Modify the construction of [DKRS06] by setting v = (2n −m + log 1

δ )/3 and

R = [ia]n−v−β
v+1 , where β = 2 log 1

ε − (2m − n − log 1
δ )/3. This will result in an extracted key of

length ` = (4m − 2n− log 1
δ )/3 − 2 log 1

ε . However, even with the improvement, the extracted key
will be always shorter than the key extracted by our scheme, as explained in Section 4.2

In contrast, this improvement seems useful in the case of pre-application robustness. Again, sup-
pose the uniformity constraint dominates, i.e., 2 log 1

ε > log 1
δ . Modify the construction of [DKRS06]

by setting v = n−m + log 1
δ and R = [ia]n−v−β

v+1 , where β = 2 log 1
ε − log 1

δ . This will result in an
extracted key of length ` = 2m − n − 2 log 1

ε − log 1
δ , which is 2 log 1

ε − log 1
δ longer than the key

extracted without this modification.

4 Comparison with the construction of [DKRS06]

4.1 When the Robustness Constraint Dominates

Recall that the construction of Dodis et al. [DKRS06] parses w as two strings a and b of lengths
n−v and v, respectively. The values σ,R are computed as σ = [ia]v1 +b and R = [ia]nv+1; P = (i, σ).
Notice that, like in our construction, increasing v improves robustness and decreases the number
of extracted bits. For pre-application robustness, setting v = n−m + log 1

δ suffices, and thus the
construction extracts nearly (2m−n) bits. However, for post-application robustness, a much higher
v is needed, giving only around 1

3 (2m− n) extracted bits.
The post-application robustness game reveals more information to A about w than the pre-

application robustness game. This additional information—namely, R—may make it easier for A
to guess σ′ for a well-chosen i′. The key to our improvement is in the pairwise independence of the
function ia + b that computes both σ and R: because of pairwise independence, the value (σ,R) of
the function on input i tells A nothing about the value (σ ′, R′) on another input i′. (This holds, of
course, for uniformly chosen key (a, b); when (a, b) has entropy m, then A can find out n−m bits
of information about σ′.)

In contrast, in the construction of [DKRS06], only σ is computed using a pairwise independent
hash function. This works well (in fact, better than our construction, because b can be shorter)
for pre-application robustness, where A does not find out R. But it makes it possible for R to
decrease A’s uncertainty about σ′ by as much as ` = |R|, thus necessitating the length v of σ ′ (and
hence σ) to be v > ` + (n − m) (the (n −m) term is the amount of entropy already potentially
“missing” from σ′ because of the nonuniformity of w). See Section 4.3 for a detailed description of
an adversarial strategy that utilizes R to obtain σ ′ in the [DKRS06] construction.

Another way to see the differences between the two constructions is through the proof. In the
proof of post-application robustness, the transcript tr includes R, which makes for 2` times more
transcripts than in the proof of pre-application robustness. However, the fact that this R imposes an
additional constraint of w, thus reducing the size of the set Badtr, can compensate for this increase.
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It turns out that for the construction of [DKRS06], this additional constraint can be redundant
if the adversary is clever about choosing i′ and σ′, and the size of Badtr doesn’t decrease. Using
a pairwise-independent function for computing R in our construction ensures that this additional
constraint decreases the size of Badtr by 2`. Thus, our construction achieves the same results for
pre- and post-application robustness.

4.2 When the Uniformity Constraint Dominates

It should be noted that there may be reasonable cases when the uniformity constraint ε on R
is strong enough that the construction of [DKRS06] extracts even fewer bits, because it needs
to take v ≥ n − m + 2 log 1

ε to ensure near-uniformity of R given P . In that case, as long as
m ≥ n/2+2 log 1

ε , our construction will extract the same amount of bits as before, thus giving it an
even bigger advantage. And when m < n/2+2 log 1

ε , our construction still extracts at least 3/2 times
more bits than the construction of [DKRS06], even with the improvement of Section 3.2 applied
(this can be seen by algebraic manipulation of the relevant parameters for the post-application
robustness case).

4.3 Why the construction of [DKRS06] cannot extract more bits

Recall that the robust fuzzy extractor of [DKRS06] operates as follows: parse w as two strings a, b
of lengths n− v, v respectively and compute σ = [ia]v1 + b and R = [ia]nv+1; P = (i, σ).

For post-application robustness, the concern is that R can reveal information to the adversary
about σ′ for a cleverly chosen i′. Because the length of σ′ is v and ` + (n−m) bits of information
about σ′ may be available (the ` term comes from |R|, and (n − m) term comes from the part
of w which has no entropy), this leads to the requirement that v ≥ ` + n − m + log 1

δ to make
sure the adversary has to guess at least log 1

δ bits about σ′. Plugging in ` = n − 2v, we obtain
` ≤ 2

3(m− n/2− log 1
δ ), which is the amount extracted by the construction.

Here we show an adversarial strategy that indeed utilizes R to obtain information about σ ′ to
succeed with probability δ/2. This demonstrates that the analysis in [DKRS06] is tight up to one
bit. To do so we have to fix a particular (and somewhat unusual) representation of field elements.
(Recall that any representation of field elements works for constructions here and in [DKRS06],
as long as addition of field elements corresponds to the exclusive-or of bit strings.) Typically,
one views F2n−v as F2[x]/(p(x)) for some irreducible polynomial p of degree n − v, and rep-
resents elements as F2-valued vectors in the basis (xn−v−1, xn−v−2, ..., x2, x, 1). We will do the
same, but will reorder the basis elements so as to separate the even and the odd powers of x:
(xn−v−1, xn−v−3, . . . , x, xn−v−2, xn−v−4, . . . , 1) (assuming, for concreteness, that n−v is even). The
advantage of this representation for us is that the top half of bits of some value z ∈ F2n−v is equal
to the bottom half of the bits of z/x, as long as the last bit of z is 0.

Now suppose the distribution on w is such that the top n −m bits of b are 0 (the rest of the
bits of w are uniform). Then by receiving σ and R, the adversary gets to see the top ` + (n−m)
bits of ia. Therefore, the adversary knows ` +(n−m) bits from the bottom half of ia/x as long as
the last bit of ia is 0, which happens with probability 1/2. To use this knowledge, the adversary
will simply ensure that the difference between σ ′ and σ is [ia/x]v1, by letting i′ = i + i/x.

Thus, the adversarial strategy is as follows: let i′ = i + i/x; let τ consist of the ` bits of R,
the top n −m bits of σ, and log 1

δ = v − ` − (n −m) randomly guessed bits, and let σ ′ = σ + τ .
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The adversary wins whenever τ = [ia/x]v1, which happens with probability 2v−`−(n−m)/2 = δ/2,
because all but log 1

δ bits of τ are definitely correct as long as the last bit of ia is 0.
The above discussion gives us the following result.

Theorem 2. There exists a basis for GF (2n−v) such that for any integer m there exists a dis-
tribution W of min-entropy m for which the post-application robustness of the construction from
[DKRS06, Theorem 3] can be violated with probability at least δ/2, where v is set as required for
robustness δ by the construction (i.e., v = (n− `)/2 for ` = (2m− n− 2 log 1

δ )/3).

Note that our lower bound uses a specific representation of field elements, and hence does not
rule out that for some particular representation of field elements, a lower value of v and, therefore,
a higher value of ` is possible. However, a security proof for a lower value of v would have to then
depend on the properties of that particular representation and would not cover the construction
of [DKRS06] in general.

5 Tolerating Binary Hamming Errors

We now consider the scenario where Bob has a string w ′ that is close to Alice’s input w (in the
Hamming metric). In order for them to agree on a random string, Bob would first have recover w
from w′. To this end, Alice could send the secure sketch s = SS(w) to Bob along with (i, σ). To
prevent an undetected modification of s to s′, she could send an authentication of s (using w as the
key) as well. The nontriviality of making such an extension work arises from the fact that modifying
s to s′ also gives the adversary the power to influence Bob’s verification key w∗ = SRec(w′, s′). The
adversary could perhaps exploit this circularity to succeed in an active attack (the definition of
standard authentication schemes only guarantee security when the keys used for authentication
and verification are the same).

We break this circularity by exploiting the algebraic properties of the Hamming metric space,
and using authentication secure against algebraic manipulation [DKRS06, CDF+08]. The tech-
niques that we use are essentially the same as used in [DKRS06], but adapted to our construction.
We present the construction here and then discuss the exact properties that we use in the proof of
security.

Construction. LetM be the Hamming metric space on {0, 1}n. Let W be a distribution of min-
entropy m over M. Let s = SS(w) be a deterministic, linear secure sketch; let |s| = k, n ′ = n− k.
Assume that SS is a surjective linear function (which is the case for the syndrome construction for
the Hamming metric mentioned in Section 2). Therefore, there exists a k × n matrix S of rank k
such that SS(w) = Sw. Let S⊥ be an n′× n matrix such that n× n matrix

(
S

S⊥

)
has full rank. We

let SS⊥(w) = S⊥(w).
To compute Gen(w), let s = SS(w), c = SS⊥(w); |c| = n′. We assume that n′ is even (if

not, drop one bit of c, reducing its entropy by at most 1). Let a be the first half of c and b
the second. View a, b as elements of F2n′/2 . Let L = 2d k

n′ e (it will important for security that
L is even). Pad s with 0s to length Ln′/2, and then split it into L bit strings sL−1, . . . , s0 of
length n′/2 bits each, viewing each bit string as an element of F2n′/2 . Select i ← F2n′/2 . Define
fs,i(x) = xL+3 + x2(sL−1x

L−1 + sL−2x
L−2 + · · · + s0) + ix. Set σ = [fs,i(a) + b]v1, and output

P = (s, i, σ) and R = [fs,i(a) + b]
n′/2
v+1 .
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Gen(w):

1. Set s = SS(w), c = SS⊥(w), k = |s|, n′ = |c|.

- Let a = [c]
n′/2
1 , b = [c]n

′

n′/2+1

- Let L = 2d k
n′ e. Pad s with 0s to length Ln′/2.

- Parse the padded s as sL−1||sL−2|| . . . ||s0 for si ∈ F2n′/2 .
2. Select i← F2n′/2 .

3. Set σ = [fs,i(a) + b]v1, and output R = [fs,i(a) + b]
n′/2
v+1 and P = (s, i, σ).

Rep(w′, P ′ = (s′, i′, σ′)):
1. Compute w∗ = SRec(w′, s′)

- Verify that dis(w∗, w′) ≤ t and SS(w∗) = s′. If not, output ⊥.

2. Let c′ = SS⊥(w∗). Parse c′ as a′||b′.
3. Compute σ∗ = [fs′,i′(a

′) + b′]v1.

- Verify that σ∗ = σ′. If so, output R = [fs′,i′(a
′) + b′]

n′/2
v+1 , else output ⊥.

In the theorem statement below, let B denote the volume of a Hamming ball or radius t in
{0, 1}n (log B ≤ nH2(t/n) [MS77, Chapter 10, §11, Lemma 8] and log B ≤ t log(n + 1) [DKRS06]).

Theorem 3. Assume SS is a deterministic linear (m,m − k, t)−secure sketch of output length
k for the Hamming metric on {0, 1}n. Setting v = (n − k)/2 − l, the above construction is an
(m, l, t, ε) fuzzy extractor with robustness δ for any m, l, t, ε satisfying l ≤ m − n/2 − k − log B −

log
(
2
⌈

k
n−k

⌉
+ 2

)
− log 1

δ as long as m ≥ 1
2 (n + k) + 2 log 1

ε .

Again, if m < 1
2(n + k) + 2 log 1

ε , the construction can be modified, as shown in Section 5.1.

Proof. Extraction. Our goal is to show that R is nearly uniform given P = (i, s, σ). To do so,
we first note that for every s, the function hi(c) = (σ,R) is a universal hash family. Indeed for
c 6= c′ there is a unique i such that hi(c) = hi(c

′) (since i(a− a′) is fixed, like in the errorless case).
We also note that H̃∞(c | SS(W )) ≥ H̃∞(c,SS(W )) − k = H∞(W ) − k = m − k by Lemma 2.
Because |(R, σ)| = n′/2, Lemma 3 (or, more precisely, its generalization mentioned in the paragraph
following the lemma, needed here because hi depends on s) gives us

SD
(
(R,P ), U|R| × SS(W )× Un′/2 × Uv

)
≤ ε/2

for n′/2 ≤ m− k + 2− 2 log(2/ε). This is equivalent to saying that (R,P ) is 2(n′/2−m+k) 1

2
−1-close

to U|R| × SS(W )× Un′/2 × Uv.
Applying Lemma 1 to A = R, B = P , C = Un′/2−v, D = SS(w)×Un′/2×Uv, we get that (R,P )

is ε-close to Un′

2
−v
× P , for ε = 2( n′

2
−m+k)/2.

From here it follows that for extraction to be possible, m ≥ 1
2(n + k) + 2 log 1

ε .

Post-Application Robustness. In the post-application robustness security game, the adversary
A on receiving (P = (s, i, σ), R) (generated according to procedure Gen) outputs P ′ = (s′, i′, σ′),
and is considered successful if (P ′ 6= P ) ∧ Rep(w′, s′) 6= ⊥. In our analysis, we will assume that
(i′, s′) 6= (i, s). We claim that this does not reduce A’s success probability. Indeed, if (i ′, s′) = (i, s)
then, c′ computed within Rep will equal c. So, for P ′ 6= P to hold, A would have to output σ′ 6= σ.
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However, when (i′, c′, s′) = (i, c, s), Rep would compute σ∗ = σ, and therefore would output ⊥
unless σ′ = σ.

In our analysis, we allow A to be deterministic. This is without loss of generality since we allow
an unbounded adversary. We also allow A to arbitrarily fix i. This makes the result only stronger
since we demonstrate robustness for a worst-case choice of i.

Since i is fixed and A is deterministic, the tr = (i, s, σ,R, i′, s′, σ′) is determined completely by
(s, σ,R). Recall that the prime challenge in constructing a robust fuzzy extractor was that A could
somehow relate the key used by Rep to verify σ ′ to the authentication key that was used by Gen to
come up with σ. As was done in [DKRS06], we will argue security of our construction by showing
that the MAC scheme implicitly used in our construction remains unforgeable even when A could
force the verification key to be at an offset (of her choice) from the authentication key. We will
formalize such an argument by assuming that A learns ∆ = w ′ −w. Recall that w∗ = SRec(w′, s′)
and c′ = a′||b′ = SS⊥(w∗). The following claim that was proven in [DKRS06] states that given
(∆, s), A can compute the offsets ∆a = a′ − a,∆b = b′ − b induced by her choice of s′.

Claim 1. Given ∆ = w′ − w, and the sketches s, s′,A can compute ∆a = a′ − a and ∆b = b′ − b,
or determine that Rep will reject before computing a′, b′.

In other words, she can compute the offset between the authentication key that Gen used to
come up with σ and the verification key that Rep will use to verify σ ′. We will now argue that as
long as W has sufficient min-entropy, even knowing the offset does not help A succeed in an active
attack. Recall that since i is arbitrarily fixed by A, A’s success depends on w,w ′, or, alternatively,
on w,∆. Fix some ∆. For any particular tr, let Succtr,∆ be the event that the transcript is tr and
A wins, i.e., that fs,i(a) + b = σ||R∧ [fs′,i′(a

′) + b′]v1 = σ′ ∧ SS(w) = s, conditioned on the fact that
w′ −w is ∆. We denote by Badtr,∆ the set of w that make Succtr,∆ true. We now partition the set
Badtr,∆ into 2` disjoint sets, indexed by R′ ∈ {0, 1}`:

BadR′

tr,∆
def

= {w |w ∈ Badtr,∆ ∧ [fs′,i′(a
′) + b′]`v+1 = R′}

= {w | (fs,i(a) + b = σ||R) ∧ (fs′,i′(a
′) + b′ = σ′||R′) ∧ SS(w) = s}.

By Claim 1, fixing (tr,∆), also fixes ∆a,∆b. It follows that every w ∈ BadR′

tr,∆ needs to satisfy

fs,i(a)− fs′,i′(a + ∆a) = (∆b + σ − σ′)||(R −R′) ∧ SS(w) = s.

For a given tr,∆, R′, the right hand side of the first equation takes a fixed value. Let us now focus
on the polynomial fs,i(a)− fs′,i′(a + ∆a). We will consider two cases:

• ∆a = 0: In this case, fs,i(x) − fs′,i′(x) is a polynomial in which a coefficient of degree 2 or
higher is nonzero if s 6= s′ and a coefficient of degree 1 or higher is nonzero if i 6= i′.

• ∆a 6= 0: Observe that the leading term of the polynomial is ((L+3) mod 2)∆ax
L+2. Since we

forced L to be even, the coefficient of the leading term is nonzero, making fs,i(x)−fs′,i′(x+∆a)
a polynomial of degree L + 2.

Therefore, in either case, the fs,i(x)− fs′,i′(x + ∆a) is a nonconstant polynomial of degree at most
L + 2. A nonconstant polynomial of degree d can take on a fixed value at most d times. It,
therefore, follows that there are at most L + 2 values of a such that fs,i(a) − fs′,i′(a + ∆a) =
(∆b + σ − σ′)||(R −R′). Each such a uniquely determines b = (σ||R) − fs,i(a). And w is uniquely
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determined by c = a||b = SS⊥(w) and s = SS(w). Therefore, there are at most L + 2 values of
w in the set BadR′

tr,∆ i.e, |BadR′

tr,∆| ≤ L + 2. Since Badtr,∆ =
⋃

R′∈{0,1}` BadR′

tr,∆, we get |Badtr,∆| ≤

(L + 2)2` = (L + 2)2n′/2−v. Thus, Prw[Succtr,∆] ≤ |Badtr|2
−H∞(w|∆) ≤ (L + 2)2n′/2−v−H∞(w|∆).

To find out the probability Prw[Succ∆] that A succeeds conditioned on a particular ∆, we need
to add up Prw[Succtr,∆] over all possible transcripts. Recalling that each transcript is determined
by σ,R and s and hence there are 2n′/2+k of them, and that n′ + k = n, we get Prw[Succ∆] ≤
(L + 2)2n−v−H∞(w|∆).

Finally, the probability of adversarial success it at most

E
∆

Pr
w

[Succ∆] ≤ (L + 2)2n−v− eH∞(w|∆) .

In particular, if the errors ∆ are independent of w, then H̃∞(w|∆) = H∞(w) = m, and the
probability of adversarial success is at most (L + 2)2n−v−m. In the worst case, however, the
entropy of w may decrease at most by the number of bits needed to represent ∆. Let B be the
volume of the hamming ball of radius t in {0, 1}n. Then, ∆ can be represented in log B bits and
H̃∞(w|∆) ≥ m− log B, by Lemma 2. From here it follows that

Pr[A′s success] ≤ B(L + 2)2n−v−m

To achieve δ−robustness, we want B(L+2)2n−v−m ≤ δ i.e., v ≥ n−m+log B +log(L+2)+ log 1
δ .

Setting v = n−m + log B + log(L + 2) + log 1
δ , and using L = 2d k

n−k e it follows that

` ≤ m− n/2− k − log B − log

(
2

⌈
k

n− k

⌉
+ 2

)
− log 1

δ .

5.1 Getting Closer to Uniform

If ε is so low that m ≥ 1
2(n + k) + 2 log 1

ε does not hold, we can modify our construction just
as we did in section 3.1, by shortening R by β = 1

2(n + k) + 2 log 1
ε − m. That is, keep v =

n−m + log B + log(L + 2) + log 1
δ fixed and let R = [fs,i(a) + b]`+v

v+1, where ` ≤ n/2− v − β.
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