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Abstract

Multi-exponentiation is a common and time consuming operation in public-key cryptography. Its elliptic curve

counterpart, called multi-scalar multiplication is extensively used for digital signature verification. Several algorithms

have been proposed to speed-up those critical computations. They are based on simultaneously recoding a set of

integers in order to minimize the number general multiplications or point additions. When signed-digit recoding

techniques can be used, as in the world of elliptic curves, Joint Sparse Form (JSF) and interleavingw-NAF are the

most efficient algorithms. The novel recoding algorithm is proposed for a pair of integers based on a decomposition

that mixes powers of 2 and powers of 3. It is shown that the so-called Hybrid Binary-Ternary Joint Sparse Form

(HBTJSF) is shorter and sparser than the JSF and the interleaving w-NAF. The advantages of the HBTJSF are

illustrated for elliptic curve double-scalar multiplication; the operation counts shows a gain of up to 18%.

Index Terms

Multi-exponentiation, Multi-scalar multiplication, Joint sparse form, Binary-ternary number system, Elliptic curves.

I. I NTRODUCTION

Multi-exponentiation is a common operation in public-key cryptography. Most digital signatures are verified by

evaluating an expression of the formgahb, whereg, h are elements of a multiplicative group; typically the groupF
∗

q

of non-zero elements of the finite fieldFq. To speed-up this operation, one can compute the well known Shamir’s

trick (see [1] and [2]), which is based on the simple fact it isunnecessary to compute the two expressions separately

since only the product is needed. Shamir first suggested to apply the square-and-multiply algorithm to the binary

expansions of botha and b at the same time, and further noticed that some extra savingscan be obtained by

precomputing the productgh. If t denote the bit-length of the largest exponent, this method requirest squarings

and3t/4 multiplications on average.
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In the world of elliptic curves, the same critical operationrewrites[k]P + [l]Q, wherek and l are two positive

integers, andP, Q are two elements of the group of points of an elliptic curve; anice group where elements can

be easily inverted (the cost of computing−P from P is negligible). Naturally, joint signed binary expansions[3],

with digits in {−1, 0, 1} have been considered. The scalarsk, l can be represented as a2 × t matrix

k = (kt−1 . . . k1 k0)

l = (lt−1 . . . l1 l0),

with ki, li ∈ {−1, 0, 1} for all i. The number of additions required by Shamir’s simultaneousmethod is equal to

the so-called joint Hamming weight; i.e., the number of non-zero columns. For example, ifk andl are both written

in the Non-Adjacent Form [4], [5], the computing[k]P + [l]Q costst+1 doublings and5t/9 additions on average.

Example 1:The 2 × t matrix given by the NAFs ofk = 145 and l = 207

145 = (0 1 0 0 1 0 0 0 1)

207 = (1 0 1̄ 0 1 0 0 0 1̄)

has joint Hamming weight 5.

In [6], Solinas introduced the Joint Sparse Form (JSF) to further reduce the average number of non-zero columns.

The main idea behind Solinas’ algorithm is to make sure that out of three consecutive columns, at least one is a

zero-column. Solinas’ algorithm is given in terms of arithmetic operations but it basically reduces to computations

modulo8 (bit operations). By carefully choosing the positive/negative values of the remainders (mod8), Solinas

proves the uniqueness and optimality (in the context of joint signed binary expansions) of the JSF, showing that

the computation of[k]P + [l]Q requirest + 1 doublings andt/2 additions on average.

Example 2:Using the same values as above (k = 145, l = 207), the JSF

145 = (1 0 0 1 0 0 0 1)

207 = (1 1 0 1 0 0 0 1̄)

has Hamming weight 4.

The simultaneous methods described above require precomputations of points involving bothP and Q. For

example, the JSF algorithm needs the pointsP +Q andP −Q to be precomputed. On the other hand, interleaving

methods use precomputed values that only involve a single point, which allows to use different methods for each

precomputed point (such as different width-w NAFs); the doubling steps being done jointly. The overall cost of

interleaving methods ist+1 doublings and2t/(w+1) additions on average (see [2, pp 111–113] for more details).

We give an example of interleavingw-NAF in Section III.

In this paper, we describe a novel joint recoding scheme which uses both bases 2 and 3 in order to reduce the

average number of non-zero columns. In Section II, we present the basics of the so-called hybrid binary-ternary

number systems. In Section III, we extend the concept to represent pairs of integers and we introduce a new joint

recoding algorithm. We analyzes our algorithm in Section IVand present some numerical results in Section V.
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II. H YBRID BINARY-TERNARY NUMBER SYSTEM

The Hybrid Binary-Ternary Number System (HBTNS) was introduced by Dimitrov and Cooklev in [7] for

speeding-up modular exponentiation. In this system, an integer is written as a sum of powers of 2 and powers of 3;

i.e. it mixes bits and trits (radix-3 digits) except that thedigit 2 never occurs. The use of base 3 naturally reduces

the number of digits1 required to represent at-bit integer. In fact, it can be shown that at-bit number can be written

with ≈ 0.88058t digits, whereas the average base is≈ 2.19617 (see [7] for more details). More importantly, this

number system is also very sparse; the average number of non-zero digits in HBTNS is≈ 0.3381t. Algorithm 1

can be used to calculate the HBTNS representation of a positive integer.

Algorithm 1 HBTNS representation
Input : An integern > 0

Output : Arraysdigits[], base[]

1: i = 0

2: while n > 0 do

3: if n ≡ 0 (mod 3) then

4: base[i] = 3; digits[i] = 0; n = n/3;

5: else if n ≡ 0 (mod 2) then

6: base[i] = 2; digits[i] = 0; n = n/2;

7: else

8: base[i] = 2; digits[i] = 1; n = n/2;

9: end if

10: i = i + 1

11: end while

12: return digits[], base[]

Example 3:The hybrid binary-ternary representation ofn = 703 = (1010111111)2

digits[] = [1, 0, 0, 0, 1, 0, 0, 1]

base[] = [2, 3, 3, 3, 2, 3, 2, 2].

has only 8 digits among which 3 only are non-zero. Note that the binary representation requires 10 bits, out of

which 8 are different from zero.

The idea of mixing bases 2 and 3 for elliptic curve scalar multiplication has been proposed by Ciet et al. in [8]

using the same decomposition as in Algorithm 1. Dimitrov, Imbert and Mishra generalized this concept in [9] by

1Although we only deal with0s and1s, the term ”digit” is more appropriate than ”bit” because ofthe use of base 3.
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Fig. 1. An example of staircase walk for a double-base chain representing703

using a greedy approach to compute special signed double-base expansions; i.e. expressions of the form

∑

i

±2ai3bi , with ai, bi ≥ 0,

where the exponents form two simultaneously decreasing sequences. These expansions, called double-base chains

(see Def. 1 below), allows for fast scalar multiplication. See [10] for more details about this number system.

Definition 1 (Double-base chain):Given k > 0, a sequence(Kn)n>0, of positive integers satisfying:K1 = 1,

Kn+1 = 2u3vKn + s, with s ∈ {−1, 1} for someu, v ≥ 0, and such thatKm = k for somem > 0, is called

a double-base chain fork. The length,m, of a double-base chain is equal to the number of terms (oftencalled

{2, 3}-integers), used to representk.

Any elliptic curve scalar multiplication algorithm based on mixing powers of 2 and powers of 3 requires point

doublings and additions, as well as, possibly fast, point triplings. In [9], Dimitrov et al. also proposed an efficient

tripling formula in Jacobian coordinates for ordinary elliptic curves over large prime fields (see [11] for improved

formulas). In [12], Doche and Imbert further extended the idea by allowing larger digits sets as in thew-NAF

algorithms.

An easy way to visualize expansions using two bases (say e.g.2 and3), is to use a two-dimensional array (the

columns represent the powers of2 and the rows represent the powers of3) into which each non-zero cell contains

the sign of the corresponding term. (by convention, the upper-left corner corresponds to2030 = 1.) A double-base

chain can thus be represented by a staircase walk from the bottom-right corner to the upper-left corner, with non-

zero digits distributed along this path. An example of such adouble-base chain is shown in Fig. 1; it was obtained

using Algorithm 1. (Since a given set of non-zero cells can lead to many different staircase walks, we adopt the

convention to walk North as much as we can before going East.)

In the next section, we present an algorithm which computes two double-base chains that share the same staircase

walk; only the distribution of the digits along the path differ.
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III. H YBRID BINARY TERNARY JOINT SPARSEFORM

In Algorithm 2 below, the hybrid binary-ternary joint sparse form of a pair of integers is calculated by first

checking whether bothk1 and k2 are divisible by 3. If this is the case, both digits are set to0 and the base set

to 3, otherwise we check whether they are both divisible by 2 and proceed accordingly. Finally, if the pair is not

divisible by 2 and 3, we make both numbers divisible by 6 by subtractingki mods6 ∈ {−2,−1, 0, 1, 2, 3} from

ki, and then divide the results by 2. Therefore, in the next step, both numbers are divisible by 3 and we generate

a zero column.

Algorithm 2 Hybrid binary-ternary joint sparse form (HBTJSF)
Input : Two positive integersk1, k2

Output : Arrayshbt1[], hbt2[], base[]

1: i = 0

2: while k1 > 0 or k2 > 0 do

3: if k1 ≡ 0 (mod 3) andk2 ≡ 0 (mod 3) then

4: base[i] = 3;

5: hbt1[i] = hbt2[i] = 0;

6: k1 = k1/3; k2 = k2/3;

7: else if k1 ≡ 0 (mod 2) andk2 ≡ 0 (mod 2) then

8: base[i] = 2;

9: hbt1[i] = hbt2[i] = 0;

10: k1 = k1/2; k2 = k2/2;

11: else

12: base[i] = 2;

13: hbt1[i] = k1 mods6; hbt2[i] = k2 mods6;

14: k1 = (k1 − hbt1[i])/2; k2 = (k2 − hbt2[i])/2;

15: end if

16: i = i + 1

17: end while

18: return hbt1[], hbt2[], base[]

Example 4:The following example illustrates the advantage of the HBTJSF. Fork1 = 1225 andk2 = 723, the

Joint Sparse Form

1225 = (1 0 1 0 1̄ 0 0 1 0 0 1)

723 = (1 0 1̄ 0 0 1̄ 0 1̄ 1̄ 0 1̄)

has joint Hamming weight7. In the interleaving method, the non-zero elements in bothw-NAF representations are
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Fig. 2. Double-base chains for 1225 and 723

P 2P 3P

Q P ± Q 2P ± Q 3P ± Q

2Q P ± 2Q - 3P ± 2Q

3Q P ± 3Q 2P ± 3Q -

TABLE I

PRECOMPUTATION MATRIX FORHBTJSFPOINT MULTIPLICATION

considered, instead of joint hamming weight. The interleaving w-NAF (with w = 5 for 1225 andw = 4 for 723)

5-NAF(1225) = (1 0 0 0 0 −13 0 0 0 0 0 9)

4-NAF(723) = (0 0 0 3 0 0 0 −3 0 0 0 3)

has6 non-zero elements (usingw = 4 for 1225 andw = 5 for 723 also leads to 6 non-zero elements). Using

Algorithm 2, the hybrid binary-ternary joint sparse form

1225 = (3 0 1̄ 0 0 0 0 1)

723 = (2 0 2̄ 0 0 0 0 3)

base[] = (2 3 2 2 2 3 3 2)

only requires 8 digits and has joint Hamming weight3. We show the corresponding double-base chains in Fig. 2.

Note the digits are distributed along the same staircase walk.

Since the HBTJSF uses the digit set{−2,−1, 0, 1, 2, 3}, some points have to be precomputed and stored (see

Section V for a discussion regarding these precomputations). Table I gives the precomputation matrix. Since the

negation of a point is negligible, only one set of point difference need to be calculated. Others can be calculated

online. For example,P − 2Q can be used to calculate,2Q − P .

IV. T HEORETICAL ANALYSIS

Let us analyzes the behaviour of Algorithm 2. We consider numbers of the form6k + j with j ∈ {−2, . . . , 3}.

We want to know how often our algorithm performs a division by3 and how often it performs a division by 2.

More importantly, we want to know how many non-zero columns we can expect on average.
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Fig. 3. State diagram illustrating divisions by 2 and divisions by 3 in Algorithm 2

Only the numbers of the form6k and 6k + 3 are divisible by 3. Therefore, since bothk1 and k2 have to be

divisible by 3, our algorithm performs a division by 3 with probability 1/9. Obviously, we divide by 2 in all the

other cases; i.e., with probability8/9. These are the initial probabilities. Now, divisions by 2 either occur when

both numbers are divisible by 2 (numbers of the for6k − 2, 6k or 6k + 2); i.e., with probability1/4, or when

we make both numbers divisible by 6, which therefore occurs with probability 3/4. This Markov process can be

illustrated by a state diagram (see Fig. 3).

Using classic matrix diagonalization, the corresponding transition matrix

P =





1/4 3/4

8/9 1/9





can be decomposed into the form

P = R ×





1 0

0 −23/36



 × R−1,

where

R =
1

59





32 27

32 −32



 and R−1 =
1

32





32 27

32 −32



 .

The average probabilitiesπ∞ are obtained aslimn→∞ π0P
n, with π0 = (8/9, 1/9) our initial probabilities. We

have

πn = π0P
n = (32/59 + 184/531(−23/36)n, 27/59 + 184/531(−23/36)n)

and therefore

π∞ =

(

32

59
,
27

59

)

.

Hence, we divide by 2 with probability32/59 ≈ 0.542 and we divide by 3 with probability27/59 ≈ 0.458. Using

these probabilities, we can evaluate the average base

β =
59
√

232327 =
59
√

32751691810479015985152≈ 2.407765

For a pair oft-bit integers, the average digit length of the HBTJSF array is thus approximately

(logβ 2) × t ≈ 0.7888 × t. (1)

To complete our analysis, we need to know how many non-zero columns we can expect on average. Using the

same reasoning as above, we have a zero column when both numbers are divisible by 3 or when both numbers
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Fig. 4. State diagram illustrating the probabilities of zero columns (stateq0) and non-zero columns (stateq1) in Algorithm 2

TABLE II

THEORETICAL COMPARISON OFHBTJSF, JSFAND INTERLEAVING w-NAF FOR A t-BIT PAIR OF INTEGERS

Parameters HBTJSF JSF Interleavingw-NAF

Average base 2.41 2 2

Avg # col. 0.79t t + 1 t + 1

Avg # base2 col. 0.43t t + 1 t + 1

Avg # base3 col. 0.36t 0 0

Avg # non-zero col. 0.32t 0.5t 2t/(w + 1)

Precomp. 18 2 2w−1 − 2

are divisible by 2, which occurs with probability1/9 + 1/4 − 1/36 = 1/3 (numbers simultaneously divisible by

6 need only be counted once). Reversely, we have a non-zero column with probability2/3. Since our algorithm

never generates two consecutive non-zero columns, we obtain the state diagram illustrated in Fig. 4. Using the same

analysis as above, the transition matrix

Q =





1/3 2/3

1 0



 =





1 −2/3

1 1









1 0

0 −2/3









3/5 2/5

−3/5 3/5





allows us to compute the average number of columns of each type. We haveπ∞ = (3/5, 2/5); meaning that, on

average, our algorithm generates a non-zero column with probability 2/5. The expected number of elliptic curve

additions can thus be derived from (1). We have

#Add ≈ 2

5
× 0.7888× t ≈ 0.3155× t.

We summarized our theoretical results in Table II, with realvalues rounded to the nearest hundredth. (For simplicity,

we consider that the same window width is used for both numbers in the interleavingw-NAF method.)

V. COMPARISONS

Based on the above analysis, we compare our algorithm with the JSF and thew-NAF interleaving method

(assuming windows of sizew = 4). We consider two kinds of curves for which we know that triplings are

useful [13]:

• Ordinary elliptic curves over large prime fields with Jacobian coordinates (witha = −3),

• tripling-oriented Doche-Icart-Kohel curves [14].
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TABLE III

COSTS OF SOME CURVE OPERATIONS FOR ORDINARY ELLIPTIC CURVES OVER PRIME FIELDS INJACOBIAN COORDINATES(a = −3) AND

TRIPLING-ORIENTEDDIK CURVES

Weierstrass / Jacobian (a = −3)

Cost S = 0.8M

Doubling 3M + 5S 7M

Tripling 7M + 7S 12.6M

Addition (mixed) 7M + 4S 10.2M

Tripling-oriented DIK

Cost S = 0.8M

Doubling 2M + 7S 7.6 M

Tripling 6M + 6S 10.8 M

Addition (mixed) 7M + 4S 10.2 M

TABLE IV

COMPARISONS BETWEENHBTJSF, JSFAND INTERLEAVING w-NAF FOR256-BIT INTEGERS

Weierstrass / Jacobian (a = −3)

HBTJSF JSF Inter. 4-NAF

Mult. counts for dbl. 770 1799 1799

Mult. counts for tpl. 1159 0 0

Mult. counts for add 836 1311 1049

Total mult. counts 2765 3110 2848

Gain (%) – 11.09 2.91

Tripling-oriented DIK

HBTJSF JSF Inter. 4-NAF

Mult. counts for dbl. 836 1953 1953

Mult. counts for tpl. 994 0 0

Mult. counts for add 836 1311 1049

Total mult. counts 2666 3264 3002

Gain (%) – 18.32 11.19

The costs of the necessary curve operations are given in Table III; the last column give equivalent multiplica-

tion counts assumingS = 0.8M . These costs are reported in the comprehensive and accurateexplicit-formulas

database [11]. Our results are summarized in Table IV for256-bit pairs of integers (similar savings can be observed

for other sizes).

For our operation counts, we have omitted the costs of precomputations. In the case of JSF, onlyP +Q andP −Q

have to be computed, which is (almost, but not exactly) equivalent to two additions. In the case of interleaving

w-NAF, we have to precompute3P , 3Q, 5P , 5Q, . . . , (2w−1 − 1)P , (2w−1 − 1)Q; i.e., a total of2w−1 − 2 points.

The exact operation counts depends on the way those computations are implemented. In the case of HBTJSF, 18

points are needed as shown in Table I. However, it is quite unlikely that all the combinations will be required
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in the process of computing a double-scalar multiplication. Therefore, a better option might be to perform those

computations online when required. Of course, as soon as oneof those points is encountered, it must be stored for

future use. But even if all 18 points are precomputed beforehand, the exact operation counts is less than the cost

of 2 doublings plus16 additions, since common subexpressions eliminations techniques can be considered.

VI. CONCLUSIONS

A new recoding algorithm for a pair of integers has been proposed. It is based on a decomposition of two

integers using mixed powers of 2 and 3. Our analysis shows that it requires almost 20% fewer digits than the

binary representation and that the average ratio of non-zero columns over digit length is2/5. We have illustrated

the advantages of the so-called HBTJSF for elliptic curve double-scalar multiplication. Compared to the commonly

used JSF and interleavingw-NAF methods, the savings obtained with HBTJSF are significant (up to 18%) for

curves for which triplings are useful, such as e.g. ordinarycurves over large prime fields or tripling-oriented DIK

curves.
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