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Abstract. � Akiyama and Goto have proposed a cryptosystem based on
rational points on curves over function �elds (stated in the equivalent form
of sections of �brations on surfaces). It is easy to construct a curve passing
through a few given points, but �nding the points, given only the curve, is
hard. We show how to break their original cryptosystem by using algebraic
points instead of rational points and discuss possibilities for changing their
original system to create a secure one.

1. The cryptosystem of Akiyama and Goto

In this section we present the cryptosystem described by Akiyama and Goto
in [1]. Let p be a prime number, R = Fp[t] be the polynomial ring over the
prime �eld Fp and K = Fp(t) be the �eld of rational functions over Fp. K is the
�eld of fractions of R. Pick a polynomial in two variables X(x, y) ∈ R[x, y],
together with two points U = (ux, uy) ∈ R2 and V = (vx, vy) ∈ R2, such
that X(U) = X(V ) = 0. In other words, we take an algebraic curve over
K together with 2 rational points on the curve. It is easy to �nd two points
and a curve passing through them and we will show how below. On the other
hand, if the curve is given (in terms of the polynomial X(x, y)), it is a hard
mathematical problem to �nd rational points on it. This fact can be used to
build the cryptosystem described in this section.
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1.1. Keys and key generation. � The secret key consists of the two points
U = (ux(t), uy(t)) and V = (vx(t), vy(t)), such that either deg ux 6= deg vx or
deg uy 6= deg vy.

The public key consists of four things: the prime number p, the equation
X(x, y) = 0, de�ning a curve through U and V , an integer l, which will serve
as a lower bound for the degree of a monic irreducible polynomial f ∈ R and
an integer d, satisfying

(1) d ≥ max{deg ux,deg uy,deg vx,deg vy}.

Let us write the equation of the curve as

X(x, y) =
∑
i,j

cijx
iyj = 0

and try to obtain the coe�cients cij ∈ R in such a way that U and V satisfy
it. This means:

(2)
∑
i,j

ciju
i
xuj

y =
∑
i,j

cijv
i
xvj

y = 0.

If we subtract the second sum from the �rst we get
∑

(i,j) 6=(0,0)

cij(ui
xuj

y−vi
xvj

y) =

0, which can be written as

(3) c10(ux − vx) = −
∑

(i,j) 6=(0,0),(1,0)

cij(ui
xui

y − vi
xvi

y) = 0.

Now suppose that (ux − vx)|(uy − vy). Then the right hand side of (3) is also

divisible by ux − vx, because ui
xuj

y − vi
xvj

y = (ui
x − vi

x)uj
y + vi

x(uj
y − vj

y). This
suggest the following algorithm for choosing X:

1. For each pair of indices (i, j) 6= (0, 0), (1, 0) pick a random element cij ∈
R.

2. Randomly choose elements λx, λy, vx, vy in R, such that λx|λy.
3. Compute uy = λy + vy and ux = λx + vx.
4. Compute c10 from (3).

5. Compute c00 from (2) as −c00 =
∑

(i,j) 6=(0,0)

ciju
i
xvj

u.

1.2. Encryption and decryption. � Let m ∈ R be the secret message
that we want to encrypt and assume deg m < l. When p = 2 we can encode
any sequence of k bits as a polynomial of degree k in F2[t]. The assumptions
mean that we need to encrypt the secret message by dividing it into blocks of
at most l bits and encrypting each of them individually. The encryption goes
like this:
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1. Choose a random polynomial s(x, y) ∈ R[x, y], which satis�es the follow-
ing condition

(4) (degx s + degy s)d + degt s < l.

2. Choose another random polynomial r(x, y) ∈ R[x, y] and a monic irre-
ducible polynomial f ∈ R, such that

(5) degt f > l.

3. Compute the cypher polynomial F (x, y) ∈ R[x, y] according to the for-
mula

(6) F = m + fs + Xr.

Now a person knowing the secret key, namely the points U and V , can easily
decypher the encrypted polynomial F in the following way:

1. Evaluate F at U and V to get polynomials h1, h2 ∈ R.

h1 = F (ux, uy) = m + fs(ux, uy)

h2 = F (vx, vy) = m + fs(vx, vy).

2. Factor h1 − h2 and �nd f as the factor with largest degree.
3. Compute m as the remainder of h1 when divided by f .

Note that indeed f(t) is the highest degree factor of h1(t)− h2(t). We have
h1(t) − h2(t) = (s(ux, uy) − s(vx, vy))f and because of the condition (5), we
only have to show that deg(s(ux, uy)− s(vx, vy)) ≤ l. Suppose that the degree
of one of the two polynomials, say s(ux, uy), is greater than l. This can only

happen if there exist a monomial in s(x, y) ∈ R, say s0(x, y) = gxαyβ , g ∈ R,
such that deg s0(ux, uy) > l. If this is the case, then use α ≤ degx s, β ≤ degy s,
(1) and (4) to get:

l < deg(guα
xuβ

y ) ≤ deg g+(deg ux)α+(deg uy)β ≤ degt s+d(degx s+degy s) < l,

which is a contradiction. Thus f(t) is indeed the irreducible factor of h1(t)−
h2(t) with highest degree.

The most time consuming part of this decryption algorithm is to factor
the polynomial in step 2. In our case this can be done e�ciently using the
algorithm of Cantor-Zassenhaus [4]. This is the one of the fastest methods for
factoring polynomials over �nite �elds.

In the description so far we have omitted all the details in choosing the
parameters, which concern the security of the cryptosystem and we have listed
only the minimal conditions, which have to be imposed to make the decryption
possible. However, the algorithm suggested doesn't always produce a valid
decryption. It fails precisely if it happens that h1 − h2 = 0, i.e. if s(ux, uy) =
s(vx, vy). The probability of this happening is negligible with respect to the
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degree of s, as discussed in [1], where some values for the parameters are
suggested. We follow those suggestions for our experiments, described below.

2. Breaking the cryptosystem

We describe an attack which e�ciently breaks the protocol just described.
However, although it reveals the secret message e�ciently, it says nothing
about the secret key, as we will see. Finding two or even one rational point on
the curve X(x, y) = 0 is a hard problem, which it turns out one doesn't need
to solve in order to reveal the secret message m. The idea is to work in an
extension of R, in which we can �nd points on the curve and then use these
points to evaluate the cypher polynomial.

Let S = R[y]/(X(x, 0)) and let α = π(x) be the image of x in S under the
natural projection

π : R[x] → R[x]/(X(x, 0)).
The point (α, 0) is on the curve X(x, y) = 0, because by construction X(α, 0) =
π(X(x, 0)) = 0. We evaluate the cypher polynomial F at (α, 0) to get

(7) F (α, 0) = m + fs(α, 0) + X(α, 0)r(α, 0) = m + fs(α, 0).

We now want to go back to our original ring by applying the trace operator.
To be precise, recall that we denoted K = Fp(t) and let L = S⊗R K. We have
the trace operator Tr : L → K, which satis�es Tr|K = [L : K]id.

Now choose an element 0 6= β ∈ S with Tr(β) = 0. If γ ∈ S, but γ /∈ R, then

β = γ − Tr(γ)
n , where n = degx X(x, 0), is such a choice, provided (p, n) = 1

which we assume for simplicity. Indeed,

Tr(γ − Tr(γ)
n

) = Tr(γ)− Tr(
1
n

)Tr(γ) = Tr(γ)− Tr(γ) = 0,

because Tr( 1
n) = 1

n [L : K] = 1
n deg(X(0, y)) = 1.

Now using (7) we get

Tr(βF (α, 0)) = mTr(β) + fTr(βs(α, 0)) = fTr(βs(α, 0)).

In other words, for any choice of β, the adversary can compute pβ =
Tr(βF (α, 0)), which is a polynomial in t divisible by f . But f is monic
irreducible polynomial of large degree, which allows the adversary to �nd it,
in case pβ 6= 0. For example he could compute pβ 6= 0 for several di�erent
choices of β, take the greatest common divisor of them, and extract f as the
irreducible polynomial of largest degree, which divides the greatest common
divisor. The most time consuming computation in this process is the fac-
torization needed to obtain the largest degree irreducible divisor, which is a
computation used also in the decryption, as we already saw. We showed how
to obtain candidate values for β starting with any γ ∈ S \ R. The natural
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choices for γ are α, α2, α3, . . . and in the testing part we never needed to try
more than 10 di�erent values for γ.

Now when f is known to the adversary, he can easily obtain m in the fol-
lowing way. Apply Tr operator to equation (7) to get

(8) Tr(F (α, 0)) = Tr(m + fs(α, 0)) = nm + nfTr(s(α, 0)).

Now nm is the remainder of F (α, 0) when divided by f , because of the condi-
tions deg m < l < deg f .

The computational steps required for the attack are similar as those
required for the decryption, except for the computation of traces. The
traces of αi, i = 1, . . . , n − 1 are obtained from the coe�cients of X(x, 0)
by Newton's identities and, from those values, the trace of any ele-
ment of S can be easily obtained by linearity. We implemented the
encryption, decryption and attack steps in Pari/GP (code available at
http://www.ma.utexas.edu/users/voloch/GP/asc.gp) In the key generation
part of the testing script we use the following choice of parameters: w = deg X
is a random number between 5 and 8, d is chosen to be 50, the coe�cients of
X(x, y) ∈ R[x, y], which are polynomials of t are chosen randomly in such a
way that their degree is less than or equal to dw. Finally l is chosen to be a
random number between (2w + 4)d and (2w + 4)d + 100. Finally we took for
p all primes up to 31 and a handful of primes between 32 and 7919. The time
it takes to break the system using our attack appears to be a small multiple
(depending on p and at most 6 for p in our range) of the decryption time.

3. Variants and other attacks

In addition to the attack described above, the Akiyama-Goto cryptosystem
is subject to another attack due to Uchiyama and Tokunaga. Both this attack
and ours are discussed in [2], where the authors also discuss a new variant of
their cryptosystem immune to those attacks. Brie�y, this new variant uses the
same shape of encryption F = m+fs+Xr, except that now m, f ∈ Fp[t, x, y].
To enable decryption, they need to send two encryptions Fi = m+fsi+Xri, i =
1, 2. This new cryptosystem is subject to the following attack:

Let g = fs2 − fs1. We use a substitution attack as in 6.1.1 of [2]. We have
F2 − F1 = g + X(r2 − r1), so by substituting points in a �nite �eld satisfying
X = 0, we get a set of linear equations for the coe�cients of g. So we �rst �nd
g and then we use a multivariate polynomial factoring algorithm (as in e.g.
[3]) to �nd f from g. Once f is found, then we can �nd m by plugging points
satisfying X = 0 on Fi = m + fsi + Xri which now are linear in m and si.

Another idea of how make the system secure against the attack described
in this paper is the following: Go back to the original system and make the
cyphertext be of the form m + fs + Xr + (xpn − x)b + (ypn − y)c where b and
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c are random polynomials in t, x, y. If n is su�ciently large, when we plug in
the points U, V we can recover the value of m+fs as the remainder of division
by tp

n − t, then proceed as before. On the other hand, n cannot be made too
large or the system might be subject to a substitution attack. It is not clear
whether this new system is e�cient or secure and it merits further study.
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