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Abstract—Since their introduction in constructive crypto-
graphic applications, pairings over (hyper)elliptic curves are at
the heart of an ever increasing number of protocols. As they rely
critically on efficient implementations of pairing primitives, the
study of hardware accelerators has become an active research
area.

In this paper, we propose two coprocessors for the reduced
ηT pairing introduced by Barreto et al. as an alternative means
of computing the Tate pairing on supersingular elliptic curves.
We prototyped our architectures on FPGAs. According to our
place-and-route results, our coprocessors compare favorably with
other solutions described in the open literature. We also present
the first ASIC implementation of the reduced ηT pairing.

Index Terms—Tate pairing, ηT pairing, elliptic curve cryptog-
raphy, finite field arithmetic, hardware accelerator.

I. INTRODUCTION

In the mid-nineties, Menezes, Okamoto & Vanstone [36]
and Frey & Rück [18] introduced the Weil and Tate pairings
in cryptography as a tool to attack the discrete logarithm
problem on some classes of elliptic curves defined over finite
fields. A few years later, Mitsunari, Sakai & Kasahara [39],
Sakai, Oghishi & Kasahara [44], and Joux [28] discovered
constructive properties of pairings. Their respective works
initiated an extensive study of pairing-based cryptography, and
an ever increasing number of protocols based on the Weil or
the Tate pairing have appeared in the literature: identity-based
encryption [11], short signature [13], and efficient broadcast
encryption [12] to mention but a few. As noticed by Dutta,
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Barua & Sarkar [14], such protocols rely critically on efficient
algorithms and implementations of pairing primitives.

According to [22], [32], when dealing with general curves
providing common levels of security, the Tate pairing seems
to be more efficiently computable than the Weil pairing. In
1986, Miller described the first iterative algorithm to compute
the Tate pairing [37], [38]. Significant improvements were
independently proposed by Barreto et al. [4] and Galbraith
et al. [19] in 2002. One year later, Duursma & Lee gave a
closed formula in the case of characteristic three [15]. In 2004,
Barreto et al. [3] introduced the ηT approach, which further
shortens the loop of Miller’s algorithm.

This paper describes the design of two hardware accel-
erators for the ηT pairing in characteristic three. Section II
provides the reader with a brief overview of pairing com-
putation. As detailed in that section, the considered pairing
algorithm relies heavily on arithmetic over F36m , a degree-
6 extension of the base field of the curve. However, thanks
to a tower field representation, all operations over F36m can
be replaced by arithmetic over F3m . We describe hardware
arithmetic operators over F3m and explain how to take ad-
vantage of the tower field in Section III. We then propose two
hardware accelerators for the ηT pairing (Section IV). We have
prototyped our architectures on FPGA, and propose the first
ASIC implementation of the ηT pairing in characteristic three.
Section V summarizes our implementation results on FPGA
and ASIC, and provides the reader with a comprehensive
comparison with previously published architectures.

II. COMPUTATION OF THE MODIFIED TATE PAIRING IN
CHARACTERISTIC THREE

Given a positive integer m coprime to 6, we consider
a supersingular1 elliptic curve E over F3m , defined by the
equation y2 = x3 − x + b, with b ∈ {−1, 1}. According to
[3], there is no loss of generality from considering this case
since these curves offer the same level of security for pairing
applications as any supersingular elliptic curve over F3m . The
number N of rational points of E over the finite field F3m is
given by N = #E(F3m) = 3m + 1 + µb3

m+1
2 , with

µ =
{

+1 if m ≡ 1, 11 (mod 12), or
−1 if m ≡ 5, 7 (mod 12).

1See for instance Theorem V.3.1 in [46] for a definition.



2 FPGA AND ASIC IMPLEMENTATIONS OF THE ηT PAIRINGS IN CHARACTERISTIC THREE

A. Modified Tate Pairing

Let ` be the largest prime factor of N . E(F3m)[`] denotes
the `-torsion subgroup of E(F3m), i.e. the set of points P ∈
E(F3m) such that [`]P = O, where O is the point at infinity of
the elliptic curve E. The modified Tate pairing is a function
that takes as input two points of E(F3m)[`] and outputs an
element of the group of `th roots of unity µ` = {R ∈ F∗3km :
R` = 1}.

The embedding degree or security multiplier is the least pos-
itive integer k for which µ` is contained in the multiplicative
group F∗3km (i.e. k is the smallest integer such that ` divides
3km − 1). The considered curve has an embedding degree of
k = 6, which is the maximum value possible for supersingular
elliptic curves, and hence seems to be an attractive choice for
pairing implementation.

The modified Tate pairing of order ` is then the map

ê(·, ·) : E(F3m)[`]× E(F3m)[`]→ F∗36m

given by
ê(P,Q) = f`,P (ψ(Q))(3

6m−1)/`,

where
• ψ is a distortion map (the concept of a distortion map

was introduced in [48]) from E(F3m)[`] to E(F36m)[`] \
E(F3m)[`] defined as ψ(xQ, yQ) = (ρ − xQ, yσ) for all
Q = (xQ, yQ) ∈ E(F3m)[`], where ρ and σ are elements
of F36m satisfying the equations ρ3 − ρ − b = 0 and
σ2 + 1 = 0 [4]. Note that {1, σ, ρ, σρ, ρ2, σρ2} is a basis
of F36m over F3m . We will therefore represent an element
R ∈ F36m as R = r0 +r1σ+r2ρ+r3σρ+r4ρ

2 +r5σρ
2,

where the ri’s belong to F3m .
• fn,P , for n ∈ N and P ∈ E(F3m)[`] is a rational function

defined over E(F36m)[`] with divisor (fn,P ) = n(P ) −
([n]P ) − (n − 1)(O) (see [46] or [49] for an account
of divisors). We consider here the definition proposed by
Barreto et al. [4], where fn,P is evaluated on a point
rather than on a divisor.

• f`,P (ψ(Q)) is only defined up to `th powers, which is
undesirable in most of the cryptographic applications.
The powering by (36m − 1)/`, referred to as final ex-
ponentiation, allows one to obtain a unique value in a
multiplicative subgroup of F∗36m .

Choosing an order of low Hamming weight provides com-
putational savings in Miller’s algorithm. However, ` being a
quotient of N by a small cofactor, it does not have a small
Hamming weight. Galbraith et al. [19] noted that one can
compute the modified Tate pairing of order ` with respect to
the group order N (note that N divides 36m − 1):

f`,P (ψ(Q))(3
6m−1)/` = fN,P (ψ(Q))(3

6m−1)/N .

In the following, M denotes the final exponent of the modified
Tate pairing of order N :

M =
36m − 1
N

=
(
33m − 1

)
(3m + 1)

(
3m + 1− µb3

m+1
2

)
.

The modified Tate pairing satisfies the following properties:

• Bilinearity. For all A, B, C ∈ F3m [`],

ê(A+B,C) = ê(A,C)ê(B,C) and
ê(A,B + C) = ê(A,B)ê(A,C).

• Non-degeneracy. ê(P, P ) 6= 1, for all P 6= O.
• Computability. ê can be efficiently computed.

B. The Duursma-Lee Approach

Duursma & Lee [15] proposed to compute the order 33m+1
modified Tate pairing. This approach simplifies both Miller’s
algorithm and the final exponentiation2. Furthermore, Du-
ursma & Lee showed that the number of iterations of Miller’s
algorithm can be reduced from 3m to m iterations [15].

C. The ηT Approach

Barreto et al. [3] introduced the ηT pairing as “an alternative
means of computing the Tate pairing on certain supersingluar
curves” [40, page 108]. They suggest to compute ê(P,Q)
using an order T ∈ Z that is smaller than N . Their main
result is a lemma which gives a method to select T such
that ηT (P,Q)M is a non-degenerate bilinear pairing [3]. In
characteristic three they choose T = 3m−N = −µb3 m+1

2 −1
and show that their method gives a further halving of the length
of the loop compared to the Duursma & Lee approach. The
ηT pairing is defined as follows:

ηT (P,Q) =
{

fT,P (ψ(Q)) if T > 0, or
f−T,−P (ψ(Q)) if T < 0. (1)

Defining T ′ = −µbT = 3
m+1

2 + µb and P ′ = [−µb]P , we
rewrite Equation (1) as ηT (P,Q)M = fT ′,P ′(ψ(Q))M . Then,
the techniques proposed by Duursma & Lee [15] allow one to
simplify the computation of fn,P in Miller’s algorithm:

fT ′,P ′(ψ(Q)) =

m−1
2∏
i=0

g[3i]P ′(ψ(Q))3
m−1

2 −i

 lP ′(ψ(Q)),

where
• gV is the rational function introduced by Duursma &

Lee [15], defined over E(F36m)[`], and having divisor
(gV ) = 3(V )+([−3]V )−4(O). For all V = (xV , yV ) ∈
E(F3m)[`] and (x, y) ∈ E(F36m)[`], it is defined as:

gV (x, y) = y3
V y − (x3

V − x+ b)2.

• lV , for all V = (xV , yV ) ∈ E(F3m)[`], is the equation of
the line corresponding to the addition of

[
3

m+1
2

]
V with

[µb]V . It is defined for all (x, y) ∈ E(F36m)[`]:

lV (x, y) = y − (−1)
m+1

2 yV (x− xV )− µbyV .

As pointed out by Barreto et al. [3], the computation of
fT ′,P ′(ψ(Q)) requires cubings over F36m because of the
exponent 3

m−1
2 −i inside the main product. They suggested

to bring the powering into the formulae as a Frobenius action,
or to compute the product in reverse. Both approaches allow
one to replace two cubings over F3m and one cubing over

2The exponent is (36m − 1)/(33m + 1) = 33m − 1.
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F36m by two cube roots over F3m at each iteration. However,
the second one turns out to be slightly more effective since it
also saves three multiplications over F3m when multiplying by
lP ′(ψ(Q)) (see [7] for further details). Note that the Duursma-
Lee algorithm also comes in two flavors: the original one
involves cube roots and Kwon proposed a cube root-free
version in [34].

Algorithm 1 Cube-root-free reversed-loop algorithm for com-
puting the ηT pairing [7].
Input: P,Q ∈ E(F3m)[`]. The algorithm involves a local

variable t ∈ F3m , and two local variables R and S ∈ F36m .
Output: ηT (P,Q)M ∈ F∗36m .

1. xP ← xP + b;
2. yP ← −µbyP ;

3. xQ ← x3
Q; yQ ← y3

Q;
4. t← xP + xQ;
5. R← (yP t− yQσ − yP ρ) · (−t2 + yP yQσ − tρ− ρ2);

6. for j ← 1 to m−1
2 do

7. R← R3;
8. xQ ← x9

Q − b; yQ ← −y9
Q;

9. t← xP + xQ; u← yP yQ;
10. S ← −t2 + uσ − tρ− ρ2;
11. R← R · S;
12. end for

13. return RM ;

Fong et al. showed that extracting a square root in F2m

requires approximately the time of a field multiplication and
proposed an improved scheme for trinomials [17]. Barreto
extended this approach to cube root in characteristic three [2]:
if F3m admits an irreducible trinomial xm + fnx

n + f0 (fn,
f0 ∈ {−1, 1}) with the property n ≡ m (mod 3), then five
shifts and five additions allow one to implement this operation.
Nevertheless, even if computing a cube root is not a difficult
operation, it requires specific hardware and a slightly more
complex control and datapath. In this work, we decided to
minimize the area of the Arithmetic and Logic Unit (ALU)
and considered a cube root-free version of the reversed-loop
approach described by Algorithm 1. Consider the operand
S ∈ F36m (line 10) and note that it is sparse (i.e. some of
its terms are trivial). This property will allow us to optimize
the computation of R · S in Section III-B2.

The relationship between the modified Tate pairing and the
reduced ηT pairing is given by [6]:

ê(P,Q)M = ηT

(
[−µb]P,

[
3

3m−1
2

]
Q
)M

,

where [−µb]P = (xP ,−µbyP ) and
[
3

3m−1
2

]
Q =(

3
√
xQ − b, (−1)

m+1
2 3
√
yQ

)
. We can modify Algorithm 1 as

follows to obtain ê(P,Q)M :
• Since we compute the pairing with (xp,−µbyP ), line 2

becomes yp ← −µb·(−µbyP ) = yp and can be discarded.
• It is no longer necessary to compute the cube of xQ and
yQ (line 3). We have now xQ ← xQ − b.

• Let x′P = xP +b and x′Q = xQ−b. Since t = x′P +x′Q =
xP + xQ (line 4), we can actually remove lines 1 and 3.

It is worth noticing that we obtain a cube root-free algorithm
and that the modified Tate pairing requires less operations than
the reduced ηT pairing in this case.

D. Final Exponentiation

Fermat’s little theorem provides us with an effective way to
perform the final exponentiation of the reduced ηT pairing. As
pointed out by Barreto et al., “the result of raising to 33m− 1
produces an element of order 33m + 1, so that any further
inversion reduces to a simple conjugation” [3, page 248]. The
main loop of Algorithm 1 returns R = ηT (P,Q) ∈ F∗36m .
Writing R = R0 +R1σ, where R0 and R1 ∈ F∗33m , we obtain:

V = R33m−1 =
(R2

0 −R2
1) +R0R1σ

R2
0 +R2

1

,

Algorithm 2 summarizes the computation of the final expo-
nentiation. When µb = −1, the computation of W ′ = W−µb

on line 4 is a dummy operation. Let us write W = W0+W1σ,
where W0 and W1 ∈ F∗33m . Since W is an element of order
33m + 1 [3], the inversion is completely free when µb = 1:

W ′ = W−1 = W 33m

= (W0 + σW1)3
3m

= W 33m

0 + σ33m

W 33m

1 = W0 − σW1.

It suffices to propagate the sign corrections in the product
V ·W ′. Whereas the computation of ηT (P,Q) involves only
sparse multiplications over F36m (Algorithm 1, line 11), the
final exponentiation requires a full multiplication over F36m

(Algorithm 2, line 6). Note that the computation of V and W
involves only operations over F33m . Algorithms to compute
R33m−1 and V 3m+1 are for instance detailed in [7].

Algorithm 2 Final exponentiation of the reduced ηT pairing.
Input: R = ηT (P,Q) ∈ F∗36m .
Output: RM ∈ F∗36m .

1. V ← R33m−1;
2. V ← V 3m+1;
3. W ← V 3

m+1
2 ;

4. W ′ ←W−µb;
5. V ← V 3m+1;
6. return V ·W ′;

III. ARITHMETIC OVER F3m AND F36m

Thanks to the tower field representation, all operations
over F36m and F33m in Algorithms 1 and 2 can be replaced
by arithmetic over F3m . For instance, 12 multiplications, 11
additions, and a single inversion over F3m allow one to carry
out the inversion over F33m involved in the computation of
V = R33m−1. We describe here the hardware operators we
designed for arithmetic over F3m (Section III-A) and the
algorithms for sparse multiplication and cubing over F36m

(Section III-B). We refer the reader to [7] for further details
about other operations.
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A. Arithmetic over F3m

In the following, elements of F3m are encoded using a
polynomial basis. Given a degree-m irreducible polynomial
f(x) ∈ F3[x], we have F3m ∼= F3[x]/(f(x)). Consequently,
each element of F3m is represented as a polynomial of degree
less than m with coefficients in F3.

1) Addition and Subtraction over F3m : Since they are
performed component-wise, addition and subtraction over F3m

are rather straightforward operations. Each element of F3

being encoded by two bits, the addition of ai and bi ∈ F3 on
most of Altera or Xilinx FPGAs requires two 4-input LUTs.

2) Multiplication over F3m : Among the many modular
multipliers described in the open literature (see for in-
stance [9], [16], [24]), we selected a Most Significant Element
(MSE) first array multiplier based on Song & Parhi’s work [47]
to carry out a(x)b(x) mod f(x). At step i we compute a
degree-(m + D − 2) polynomial t(x) which is the sum of

D partial products: t(x) =
D−1∑
j=0

aDi+jx
jb(x). A degree-

(m + D − 1) polynomial s(x), updated according to the
celebrated Horner’s rule, allows us to accumulate the partial
products:

s(x)← t(x) + xD · (s(x) mod f(x)).

Thus, after dm/De steps, this algorithm returns a degree-
(m+D−1) polynomial s(x) which is congruent to a(x)b(x)
modulo f(x). The circuit described by Song & Parhi requires
dedicated hardware to compute p(x) = s(x) mod f(x) [47].
We suggest to achieve the final modulo f(x) reduction by
performing an additional iteration with a−j = 0, 1 ≤ j ≤ D.
Since t(x) is now equal to zero, we have: s(x) = xD ·
(a(x)b(x) mod f(x)). Therefore, it suffices to consider the
m most significant coefficients of s(x) to get the result (i.e.
p(x) = s(x)/xD). Algorithm 3 summarizes this multiplica-
tion scheme. Figure 1 describes the architecture of an array
multiplier processing D = 3 coefficients at each clock cycle.

Algorithm 3 MSE multiplication over F3m .
Input: A degree-m irreducible monic polynomial f(x) =

xm + fm−1x
m−1 + . . . + f1x + f0, two degree-(m − 1)

polynomials a(x), and b(x). We assume that a−j = 0,
1 ≤ j ≤ D. The algorithm requires a degree-(m+D−1)
polynomial s(x) as well as a degree-(m + D − 2) poly-
nomial t(x) for intermediate computations.

Output: p(x) = a(x)b(x) mod f(x).
1. s(x)← 0;
2. for i in dm/De − 1 downto −1 do

3. t(x)←
D−1∑
j=0

aDi+jx
jb(x);

4. s(x)← t(x) + xD · (s(x) mod f(x));
5. end for
6. p(x)← s(x)/xD;

The cost of the modular reduction (line 4) depends on D
and f(x). Assume that f(x) is an irreducible trinomial such

×x3

÷x3

a3i+2

a3i+1

a3i

b(x)

x3 · (s(x) mod (f(x))

mod f(x)

Rst

En
s(x)

p(x)

×x ×x2

Fig. 1. MSE array multipliers processing D = 3 coefficients at each clock
cycle. Boxes with rounded corners involve only wiring.

that f(x) = xm + fnx
n + f0, where f0 and fn ∈ F3, and

0 < n < m. We have:

s(x) mod f(x) =

(
D−1∑
i=0

sm+ix
m+i +

m−1∑
i=0

six
i

)
mod f(x).

Since xm ≡ −fnxn − f0 (mod f(x)), we note that:

sm+ix
m+i ≡ sm+i(−fnxn − f0)xi (mod f(x)).

In the following, we assume that D ≤ m − n to ensure that
the degree of sm+i(−fnxn−f0)xi, 0 ≤ i ≤ D−1, is at most
equal to m− 1. Thus, we obtain:

s(x) mod f(x) =
D−1∑
i=0

sm+i(−fnxn − f0)xi +
m−1∑
i=0

six
i

= −
D−1∑
i=0

sm+ifnx
n+i −

D−1∑
i=0

sm+if0x
i

+
m−1∑
i=0

six
i,

and the modular reduction involves 2D additions (or subtrac-
tions) over F3. When D ≤ n, the degree of xi, 0 ≤ i ≤ D−1,
is always smaller than the one of xn+i and the modular
reduction requires a single stage of 2-input adders (or sub-
tracters) over F3. Thus, selecting the parameter D such that
D ≤ min(n,m−n) allows one to achieve the shortest critical
path in the case of an irreducible trinomial.

Let us consider for instance the irreducible trinomial f(x) =
x97 + x12 + 2 (i.e. m = 97, n = 12, f0 = 2, and f12 = 1).
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Since −2 is congruent to 1 modulo 3, we have:

s(x) mod f(x) = −
D−1∑
i=0

s97+ix
i+12+

D−1∑
i=0

s97+ix
i+

96∑
i=0

six
i.

Figures 2a and 2b describe the circuits performing the modular
reduction when D = 3 and D = 13, respectively. In the first
case, a single stage of 2-input adders allows one to carry out
s(x) mod f(x). However, in the second case, a 2-input adder
and a 2-input subtracter are required to compute s13 + s109−
s97.

s(x) mod f(x)

(b) D = 13

(a) D = 3

. . .

s(x) mod f(x)

. . .

s11s15 s97s98s99 s12s13s14

. . .

s97s98s99 s13s14 s12 s109

. . .

s2 s1 s0 s97s98s99

s3 s2 s1 s0 s97s98s99

Fig. 2. Computation of s(x) mod f(x) when f(x) = x97 + x12 + 2 for
(a) D = 3 and (b) D = 13.

3) Cubing over F3m : Let us now consider the computation
of b(x) = a(x)3 over F3m . Cubing over F3m consists of
reducing the following expression modulo f(x):

b(x) = a(x)3 =

(
m−1∑
i=0

aix
3i

)
mod f(x).

A formal reduction allows us to express each coefficient bi of
the result as a linear combination of the coefficient of a(x).
Therefore, a cubing operator mainly consists of a D′-operand
adder and some extra wiring to permute the coefficients
of a(x). The main challenge here is to find an irreducible
polynomial minimizing D′.

Let us consider again the irreducible trinomial f(x) = x97+
x12 + 2. Reducing a(x)3 modulo f(x), we obtain:

b0 = a93 + a89 + a0, b2 = a33,
b1 = a65 − a61, b3 = a94 + a90 + a1,
. . . = . . . , b96 = a32.

The most complex operation involved here is the addition of
D′ = 3 elements of F3. Since we consider a cube root-free ηT
pairing algorithm, f(x) = x97 + x12 + 2 is a good candidate:
it has a simple cubing formula and allows one to perform

the modulo f(x) reduction involved in the multiplication over
F3m by means of a single stage of 2-input adders as long
as D ≤ 12. However, if one intends to implement a pairing
algorithm with cube roots, one should consider a further
constraint to select an irreducible trinomial. Barreto noticed
that the cost of computing cube roots in F3m is only O(m)
if m ≡ n (mod 3) [2]. Despite of a slightly more complex
cubing formula, f(x) = x97 + x16 + 2 is for instance a better
choice in this case.

4) Inversion over F3m : Since the computation of the re-
duced ηT pairing involves a single inversion over F3m in the
final exponentiation, we perform this operation according to
Fermat’s little theorem and Itoh & Tsujii’s algorithm [26].
Thus, inversion over F3m is carried out by means of cubings
and multiplications over F3m and does not require specific
hardware resources.

B. Arithmetic over F36m

1) Cubing over F36m : When we compute the ηT pairing
according to Algorithm 1, we raise R = r0 + r1σ + r2ρ +
r3σρ+ r4ρ

2 + r5σρ
2 ∈ F36m to the cube at each iteration of

the main loop. Since ρ3 = ρ+ b and σ3 = −σ, we obtain:

R3 =
(
r30 + br32 + r34

)
+
(
−r31 − br33 − r35

)
σ

+
(
r32 − br34

)
ρ+

(
−r33 + br35

)
σρ+ r34ρ

2 − r35σρ2.

This operation involves six cubings and six additions (or
subtractions) over F3m .

2) Multiplication over F36m :
a) Full Multiplication over F36m : Karatsuba-Ofman’s al-

gorithm allows one to compute the product of two polynomials
belonging to F36m by means of 18 multiplications and 58
additions (or subtractions) over F3m (see for instance [31]).
An improvement was recently proposed by Gorla et al. [20]:
they represented elements of F36m as degree-2 polynomials
with coefficients in F32m and took advantage of Lagrange
interpolation to compute a product over F36m by means of
5 multiplications over F32m . Each of these multiplications is
then carried out according to Karatsuba-Ofman’s scheme, and
the total cost of a multiplication over F36m is equal to 15
multiplications and 67 additions (or subtractions) over F3m .

b) Sparse Multiplication over F36m : Consider now the
computation of the reduced ηT pairing (Algorithm 1), where
each iteration of the loop requires a sparse multiplication over
F36m . As pointed out by Bertoni et al. [5] and Granger et
al. [23], the product R · S (line 11) can be computed by
means of 13 multiplications and 50 additions (or subtractions)
over F3m according to Karatsuba-Ofman’s scheme. Again, the
approach introduced by Gorla et al. allows one to further
reduce the cost of this operation to 12 multiplications and
51 additions (or subtractions) over F3m (see [7] for details).
Two further multiplications are needed to compute yP yQ as
well as t2.

In this paper, we focus on parallel architectures featuring
several multipliers. In this context, it seems more interesting
to find a good trade-off between the number of multiplications
and additions, to share registers between multipliers, and to
reduce the number of accesses to memory. Let R = r0 +
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r1σ+ r2ρ+ r3σρ+ r4ρ
2 + r5σρ

2 and C = c0 + c1σ+ c2ρ+
c3σρ+ c4ρ

2 + c5σρ
2 be two elements of F36m . We write each

coefficient ci as the sum of two elements c(0)i and c(1)i ∈ F3m .
Thanks to this notation we define the product C = R · (−t2 +
yP yQσ−tρ−ρ2) as follows, where b ∈ {−1, 1} is a parameter
of the elliptic curve:

c
(0)
0 = −br4t− br2, c

(1)
0 = −r0t2 − r1yP yQ,

c
(0)
1 = −br5t− br3, c

(1)
1 = r0yP yQ − r1t2,

c
(0)
2 = −r0t− br4 + bc

(0)
0 , c

(1)
2 = −r2t2 − r3yP yQ,

c
(0)
3 = −r1t− br5 + bc

(0)
1 , c

(1)
3 = r2yP yQ − r3t2,

c
(0)
4 = −r2t− r0 − r4, c

(1)
4 = −r4t2 − r5yP yQ,

c
(0)
5 = −r3t− r1 − r5, c

(1)
5 = r4yP yQ − r5t2.

Note that the computation of the c(0)i ’s, 0 ≤ i ≤ 5, requires
six multiplications over F3m and depends neither on t2 nor on
yP yQ. Thus, we can perform eight multiplications over F3m

in parallel (t2, yP yQ, and rit, 0 ≤ i ≤ 5). Consider now
c
(1)
0 and c(1)1 and assume that (r0 + r1) and (yP yQ − t2) are

stored in registers. Karatsuba-Ofman’s algorithm allows one to
compute c(1)0 and c

(1)
1 by means of three multiplications and

three additions over F3m :

c
(1)
0 = −r0t2 − r1yP yQ,

c
(1)
1 = (r0 + r1)(yP yQ − t2) + r0t

2 − r1yP yQ
= r0yP yQ − r1t2.

Therefore, the computation of the c
(1)
i ’s involves nine mul-

tiplications over F3m , which can be carried out in parallel.
Algorithm 4 summarizes this multiplication scheme involving
17 multiplications and 29 additions (or subtractions) over F3m .

Since the computation of the nine products pi, 8 ≤ i ≤ 16,
depends on p6 and p7, we can not perform the 17 multiplica-
tions over F3m in parallel and have to proceed in two steps
(Algorithm 4, lines 1 and 3). Therefore, we suggest to design a
coprocessor embedding nine multipliers over F3m , denoted by
Mi, 0 ≤ i ≤ 8, in the following. A control unit will contain the
instructions required to implement the sparse multiplication
over F36m on such an architecture.

A careful scheduling allows one to share operands between
up to three multipliers, thus saving hardware resources (Ta-
ble I): during the first step (9 multiplications over F3m ), M0,
M1, and M2 respectively compute r0t, r2t, and r4t. The MSE
multiplier described in Section III-A2 stores its first operand
in a shift register, and its second operand in a standard register.
Since a shift register is more complex (an operand is loaded
in parallel, and then shifted), we load the common operand
t in this component. At the end of these multiplications, the
three registers still contain r0, r2, and r4. Therefore it suffices
to load t2 in the shift register before starting the second step
(9 multiplications over F3m ). Figure 3a describes the operator
we designed to perform three multiplications with a common
operand. The same architecture allows for computing r1t,
r3t, r5t, r1yP yQ, r3yP yQ, and r5yP yQ. The five remaining
multiplications involve a slightly more complex component
(Figure 3b): two shift registers are required to compute t2

and yP yQ since there is no common operand. At the end of
the first multiplication cycle, a dedicated subtracter computes
yP yQ − t2 and stores the result in the shift registers.

TABLE I
SPARSE MULTIPLICATION OVER F36m : SCHEDULING.

1st step: 8 multiplications 2nd step: 9 multiplications
over F3m over F3m

M0 p0 = r0 · t p8 = r0 · t2
M1 p2 = r2 · t p11 = r2 · t2
M2 p4 = r4 · t p14 = r4 · t2
M3 p1 = r1 · t p9 = r1 · yP yQ

M4 p3 = r3 · t p12 = r3 · yP yQ

M5 p5 = r5 · t p15 = r5 · yP yQ

M6 p6 = t · t p10 = (r0 + r1) · (yP yQ − t2)
M7 p7 = yP · yQ p13 = (r2 + r3) · (yP yQ − t2)
M8 – p16 = (r4 + r5) · (yP yQ − t2)

Consider the additions occurring in the fourth step of
Algorithm 4. Interestingly enough, they involve at most one
result of each block of three multipliers (Figure 3). Instead of a
large multiplexer selecting the output of one multiplier among
nine, we include a multiplexer in each block and connect a
3-operand adder to the outputs of our multiplication units. In
order to also take advantage of these adders while performing a
multiplication, each block of three multipliers has an additional
input D1 that allows for bypassing the multipliers.

IV. HARDWARE IMPLEMENTATION

In this section, we propose two architectures to compute the
reduced ηT pairing for the field F3[x]/(x97 +x12 +2) and the
curve y2 = x3 − x+ 1 (i.e. b = 1). This choice of parameters
allows us to easily compare our work against the many pairing
accelerators for m = 97 described in the open literature. It
is nonetheless important to note that the architectures and
algorithms presented here can be easily adapted to different
parameters.

A. Hardware Accelerator for the Reduced ηT Pairing

Figure 4 describes the architecture of our hardware ac-
celerator for the ηT pairing calculation (Algorithm 1). The
ALU and the datapath are strongly related to the pairing
algorithm and our sparse multiplication over F3m scheme.
Nine multipliers over F3m sharing shift registers allow us
to carry out the products pi, 0 ≤ i ≤ 16, of our sparse
multiplication scheme (Algorithm 4) in two steps, according
to the scheduling summarized in Table I. The 3-operand
adder/subtracter allows for computing the ci’s. Recall that
we raise the result of a sparse multiplication to the cube at
the beginning of each iteration of the considered ηT pairing
algorithm. This operation consists of six cubings and six
additions over F3m (Section III-B1). Therefore, we connected
the output of the 3-operand adder/subtracter to a cubing
operator. This approach allows us to bypass the register file
and to save clock cycles when raising to the cube over F36m .
Inputs and outputs, as well as intermediate results, are stored in
a dual-ported RAM (DPRAM) implemented using embedded
memory blocks available in the FPGA. The control unit mainly
consists of a ROM containing the microcode of Algorithms 1
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Algorithm 4 Sparse multiplication over F36m .
Input: R = r0 + r1σ + r2ρ + r3σρ + r4ρ

2 + r5σρ
2 ∈ F36m ; t, yP , and yQ ∈ F3m ; the parameter b ∈ {−1, 1} of the

supersingular elliptic curve.
Output: C = R · (−t2 + yP yQσ − r0ρ− ρ2).

1. Compute in parallel (8 multiplications and 3 additions over F3m ):

pi ← ri · t, 0 ≤ i ≤ 5; p6 ← t · t; p7 ← yP · yQ;
s0 ← r0 + r1; s1 ← r2 + r3; s2 ← r4 + r5;

2. Compute in parallel (7 additions over F3m ):

s3 ← p7 − p6; // yP yQ − t2 c2 ← br4 + p0; // br4 + r0t c4 ← r0 + p2; // r0 + r2t

c0 ← br2 + bp4; // br2 + br4t c3 ← br5 + p1; // br5 + r1t c5 ← r1 + p3; // r1 + r3t

c1 ← br3 + bp5; // br3 + br5t

3. Compute in parallel (9 multiplications and 4 additions over F3m ):

p8 ← r0 · p6; // r0t2 p13 ← s1 · s3; // (r2 + r3)(yP yQ − t2) c2 ← c2 + bc0;

p9 ← r1 · p7; // r1yP yQ p14 ← r4 · p6; // r4t2 c3 ← c3 + bc1;

p10 ← s0 · s3; // (r0 + r1)(yP yQ − t2) p15 ← r5 · p7; // r5yP yQ c4 ← c4 + r4;

p11 ← r2 · p6; // r2t2 p16 ← s2 · s3; // (r4 + r5)(yP yQ − t2) c5 ← c5 + r5;
p12 ← r3 · p7; // r3yP yQ

4. Compute in parallel (15 additions over F3m ):

c0 ← −c0 − p8 − p9; c2 ← −c2 − p11 − p12; c4 ← −c4 − p14 − p15;
c1 ← −c1 + p10 + p8 − p9; c3 ← −c3 + p13 + p11 − p12; c5 ← −c5 + p16 + p14 − p15;

and 4. When m = 97 and D = 3, we need 4849 clock cycles
to compute ηT (P,Q)) according to Algorithm 1.

Since algorithms for multiplication over F33m and F36m do
not share operands between several multipliers, it turns out
to be impossible to take advantage of the full parallelism
of our architecture when performing the final exponentia-
tion (Algorithm 2). Thus, it seems attractive to supplement
the ηT pairing accelerator with dedicated hardware to raise
ηT (P,Q) to the M th power. Beuchat et al. [8] proposed a
unified arithmetic operator performing addition, subtraction,
accumulation, cubing, and multiplication over F3m . When
m = 97 and D = 3, this coprocessor performs the final
exponentiation in 4082 clock cycles. We can therefore pipeline
the computation of the ηT pairing and the final exponentiation.
In the following, we assume that we keep the pipeline busy
and that we obtain a new result after 4849 clock cycles (i.e.
we neglect the overhead introduced by our approach to get
the first result). This coprocessor for the final exponentiation
requires 64 registers to store elements of F3m . On FPGA,
they are efficiently implemented using the embedded memory
blocks.

B. A Coprocessor for Arithmetic over F3m

We also investigated a second architecture based on a
coprocessor for arithmetic over F3m embedding nine multi-
pliers, an addition unit (able to carry out addition, subtraction,
and accumulation), and a cubing unit (Figure 5). Since we
implement the main loop of the ηT pairing (Algorithm 1) and
the final exponentiation (Algorithm 2) on the same hardware,

each multiplier must have two input registers and we cannot
share shift registers between up to three multipliers over F3m

anymore.
The sparse multiplications over F36m are carried out accord-

ing to Algorithm 4. Since performing 15 or 18 multiplications
over F3m requires the same number of clock cycles on our
coprocessor, we implemented the multiplication over F36m

of the final exponentiation according to Karatsuba-Ofman’s
scheme in order to minimize the number of additions over
F3m . When m = 97 and D = 3, the computation of ηT (P,Q)
and the final exponentiation require 6560 clock cycles and
2527 clock cycles, respectively.

This coprocessor for arithmetic over F3m is of course slower
than the architecture described in the previous section when
considering the computation of the ηT pairing (Algorithm 1).
However, it is much more versatile and allows for the im-
plementation of a wider range of algorithms: besides pairing
computation, it is for instance possible to perform a scalar
multiplication, which is a crucial operation in pairing-based
cryptography.

V. RESULTS AND COMPARISONS

A. FPGA Implementation

Our reduced ηT pairing accelerator and the coprocessor for
arithmetic over F3m were captured in the VHDL language
and prototyped on Altera Cyclone II and Xilinx Virtex-II Pro
FPGAs. Table II summarizes our place-and-route results.

Several processors for the reduced ηT pairing (Table II)
and the modified Tate pairing (Table III) have already been
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x3

Control unit

Fig. 4. Architecture of the coprocessor for the ηT pairing calculation.
The ALU embeds the building blocks for sparse multiplication over F36m

described by Figure 3.

published. Since ê(P,Q) can be computed from ηT (P,Q)M

at almost no extra cost (Section II-C), we can compare our
architectures against all these results. Note that the hardware
accelerators proposed by other researchers are always imple-
mented on Xilinx FPGAs. Therefore, we decided to compute
the Area-Time (AT) product in terms of slices to provide the
reader with a fair comparison (each slice of a Virtex-II, Virtex-
II Pro, or Virtex-4 embeds two 4-input function generators and

9 multipliers

. . .

Register File
(RAM) (FSM & ROM)

Control

Multiplier Cubing unitMultiplier

Addition,
subtraction &
accumulation

Fig. 5. Coprocessor for arithmetic over F3m amenable for pairing compu-
tation.

two storage elements). Note that register files implemented in
memory blocks are not included in the AT product.

To our best knowledge, Jiang [27] designed the fastest ηT
pairing core (Table II). However, our processors achieves a
better area-time trade-off. Additionally, our approach allows
for reaching higher levels of security without risking to exhaust
the FPGA resources. Jiang’s coprocessor already requires one
of the largest FPGAs available now.

In order to easily study the trade-off between calculation
time and circuit area, Ronan et al. [41] wrote a C pro-
gram which automatically generates a VHDL description of
a coprocessor and its control according to the number of
multipliers to be included and D. The ALU also embeds
an adder, a subtracter, a cubing unit, and an inversion unit.
Their fastest architecture embeds 8 multipliers (D = 4) and
is very similar to the hardware accelerator for the reduced
ηT pairing proposed in Section IV-B. However, since our
multipliers process D = 3 coefficients at each clock cycles
and the inversion over F3m is performed according to Fermat’s
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TABLE II
HARDWARE ACCELERATORS FOR THE REDUCED ηT PAIRING (POST-PLACE-AND-ROUTE FIGURES). THE PARAMETER D REFERS TO THE NUMBER OF

COEFFICIENTS PROCESSED AT EACH CLOCK CYCLE BY A MULTIPLIER.

Curve Technology # mult. Area
Freq. Calc. AT

[MHz] time [µs] product

Ronan et al. [43] C(F2103) Virtex-II Pro 100 20 (D = 4) 21021 slices 51 206 4.33
20 (D = 8) 24290 slices 46 152 3.79
20 (D = 16) 30464 slices 41 132 4.02

Ronan et al. [41] E(F397) Virtex-II Pro 100 5 (D = 4) 10540 slices 84.8 187 1.97
8 (D = 4) 15401 slices 84.8 183 2.81

Beuchat et al. [6] E(F397) Virtex-II Pro 20 1 (D = 3) 1896 slices 156 178 0.34
1 (D = 7) 2711 slices 128 117 0.32
1 (D = 15) 4455 slices 105 92 0.41

E(F2239) Virtex-II Pro 20 1 (D = 7) 2366 slices 199 196 0.46
1 (D = 15) 2736 slices 165 127 0.35
1 (D = 31) 4557 slices 123 107 0.49

Jiang [27] E(F397) Virtex-4 LX 200 Not specified 74105 slices 77.7 20.9 1.55

Coprocessor for the ηT pairing & coprocessor for the final exponentiation
E(F397) Cyclone II EP2C35 9 (D = 3) 18000 LEs 149 33 –
E(F397) Virtex-II Pro 30 9 (D = 3) 10897 slices 147 33 0.36

Coprocessor for arithmetic over F3m – PairingLite
FPGA E(F397) Virtex-II Pro 30 9 (D = 3) 10262 slices 142 64 0.66

Cyclone II EP2C70 9 (D = 3) 15293 LEs 240 39.6 –
ASIC E(F397) 0.18µm CMOS 9 (D = 3) 193765 NAND 200 46.7 –

TABLE III
HARDWARE ACCELERATORS FOR THE TATE PAIRING (POST-PLACE-AND-ROUTE FIGURES). THE PARAMETER D REFERS TO THE NUMBER OF

COEFFICIENTS PROCESSED AT EACH CLOCK CYCLE BY A MULTIPLIER. THE ARCHITECTURE PROPOSED BY KÖMÜRCÜ & SAVAS [33] DOES NOT
IMPLEMENT THE FINAL EXPONENTIATION. BARENGHI et al. [1] COMPUTE THE TATE PAIRING OVER Fp , WHERE p IS A 512-BIT PRIME NUMBER.

Curve Technology # mult. Area
Freq. Calc. AT

[MHz] time [µs] product

Keller et al. [30] E(F2251) Virtex-II 6000 1 (D = 6) 3788 slices 40 4900 18.56
3 (D = 6) 6181 slices 40 3200 19.78
9 (D = 6) 13387 slices 40 2600 34.81

Keller et al. [29] E(F2251) Virtex-II 6000 13 (D = 1) 16621 slices 50 6440 107.04
13 (D = 6) 21955 slices 43 2580 56.64
13 (D = 10) 27725 slices 40 2370 65.71

Kerins et al. [31] E(F397) Virtex-II Pro 125 18 (D = 4) 55616 slices 15 850 47.27
Li et al. [35] E(F2283) Virtex-4 FX 140 12 (D = 32) 55844 slices 159.8 590 32.95
Kömürcü & Savas [33] E(F397) Virtex-II Pro 4 20 (D = 1) 14267 slices 77.3 250.7 3.58

0.25µm CMOS 20 (D = 1) 10 mm2 78 250 –
Grabher & Page [21] E(F397) Virtex-II Pro 4 1 (D = 4) 4481 slices 150 432.3 1.94
Ronan et al. [42] E(F2313) Virtex-II Pro 100 14 (D = 4) 34675 slices 55 203 7.04

14 (D = 8) 41078 slices 50 124 5.09
14 (D = 12) 44060 slices 33 146 6.43

Shu et al. [45] E(F2239) Virtex-II Pro 100 6 (D = 16), 25287 slices 84 41 1.04
1 (D = 4),

1 (D = 2), and
1 (D = 1)

Barenghi et al. [1] E(Fp) Virtex-II 8000 4 (Montgomery) 33857 slices 135 1610 54.51

little theorem, we achieve a smaller area. Furthermore, thanks
to our sparse multiplication algorithm, we compute the ηT
pairing in 6560 clock cycles, whereas Ronan et al. need 10089
clock cycles to complete the same task. They unrolled the
exponent M and grouped the inversions together. Their final
exponentiation is therefore much more expensive than ours:
5440 clock cycles against 2527.

Grabher and Page designed a coprocessor dealing with F3m

arithmetic, which is controlled by a general purpose proces-
sor [21]. Their hardware accelerator embeds a single multiplier
over F3m . Our architectures requires roughly 2.5 times as

many slices, while performing up to nine multiplications in
parallel.

B. ASIC Implementation

We designed the first ASIC implementation of the reduced
ηT pairing (0.18µm CMOS technology). Our two hardware
accelerators require roughly the same number of slices on
Xilinx FPGAs. However, the architecture based on a copro-
cessor for the ηT pairing and a coprocessor for the final
exponentiation involves two register files. Since they are
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implemented using the numerous memory blocks available in
modern FPGAs, they are not taken into account in our area
measurement. We decided to minimize the area of the chip
and selected the coprocessor for arithmetic over F3m with
D = 3. Furthermore, this architecture is more versatile than
the ηT pairing accelerator described in Section IV-A. A simple
modification of the control unit would allow us to support
scalar multiplication in a new version of the ASIC. Table IV
summarizes our place-and-route results. The PairingLite chip
computes the reduced ηT pairing (Algorithms 1 and 2) in
46.7µs. This timing includes the 52 and 78 clock cycles
required to write the coordinates P and Q in the register file
and to read the result, respectively.

TABLE IV
ASIC IMPLEMENTATION OF THE REDUCED ηT PAIRING

(PLACE-AND-ROUTE FIGURES).

Process TSMC CL018G (0.18µm CMOS)
Area 193765 2NAND gates
Frequency 200 MHz
Calculation time 46.7µs
Core size 3849.6µm×3849.6µm
Package TSMC CQFP 100 pin
Operating voltage VDD CORE: 1.8V, VDD IO: 3.3V
Power consumption Total power: 671.739mW
Consumption current Total current: 373.188mA
Temperature conditions 25oC
Output terminal Drive capability 4 mA

Figures 6 and 7 describe the evaluation board we designed
to test the PairingLite ASIC (on the left on Figure 6). We also
included a Cyclone II device (on the right on Figure 6) to test
our FPGA architectures, and a true random number generator
manufactured by FDK corporation to produce secret keys. A
USB port allows one to connect the board to a computer. The
figures reported in Table IV were measured using this board.

In order to check that it is possible to correctly compute the
reduced ηT pairing, we implemented the BLS short signature
scheme [13]. The map-to-point function is computed in soft-
ware. Then, the two pairings involved in the verification are
performed in hardware on our evaluation board and in software
on a desktop computer. We compare the results returned by
the ASIC, the FPGA and the software. It takes 0.8ms to send
the coordinates of points P and Q, compute the pairing on
the ASIC, and read the result. Communications are clearly a
bottleneck here, however, recall that the only purpose of our
board is to serve as a prototype.

VI. CONCLUSION

We proposed two parallel architectures to compute the
reduced ηT pairing in characteristic three and reported the
first ASIC implementation of a pairing accelerator. Our co-
processors take advantage of a novel sparse multiplication
algorithm over F36m . Instead of minimizing the number of
multiplications over F3m , we tried to find a good trade-off
between the number of multiplications and additions over
F3m . Our method also allows for sharing operands between
up to three multipliers and reduces the number of accesses to
memory compared to other algorithms.

Our next challenge is to design a pairing accelerator pro-
viding the level of security of AES-128. We plan to make
a thorough comparison between supersingular curves over
F2m and F3m . We will consider several architectures: small
processors based on a single unified operator [7], accelerators
embedding several parallel-serial multipliers, and massively
parallel architectures based on a Karatsuba-Ofman multiplier.
The study of the Ate pairing [25] would also be of interest,
for it presents a large speedup when compared to the Tate
pairing and also supports non-supersingular curves. Once the
best curve and architecture will be defined, we’d like to design
a coprocessor for pairing-based cryptography supporting the
most widely used primitives (e.g. pairing, random number
generation, scalar multiplication, hashing, etc).
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ficient pairing computation on supersingular Abelian varieties. Designs,
Codes and Cryptography, 42:239–271, 2007.

[4] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms
for pairing-based cryptosystems. In M. Yung, editor, Advances in Cryp-
tology – CRYPTO 2002, number 2442 in Lecture Notes in Computer
Science, pages 354–368. Springer, 2002.

[5] G. Bertoni, L. Breveglieri, P. Fragneto, and G. Pelosi. Parallel hardware
architectures for the cryptographic Tate pairing. In Proceedings of
the Third International Conference on Information Technology: New
Generations (ITNG’06). IEEE Computer Society, 2006.

[6] J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, and F. Rodrı́guez-
Henrı́quez. A comparison between hardware accelerators for the
modified Tate pairing over F2m and F3m . In Proceedings of Pairing
2008, Lecture Notes in Computer Science. Springer, 2008. To appear.
An extended version is available as Report 2008/115 of the Cryptology
ePrint Archive.

[7] J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, M. Shirase, and
T. Takagi. Algorithms and arithmetic operators for computing the
ηT pairing in characteristic three. IEEE Transactions on Computers,
57(11):1454–1468, November 2008.

[8] J.-L. Beuchat, N. Brisebarre, M. Shirase, T. Takagi, and E. Okamoto.
A coprocessor for the final exponentiation of the ηT pairing in charac-
teristic three. In C. Carlet and B. Sunar, editors, Proceedings of Waifi
2007, number 4547 in Lecture Notes in Computer Science, pages 25–39.
Springer, 2007.

[9] J.-L. Beuchat, T. Miyoshi, J.-M. Muller, and E. Okamoto. Horner’s rule-
based multiplication over GF(p) and GF(pn): A survey. International
Journal of Electronics, 2008. To appear.

[10] J.-L. Beuchat, M. Shirase, T. Takagi, and E. Okamoto. An algorithm
for the ηT pairing calculation in characteristic three and its hardware
implementation. In P. Kornerup and J.-M. Muller, editors, Proceedings
of the 18th IEEE Symposium on Computer Arithmetic, pages 97–104.
IEEE Computer Society, 2007.

[11] D. Boneh and M. Franklin. Identity-based encryption from the Weil
pairing. In J. Kilian, editor, Advances in Cryptology – CRYPTO 2001,
number 2139 in Lecture Notes in Computer Science, pages 213–229.
Springer, 2001.

[12] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. In V. Shoup, editor,
Advances in Cryptology – CRYPTO 2005, number 3621 in Lecture Notes
in Computer Science, pages 258–275. Springer, 2005.

[13] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil
pairing. In C. Boyd, editor, Advances in Cryptology – ASIACRYPT 2001,
number 2248 in Lecture Notes in Computer Science, pages 514–532.
Springer, 2001.

[14] R. Dutta, R. Barua, and P. Sarkar. Pairing-based cryptographic protocols:
A survey. Cryptology ePrint Archive, Report 2004/64, 2004.



J.-L. BEUCHAT ET AL. 11

Fig. 6. Evaluation board for the PairingLite chip.

[15] I. Duursma and H.S. Lee. Tate pairing implementation for hyperelliptic
curves y2 = xp−x+d. In C. S. Laih, editor, Advances in Cryptology –
ASIACRYPT 2003, number 2894 in Lecture Notes in Computer Science,
pages 111–123. Springer, 2003.
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