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Abstract

Multi-exponentiation is a common and time consuming opemnain public-key cryptography. Its elliptic curve
counterpart, called multi-scalar multiplication is exdeely used for digital signature verification. Severalagithms
have been proposed to speed-up those critical computafidrey are based on simultaneously recoding a set of
integers in order to minimize the number general multigiares or point additions. When signed-digit recoding
technigues can be used, as in the world of elliptic curvesit Bparse Form (JSF) and interleavingNAF are the
most efficient algorithms. The novel recoding algorithm iegosed for a pair of integers based on a decomposition
that mixes powers of 2 and powers of 3. It is shown that theadled Hybrid Binary-Ternary Joint Sparse Form
(HBTJSF) is shorter and sparser than the JSF and the intedea-NAF. The advantages of the HBTJSF are
illustrated for elliptic curve double-scalar multipligan; the operation counts shows a gain of up to 18%.

Index Terms
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I. INTRODUCTION

Multi-exponentiation is a common operation in public-keygtography. Most digital signatures are verified by
evaluating an expression of the fogfh®, whereg, h are elements of a multiplicative group; typically the grayp
of non-zero elements of the finite field,. To speed-up this operation, one can compute the well kndwam8’s
trick (see [1] and [2]), which is based on the simple fact lifisecessary to compute the two expressions separately
since only the product is needed. Shamir first suggestedpty aipe square-and-multiply algorithm to the binary
expansions of botlw and b at the same time, and further noticed that some extra sawiagsbe obtained by
precomputing the produgth. If ¢ denote the bit-length of the largest exponent, this metleaglirest squarings

and3t¢/4 multiplications on average.
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In the world of elliptic curves, the same critical operati@writes k] P + [I[|Q, wherek and! are two positive
integers, andP, ) are two elements of the group of points of an elliptic curveli@ group where elements can
be easily inverted (the cost of computirgP? from P is negligible). Naturally, joint signed binary expansidB8§
with digits in {—1,0,1} have been considered. The scalass can be represented a2a< ¢t matrix

k= (k—1 ... ki ko)

l= (leer ... 1 1),
with k;,1; € {—1,0,1} for all i. The number of additions required by Shamir's simultanemethod is equal to
the so-called joint Hamming weight; i.e., the number of za@ne columns. For example, ifand! are both written
in the Non-Adjacent Form [4], [5], the computing] P + [I]Q costst + 1 doublings andst/9 additions on average.

Example 1:The 2 x ¢ matrix given by the NAFs ok = 145 and! = 207

145=(0 1 0 0 1 0 0 0 1)
207=(1 0 1 0 1 0 0 0 1)
has joint Hamming weight 5.

In [6], Solinas introduced the Joint Sparse Form (JSF) tth&rrreduce the average number of non-zero columns.
The main idea behind Solinas’ algorithm is to make sure thiatod three consecutive columns, at least one is a
zero-column. Solinas’ algorithm is given in terms of arigtin operations but it basically reduces to computations
modulo 8 (bit operations). By carefully choosing the positive/nagavalues of the remainders (m&), Solinas
proves the uniqueness and optimality (in the context oftjsigned binary expansions) of the JSF, showing that
the computation ofk] P + [/]Q requirest + 1 doublings and/2 additions on average.

Example 2:Using the same values as abovwe= 145, [ = 207), the JSF

145=(1 0 0 1 0 0 0 1)
207=(1 1 0 1 0 0 0 1)
has Hamming weight 4.

The simultaneous methods described above require predatigms of points involving bothP? and Q. For
example, the JSF algorithm needs the poiits Q and P — Q to be precomputed. On the other hand, interleaving
methods use precomputed values that only involve a singl,pwhich allows to use different methods for each
precomputed point (such as different widthNAFs); the doubling steps being done jointly. The overaltcof
interleaving methods is+ 1 doublings an@®t/(w + 1) additions on average (see [2, pp 111-113] for more details).
We give an example of interleaving-NAF in Section III.

In this paper, we describe a novel joint recoding scheme lwhges both bases 2 and 3 in order to reduce the
average number of non-zero columns. In Section Il, we ptetbenbasics of the so-called hybrid binary-ternary
number systems. In Section Ill, we extend the concept toesgmt pairs of integers and we introduce a new joint

recoding algorithm. We analyzes our algorithm in Sectionahd present some numerical results in Section V.
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Il. HYBRID BINARY-TERNARY NUMBER SYSTEM

The Hybrid Binary-Ternary Number System (HBTNS) was introed by Dimitrov and Cooklev in [7] for
speeding-up modular exponentiation. In this system, ageitis written as a sum of powers of 2 and powers of 3;
i.e. it mixes bits and trits (radix-3 digits) except that tigit 2 never occurs. The use of base 3 naturally reduces
the number of digitsrequired to representtabit integer. In fact, it can be shown that-#it number can be written
with =~ 0.88058¢ digits, whereas the average basexi®.19617 (see [7] for more details). More importantly, this
number system is also very sparse; the average number ofarordigits in HBTNS is~ 0.3381¢. Algorithm 1

can be used to calculate the HBTNS representation of a pesitieger.

Algorithm 1 HBTNS representation
Input : An integern > 0

Output : Arraysdigits[], base[]
1:.39=0
2: whilen > 0 do
3 ifn=0 (mod 3) then
4: base[i] =3;digits[i] =0;n=n/3;
5. eseif n=0 (mod 2) then
6: base[i] =2;digits[i{] =0;n=n/2;

7. ese
8: base[i] =2;digits[i] =1;n=n/2;
9:  endif

10 i=1+1
11: end while

12: returndigits[], base[]

Example 3:The hybrid binary-ternary representationsof= 703 = (1010111111),
digits[] =[1,0,0,0,1,0,0,1]
base[] =12,3,3,3,2,3,2,2].

has only 8 digits among which 3 only are non-zero. Note thatlimary representation requires 10 bits, out of
which 8 are different from zero.
The idea of mixing bases 2 and 3 for elliptic curve scalar iplidation has been proposed by Ciet et al. in [8]

using the same decomposition as in Algorithm 1. Dimitrovhbért and Mishra generalized this concept in [9] by

1Although we only deal wittDs and1s, the term "digit” is more appropriate than "bit” becausetié use of base 3.
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Fig. 1. An example of staircase walk for a double-base chefmesentingr03

using a greedy approach to compute special sighed doubkdgansions; i.e. expressions of the form
> 42%3% with a;,b; > 0,

where the exponents form two simultaneously decreasingesegs. These expansions, called double-base chains
(see Def. 1 below), allows for fast scalar multiplicatioree§10] for more details about this number system.

Definition 1 (Double-base chain)Given k > 0, a sequencéK,,),~o, of positive integers satisfyingk(; = 1,
K,y = 23K, + s, with s € {—1,1} for somew,v > 0, and such thaf,, = k for somem > 0, is called
a double-base chain fdr. The length,m, of a double-base chain is equal to the number of terms (af&died
{2, 3}-integers), used to represent
Any elliptic curve scalar multiplication algorithm based mixing powers of 2 and powers of 3 requires point
doublings and additions, as well as, possibly fast, poiptitigs. In [9], Dimitrov et al. also proposed an efficient
tripling formula in Jacobian coordinates for ordinary @i curves over large prime fields (see [11] for improved
formulas). In [12], Doche and Imbert further extended theaicdy allowing larger digits sets as in theNAF
algorithms.

An easy way to visualize expansions using two bases (sayegd3), is to use a two-dimensional array (the
columns represent the powers dand the rows represent the powers3pfinto which each non-zero cell contains
the sign of the corresponding term. (by convention, the ujgfecorner corresponds t2P'3° = 1.) A double-base
chain can thus be represented by a staircase walk from thenteight corner to the upper-left corner, with non-
zero digits distributed along this path. An example of suaoable-base chain is shown in Fig. 1; it was obtained
using Algorithm 1. (Since a given set of non-zero cells cadléo many different staircase walks, we adopt the
convention to walk North as much as we can before going East.)

In the next section, we present an algorithm which computesiouble-base chains that share the same staircase

walk; only the distribution of the digits along the path ditf
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IIl. HYBRID BINARY TERNARY JOINT SPARSEFORM

In Algorithm 2 below, the hybrid binary-ternary joint sparform of a pair of integers is calculated by first
checking whether botlt; and k, are divisible by 3. If this is the case, both digits are seb tand the base set
to 3, otherwise we check whether they are both divisible by 2 adqed accordingly. Finally, if the pair is not
divisible by 2 and 3, we make both numbers divisible by 6 bytsdiing k; mods6 € {—2,-1,0,1,2,3} from
k;, and then divide the results by 2. Therefore, in the next,dtefh numbers are divisible by 3 and we generate

a zero column.

Algorithm 2 Hybrid binary-ternary joint sparse form (HBTJSF)
Input : Two positive integerg:, ko

Output : Arrayshbt 1[], hbt2[], base[]

1. ¢ =0

2: while ky > 0 or k2 >0 do

3 if ky =0 (mod 3) andke =0 (mod 3) then

4: base[ ] = 3;

5; hbt 1[ ;] = hbt 2[ ] =0;

6: k1 =k1/3; ko = ka/3;

7. dseif k; =0 (mod 2) andke, =0 (mod 2) then
8: base[i] =2;

o: hbt 1[ ;] = hbt 2[ ] =0;

10: k1 =k1/2; ko = ko/2;

1. dse

12: base[i] =2;

13: hbt 1[ ¢] = k1 mods6; hbt 2[ §] = k2 mods6;
14: ki = (ki —hbt1[d])/2; ky = (ko —hbt 2[1])/2;

15.  end if
16: i=1+1
17: end while

18: return hbt 1[], hbt2[], base[]

Example 4:The following example illustrates the advantage of the HBH.JFork, = 1225 andk, = 723, the

Joint Sparse Form

1225=(1 0 1 0 1 0 10

0 0
723=(1 0 1 0 0 1 0 0

has joint Hamming weight. In the interleaving method, the non-zero elements in botNAF representations are
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1225 723
Fig. 2. Double-base chains for 1225 and 723
P 2P 3P

Q P+Q 2P+Q 3P+Q
2Q P+2Q . 3P +2Q

3Q P+3Q 2P+£3Q

TABLE |

PRECOMPUTATION MATRIX FORHBTJSFPOINT MULTIPLICATION

considered, instead of joint hamming weight. The interilegvw-NAF (with w = 5 for 1225 andw = 4 for 723)

5-NAF(1225)= (1 0 0 0 0 —13 0 0 0 0 0 9)
4-NAF(723)= (0 0 0 3 0 0 0 -3 0 0 0 3)
has6 non-zero elements (using = 4 for 1225 andw = 5 for 723 also leads to 6 non-zero elements). Using

Algorithm 2, the hybrid binary-ternary joint sparse form

1225=(3 0 1 0 0 0 0 1)
723=(22 0 2 0 0 0 0 3)
base[]=(2 3 2 2 2 3 3 2)
only requires 8 digits and has joint Hamming weightWe show the corresponding double-base chains in Fig. 2.
Note the digits are distributed along the same staircask. wal
Since the HBTJSF uses the digit get2,—1,0,1,2,3}, some points have to be precomputed and stored (see
Section V for a discussion regarding these precomputdtidiable | gives the precomputation matrix. Since the
negation of a point is negligible, only one set of point diflece need to be calculated. Others can be calculated

online. For exampleP — 2@ can be used to calculatgQ) — P.

IV. THEORETICAL ANALYSIS

Let us analyzes the behaviour of Algorithm 2. We consider lpers of the form6k + 5 with j € {-2,...,3}.
We want to know how often our algorithm performs a division dynd how often it performs a division by 2.

More importantly, we want to know how many non-zero columresa&n expect on average.
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Fig. 3. State diagram illustrating divisions by 2 and dimis by 3 in Algorithm 2

Only the numbers of the forrik and 6k + 3 are divisible by 3. Therefore, since both and k. have to be
divisible by 3, our algorithm performs a division by 3 withgability 1/9. Obviously, we divide by 2 in all the
other cases; i.e., with probabili§/9. These are the initial probabilities. Now, divisions by 2her occur when
both numbers are divisible by 2 (numbers of the 6ér— 2, 6k or 6k + 2); i.e., with probability1l/4, or when
we make both numbers divisible by 6, which therefore occuth wrobability 3/4. This Markov process can be
illustrated by a state diagram (see Fig. 3).

Using classic matrix diagonalization, the correspondiagdition matrix

1/4 3/4
8/9 1/9
can be decomposed into the form
1 0
P=Rx x R7Y,
0 —23/36
where
1 (32 27 1 (32 27
R=— and R™'= —
59 \32 —32 32 \32 —32

The average probabilities., are obtained adim,,_,., moP™, with o = (8/9,1/9) our initial probabilities. We
have
T = moP"™ = (32/59 + 184/531(—23/36)", 27/59 + 184/531(—23/36)")

32 27
Too = | ==, = | .
99" 59

Hence, we divide by 2 with probability2/59 ~ 0.542 and we divide by 3 with probabilit§7/59 ~ 0.458. Using

and therefore

these probabilities, we can evaluate the average base

B = /232327 = ¥/32751691810479015985152 ~ 2.407765
For a pair oft-bit integers, the average digit length of the HBTJSF argthus approximately
(logg 2) x t 2 0.7888 x t. (1)
To complete our analysis, we need to know how many non-zelorots we can expect on average. Using the

same reasoning as above, we have a zero column when both rauarkedivisible by 3 or when both numbers
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Fig. 4. State diagram illustrating the probabilities of@eolumns (statep) and non-zero columns (stagg) in Algorithm 2

TABLE Il

THEORETICAL COMPARISON OFHBTJSF, JSFAND INTERLEAVING w-NAF FOR At-BIT PAIR OF INTEGERS

Parameters HBTJSF | JSF | Interleavingw-NAF
Average base 2.41 2 2

Avg # col. 0.79¢ t+1 t+1

Avg # base2 col. 0.43t t+1 t+1

Avg # base3 col. 0.36t 0 0

Avg # non-zero col.| 0.32t 0.5t 2t/(w + 1)
Precomp. 18 2 qw—1 _2

are divisible by 2, which occurs with probability/9 + 1/4 — 1/36 = 1/3 (numbers simultaneously divisible by
6 need only be counted once). Reversely, we have a non-zérmieonith probability2/3. Since our algorithm
never generates two consecutive non-zero columns, wendbimistate diagram illustrated in Fig. 4. Using the same
analysis as above, the transition matrix
1/3 2/3 1 —-2/3\ (1 0 3/5 2/5
1 0 11 0 —2/3) \-3/5 3/5

allows us to compute the average number of columns of each W haver., = (3/5,2/5); meaning that, on
average, our algorithm generates a non-zero column withgtitity 2/5. The expected number of elliptic curve

additions can thus be derived from (1). We have
2
#Add =~ = x 0.7888 x t =~ 0.3155 x t.

We summarized our theoretical results in Table Il, with redlies rounded to the nearest hundredth. (For simplicity,

we consider that the same window width is used for both numimethe interleavingu-NAF method.)

V. COMPARISONS

Based on the above analysis, we compare our algorithm wihJ8F and thev-NAF interleaving method
(assuming windows of sizev = 4). We consider two kinds of curves for which we know that irigk are
useful [13]:

« Ordinary elliptic curves over large prime fields with Ja@bicoordinates (witla = —3),

« tripling-oriented Doche-Icart-Kohel curves [14].
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TABLE IlI
COSTS OF SOME CURVE OPERATIONS FOR ORDINARY ELLIPTIC CURVES/@R PRIME FIELDS INJACOBIAN COORDINATES(a = —3) AND

TRIPLING-ORIENTEDDIK CURVES

Weierstrass / Jacobiam & —3)

Cost S =0.8M
Doubling 3M + 5S ™
Tripling ™ + 7S 12.6M
Addition (mixed) | 7M + 4S 10.2M

Tripling-oriented DIK

Cost S =0.8M
Doubling 2M + 7S 7.6 M

Tripling 6M + 6S 10.8 M
Addition (mixed) | 7M + 4S 10.2 M

TABLE IV

COMPARISONS BETWEENHBTJSF, JSFAND INTERLEAVING w-NAF FOR256-BIT INTEGERS

Weierstrass / Jacobiam & —3)
HBTJSF JSF | Inter. 4-NAF

Mult. counts for dbl. 770 | 1799 1799
Mult. counts for tpl. 1159 0 0
Mult. counts for add 836 | 1311 1049
Total mult. counts 2765 | 3110 2848
Gain (%) - | 11.09 2.91

Tripling-oriented DIK

HBTJSF JSF | Inter. 4-NAF

Mult. counts for dbl. 836 | 1953 1953
Mult. counts for tpl. 994 0 0
Mult. counts for add 836 | 1311 1049
Total mult. counts 2666 | 3264 3002
Gain (%) - | 18.32 11.19

The costs of the necessary curve operations are given ire Téblthe last column give equivalent multiplica-
tion counts assuming = 0.8M. These costs are reported in the comprehensive and acaxlieit-formulas
database [11]. Our results are summarized in Table \256rbit pairs of integers (similar savings can be observed
for other sizes).

For our operation counts, we have omitted the costs of prpatations. In the case of JSF, orfR4-Q and P —Q
have to be computed, which is (almost, but not exactly) exjeivt to two additions. In the case of interleaving
w-NAF, we have to precompute?, 3Q, 5P, 5Q, ..., (2* 1 —1)P, (2»~1 - 1)Q; i.e., a total of2*~! — 2 points.
The exact operation counts depends on the way those congmstatre implemented. In the case of HBTJSF, 18

points are needed as shown in Table I. However, it is quitékelyl that all the combinations will be required
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in the process of computing a double-scalar multiplicatibherefore, a better option might be to perform those
computations online when required. Of course, as soon agftimse points is encountered, it must be stored for
future use. But even if all 18 points are precomputed befamdhthe exact operation counts is less than the cost

of 2 doublings plusl6 additions, since common subexpressions eliminationstgaks can be considered.

VI. CONCLUSIONS

A new recoding algorithm for a pair of integers has been psepo It is based on a decomposition of two
integers using mixed powers of 2 and 3. Our analysis showsitlraquires almost 20% fewer digits than the
binary representation and that the average ratio of nom-zelumns over digit length i2/5. We have illustrated
the advantages of the so-called HBTJSF for elliptic curvebdi®-scalar multiplication. Compared to the commonly
used JSF and interleaving-NAF methods, the savings obtained with HBTJSF are sigmifi¢ap to 18%) for
curves for which triplings are useful, such as e.g. ordimamyes over large prime fields or tripling-oriented DIK

curves.
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