
FPGA AND ASIC IMPLEMENTATIONS OF THE ηT PAIRINGS IN CHARACTERISTIC THREE 1

FPGA and ASIC Implementations of the ηT Pairing
in Characteristic Three

Jean-Luc Beuchat, Hiroshi Doi, Kaoru Fujita, Atsuo Inomata, Akira Kanaoka, Masayoshi Katouno, Masahiro
Mambo, Eiji Okamoto, Takeshi Okamoto, Takaaki Shiga, Masaaki Shirase, Ryuji Soga, Tsuyoshi Takagi, Ananda

Vithanage, and Hiroyasu Yamamoto

Abstract— Since their introduction in constructive crypto-
graphic applications, pairings over (hyper)elliptic curves are at
the heart of an ever increasing number of protocols. As they rely
critically on efficient algorithms and implementations of pairing
primitives, the study of hardware accelerators became an active
research area.

In this paper, we propose two coprocessors for the reduced
ηT pairing introduced by Barreto et al. as an alternative means
of computing the Tate pairing on supersingular elliptic curves.
We prototyped our architectures on FPGAs. According to our
place-and-route results, our coprocessors compare favorably with
other solutions described in the open literature. We also present
the first ASIC implementation of the reduced ηT pairing.

Index Terms— Tate pairing, ηT pairing, elliptic curve cryptog-
raphy, finite field arithmetic, hardware accelerator, FPGA, ASIC.

I. INTRODUCTION

In the mid-nineties, Menezes, Okamoto & Vanstone [2] and
Frey & Rück [3] introduced the Weil and Tate pairings in
cryptography as a tool to attack the discrete logarithm problem
on some classes of elliptic curves defined over finite fields. A
few years later, Mitsunari, Sakai & Kasahara [4], Sakai, Oghishi
& Kasahara [5], and Joux [6] discovered constructive properties
of pairings. Their respective works initiated an extensive study
of pairing-based cryptography, and an ever increasing number of
protocols based on the Weil or Tate pairings have appeared in the
literature: identity-based encryption [7], short signature [8], and
efficient broadcast encryption [9] to mention but a few. As noticed
by Dutta, Barua & Sarkar [10], such protocols rely critically on
efficient algorithms and implementations of pairing primitives.

J.-L. Beuchat, A. Kanaoka, M. Mambo, and E. Okamoto are with the
Graduate School of Systems and Information Engineering, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.

H. Doi is with the Graduate School of Information Security, Institute
of Information Security, 2-14-1 Tsuruya-cho Kanagawa-ku, Yokohama 221-
0835, Japan.

K. Fujita, M. Katouno, R. Soga, and H. Yamamoto are with FDK Mod-
ule System Technology Corporation, 1 Kamanomae, Kamiyunagaya-machi,
Jyoban, Iwaki-shi, Japan.

A. Inomata is with the Graduate School of Information Science, Nara
Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-
0192, Japan.

T. Okamoto is with the Department of Computer Science, Tsukuba Uni-
versity of Technology, 4-12-7 Kasuga, Tsukuba, Ibaraki, 305-8521, Japan.

T. Shiga and A. Vithanage are with FDK Corporation, 1 Kamanomae,
Kamiyunagaya-machi, Jyoban, Iwaki-shi, Japan.

M. Shirase and T. Takagi are with the School of Systems Information
Science, Future University-Hakodate, 116-2 Kamedanakano-cho, Hakodate,
Hokkaido, 041-8655, Japan.

This work was supported by the New Energy and Industrial Technology
Development Organization (NEDO), Japan. This paper is an extended version
of [1].

According to [11], [12], when dealing with general curves
providing common levels of security, the Tate pairing seems to
be more efficient for computation than the Weil pairing. In 1986,
Miller described the first iterative algorithm to compute the Tate
pairing [13], [14]. Significant improvements were independently
proposed by Barreto et al. [15] and Galbraith et al. [16] in 2002.
One year later, Duursma & Lee gave a closed formula in the
case of characteristic three [17]. In 2004, Barreto et al. [18]
introduced the ηT approach, which further shortens the loop of
Miller’s algorithm.

This paper is devoted to the design of hardware accelerators
for the ηT pairing in characteristic three. Section II provides the
reader with a brief overview of pairing computation. As detailed
in that section, the considered pairing algorithm relies heavily
on arithmetic over F36m , a degree-6 extension of the base field
of the curve. However, thanks to a tower field representation, all
operations over F36m can be replaced by arithmetic over F3m . We
explain how to take advantage of this tower field and describe
arithmetic operators over F3m in Section III. We then propose
two hardware accelerators for the ηT pairing (Section IV). We
prototyped our architectures on FPGA and proposed the first
ASIC implementation of the ηT pairing in characteristic three.
Section V summarizes our implementation results on FPGA and
ASIC, and provides the reader with a comprehensive comparison
against previously published architectures.

II. COMPUTATION OF THE MODIFIED TATE PAIRING IN

CHARACTERISTIC THREE

Given a positive integer m coprime to 6, we consider a
supersingular1 elliptic curve E over F3m , defined by the equation
y2 = x3 − x + b, with b ∈ {−1, 1}. According to [18], there
is no loss of generality from considering this case since these
curves offer the same level of security for pairing applications as
any supersingular elliptic curve over F3m . The number of rational
points of E over the finite field F3m is given by N = #E(F3m) =

3m + 1 + µb3
m+1

2 , with

µ =


+1 if m ≡ 1, 11 (mod 12), or
−1 if m ≡ 5, 7 (mod 12).

A. Modified Tate Pairing

Let ` be the largest prime factor of N . E(F3m)[`] denotes the
`-torsion subgroup of E(F3m), i.e. the set of points P ∈ E(F3m)

such that [`]P = O, where O is the point at infinity of the elliptic
curve E. The modified Tate pairing is a function that takes as

1See for instance Theorem V.3.1 in [19] for a definition.



FPGA AND ASIC IMPLEMENTATIONS OF THE ηT PAIRINGS IN CHARACTERISTIC THREE 2

input two points of E(F3m)[`] and outputs an element of the
group of `th roots of unity µ`.

The embedding degree or security multiplier is the least positive
integer k for which µ` is contained in the multiplicative group
F∗3km (i.e. k is the smallest integer such that ` divides 3km − 1,
and µ` = {R ∈ F∗3km : R` = 1}). The considered curve has
an embedding degree of k = 6, which is the maximum value
possible for supersingular elliptic curves, and hence seems to be
an attractive choice for pairing implementation.

The modified Tate pairing of order ` is then the map

ê(·, ·) : E(F3m)[`]× E(F3m)[`]→ F∗36m

given by

ê(P,Q) = f`,P (ψ(Q))(3
6m−1)/`,

where

• ψ is a distortion map (the concept of a distortion map
was introduced in [20]) from E(F3m)[`] to E(F36m)[`] \
E(F3m)[`] defined as (ψ(xQ, yQ) = (ρ − xQ, yσ) for all
Q = (xQ, yQ) ∈ E(F3m)[`], where ρ and σ are elements
of F36m satisfying the equations ρ3 − ρ − b = 0 and
σ2 + 1 = 0 [15]. Note that {1, σ, ρ, σρ, ρ2, σρ2} is a basis
of F36m over F3m . We will therefore represent an element
R ∈ F36m as R = r0 + r1σ + r2ρ + r3σρ + r4ρ

2 + r5σρ
2,

where the ri’s belong to F3m .
• fn,P , for n ∈ N and P ∈ E(F3m)[`] is a rational function

defined over E(F36m)[`] with divisor (fn,P ) = n(P ) −
([n]P ) − (n − 1)(O) (see [19] or [21] for an account
of divisors). We consider here the definition proposed by
Barreto et al. [15], where fn,P is evaluated on a point rather
than on a divisor.

• f`,P (ψ(Q)) is only defined up to `th powers, which is
undesirable in most of the cryptographic applications. The
powering by (36m−1)/`, referred to as final exponentiation,
allows one to obtain a unique value in a multiplicative
subgroup of F∗36m .

Choosing an order of low Hamming weight provides computa-
tional savings in Miller’s algorithm. However, ` being a quotient
of N by a small cofactor, it does not have a small Hamming
weight. Galbraith et al. [16] noted that one can compute the
modified Tate pairing of order ` with respect to the group order
N (note that N divides 36m − 1):

f`,P (ψ(Q))(3
6m−1)/` = fN,P (ψ(Q))(3

6m−1)/N .

In the following, M denotes the final exponent of the modified
Tate pairing of order N :

M =
36m − 1

N

=
“
33m − 1

” `
3m + 1

´ “
3m + 1− µb3

m+1
2

”
.

The modified Tate pairing satisfies the following properties:

• Bilinearity. For all Q, R, S ∈ F3m [`],

ê(Q+R,S) = ê(Q,S)ê(R,S) and

ê(Q,R+ S) = ê(Q,R)ê(Q,S).

• Non-degeneracy. ê(P, P ) 6= 1, for all P 6= O.
• Computability. ê can be efficiently computed.

B. The Duursma-Lee Approach

Duursma & Lee [17] proposed to compute the order 33m + 1

modified Tate pairing (note that ` divides 33m+1). This approach
simplifies both Miller’s algorithm and the final exponentiation2.
Furthermore, Duursma & Lee showed that the number of it-
erations of Miller’s algorithm can be reduced from 3m to m

iterations [17].

C. The ηT Approach

Barreto et al. introduced the ηT pairing as “an alternative
means of computing the Tate pairing on certain supersingluar
curves” [22]. They suggest to compute ê(P,Q) using an order
T ∈ Z that is smaller than N . Their main result is a lemma
which gives a method to select T such that ηT (P,Q)M is a
non-degenerate bilinear pairing [18]. In characteristic three they
choose T = 3m−N = −µb3

m+1
2 −1 and show that their method

gives a further halving of the length of the loop compared to the
Duursma & Lee approach. The ηT pairing is defined as follows:

ηT (P,Q) =


fT,P (ψ(Q)) if T > 0, or

f−T,−P (ψ(Q)) if T < 0.
(1)

Defining T ′ = −µbT = 3
m+1

2 + µb and P ′ = [−µb]P , we
rewrite Equation (1) as ηT (P,Q)M = fT ′,P ′(ψ(Q))M . Then,
the techniques proposed by Duursma & Lee [17] allow one to
simplify the computation of fn,P in Miller’s algorithm:

fT ′,P ′(ψ(Q)) =0B@m−1
2Y
i=0

g[3i]P ′(ψ(Q))3
m−1

2 −i

1CA lP ′(ψ(Q)),

where
• gV is the rational function introduced by Duursma &

Lee [17], defined over E(F36m)[`], and having divisor
(gV ) = 3(V ) + ([−3]V ) − 4(O). For all V = (xV , yV ) ∈
E(F3m)[`] and (x, y) ∈ E(F36m)[`], we have

gV (x, y) = y3
V y − (x3

V − x+ b)2.

• lV , for all V = (xV , yV ) ∈ E(F3m)[`], is the equation of the
line corresponding to the addition of

h
3

m+1
2

i
V with [µb]V .

It is defined for all (x, y) ∈ E(F36m)[`]:

lV (x, y) = y − (−1)
m+1

2 yV (x− xV )− µbyV .

As pointed out by Barreto et al. [18], the computation of
fT ′,P ′(ψ(Q)) requires cubings over F36m because of the exponent
3

m−1
2 inside the main product. They suggested to bring the

powering into the formulae as a Frobenius action, or to compute
the product in reverse. Both approaches allow one to replace two
cubings over F3m and one cubing over F36m by two cube roots
over F3m at each iteration. However, the second one turns out to
be slightly more effective since it also saves three multiplications
over F3m when multiplying by lP ′(ψ(Q)) (see [23] for further
details).

Fong et al. showed that extracting a square root in F2m requires
approximately the time of a field multiplication and proposed
an improved scheme for trinomials [24]. Barreto extended this
approach to cube root in characteristic three [25]: if F3m admits

2The exponent is (36m − 1)/(33m + 1) = 33m − 1.



FPGA AND ASIC IMPLEMENTATIONS OF THE ηT PAIRINGS IN CHARACTERISTIC THREE 3

Algorithm 1 Cube-root-free reversed-loop algorithm for comput-
ing the reduced ηT pairing [23].
Input: P,Q ∈ E(F3m)[`].
Output: ηT (P,Q)M ∈ F∗36m .

1. xP ← xP + b;
2. yP ← −µbyP ;

3. xQ ← x3
Q; yQ ← y3

Q;
4. t← xP + xQ;
5. R← (yP t− yQσ − yP ρ) · (−t2 + yP yQσ − tρ− ρ2);

6. for j ← 1 to m−1
2 do

7. R← R3;
8. xQ ← x9

Q − b; yQ ← −y9
Q;

9. t← xP + xQ; u← yP yQ;
10. S ← −t2 + uσ − tρ− ρ2;
11. R← R · S;
12. end for

13. return RM ;

an irreducible trinomial xm+ fnx
n+ f0 (fn, f0 ∈ {−1, 1}) with

the property n ≡ m (mod 3), then five shifts and five additions
allow one to implement this operation. However, these algorithms
restrict the choice of the field where the curve is defined, and it
seems interesting to consider pairing algorithms without inverse
Frobenius maps. Hardware implementations also benefit from
such pairing algorithms: removing the inverse Frobenius maps
allows for the design of simpler arithmetic and logic units. In this
paper, we consider a cube root-free version of the reversed-loop
approach (Algorithm 1). Note that the Duursma-Lee algorithm
also comes in two flavors: the original one involves cube roots
and Kwon proposed a cube root-free version in [26].

The relationship between the modified Tate pairing and the
reduced ηT pairing is given by [27]:

ê(P,Q)M = ηT

“
[−µb]P,

h
3

3m−1
2

i
Q
”M

,

where [−µb]P = (xP ,−µbyP ) and
h
3

3m−1
2

i
Q =“

3
√
xQ − b, (−1)

m+1
2 3
√
yQ

”
. We can modify Algorithm 1

as follows to compute ê(P,Q)M :
• Since (−µb)2 = 1, we remove line 2.
• It is no longer necessary to compute the cube of xQ and yQ

(line 3). We have now xQ ← xQ − b.
• Let x′P = xP + b and x′Q = xQ − b. Since t = x′P + x′Q =

xP + xQ (line 4), we can actually remove lines 1 and 3.
It is worth noticing that we obtain a cube root-free algorithm and
that the modified Tate pairing requires less operations than the
reduced ηT pairing in this case.

D. Final Exponentiation

Fermat’s little theorem provides us with an effective way to
perform the final exponentiation of the reduced ηT pairing. As
pointed out by Barreto et al., “the result of raising to 33m − 1

produces an element of order 33m+1, so that any further inversion
reduces to a simple conjugation” [18, page 248]. The main loop
of Algorithm 1 returns R = ηT (P,Q) ∈ F∗36m . Writing R =

R0 +R1σ, where R0 and R1 ∈ F∗33m , we obtain:

V = R33m−1 =
(R2

0 −R2
1) +R0R1σ

R2
0 +R2

1

,

Algorithm 2 summarizes the computation of the final exponenti-
ation. When µb = −1, the computation of W ′ = W−µb on line 4
is a dummy operation. Let us write W = W0 +W1σ, where W0

and W1 ∈ F∗33m . Since W is an element of order 33m + 1 [18],
the inversion is completely free when µb = 1: W ′ = W−1 =

W0 − σW1. It suffices to propagate the sign corrections in the
product V ·W ′. Whereas the computation of ηT (P,Q) involves
only sparse multiplications over F36m (Algorithm 1, line 11),
the final exponentiation requires a full multiplication over F36m

(Algorithm 2, line 6). Note that:
• The computation of V and W involves only operations over

F33m . Algorithms to compute R33m−1 and V 3m+1 are for
instance detailed in [23].

• ηT (P,Q)3
3m−1 and subsequently ηT (P,Q)M belong to the

torus T2(F33m) = {V0 + V1σ ∈ F∗36m : V 2
0 + V 2

1 = 1}
introduced by Granger et al. for the case of the Tate pairing
in [28].

Algorithm 2 Final exponentiation of the reduced ηT pairing.
Input: R = ηT (P,Q) ∈ F∗36m .
Output: RM ∈ F∗36m .

1. V ← R33m−1;
2. V ← V 3m+1;

3. W ← V 3
m+1

2 ;
4. W ′ ←W−µb;
5. V ← V 3m+1;
6. return V ·W ′;

III. ARITHMETIC OVER F3m AND F36m

Thanks to the tower field representation, all operations over
F36m and F33m in Algorithms 1 and 2 can be replaced by arith-
metic over F3m . For instance, 12 multiplications, 11 additions, and
a single inversion over F3m allow one to carry out the inversion
over F33m involved in the computation of V = R33m−1. In this
paper, we focus on multiplication over F36m and refer the reader
to [23] for further details about other operations.

A. Arithmetic over F3m

In the following, elements of F3m are encoded using a poly-
nomial basis. Given a degree-m irreducible polynomial f(x) ∈
F3[x], we have F3m ∼= F3[x]/(f(x)). Consequently, each element
of F3m is represented as a polynomial of degree less than m with
coefficients in F3.

1) Addition and Subtraction over F3m : Since they are per-
formed component-wise, addition and subtraction over F3m are
rather straightforward operations. Each element of F3 being
encoded by two bits, the addition of ai and bi ∈ F3 on most
of Altera or Xilinx FPGAs requires two 4-input LUTs.

2) Multiplication over F3m : Among the many modular mul-
tipliers described in the open literature (see for instance [29]–
[31]), we selected a Most Significant Element (MSE) first array
multiplier based on Song & Parhi’s work [32] to carry out
a(x)b(x) mod f(x). At step i we compute a degree-(m+D− 2)

polynomial t(x) which is the sum of D partial products: t(x) =PD−1
j=0 aDi+jx

jb(x). A degree-(m + D − 1) polynomial s(x),
updated according to the celebrated Horner’s rule, allows us to
accumulate the partial products:

s(x)← t(x) + xD · (s(x) mod f(x)).



FPGA AND ASIC IMPLEMENTATIONS OF THE ηT PAIRINGS IN CHARACTERISTIC THREE 4

Thus, after dm/De steps, this algorithm returns a degree-(m +

D− 1) polynomial s(x), which is congruent to a(x)b(x) modulo
f(x). The circuit described by Song & Parhi requires dedicated
hardware to compute p(x) = s(x) mod f(x) [32]. We suggest to
achieve the final modulo f(x) reduction by performing an addi-
tional iteration with a−j = 0, 1 ≤ j ≤ D. Since t(x) is now equal
to zero, we have: s(x) = xD · (a(x)b(x) mod f(x)). Therefore,
it suffices to consider the m most significant coefficients of s(x)
to get the result (i.e. p(x) = s(x)/xD). Algorithm 3 summarizes
this multiplication scheme. Figure 1 describes the architecture of
an array multiplier processing D = 3 coefficients at each clock
cycle.

Algorithm 3 MSE multiplication over F3m .
Input: A degree-m irreducible monic polynomial f(x) = xm +

fm−1x
m−1 + . . .+f1x+f0, two degree-(m−1) polynomials

a(x), and b(x). We assume that a−j = 0, 1 ≤ j ≤ D. The
algorithm requires a degree-(m+D− 1) polynomial s(x) as
well as a degree-(m+D−2) polynomial t(x) for intermediate
computations.

Output: p(x) = a(x)b(x) mod f(x).
1. s(x)← 0;
2. for i in dm/De − 1 downto −1 do

3. t(x)←
D−1X
j=0

aDi+jx
jb(x);

4. s(x)← t(x) + xD · (s(x) mod f(x));
5. end for
6. p(x)← s(x)/xD;

÷x3

mod f(x)

×x3

Rst

En

a3i+2

a3i+1

a3i

b(x)

s(x)

p(x)

x3 · (s(x) mod (f(x))

×x ×x2

Fig. 1. MSE array multipliers processing D = 3 coefficients at each clock
cycle. Boxes with rounded corners involve only wiring.

The cost of the modular reduction (line 4) depends on D and
f(x). Assume that f(x) is an irreducible trinomial such that

f(x) = xm+ fnx
n+ f0, where f0 and fn ∈ F3, and 0 < n < m.

We have:

s(x) mod f(x)

=

 
D−1X
i=0

sm+ix
m+i +

m−1X
i=0

six
i

!
mod f(x).

Since xm ≡ −fnxn − f0 (mod f(x)), we note that:

sm+ix
m+i ≡ sm+i(−fnxn − f0)xi (mod f(x)).

In the following, we assume that D ≤ m − n to ensure that the
degree of sm+i(−fnxn − f0)xi, 0 ≤ i ≤ D− 1, is at most equal
to m− 1. Thus, we obtain:

s(x) mod f(x)

=

D−1X
i=0

sm+i(−fnxn − f0)xi +

m−1X
i=0

six
i

= −
D−1X
i=0

sm+ifnx
n+i −

D−1X
i=0

sm+if0x
i +

m−1X
i=0

six
i,

and the modular reduction involves 2D additions (or subtractions)
over F3. When D ≤ n, the degree of xi, 0 ≤ i ≤ D − 1, is
always smaller than the one of xn+i and the modular reduction
requires a single stage of 2-input adders (or subtracters) over F3.
Thus, selecting the parameter D such that D ≤ min(n,m − n)

allows one to achieve the shortest critical path in the case of an
irreducible trinomial.

Let us consider for instance the irreducible trinomial f(x) =

x97 + x12 + 2 (i.e. m = 97, n = 12, f0 = 2, and f12 = 1). Since
−2 is congruent to 1 modulo 3, we have:

s(x) mod f(x)

= −
D−1X
i=0

s97+ix
i+12 +

D−1X
i=0

s97+ix
i +

96X
i=0

six
i.

Figures 2a and 2b describe the circuits performing the modular
reduction when D = 3 and D = 13, respectively. In the first
case, a single stage of 2-input adders allows one to carry out
s(x) mod f(x). However, in the second case, a 2-input adder and
a 2-input subtracter are required to compute s13 + s109 − s97.

3) Cubing over F3m : Let us now consider the computation of
b(x) = a(x)3 over F3m . Cubing over F3m consists in reducing
the following expression modulo f(x):

b(x) = a(x)3 =

 
m−1X
i=0

aix
3i

!
mod f(x).

A formal reduction allows us to express each coefficient bi of the
result as a linear combination of the coefficient of a(x). Therefore,
a cubing operator mainly consists of a D′-operand adder and
some extra wiring to permute the coefficients of a(x). The main
challenge here is to find an irreducible polynomial minimizing
D′.

Let us consider again the irreducible trinomial f(x) = x97 +

x12 + 2. Reducing a(x)3 modulo f(x), we obtain:

b0 = a93 + a89 + a0, b2 = a33,

b1 = a65 − a61, b3 = a94 + a90 + a1,

. . . = . . . , b96 = a32.

The most complex operation involved here is the addition of D′ =
3 elements of F3. Since we consider a cube root-free ηT pairing



FPGA AND ASIC IMPLEMENTATIONS OF THE ηT PAIRINGS IN CHARACTERISTIC THREE 5

s11s15 s97s98s99 s12s13s14

. . .

s3 s2 s1 s0 s97s98s99

s2 s1 s0 s97s98s99s97s98s99 s13s14 s12 s109

. . .

(a) D = 3

. . .

s(x) mod f(x)

. . .

s(x) mod f(x)

(b) D = 13

Fig. 2. Computation of s(x) mod f(x) when f(x) = x97 + x12 + 2 for
(a) D = 3 and (b) D = 13.

algorithm, f(x) = x97 + x12 + 2 is a good candidate: it has a
simple cubing formula and allows one to perform the modulo
f(x) reduction involved in the multiplication over F3m by means
of a single stage of 2-input adders as long as D ≤ 12. However,
if one intends to implement a pairing algorithm with cube roots,
one should consider a further constraint to select an irreducible
trinomial. Barreto noticed that the cost of computing cube roots in
F3m is only O(m) if m ≡ n (mod 3) [25]. Despite of a slightly
more complex cubing formula, f(x) = x97+x16+2 is for instance
a better choice in this case.

4) Inversion over F3m : Since the computation of the reduced
ηT pairing involves a single inversion over F3m in the final
exponentiation, we perform this operation according to Fermat’s
little theorem and Itoh & Tsujii’s algorithm [33]. Thus, inversion
over F3m is carried out by means of cubings and multiplications
over F3m and does not require specific hardware resources.

B. Multiplication over F36m

1) Full Multiplication over F36m : Karatsuba-Ofman’s algo-
rithm allows one to compute the product of two polynomials
belonging to F36m by means of 18 multiplications and 58

additions (or subtractions) over F3m (see for instance [34]).
An improvement was recently proposed by Gorla et al. [35]:
they represented elements of F36m as degree-2 polynomials with
coefficients in F32m and took advantage of Lagrange interpolation
to compute a product over F36m by means of 5 multiplications
over F32m . Each of these multiplications is then carried out
according to Karatsuba-Ofman’s scheme, and the total cost of
a multiplication over F36m is equal to 15 multiplications and 67

additions (or subtractions) over F3m .
2) Sparse Full Multiplication over F36m : Consider now the

computation of the reduced ηT pairing (Algorithm 1), where
each iteration of the loop requires a multiplication over F36m .
As pointed out by Bertoni et al. [36] and Granger et al. [28],
the operand S is sparse (i.e. some of its terms are trivial) and the

product R·S can be computed by means of 13 multiplications and
50 additions (or subtractions) over F3m according to Karatsuba-
Ofman’s scheme. Again, the approach introduced by Gorla et
al. allows one to further reduce the cost of this operation to 12

multiplications and 51 additions (or subtractions) over F3m (see
[23] for details). Two further multiplications are needed to com-
pute yP yQ as well as t2 (a straightforward modification of the
scheduling of Algorithm 1 allows one to evaluate t2, yP yQ, and
R · S in parallel).

In this paper, we focus on parallel architectures featuring
several multipliers. In this context, it seems more interesting to
find a good trade-off between the number of multiplications and
additions, to share registers between multipliers, and to reduce the
number of accesses to memory. Let R = r0 +r1σ+r2ρ+r3σρ+

r4ρ
2 + r5σρ

2 and C = c0 + c1σ+ c2ρ+ c3σρ+ c4ρ
2 + c5σρ

2 be
two elements of F36m . We write each coefficient ci as the sum
of two elements c(0)i and c(1)i ∈ F3m . Thanks to this notation we
define the product C = R · (−t2 + yP yQσ − tρ− ρ2) as follows:

c
(0)
0 = −r4t− r2, c

(1)
0 = −r0t2 − r1yP yQ,

c
(0)
1 = −r5t− r3, c

(1)
1 = r0yP yQ − r1t2,

c
(0)
2 = −r0t− r4 + c

(0)
0 , c

(1)
2 = −r2t2 − r3yP yQ,

c
(0)
3 = −r1t− r5 + c

(0)
1 , c

(1)
3 = r2yP qQ − r3t2,

c
(0)
4 = −r2t− r0 − r4, c

(1)
4 = −r4t2 − r5yP yQ,

c
(0)
5 = −r3t− r1 − r5, c

(1)
5 = r4yP yQ − r5t2.

Note that the computation of the c(0)i ’s, 0 ≤ i ≤ 5, requires six
multiplications over F3m and depends neither on t2 nor on yP yQ.
Thus, we can perform eight multiplications over F3m in parallel
(t2, yP yQ, and rit, 0 ≤ i ≤ 5). Consider now c

(1)
0 and c

(1)
1

and assume that (r0 +r1) and (yP yQ− t2) are stored in registers.
Karatsuba-Ofman’s algorithm allows one to compute c(1)0 and c(1)1
by means of three multiplications and three additions over F3m :

c
(1)
0 = −r0t2 − r1yP yQ,

c
(1)
1 = (r0 + r1)(yP yQ − t2) + r0t

2 − r1yP yQ.

Therefore, the computation of the c(1)i ’s involves nine multiplica-
tions over F3m , which can be carried out in parallel. Algorithm 4
summarizes this multiplication scheme involving 17 multiplica-
tions and 29 additions (or subtractions) over F3m .

In the following, we assume that Algorithm 4 is implemented
on a coprocessor embedding 9 multipliers over F3m . A careful
scheduling allows one to share operands between up to three
multipliers, thus saving hardware resources (Table I): during the
first multiplication cycle, M0, M1, and M2 respectively compute
r0t, r2t, and r4t. The MSE multiplier described in Section III-A.2
stores its first operand in a shift register, and its second operand
in a standard register. Since a shift register is more complex
(an operand is loaded in parallel, and then shifted), we load
the common operand t in this component. At the end of these
multiplications, the three registers still contain r0, r2, and r4.
Therefore it suffices to load t2 in the shift register before starting
the second multiplication cycle. Figure 3a describes the operator
we designed to perform three multiplications with a common
operand. The same architecture allows for computing r1t, r3t,
r5t, r1yP yQ, r3yP yQ, and r5yP yQ. The five remaining multipli-
cations involve a slightly more complex component (Figure 3b):
two shift registers are required to compute t2 and yP yQ since



FPGA AND ASIC IMPLEMENTATIONS OF THE ηT PAIRINGS IN CHARACTERISTIC THREE 6

Algorithm 4 Sparse multiplication over F36m .

Input: R = r0 + r1σ + r2ρ+ r3σρ+ r4ρ
2 + r5σρ

2 ∈ F36m ; t, yP , and yQ ∈ F3m .
Output: C = R · (−t2 + yP yQσ − r0ρ− ρ2).

1. Compute in parallel (8 multiplications and 3 additions over F3m ): pi ← ri · t, 0 ≤ i ≤ 5; p6 ← t · t; p7 ← yP · yQ; s0 ← r0 + r1;
s1 ← r2 + r3; s2 ← r4 + r5;

2. Compute in parallel (7 additions over F3m ):

s3 ← p7 − p6; // yP yQ − t2 c2 ← r4 + p0; // r4 + r0t c4 ← r0 + p2; // r0 + r2t

c0 ← r2 + p4; // r2 + r4t c3 ← r5 + p1; // r5 + r1t c5 ← r1 + p3; // r1 + r3t

c1 ← r3 + p5; // r3 + r5t

3. Compute in parallel (9 multiplications and 4 additions over F3m ):

p8 ← r0 · p6; // r0t
2 p13 ← s1 · s3; // (r2 + r3)(yP yQ − t2) c2 ← c2 + c0;

p9 ← r1 · p7; // r1yP yQ p14 ← r4 · p6; // r4t
2 c3 ← c3 + c1;

p10 ← s0 · s3; // (r0 + r1)(yP yQ − t2) p15 ← r5 · p7; // r5yP yQ c4 ← c4 + r4;

p11 ← r2 · p6; // r2t
2 p16 ← s2 · s3; // (r4 + r5)(yP yQ − t2) c5 ← c5 + r5;

p12 ← r3 · p7; // r3yP yQ

4. Compute in parallel (15 additions over F3m ):

c0 ← −c0 − p8 − p9; c2 ← −c2 − p11 − p12; c4 ← −c4 − p14 − p15;
c1 ← −c1 + p10 + p8 − p9; c3 ← −c3 + p13 + p11 − p12; c5 ← −c5 + p16 + p14 − p15;

there is no common operand. At the end of the first multiplication
cycle, a dedicated subtracter computes yP yQ − t2 and stores the
result in the shift registers.

TABLE I
SPARSE MULTIPLICATION OVER F36m : SCHEDULING.

1st multiplication 2nd multiplication
M0 p0 = r0 · t p8 = r0 · t2
M1 p2 = r2 · t p11 = r2 · t2
M2 p4 = r4 · t p14 = r4 · t2
M3 p1 = r1 · t p9 = r1 · yP yQ

M4 p3 = r3 · t p12 = r3 · yP yQ

M5 p5 = r5 · t p15 = r5 · yP yQ

M6 p6 = t · t p10 = (r0 + r1) · (yP yQ − t2)
M7 p7 = yP · yQ p13 = (r2 + r3) · (yP yQ − t2)
M8 – p16 = (r4 + r5) · (yP yQ − t2)

Consider the additions occurring in the fourth step of Algo-
rithm 4. Interestingly enough, they involve at most one result
of each block of three multipliers (Figure 3). Instead of a large
multiplexer selecting the output of one multiplier among nine, we
include a multiplexer in each block and connect a 3-operand adder
to the outputs of our multiplication units. In order to also take
advantage of these adders while performing a multiplication, each
block of three multipliers has an additional input D1 that allows
for bypassing the multipliers.

IV. HARDWARE IMPLEMENTATION

In this section, we propose two architectures to compute the
reduced ηT pairing for the field F3[x]/(x

97 + x12 + 2) and the
curve y2 = x3 − x + 1 (i.e. b = 1). This choice of parameters
allows us to easily compare our work against the many pairing
accelerators for m = 97 described in the open literature. It is
nonetheless important to note that the architectures and algorithms
presented here can be easily adapted to different parameters.

A. Hardware Accelerator for the Reduced ηT Pairing

Figure 4 describes the architecture of our hardware accelerator
for the ηT pairing calculation. We take advantage of Algorithm 4
to share shift registers between up to three multipliers over F3m

(Figure 3). Inputs and outputs, as well as intermediate results, are
stored in registers implemented using embedded memory blocks
available in the FPGA. The control unit mainly consists of a
ROM containing the microcode of Algorithm 1 and a program
counter. The size of the microcode depends on D: for D = 3,
the initialization step of Algorithm 1 (copy of inputs in registers
of multipliers, and computation of t and yP t) and the main loop
require 47 and 98 clock cycles, respectively. Since m = 97, a
pairing is completed after 47+98·(m−1)/2 = 47+98·49 = 4849

clock cycles.
Since algorithms for multiplications over F33m and F36m do

not share operands between several multipliers, it turns out to
be impossible to take advantage of the full parallelism of our
architecture when performing the final exponentiation (Algo-
rithm 2). Thus, it seems attractive to supplement the ηT pairing
accelerator with dedicated hardware to raise ηT (P,Q) to the
M th power. Beuchat et al. [37] proposed a unified arithmetic
operator performing addition, subtraction, accumulation, cubing,
and multiplication over F3m . When m = 97 and D = 3,
this coprocessor performs the final exponentiation in 4082 clock
cycles. We can therefore pipeline the computation of the ηT
pairing and the final exponentiation. In the following, we assume
that we keep the pipeline full and that we obtain a new result
after 4849 clock cycles (i.e. we neglect the overhead introduced
by our approach to get the first result).

B. A Coprocessor for Arithmetic over F3m

We also investigated a second architecture based on a copro-
cessor for arithmetic over F3m embedding nine multipliers, an
addition unit (able to carry out addition, subtraction, and accumu-
lation), and a cubing unit (Figure 5). Since we implement the main



FPGA AND ASIC IMPLEMENTATIONS OF THE ηT PAIRINGS IN CHARACTERISTIC THREE 7

Rst1

En1

11 10 01 00

L
d3

L
d2

L
d1

L
d0

Sh
ift

D
0

D
1

Sel

Rst0
En0

M0M2 M1 Array
multiplier

Array
multiplier

Array
multiplier

0 10 1

Rst0
En0

M8 M7 M6

Rst1

En1

10 01 00Sel 11

Ld3

Shift

L
d2

L
d1

L
d0

D
1

D
0

(a) (b)

Array
multiplier

Array
multiplier

Array
multiplier

Fig. 3. Building blocks for sparse multiplication over F36m . (a) Three multipliers with a common operand. (b) Two multipliers with a common operand.

1

0

0 1

M0, M1, and M2 M3, M4, and M5 M6, M7, and M8

D0 D1 D2
±D0 ±D1 ±D2

D1 D0 D1 D0 D1 D0

Ctrl

x3
Ctrl

10

IOs

9 multipliers

QA

QB

RAM

AddrA
DA

WenA

AddrB
DB

WenB

Host computer

Control unit

Fig. 4. Architecture of the coprocessor for the ηT pairing calculation.

loop of the reduced ηT pairing and the final exponentiation on the
same hardware, we cannot share shift registers between up to three
multipliers over F3m anymore. The sparse multiplications over
F36m are carried out according to Algorithm 4. Since performing
15 or 18 multiplications over F3m requires the same number of
clock cycles, we implemented the multiplication over F36m of
the final exponentiation according to Karatsuba-Ofman’s scheme
in order to minimize the number of additions over F3m . The
computation of ηT (P,Q) and the final exponentiation require
6560 clock cycles and 2527 clock cycles, respectively.

Addition,
subtraction &
accumulation

. . .

9 multipliers

Register File
(RAM) (FSM & ROM)

Control

Multiplier Cubing unitMultiplier

Fig. 5. Coprocessor for arithmetic over F3m amenable for pairing compu-
tation.

V. RESULTS AND COMPARISONS

Our reduced ηT pairing accelerator and the coprocessor for
arithmetic over F3m were captured in the VHDL language and
prototyped on Altera Cyclone II and Xilinx Virtex-II Pro FPGAs.
Table II summarizes our place-and-route results. We also designed
the first ASIC implementation of the reduced ηT pairing (0.18µm
CMOS technology). Most of the current FPGAs include several
memory blocks which allow one to implement register files at no
extra cost in terms of slices (Xilinx) or Logic Elements (Altera).
This is however not the case when dealing with ASICs and we
selected the coprocessor for arithmetic over F3m to design our
PairingLite chip (Figure 6).

Several processors for the reduced ηT pairing (Table II) and the
modified Tate pairing (Table III) have already been published.
Since ê(P,Q) can be computed from ηT (P,Q)M at almost no
extra cost (Section II-C), we can compare our architectures against
all these results.

To our best knowledge, Jiang [38] designed the fastest ηT
pairing core (Table II). However, our processors achieves a
better area-time trade-off. Additionally, our approach allows for
reaching higher levels of security without risking to exhaust the
FPGA resources. Jiang’s coprocessor already requires one of the
largest FPGAs available now.



FPGA AND ASIC IMPLEMENTATIONS OF THE ηT PAIRINGS IN CHARACTERISTIC THREE 8

Process TSMC CL018G (0.18µm CMOS)
Area 193765 2NAND gates
Frequency 200 MHz
Calculation time 46.7µs
Core size 3849.6µm×3849.6µm
Package TSMC CQFP 100 pin
Operating voltage VDD CORE: 1.8V, VDD IO: 3.3V
Power consumption Total power: 671.739mW
Consumption current Total current: 373.188mA
Temperature conditions 25oC
Output terminal Drive capability 4 mA

Fig. 6. The PairingLite chip.

In order to easily study the trade-off between calculation time
and circuit area, Ronan et al. [39] wrote a C program which
automatically generates a VHDL description of a coprocessor
and its control according to the number of multipliers to be
included and D. The ALU also embeds an adder, a subtracter,
a cubing unit, and an inversion unit. Their fastest architecture
embeds 8 multipliers (D = 4) and is very similar to the hardware
accelerator for the reduced ηT pairing proposed in Section IV-
B. However, since our multipliers process D = 3 coefficients
at each clock cycles and the inversion over F3m is performed
according to Fermat’s little theorem, we achieve a smaller area.
Furthermore, thanks to our sparse multiplication algorithm, we
compute the ηT pairing in 6560 clock cycles, whereas Ronan
et al. need 10089 clock cycles to complete the same task. They
unrolled the exponent M and grouped the inversions together.
Their final exponentiation is therefore much more expensive than
ours: 5440 clock cycles against 2527.

Grabher and Page designed a coprocessor dealing with F3m

arithmetic, which is controlled by a general purpose proces-
sor [40]. Their hardware accelerator embeds a single multiplier
over F3m . Our architecture requires roughly 2.5 times as many
slices, while performing up to nine multiplications in parallel.

VI. CONCLUSION

We proposed two parallel architectures to compute the reduced
ηT pairing in characteristic three and reported the first ASIC
implementation of a pairing accelerator. Our coprocessors take
advantage of a novel sparse multiplication algorithm over F36m .
Instead of minimizing the number of multiplications over F3m ,
we tried to find a good trade-off between the number of multi-
plications and additions over F3m . Our method also allows for
sharing operands between up to three multipliers and reduces the
number of accesses to memory compared to other algorithms.

Future works should include the design of parallel architectures
for the reduced ηT pairing in characteristic two. The wired
multipliers embedded in most of today’s FPGA families should
allow for cheaper and faster multipliers over F2m . The study of the
Ate pairing [48] would also be of interest, for it presents a large
speedup when compared to the Tate pairing and also supports
non-supersingular curves.

REFERENCES

[1] J.-L. Beuchat, M. Shirase, T. Takagi, and E. Okamoto, “An algorithm
for the ηT pairing calculation in characteristic three and its hardware

implementation,” in Proceedings of the 18th IEEE Symposium on Com-
puter Arithmetic, P. Kornerup and J.-M. Muller, Eds. IEEE Computer
Society, 2007, pp. 97–104.

[2] A. Menezes, T. Okamoto, and S. A. Vanstone, “Reducing elliptic
curves logarithms to logarithms in a finite field,” IEEE Transactions
on Information Theory, vol. 39, no. 5, pp. 1639–1646, Sept. 1993.

[3] G. Frey and H.-G. Rück, “A remark concerning m-divisibility and the
discrete logarithm in the divisor class group of curves,” Mathematics of
Computation, vol. 62, no. 206, pp. 865–874, Apr. 1994.

[4] S. Mitsunari, R. Sakai, and M. Kasahara, “A new traitor tracing,” IEICE
Trans. Fundamentals, vol. E85-A, no. 2, pp. 481–484, Feb 2002.

[5] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on
pairing,” in 2000 Symposium on Cryptography and Information Security
(SCIS2000), Okinawa, Japan, Jan. 2000, pp. 26–28.

[6] A. Joux, “A one round protocol for tripartite Diffie-Hellman,” in Al-
gorithmic Number Theory – ANTS IV, ser. Lecture Notes in Computer
Science, W. Bosma, Ed., no. 1838. Springer, 2000, pp. 385–394.

[7] D. Boneh and M. Franklin, “Identity-based encryption from the Weil
pairing,” in Advances in Cryptology – CRYPTO 2001, ser. Lecture Notes
in Computer Science, J. Kilian, Ed., no. 2139. Springer, 2001, pp. 213–
229.

[8] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” in Advances in Cryptology – ASIACRYPT 2001, ser. Lecture
Notes in Computer Science, C. Boyd, Ed., no. 2248. Springer, 2001,
pp. 514–532.

[9] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast
encryption with short ciphertexts and private keys,” in Advances in
Cryptology – CRYPTO 2005, ser. Lecture Notes in Computer Science,
V. Shoup, Ed., no. 3621. Springer, 2005, pp. 258–275.

[10] R. Dutta, R. Barua, and P. Sarkar, “Pairing-based cryptographic proto-
cols: A survey,” 2004, cryptology ePrint Archive, Report 2004/64.

[11] R. Granger, D. Page, and N. P. Smart, “High security pairing-based
cryptography revisited,” in Algorithmic Number Theory – ANTS VII, ser.
Lecture Notes in Computer Science, F. Hess, S. Pauli, and M. Pohst,
Eds., no. 4076. Springer, 2006, pp. 480–494.

[12] N. Koblitz and A. Menezes, “Pairing-based cryptography at high security
levels,” in Cryptography and Coding, ser. Lecture Notes in Computer
Science, N. P. Smart, Ed., no. 3796. Springer, 2005, pp. 13–36.

[13] V. S. Miller, “Short programs for functions on curves,” 1986, available
at http://crypto.stanford.edu/miller.

[14] ——, “The Weil pairing, and its efficient calculation,” Journal of
Cryptology, vol. 17, no. 4, pp. 235–261, 2004.

[15] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Efficient
algorithms for pairing-based cryptosystems,” in Advances in Cryptology
– CRYPTO 2002, ser. Lecture Notes in Computer Science, M. Yung,
Ed., no. 2442. Springer, 2002, pp. 354–368.

[16] S. D. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate
pairing,” in Algorithmic Number Theory – ANTS V, ser. Lecture Notes
in Computer Science, C. Fieker and D. Kohel, Eds., no. 2369. Springer,
2002, pp. 324–337.

[17] I. Duursma and H. S. Lee, “Tate pairing implementation for hyperelliptic
curves y2 = xp − x + d,” in Advances in Cryptology – ASIACRYPT
2003, ser. Lecture Notes in Computer Science, C. S. Laih, Ed., no. 2894.
Springer, 2003, pp. 111–123.

[18] P. S. L. M. Barreto, S. D. Galbraith, C. Ó hÉigeartaigh, and M. Scott,



FPGA AND ASIC IMPLEMENTATIONS OF THE ηT PAIRINGS IN CHARACTERISTIC THREE 9

TABLE II
HARDWARE ACCELERATORS FOR THE ηT PAIRING. THE PARAMETER D REFERS TO THE NUMBER OF COEFFICIENTS PROCESSED AT EACH CLOCK CYCLE

BY A MULTIPLIER.

Curve Technology # multipliers Area
Frequency Calc.
[MHz] time [µs]

Ronan et al. [39] E(F397) Virtex-II Pro 100 5 (D = 4) 10540 slices 84.8 187

8 (D = 4) 15401 slices 84.8 183

Beuchat et al. [27] E(F397) Virtex-II Pro 20 1 (D = 3) 1896 slices 156 178

1 (D = 7) 2711 slices 128 117

1 (D = 15) 4455 slices 105 92

E(F2239) Virtex-II Pro 20 1 (D = 7) 2366 slices 199 196

1 (D = 15) 2736 slices 165 127

1 (D = 31) 4557 slices 123 107

Jiang [38] E(F397) Virtex-4 LX 200 Not specified 74105 slices 77.7 20.9

Coprocessor for the ηT pairing & coprocessor for the final exponentiation
E(F397) Virtex-II Pro 30 9 (D = 3) 10897 slices 147 33

Coprocessor for arithmetic over F3m – PairingLite
FPGA prototype E(F397) Virtex-II Pro 30 9 (D = 3) 10262 slices 142 64

ASIC E(F397) 0.18µm CMOS 9 (D = 3) 193765 NAND 200 46.7

TABLE III
HARDWARE ACCELERATORS FOR THE TATE PAIRING. THE PARAMETER D REFERS TO THE NUMBER OF COEFFICIENTS PROCESSED AT EACH CLOCK

CYCLE BY A MULTIPLIER. THE ARCHITECTURE PROPOSED BY KÖMÜRCÜ & SAVAS [41] DOES NOT IMPLEMENT THE FINAL EXPONENTIATION.
BARENGHI et al. [42] COMPUTE THE TATE PAIRING OVER Fp , WHERE p IS A 512-BIT PRIME NUMBER.

Curve Technology # multipliers Area
Frequency Calc.
[MHz] time [µs]

Keller et al. [43] E(F2251) Virtex-II 6000 1 (D = 6) 3788 slices 40 4900

3 (D = 6) 6181 slices 40 3200

9 (D = 6) 13387 slices 40 2600

Keller et al. [44] E(F2251) Virtex-II 6000 13 (D = 1) 16621 slices 50 6440

13 (D = 6) 21955 slices 43 2580

13 (D = 10) 27725 slices 40 2370

Kerins et al. [34] E(F397) Virtex-II Pro 125 18 (D = 4) 55616 slices 15 850

Kömürcü & Savas [41] E(F397) Virtex-II Pro 4 20 (D = 1) 14267 slices 77.3 250.7

0.25µm CMOS 20 (D = 1) 10 mm2 78 250

Grabher & Page [40] E(F397) Virtex-II Pro 4 1 (D = 4) 4481 slices 150 432.3

Ronan et al. [45] C(F2103) Virtex-II Pro 100 20 (D = 4) 21021 slices 51 206

20 (D = 8) 24290 slices 46 152

20 (D = 16) 30464 slices 41 132

Ronan et al. [46] E(F2313) Virtex-II Pro 100 14 (D = 4) 34675 slices 55 203

14 (D = 8) 41078 slices 50 124

14 (D = 12) 44060 slices 33 146

Shu et al. [47] E(F2239) Virtex-II Pro 100 6 (D = 16), 25287 slices 84 41

1 (D = 4),
1 (D = 2), and
1 (D = 1)

Barenghi et al. [42] E(Fp) Virtex-II 8000 4 (Montgomery) 33857 slices 135 1610

“Efficient pairing computation on supersingular Abelian varieties,” De-
signs, Codes and Cryptography, vol. 42, pp. 239–271, 2007.

[19] J. H. Silverman, The Arithmetic of Elliptic Curves, ser. Graduate Texts
in Mathematics. Springer-Verlag, 1986, no. 106.

[20] E. R. Verheul, “Evidence that XTR is more secure than supersingular
elliptic curve cryptosystems,” Journal of Cryptology, vol. 17, no. 4, pp.
277–296, 2004.

[21] L. C. Washington, Elliptic Curves – Number Theory and Cryptography,
2nd ed. CRC Press, 2008.

[22] C. Ó hÉigeartaigh, “Pairing computation on hyperelliptic curves of
genus 2,” Ph.D. dissertation, Dublin City University, 2006.

[23] J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, M. Shirase, and

T. Takagi, “Algorithms and arithmetic operators for computing the
ηT pairing in characteristic three,” IEEE Transactions on Computers,
vol. 57, no. 11, Nov. 2008, to appear. An extended version is available
as Report 2007/417 of the Cryptology ePrint Archive.

[24] K. Fong, D. Hankerson, J. López, and A. Menezes, “Field inversion
and point halving revisited,” IEEE Transactions on Computers, vol. 53,
no. 8, pp. 1047–1059, Aug. 2004.

[25] P. S. L. M. Barreto, “A note on efficient computation of cube roots in
characteristic 3,” 2004, cryptology ePrint Archive, Report 2004/305.

[26] S. Kwon, “Efficient Tate pairing computation for elliptic curves over
binary fields,” in Information Security and Privacy – ACISP 2005, ser.
Lecture Notes in Computer Science, C. Boyd and J. M. González Nieto,



FPGA AND ASIC IMPLEMENTATIONS OF THE ηT PAIRINGS IN CHARACTERISTIC THREE 10

Eds., vol. 3574. Springer, 2005, pp. 134–145.
[27] J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, and F. Rodrı́guez-

Henrı́quez, “A comparison between hardware accelerators for the modi-
fied Tate pairing over F2m and F3m ,” in Proceedings of Pairing 2008,
ser. Lecture Notes in Computer Science. Springer, 2008, to appear.
An extended version is available as Report 2008/115 of the Cryptology
ePrint Archive.

[28] R. Granger, D. Page, and M. Stam, “On small characteristic algebraic
tori in pairing-based cryptography,” LMS Journal of Computation and
Mathematics, vol. 9, pp. 64–85, Mar. 2006.

[29] J. Guajardo, T. Güneysu, S. Kumar, C. Paar, and J. Pelzl, “Efficient
hardware implementation of finite fields with applications to cryptog-
raphy,” Acta Applicandae Mathematicae, vol. 93, no. 1–3, pp. 75–118,
Sept. 2006.

[30] J.-L. Beuchat, T. Miyoshi, J.-M. Muller, and E. Okamoto, “Horner’s rule-
based multiplication over GF(p) and GF(pn): A survey,” International
Journal of Electronics, 2008, to appear.

[31] S. E. Erdem, T. Yamk, and Ç. K. Koç, “Polynomial basis multiplication
over GF(2m),” Acta Applicandae Mathematicae, vol. 93, no. 1–3, pp.
33–55, Sept. 2006.

[32] L. Song and K. K. Parhi, “Low energy digit-serial/parallel finite field
multipliers,” Journal of VLSI Signal Processing, vol. 19, no. 2, pp. 149–
166, July 1998.

[33] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative
inverses in GF(2m) using normal bases,” Information and Computation,
vol. 78, pp. 171–177, 1988.

[34] T. Kerins, W. P. Marnane, E. M. Popovici, and P. S. L. M. Barreto,
“Efficient hardware for the Tate pairing calculation in characteristic
three,” in Cryptographic Hardware and Embedded Systems – CHES
2005, ser. Lecture Notes in Computer Science, J. R. Rao and B. Sunar,
Eds., no. 3659. Springer, 2005, pp. 412–426.

[35] E. Gorla, C. Puttmann, and J. Shokrollahi, “Explicit formulas for
efficient multiplication in F36m ,” in Selected Areas in Cryptography –
SAC 2007, ser. Lecture Notes in Computer Science, C. Adams, A. Miri,
and M. Wiener, Eds., no. 4876. Springer, 2007, pp. 173–183.

[36] G. Bertoni, L. Breveglieri, P. Fragneto, and G. Pelosi, “Parallel hardware
architectures for the cryptographic Tate pairing,” in Proceedings of
the Third International Conference on Information Technology: New
Generations (ITNG’06). IEEE Computer Society, 2006.

[37] J.-L. Beuchat, N. Brisebarre, M. Shirase, T. Takagi, and E. Okamoto,
“A coprocessor for the final exponentiation of the ηT pairing in
characteristic three,” in Proceedings of Waifi 2007, ser. Lecture Notes in
Computer Science, C. Carlet and B. Sunar, Eds., no. 4547. Springer,
2007, pp. 25–39.

[38] J. Jiang, “Bilinear pairing (Eta T Pairing) IP core,” City University of
Hong Kong – Department of Computer Science, Tech. Rep., May 2007.

[39] R. Ronan, C. Murphy, T. Kerins, C. Ó hÉigeartaigh, and P. S. L. M.
Barreto, “A flexible processor for the characteristic 3 ηT pairing,” Int.
J. High Performance Systems Architecture, vol. 1, no. 2, pp. 79–88,
2007.

[40] P. Grabher and D. Page, “Hardware acceleration of the Tate pairing in
characteristic three,” in Cryptographic Hardware and Embedded Systems
– CHES 2005, ser. Lecture Notes in Computer Science, J. R. Rao and
B. Sunar, Eds., no. 3659. Springer, 2005, pp. 398–411.

[41] G. Kömürcü and E. Savas, “An efficient hardware implementation of
the Tate pairing in characteristic three,” in Proceedings of the Third
International Conference on Systems – ICONS 2008, E. P.-F. rland and
M. Popescu, Eds. IEEE Computer Society, 2008, pp. 23–28.

[42] A. Barenghi, G. Bertoni, L. Breveglieri, and G. Pelosi, “A FPGA
coprocessor for the cryptographic Tate pairing over Fp,” in Proceedings
of the Fourth International Conference on Information Technology: New
Generations (ITNG’08). IEEE Computer Society, 2008.

[43] M. Keller, R. Ronan, W. P. Marnane, and C. Murphy, “Hardware archi-
tectures for the Tate pairing over GF(2m),” Computers and Electrical
Engineering, vol. 33, no. 5–6, pp. 392–406, 2007.

[44] M. Keller, T. Kerins, F. Crowe, and W. P. Marnane, “FPGA implementa-
tion of a GF(2m) Tate pairing architecture,” in International Workshop
on Applied Reconfigurable Computing (ARC 2006), ser. Lecture Notes
in Computer Science, K. Bertels, J. Cardoso, and S. Vassiliadis, Eds.,
no. 3985. Springer, 2006, pp. 358–369.

[45] R. Ronan, C. Ó hÉigeartaigh, C. Murphy, M. Scott, and T. Kerins,
“Hardware acceleration of the Tate pairing on a genus 2 hyperelliptic
curve,” Journal of Systems Architecture, vol. 53, pp. 85–98, 2007.

[46] ——, “FPGA acceleration of the Tate pairing in characteristic 2,” in Pro-
ceedings of the IEEE International Conference on Field Programmable
Technology – FPT 2006. IEEE, 2006, pp. 213–220.

[47] C. Shu, S. Kwon, and K. Gaj, “FPGA accelerated Tate pairing based
cryptosystem over binary fields,” in Proceedings of the IEEE Inter-
national Conference on Field Programmable Technology – FPT 2006.
IEEE, 2006, pp. 173–180.

[48] F. Hess, N. Smart, and F. Vercauteren, “The Eta pairing revisited,” IEEE
Transactions on Information Theory, vol. 52, no. 10, pp. 4595–4602,
Oct. 2006.


