
Authenticated Byzantine Generals Strike Again

Anuj Gupta Prasant Gopal Piyush Bansal Kannan Srinathan
Center for Security, Theory and Algorithmic Research (CSTAR)

International Institute of Information Technology, Hyderabad, India
{anujgupta@research. prasant@research. piyush bansal@research. srinathan@}iiit.ac.in

Abstract

Pease et al. introduced the problem of Authenticated Byzantine General (ABG) where players
could use digital signatures (or similar tools) to thwart the challenge posed by Byzantine faults in
distributed protocols for agreement. Subsequently it is well known that ABG among n players toler-
ating up to t faults is (efficiently) possible if and only if t < n (which is a huge improvement over the
n > 3t condition in the absence of authentication for the same functionality). However, in this paper
we argue that the extant result of n > t does not truly simulate a broadcast channel as intended.
Thus, we re-initiate the study of ABG. We show that in a completely connected synchronous network
of n players where up to any t players are controlled by an adversary, ABG is possible if and only if
n > 2t−1. The result is pleasantly surprising since it deviates from the standard template of “n > βt”
for some integer β, particularly β = 1, 2 or 3.

Keywords. authenticated Byzantine General, colluding adversary

1 Introduction

Designing protocols for simulating a broadcast channel over a point to point network in presence of faults
is a fundamental problem in theory of distributed computing. The problem is popularly referred to as
the “Byzantine Generals problem”(BGP), introduced by Lamport et al. [16]. Informally, the challenge is
to maintain a coherent view of the world among all the non-faulty players in spite of faulty players trying
to disrupt the same. Specifically, in a protocol for BGP over a synchronous network of n players, the
General starts with an input from a fixed set V = {0, 1}. At the end of the protocol (which may involve
finitely many rounds of interaction), even if up to any t of the n players are faulty, all non-faulty players
output the same value u ∈ V and if the General is non-faulty and starts with input v ∈ V , then u = v.
Here a player is said to be non-faulty if and only if he faithfully executes the protocol delegated to him.
In a completely connected synchronous network with no additional setup, classical results of [16, 18] show
that reliable broadcast among n parties in presence of up to t number of malicious players is achievable
if and only if t < n/3.

Traditionally, the notion of failures in the system is captured via a fictitious entity called adversary
that may control a subset of players. An adversary that controls up to any t of the n players is denoted
by t-adversary. Note that, in the context of BGP, not all players under the control of the adversary need
to be faulty. This is because the adversary may choose to passively control some of the players who, by
virtue of correctly following the protocol, are non-faulty.

There exists a rich literature on the problem of BGP. After [16, 18], studies were initiated under
various settings like asynchronous networks [10], partially synchronous networks [8], incomplete networks
[7], hypernetworks [12], non-threshold adversaries [11], mixed-adversaries [1], mobile adversaries [13], and
probabilistic correctness [19] to name a few.

1

An important variant of BGP is the authenticated model proposed by Pease et al. [18], which as the
title of this paper suggests, is our main focus. In this model, which we hereafter refer to as authenticated
Byzantine General (ABG), the players are supplemented with “magical” powers (say a Public Key In-
frastructure(PKI) and digital signatures) using which the players can authenticate themselves and their
messages. It is proved that in such a model, the tolerability against a t-adversary can be amazingly
increased to as high as t < n. Dolev [6] presented efficient protocols thereby confirming the usefulness
of authentication in both possibility as well as feasibility of distributed protocols. Subsequent papers on
this subject include [3, 5, 21, 4, 15, 14, 20]. In essence, the state-of-the-art in ABG can be summarized by
the following folklore (as noted by Nancy Lynch [17, page 116] too): “Protocols for agreement tolerating
a fail-stop t-adversary, modified so that all messages are signed and only correctly signed messages are
accepted, solve the agreement problem for the authenticated Byzantine fault model”.

2 Our Contributions and Results

The main contribution of this paper is to argue that the above mentioned folkore implicitly assumes one
of the following two scenarios to be true in spite of the fact that both of them are strict deviations from
the spirit of extant literature on Byzantine Generals: (Recall that literature considers a player as faulty
if and only if that player deviates from the designated protocol. Consequently a player can be non-faulty
in two ways – first the adversary is absent and (therefore) player follows the protocol and second the
adversary is present passively and (therefore) player follows the protocol. For the rest of the paper we
refer to the former kind of non-faulty player as honest and the latter as operationally honest.)

1. The non-honest players do not collude, thereby ensuring that a faulty player cannot forge anybody
else’s signature including those of other non-honest players. (this essentially deviates from the
concept of a “centralized” adversary and hence does not capture the worst-case scenario).

2. The outputs of the operationally honest players need not be consistent with those of honest players.

Consider the following scenario : Suppose we have a physical broadcast channel among a set of n
players. Using this broadcast channel the General sends a value say u, then all the n players are guaranteed
to get the value u. Adversary may force all the players it controls actively to output a value different
from u. However with respect to the players who are passively controlled by the adversary, adversary
cannot alter their value, thus all non-faulty(honest and operationally honest) players will output value
u. Thus any protocol truly aiming to simulate a broadcast channel where there is none, has to ensure
that all non-faulty(honest and operationally honest) players output same value.

Note that in an authenticated setting such as ABG, passive control also models situations where a
player executes the designated protocol faithfully but is unaware of the fact that his private key has been
compromised. In such a case, from the arguments presented in preceeding paragraph it is is evident that
a protocol for ABG that does not facilitate passively controlled players to agree too, does not simulate
true broadcast. We show that the extant protocols for ABG fail to simulate a true broadcast channel
thus rendering the extant characterization of ABG(n > t) incorrect. We support our claim by studying
a simple synchronous system consisting of three players (as illustrated in the system G in Figure 1). If
the result of n > t holds true for ABG, there should exists a protocol for ABG tolerating a 2-adversary
over G. However, in Section 5 we prove that for G if the strategy of the 2-adversary is to actively control
one of the players and passively control another one player, then there cannot exist any protocol that
guarantees consistency among the outputs of all the non-faulty players.

In light of above observations we re-initiate the study of ABG. We formally prove that ABG tolerating
a t-adversary is possible if and only if n > 2t−1 (which explains our discussion in the previous paragraph
as to why a 2-adversary is not tolerable over three nodes). Moreover, some of the techniques used in the
proof are novel and may be of independent interest.

2

3 Our Model and Notations

We consider a set of n players, denoted by P, fully connected, communicating over a synchronous network.
That is, the protocol is executed in a sequence of rounds where in each round, a player can perform some
local computation, send new messages to all the players, receive messages sent to him by players in the
same round, (and if necessary perform some more local computation), in that order. We further assume
that the communication channel between any two players is perfectly reliable. During the execution, the
adversary may take full control of up to any t players and can make them behave in any arbitrary fashion.
We assume existence of a (signature/authentication) scheme where the sender signs the message to be
sent. No player can forge any other player’s signature and the receiver can uniquely identify the sender
of the message using the signature. However, the adversary can forge the signature of all the t players
under its control. W.l.o.g we assume that players authenticate themselves and their messages with the
help of a private key. We further assume that the initial values originate from a common source, which
also signs them. Here we assume that each non-faulty process starts with an initial state containing a
single input value signed by the source, while each faulty process starts in a state containing a set of
input values signed by the source. We now formally define ABG:

Definition 1 (ABG) A designated General starts with an input from a fixed set V = {0, 1}. The goal
is for the players to eventually output decisions from the set V upholding the following conditions, even
in the presence of a t-adversary:

• Agreement: All non-faulty players decide on the same value u ∈ V .

• Validity: If the general is non-faulty and starts with the initial value v ∈ V , then u = v.

• Termination: All non-faulty players eventually decide.

In the above definition, we wish to emphasize that non-faulty players are ones who do not deviate from
the designated protocol, i.e., both honest and operationally honest players. The main objective of this
work is to completely characterize ABG over complete graphs.

4 Motivating Example

0

0

1

0

1

1

G

A

C

B

S A’

B C

A

B’C’

Figure 1: System G and S.

As a motivating example to re-initiate the study of ABG,
we first show that there does not exists any protocol solv-
ing ABG over a complete graph of 3 players influenced by
a 2-adversary (2 out of 3). Note that as per the extant
literature 2 out of 3 ABG is possible [18, 16]. The sur-
prising element about the adversary strategy is that it is
not in the best interest of adversary to control both the
players under him in Byzantine fashion.

5 Impossibility of 2 out of 3

We now formally show that ABG over a complete graph of 3 players influenced by a 2-adversary is im-
possible. The impossibility arises due to inability of “operationally honest” players to agree on a value
same as that of honest players.

Basic Outline of the Proof : We assume that there exists a protocol π that solves ABG for three players,
P = {A,B,C}, in the presence of 2-adversary. Let original system of 3 players be G. We construct a new

3

system S as shown in Figure 1 using two copies of each player where each player runs some algorithm
π′. We first formally define π′ then prove that π′ exists iff π exists and further show that there exists a
contradiction in π′ which implies non-existence of π.

Definition 2 (π′) For all players a, b ∈ P, any statement in π of the kind “b sends message m to a” is
replaced by “b multicasts message m to all instances of a(i.e. a,a′) 1 which are connected by a directed
edge from b to a” in π′. Rest all statements in π′ are same as those in π.

Lemma 1 If π exists then π′ exists.

Proof : Implied from Definition 2.

Construction of S: Take two copies of each player in G and construct a hexagonal system S as shown
in Figure 1. Player A is connected to B,C,C ′; player B is connected to A,C,A′; C is connected to A,B,A′;
A′ is connected to B,C,B′; B′ is connected to A′,C ′ and C ′ is connected to A,B′. Connectivity in S is
shown using directed edges. A node a behaving in a byzantine fashion with a pair of honest nodes, is
captured by connecting one of the honest nodes to a and other to a′. a and a′ are independent copies of
the player a with same authentication key. What we want to ensure is that S is constructed in a such
a way that whatever messages are sent to some selected players in S, same messages can be ensured by
adversary to those very selected players in G. It is evident that connectivity in S is not same as in G. To
be precise, in-neighborhood of any node a(or a′) in S is same as in-neighborhood of corresponding node
a in G, however out-neighborhood of some nodes in S is not same as out-neighborhood of corresponding
nodes in G. This would make a difference if players in both systems were running same algorithm(π).
Also note that each player in S knows only its immediate neighbors and not the complete graph. Also, in
reality a player may be connected to either a or a′, but it cannot differentiate between the two. It knows
its neighbor only by its local name which may be a. Here we neither know what system S is supposed to
do nor what π′ solves. Since S does not form ABG setting, therefore the definition of ABG [Definition 1]
does not tell us anything directly about the players’ output in S. All we know is that S is a synchronous
system and π′ has a well defined behavior.

Let α1 be an execution of π in G in which B is an honest player, adversary A corrupts C in byzantine
fashion and A in passive manner. Here A is the General and starts with input 0. Similarly let α2 be
the execution of π in G in which B is an honest player. A makes C as operationally honest, corrupts A
in byzantine fashion. Here A acts as the general. A sends 0 to B and 1 to C. Let α3 be an execution
of π in G in which C is an honest player. A makes A as operationally honest, corrupts B in byzantine
fashion. Here A acts as the General and starts with input 1. Let α be an execution of π′ in S in which
each player starts with input value as shown in Figure 1. Notice that all the players in α are honest and
follow the prescribed protocol correctly.

We will show that some players in α do not always show a well defined behavior thus leading to a
contradiction in π′. To do so we will prove that whatever view A,B get in α, A can generate the same
view for A,B in α1. On similar lines we prove that whatever view B,C get in α, A can generate the
same view for B,C in α2 and whatever view C,A′ get in α, A can generate the same view for C,A in α3.
Intuitively, by view we want to capture all that a player gets to see during the execution of the protocol.
Thus the view of a player is formed by all the messages it ever sends and receives during the execution of
the protocol. Let msgΩ

i (a, b)a denote the message sent by player a to player b in ith round of execution
Ω. The subscript a represents the last player who authenticated the message. w.l.o.g we assume that
players always authenticate the message before sending. Then view of the player a during execution Ω
at the end of round i, denoted by viewΩ

a,i, can be represented as:

1a and a′ are independent copies of the player a with same authentication key.

4

viewΩ
a,i =

⋃
k

(msgΩ
k (a, x)a,msg

Ω
k (x, a)x), ∀k ∈ {1 . . . i}, ∀x ∈ P (1)

The messages sent by player a in any round i depend on 4 parameters: input value with which a starts,
secret key used by a for authentication, code(π) being executed by a, and messages received by a upto
round i− 1. Since outgoing messages are a function of incoming messages, we can rewrite equation 1 as:

viewΩ
a,i =

⋃
k

(msgΩ
k (x, a)x), ∀k ∈ {1 . . . i}, ∀x ∈ P (2)

In order to show that the views of 2 different players a, b running in 2 different executions Ω,Γ respectively
till round i are same, we use the following fact: If both players a, b start with same input, use same secret
key and run similar code 2, and if for every round 1 . . . i their corresponding incoming messages are same,
then their views till round i will also be same. 3 Formally:

viewΩ
a,k ∼ viewΓ

b,k, iff, msgΩ
k (x, a) ∼ msgΓ

k (x, b), ∀k ∈ (1 . . . i), ∀x ∈ P (3)

Views of a, b running in executions Ω,Γ is same if equation 3 holds during entire execution of Ω and Γ.
Here viewΩ

a denotes view of player a during entire execution Ω. Formally:

viewΩ
a ∼ viewΓ

b , iff, viewΩ
a,k ∼ viewΓ

b,k, ∀k > 0, ∀x ∈ P (4)

Combining (3) and (4), we can say that

viewΩ
a ∼ viewΓ

b , iff, msgΩ
k (x, a) ∼ msgΓ

k (x, b), ∀k > 0, ∀x ∈ P (5)

We start the proof by formally giving the adversary strategy in α1:

1. Send outgoing messages of round i: Based on the messages received during round i− 1, A decides
on the messages to be sent in round i. For round 1, A sends to B what an honest C would have
sent to B in execution α2. For i ≥ 2, A authenticates msgα1

i−1(B,C)B using C’s key and sends it to
A. For msgα1

i−1(A,C)A, A examines the message. If the message has not been authenticated by B
even once, it implies that the message has not yet been seen by B. Then A authenticates and sends
same message to B as C would have sent to B in round i of execution α2. Formally, A constructs
msgα1

i−1(A,C)A,(A can construct msgα1
i−1(A,C)A, since it passively controls A and has messages

received by A in previous rounds.) such that msgα1
i−1(A,C)A ∼ msgα2

i−1(A,C)A, authenticates it
using C’s key and sends it to B. If the message has been authenticated by B even once, A simply
authenticates msgα1

i−1(A,C)A using C’s key and sends it to B.

2. Receive incoming messages of round i: A obtains messages msgα1
i (A,C)A and msgα1

i (B,C)B via
C. (These are round i messages sent by A and B respectively to C). Similarly via A, A obtains
messages msgα1

i (B,A)B and msgα1
i (C,A)C . (These are also round i messages sent by B and C

respectively to A. Players respectively compute these messages according to their input, secret key,
protocol run by them and the view they get upto round i− 1).

2Note that a, b may even run different codes say θ and θ′, however message generated for a given player say C by θ for a
given input I should be same as message generated for C by θ′ for same input I. For our proof π and π′ are similar in this
respect.

3 [9] captured this via Locality Axiom. In ABG a player may also use its private key to determine the outgoing
messages. Thus in case of ABG, both players having same secret key is must.

5

Consider execution α from the perspective of A and B. We now show that messages received by A and
B in round i of α are same as messages received by A and B respectively in round i of α1.

Lemma 2 msgα
i (x,A)x ∼ msgα1

i (x,A)x and msgα
i (x,B)x ∼ msgα1

i (x,B)x, ∀i > 0, ∀x ∈ P.

Proof Sketch: Consider an execution Γ of S which is exactly same as α except that in Γ A′ starts with
input value 0. Since in α, no message from B′ or C ′ can ever reach any of A,B,C or A′, A can ensure
that A and B get same messages in Γ and α1 (All A has to do is to start with input value 1 and follow
the designated protocol). Now in α, all messages received by A and B respectively are same as those in
Γ except those messages that have been processed by A′ atleast once(since A′ starts with input value 0
in Γ and input value 1 in α). If in α1 A can simulate this difference between α and Γ, we can say that A
can make view of A and B same in α and α1. We now claim that for any round i, it is always possible for
A to do so. Note that owing to the typical construction of S, in α A′ can send a message to A or B only
via C. This ensures that in α, any message from A′ can reach A or B only after it has been processed
by C. Now in α1, C is faulty and A controls A passively. Thus whatever C sends to A and B in α, A
can send the same to A and B in α1. A detailed formal proof is given in Appendix A

Lemma 3 viewα
A ∼ viewα1

A and viewα
B ∼ viewα1

B

Proof : Recall from equation 5, to show that view of A in α and α1 are same, it is sufficient to show that
for any round i messages received by A in α and α1 respectively are same. This follows from Lemma 2 .
Thus viewα

A ∼ viewα1
A and viewα

B ∼ viewα1
B .

We now formally give the adversary strategy in α2:

1. Send outgoing messages of round i: Based on the messages received during round i− 1, A decides
on the messages to be sent in round i. For round 1, A sends to B what an honest A would have
sent to B in execution α1. Similarly A sends to C what an honest A would have sent to C in
execution α3. For i ≥ 2, A examines the message msgα2

i−1(C,A)C . If the message has not been
authenticated by B even once, A authenticates and sends same message to B as A would have
sent to B in round i of execution α1. Formally, A constructs msgα2

i−1(C,A)C ,(A can construct
msgα2

i−1(C,A)C , since it passively controls C and has messages received by C in previous round.)
such that msgα2

i−1(C,A)A ∼ msgα1
i−1(C,A)C , authenticates it using A’s key and sends it to B. If the

message has been authenticated by B even once, A simply authenticates msgα2
i−1(C,A)C using A’s

key and sends it to B. Similarly A authenticates msgα2
i−1(B,A)B using A’s key and sends it to C.

2. Receive incoming messages of round i: A obtains messages msgα2
i (C,A)C and msgα2

i (B,A)B via
A. (These are round i messages in α2 sent by C and B respectively to A). Similarly via C, A
obtains messages msgα2

i (A,C)A and msgα2
i (B,C)B in α2. (These are also round i messages sent by

A and B respectively to C. Players respectively compute these messages according to their input,
secret key, protocol run by them and the view they get upto round i− 1).

Lemma 4 msgα
i (x,B)x ∼ msgα2

i (x,B)x and msgα
i (x,C)x ∼ msgα2

i (x,C)x, ∀i > 0, ∀x ∈ P

Proof Sketch: Owing to structure of S, in α2 all adversary has to do is send messages to B as though it
started with input value 0 and to send messages to C as though it started with input value 1. Formally,
let ζ be an execution of S which is same as α except that A in ζ starts with input value 1. It is trivial to
see that B and C receive same messages in α and ζ. If adversary A can account for the difference between
ζ and α in α2 we can say that B and C receive same messages in α and α2. Since A is Byzantinely
corrupt in α2 whatever A send to B in round i of α, A can send the same to B in round i of α2. Thus
msgα

i (x,B)x ∼ msgα2
i (x,B)x and msgα

i (x,C)x ∼ msgα2
i (x,C)x, ∀i > 0, ∀x ∈ P holds true.

6

Lemma 5 viewα
B ∼ viewα2

B and viewα
C ∼ viewα2

C .

Proof : Using Equation 5 and Lemma 4.

Adversary strategy for α3:

1. Send outgoing messages of round i: Based on the messages received during round i− 1, A decides
on the messages to be sent in round i. For round 1, A sends to C what an honest B would have
sent to C in α2 and A sends to A what an honest B would have sent to A in α2. For i ≥ 2, A
authenticates msgα3

i−1(C,B)C using B’s key and sends it to A. For msgα3
i−1(A,B)A, A examines

the message. If the message has not been authenticated by C even once, then A authenticates
and sends same message to C as an honest B would have sent to C in round i of execution α2.
Formally, A constructs msgα3

i−1(A,B)A,(A can construct msgα3
i−1(A,B)A, since it passively controls

A and has messages received by A in previous rounds.) such that msgα3
i−1(A,B)A ∼ msgα2

i−1(A,B)A,
authenticates it using B’s key and sends it to C. If the message has been authenticated by C even
once, A simply authenticates msgα3

i−1(A,B)A using B’s key and sends it to C.

2. Receive incoming messages of round i: A obtains messages msgα3
i (A,B)A and msgα3

i (C,B)C in α3

via B. (These are round i messages sent by A and C respectively to B). Similarly via A, A obtains
messages msgα3

i (B,A)B and msgα1
i (C,A)C in α3. (These are also round i messages sent by B and

C respectively to A. Players respectively compute these messages according to their input, secret
key, protocol run by them and the view they get upto round i− 1).

Lemma 6 msgα
i (x,C)x ∼ msgα3

i (x,C)x and msgα
i (x,A′)x ∼ msgα3

i (x,A)x, ∀i, i > 0, ∀x ∈ P.

Proof Sketch: Owing symmetry of system S, using aforementioned adversary strategy, the proof is on
similar lines as proof of Lemma 2.

Lemma 7 viewα
A′ ∼ viewα3

A and viewα
C ∼ viewα3

C .

Proof : Follows from Equation 5 and Lemma 6.

Theorem 8 There does not exists any protocol solving ABG over a complete graph on 3 players influ-
enced by a 2-adversary.

Proof : Proof by contradiction. We assume there exists a protocol π solving ABG over a complete graph
on 3 players influenced by a 2-adversary. Now consider execution α in system S where each player exe-
cutes π′[Definition 2] . In α1, C is faulty, B is honest and A is operationally honest, and A is the general
and starts with input 0, and since π solves ABG, from the validity condition both A,B must eventually
decide on 0. From Lemma 3, for A,B, α and α1 are indistinguishable i.e. α

A∼ α1 and α
B∼ α1. Thus

A,B in α will eventually decide on 0. (We are able to make claims regarding the outputs of A and B
in α as their views are same as those in α1. Thus by analyzing their outputs in α1, we can determine
there outputs in α.) Similarly in α3, A is the general and starts with input 1, thus both A and C should

output 1. Using Lemma 7, α and α3 are indistinguishable to C,A′ i.e. α
C∼ α3 and α

A′
∼ α3. Thus

C,A′ in α should agree on 1. Now consider α2. A is faulty, C is honest and B is operationally honest,
and A acts as general and sends different values to B and C. Since π solves ABG, from agreement
condition[Definition 1], both B and C should output the same value. Using Lemma 5, B,C in α should
output same value, but B and C have already decided on values 0 and 1 respectively. This leads to a con-
tradiction in π′. Thus there cannot exists a π′ leading to impossibility of existence of π(from Lemma 2).

7

Note: We remark that undirected systems do not work for the above proof. Curiously though, the
impossibility can be proved using a directed system. This is because using directed edges one can restrict
the paths through which messages are sent to some selected nodes. This is important because in order
to make the views same, it is essential to ensure that whatever message is sent in S, adversary A can
generate similar messages in different executions in G. Specifically for above proofs to go through, it is
essential that A,B,C or A′ donot ever get any message from either of B′ or C ′ in execution α. It is easy
to see that in case this does not happens, the proof given for Lemmas 2, 4, 6 breakdown.

6 Characterization of ABG

0

0

1

1

1

1

0 1

D’ C’

S’
G’

AD

C B

B

C

A

D

A’

B’

Figure 2: System G′ and S′.

We now give the necessary and sufficient conditions for
existence of ABG. We show that ABG over a complete
graph is possible if and only if n > 2t−1. We first give the
necessity proof followed by sufficiency.

6.1 Necessity

We first show that there does not exists any pro-
tocol solving ABG over a complete graph of four nodes tolerating adversary structure A =
{((A,D), (B)), ((B), (A)), ((C), (B))}. We prove using contradiction. We assume there exists a pro-
tocol $ that solves ABG over a complete graph of four nodes G′ tolerating adversary structure A =
{((A,D), (B)), ((B), (A)), ((C), (B))}. Using two copies of each player we construct a new system S′ as
shown in Figure 2. Each player in S′ runs $′. We now formally define $′ and further prove that $′

exists if only $ exists.

Definition 3 ($′) For all players a, b ∈ P, any statement of kind “b sends message m to a” in $ is
replaced by “b multicasts message m to all instances of a(i.e. a, a′) 1 which are connected by a directed
edge from b to a” in $′. Rest all statements in $′ are same as $.

Lemma 9 If $ exists then $′ exists.

Proof : Implied from Definition 3.

Construction of S′: Take two copies of each player in G′ and construct a octagonal system S′ as shown
in Figure 2. Player A is connected to B,C,D′; B is connected to A,C,D,A′,D′; player C is connected to
A,B,D,A′,B′; player D is connected B,C,A′,B′ and so on. Connectivity in S′ is shown using directed
edges. A node a behaving in a byzantine fashion with a pair of honest nodes, is captured by connecting
one of the honest nodes to a and other to a′ 4. Note that connectivity in S′ is not same as in G. To be
precise, in-neighborhood of any node a(or a′) in S′ is same as in-neighborhood of corresponding node a
in G′, however out-neighborhood of some nodes in S′ is not same as out-neighborhood of corresponding
nodes in G′. This would make a difference if players in both systems were running same protocol($).
S′ is constructed in a such a way that whatever messages are sent to some selected players in S′, same
messages can be ensured by adversary to those very selected players in G′. Each player in S′ knows
only its immediate neighbors and not the complete graph S′. In reality, a player may be connected to
either a or a′, but it cannot differentiate between the two. It knows its neighbor only by its local name
which may be a. We neither know what system S′ does nor what $′ solves. Since, S′ does not form an
ABG setting, therefore the definition of ABG [Definition 1] does not tell us anything directly about the
output of players in$′. All we know is that S′ is a synchronous system and$′ has a well defined behavior.

8

Let β1 be an execution of $ in G′ where C is an honest player. A corrupts A,D in byzantine fashion
and controls B passively. Here B is the general and starts with input value 0. Similarly let β2 be the
execution of $ in which C,D are honest players. A corrupts A passively and B in byzantine fashion.
Here B is the general. B sends a 1 to A,D and a 0 to C. Let β3 be an execution of $ in which A,D
are honest players. A makes B as operationally honest, corrupts C in byzantine fashion. Here B is the
general and starts with input value 1. Let β be an execution of $′ in S′ in which each player starts
with input value as shown in Figure 2. All the players in β are honest and follow the designated pro-
tocol correctly. We now show that whatever view [equation 2] B,C get in β, A can generate the same
view for B,C in β1. Similarly we prove that whatever view C,D,A′ get in β, A can generate the same
view for C,D,A in β2 and whatever view A′,B′,D get in β, A can generate the same view for A,B,D in β3.

We now give the adversary strategy in executions β1, β2 and β3 respectively. For β1:

1. Send outgoing messages of round i: Based on the messages received during round i− 1, A decides
on the messages to be sent in round i. In round 1, A sends to C what an honest A and D would
have sent to C in round 1 of β2. For i ≥ 2, A authenticates msgβ1

i−1(C,A)C using A’s secret key
and sends it to B,D. Similarly, A authenticates msgβ1

i−1(C,D)C using D’s secret key and sends it
to A,B. For msgβ1

i−1(B,A)B, A examines the message. If the message has not been authenticated
by C even once then A authenticates and sends same message to C as an honest A would have sent
to C in β2. Formally, A constructs msgβ1

i−1(B,A)B, such that msgβ1
i−1(B,A)B ∼ msgβ2

i−1(B,A)B,
authenticates it using A’s key and sends it to C. Ifmsgβ1

i−1(B,A)B has been authenticated by C even
once, A simply authenticates the message using A’s key and sends it to C. Likewise A examines
msgβ1

i−1(B,D)B. If the message has not been authenticated by C even once A authenticates and
sends same message to C as an honest D would have sent to C in execution β2. Formally, A
constructs msgβ1

i−1(B,D)B such that msgβ1
i−1(B,D)B ∼ msgβ2

i−1(B,D)B, authenticates it using D’s
key and sends it to C. If msgβ1

i−1(B,D)B has been authenticated by C even once, A authenticates
the message using D’s key and sends it to C.

2. Receive incoming messages of round i: A obtain messages msgβ1
i (B,A)A, msgβ1

i (C,A)C and
msgβ1

i (D,A)D via A. Similarly via D A gets msgβ1
i (A,D)A, msgβ1

i (B,D)B and msgβ1
i (C,D)C .

(These are round i messages sent by B,C, D to A and A,B,C to D respectively). Similarly, A
obtains msgβ1

i (A,B)A, msgβ1
i (C,B)C and msgβ1

i (D,B)D via B. (These are round i messages sent
by A,C,D to B. A,C,D respectively compute these messages according to their input value, secret
key, protocol run by them and the view they get upto receive phase of round i− 1.)

For β2:

1. Send outgoing messages of round i: Based on the messages received in round i−1, A decides on the
messages to be sent in round i. In round 1, A sends to C what an honest B would have sent to C in
round 1 of β1. Similarly A sends to D what an honest B would have sent to D in round 1 of β3 and
A sends to A what an honest B would have sent to A in round 1 of β3. For i ≥ 2, A authenticates
msgβ2

i−1(C,B)B using B’s secret key and sends it to A,D. Similarly, A authenticates msgβ2
i−1(D,B)D

using B’s secret key and sends it to A,C. For msgβ2
i−1(A,B)A, A examines the message. If the

message has not been authenticated by either C or D even once, then A authenticates and sends
same message to C as an honest B would have sent to C in β1. Similarly A authenticates and
sends same message to D as an honest B would have sent to D in β3. Formally, A constructs
msgβ2

i−1(A,B)A, such that msgβ2
i−1(A,B)A ∼ msgβ1

i−1(A,B)A, authenticates it using B’s key and
sends it to C. Similarly A constructs msgβ2

i−1(A,B)A, such that msgβ2
i−1(A,B)A ∼ msgβ3

i−1(A,B)A,
authenticates it using B’s key and sends it to D. If msgβ2

i−1(A,B)A has been authenticated by either
C or D even once, A simply authenticates the message using B’s key and sends it to C and D.

9

2. Receive incoming messages of round i: A obtains messages msgβ2
i (A,B)A, msgβ2

i (C,B)C and
msgβ2

i (D,B)D from B in β2 (These are round i messages sent by A,C,D to B. They respectively
compute these messages according to their input, protocol run by them and the view they get upto
receive phase of round i−1.). Similarly A obtains msgβ2

i (B,A)B, msgβ2
i (C,A)C and msgβ2

i (D,A)D

from A in β2 (These are round i messages sent by B,C,D to A).

For β3:

1. Send outgoing messages of round i: Based on the messages received in round i − 1, A decides on
the messages to be sent in i. In round 1, A sends to D what an honest C would have sent to D
in round 1 of β2. For i ≥ 2 A authenticates msgβ3

i−1(A,C)A using secret key of C and sends it
to B,D. Similarly it authenticates msgβ3

i−1(D,C)D using C’s secret key and sends it to A,B. For
msgβ3

i−1(B,C)B, A examines the message. If the message has not been authenticated by either A or
D even once, then A authenticates and sends same message to A as an honest C would have sent
to A in β2 and sends same to D as an honest C would have sent to D in execution β2. Formally, A
constructs msgβ3

i−1(B,C)B, such that msgβ3
i−1(B,C)B ∼ msgβ2

i−1(B,C)B authenticates it using C’s
key and sends it to A,D. If msgβ3

i−1(B,C)B has been authenticated by either of A or D even once,
A simply authenticates the message using C’s key and sends it to A,D.

2. Receive incoming messages of round i: A obtains messages msgβ3
i (A,C)A, msgβ3

i (B,C)B and
msgβ3

i (D,C)D via C. (These are round i messages sent by A,B and D to C). Similarly A obtains
msgβ3

i (A,B)A, msgβ3
i (C,B)C and msgβ3

i (D,B)D via B. (These are round i messages sent by A,C
and D to B. A,C and D respectively compute these messages according to the protocol run by
them and the view they get receive phase of round i− 1.)

Using aforementioned adversary strategies and technique similar to one used in section 5 one can formally
prove the following Lemmas. Detailed proofs are given in Appendix B.

Lemma 10 viewβ
B ∼ viewβ1

B and viewβ
C ∼ viewβ1

C

Lemma 11 viewβ
C ∼ viewβ2

C , viewβ
D ∼ viewβ2

D andviewβ
A′ ∼ viewβ2

A

Lemma 12 viewβ
A′ ∼ viewβ3

A , viewβ
B′ ∼ viewβ3

B , viewβ
D ∼ viewβ3

D .

Using Lemmas 10, 11 and 12, similar to proof of Theorem 8 one can prove the following Lemma:

Lemma 13 There does not exists any protocol solving ABG over a complete graph of 4 nodes(G’) toler-
ating adversary structure A = {((A,D), (B)), ((B), (A)), ((C), (B))}.

As a preclude to the main theorem, we prove the following lemma:

Lemma 14 There does not exists any protocol solving ABG over a complete graph G of n nodes tolerating
(t1,t2)-adversary 4 if n ≤ 2t1 +min(t1, t2).

Proof : Proof by contradiction. We assume there exists a protocol η solving ABG tolerating (t1,t2)
adversary when n ≤ 2t1+min(t1, t2). We show how to transform η into a solution η′ which solves ABG for
four players completely connected, tolerating A = {((A,D), (B)), ((B), (A)), ((C), (B))}. Divide n players
in η into sets IA, IB, IC , ID, such that their respective sizes aremin(t1, t2),min(t1, t2), t1, (t1−min(t1, t2)).

4(t1,t2)-adversary is an adversary that can corrupt upto t1 players Byzantinely and upto t2 players passively such that
t1+t2=t

10

A can corrupt any of the following sets IA, IB, IC , ID, (IA∪ID), (IB∪ID) actively and players in IA, IB, ID
passively. Note that the players from the set IC cannot be corrupted passively. Each of the four players
A,B,C and D in η′ simulate players in IA, IB, IC , ID respectively. Each player i in η′ keeps track of the
states of all the players in Ii. Player i assigns its input value to every member of Ii, and simulates the
steps of all the players in Ii as well as the messages sent and received between pairs of players in Ii.
Messages from players in Ii to players in Ij are simulated by sending same messages from player i to
player j. If any player in Ii terminates then so does player i. If any player in Ii decides on value v, then
so does player i.
We now show that η′ solves ABG tolerating A = {((A,D), (B)), ((B), (A)), ((C), (B))}. For simplicity
we assign any actively and passively corrupted players of η to be exactly those that are simulated by
actively and passively corrupted player in η′. Let ψ′ be an execution of η′ with the faults characterized
by A = {((A,D), (B)), ((B), (A)), ((C), (B))}. Let ψ be an execution of η. As per our assumption ψ
solves ABG, thus ψ satisfies termination, agreement and validity conditions [Definition 1]. We now show
that same holds for ψ′ if it holds for ψ. In ψ, let the general be from set Ik, then in ψ′, player k acts as
the general. Note that in ψ if Ik is controlled actively or passively by the adversary, then so is k is ψ′.
Let j,l (j 6= l) be two non-faulty players in ψ′. j and l simulates atleast one player each in ψ. w.l.o.g
let them simulate players in Ij , Il. Since j and l are non-faulty, so are all players in Ij , Il. For ψ, all
players in Ij , Il must terminate, then so should j and l. In ψ, all non-faulty players including Ij , Il
should agree on same value say u, then in ψ′, j, l also agree on u. In ψ, if the general is non-faulty and
starts with value v, then in ψ′ too, general will be non-faulty and starts with value v. In such a case in
ψ, all non-faulty players including Ij , Il should have u = v, then in ψ′, j, l should have u = v. Thus
ψ′ also satisfies termination, validity and agreement conditions. Then η′ should solve ABG tolerating A
= {((A,D), (B)), ((B), (A)), ((C), (B))}. But from Lemma 13, we know that there does not exists any
protocol solving ABG tolerating A = {((A,D), (B)), ((B), (A)), ((C), (B))}. Thus our assumption that
there exists a solution η solving ABG for n ≤ 2t1 +min(t1, t2) is wrong.

Theorem 15 There does not exists any protocol solving ABG over a complete graph G of n nodes if
n ≤ 2t− 1 where t=t1+t2.

Proof : Putting t1=t− 1 and t2=1 in Lemma 14. (Note that for t1 = t and t2=0, n > t [18] applies.)

6.2 Sufficiency

The proposed protocol for n > 2t−1 is obtained by a sequence of transformations on EIG [2]. A detailed
description of the construction of EIG tree is available in [17, page 108]. Each player starts with the
value he received from the common source and exchanges messages as per EIGStop protocol in [17, page
110] for t+ 1 rounds.

Definition 4 (Prune(EIG)) Prune(EIG) is a method that takes an EIG tree as an input and deletes
subtrees, say subtreej i, where (subtreej i, refers to a subtree rooted at node whose’s label is j in i’s EIG
tree) of i′s EIG tree as given in the sequel. For each subtree subtreej i, where label j ∈ P, a set Wj is
constructed which contains all distinct values that ever appears in subtreej

i. if |Wi| > 1, subtreej i is
deleted and modified EIG tree is returned.

At the end of t+1 rounds of EIGStop protocol, we invoke Prune(EIG). Player i applies the following
decision rule. Namely, Player i takes a majority of the values at the first level 5 of its EIG tree (note
that he does not need to take a majority over the entire EIG tree). If a majority exists player i decides
on that value; otherwise, i decides on a default value, v0.

5all nodes with labels l such that l ∈ P.

11

Lemma 16 The subtreej i, where j is an honest player and i is a non-faulty player, will never be deleted
during Prune(EIG) operation.

Proof: This Lemma stems from the fact that any message signed by an honest player cannot be changed
in the course of the protocol. Thus, a subtreej

i, j being an honest player will never be deleted in
Prune(EIG) and will be consistent throughout for all non-faulty players.

Lemma 17 After t+1 rounds, if a subtreej i has more than one value then ∀ k subtreejk also has more
than one value, there by ensuring that all ∀ k subtreejk are deleted(i, j, k are not necessarily distinct),
where i, k are non-faulty.

Proof: Any message sent in tth round has a label of length t and hence we are sure to have either an
honest player already having signed on it or in (t+ 1)th round an honest player would broadcast it. This
ensures that a value cannot be changed/reintroduced in the (t+ 1)th round. In other words, a faulty
player can either send different initial values in round one or change a value in Round k, 2 ≤ k ≤ t, if
and only if all players who have signed so far on that message are under the adversary. In any case, the
non-faulty players send these values in the next round and hence the Lemma.

Lemma 18 subtreej
i and subtreejk in the EIG trees of any two players i, k will have same values after

the subjecting the tree to Prune(EIG), where i, k are non-faulty players.

Proof: This follows from previous Lemma 17 as, if subtrees had different values; then as per the protocol
they would have broadcasted the values in their EIG tree in the next round and thus the subtrees would
have more than one different value resulting in their deletion during Prune(EIG) step.

Theorem 19 EIG algorithm given above solves ABG.

Proof: Termination is obvious, by the decision rule. For validity if the general is non-faulty, all the non-
faulty players also start with v. We also know that n > 2t− 1. In case n is odd, an honest majority itself
exists 6 and hence vacuously a non-faulty majority also and the decision rule implies that v is the only
possible decision value. If n is even and we happen to show that even for the case of n = 2t the protocol
works, then it is easy to see that such a protocol would work for the case of n > 2t also. For the case
of n = 2t, observe that if the adversary chooses to corrupt atleast one of the players actively(Lemma 17
and 18 ensure that consistency is maintained) and once again we have honest majority. The case when
n = 2t and the adversary does not corrupt even one of the players actively is left. However, this happens
to be the degenerate case of all players being non-faulty and the validity condition implies that all of
them must have started with same value v and decision rule implies v is the only possible output. For
agreement, let i and j be any two non-faulty players that decide. Since, decisions only occur at the end,
and by previous lemma we see that ∀i, subtreej i can have only one value which consistent throughout all
subtreeij ,∀i ∈ P . This implies they have the same set of values. The decision rule then simply implies
that i and j make the same decision. In case of source being faulty, the agreement simply implies that
all non-faulty players decide on a value v.

7 Conclusion

The folklore has been that use of authentication reduces the problem of simulating a broadcast in presence
to Byzantine faults to fail-stop failures. Thus, the protocols designed for fail-stop faults invariably have
been quickly adapted to the authenticated Byzantine failure settings. In this paper, we have shown that
ABG is easier than BGP but tougher than the fail-stop case. Consequentially, the protocols for ABG
take ideas from both Byzantine and fail-stop cases. From the results of this paper, n > 2t − 1, we feel
that studying this problem over general networks will be interesting in its own right.

6In this case, the number of honest players will be at least t + 1.

12

References

[1] Bernd Altmann, Matthias Fitzi, and Ueli M. Maurer. Byzantine agreement secure against gen-
eral adversaries in the dual failure model. In Proceedings of the 13th International Symposium on
Distributed Computing, pages 123–137, London, UK, 1999. Springer-Verlag.

[2] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond Strong. Shifting gears: changing
algorithms on the fly to expedite byzantine agreement. In PODC ’87: Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing, pages 42–51, New York, NY, USA, 1987.
ACM Press.

[3] Malte Borcherding. On the number of authenticated rounds in byzantine agreement. In WDAG ’95:
Proceedings of the 9th International Workshop on Distributed Algorithms, pages 230–241, London,
UK, 1995. Springer-Verlag.

[4] Malte Borcherding. Levels of authentication in distributed agreement. In WDAG ’96: Proceedings
of the 10th International Workshop on Distributed Algorithms, pages 40–55, London, UK, 1996.
Springer-Verlag.

[5] Malte Borcherding. Partially authenticated algorithms for byzantine agreement. In ISCA: Proceed-
ings of the 9th International Conference on Parallel and Distributed Computing Systems, pages 8–11,
1996.

[6] D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM Journal on
Computing, 12(4):656–666, 1983.

[7] Danny Dolev. The byzantine generals strike again. Technical report, Stanford, CA, USA, 1981.

[8] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed for
distributed consensus. J. ACM, 34(1):77–97, 1987.

[9] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for distributed
consensus problems. In PODC ’85: Proceedings of the fourth annual ACM symposium on Principles
of distributed computing, pages 59–70, New York, NY, USA, 1985. ACM.

[10] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985.

[11] Matthias Fitzi and Ueli M. Maurer. Efficient byzantine agreement secure against general adversaries.
In International Symposium on Distributed Computing, pages 134–148, 1998.

[12] Mattias Fitzi and Ueli Maurer. From partial consistency to global broadcast. In STOC ’00: Pro-
ceedings of the thirty-second annual ACM symposium on Theory of computing, pages 494–503, New
York, NY, USA, 2000. ACM.

[13] J. A. Garay. Reaching (and Maintaining) Agreement in the Presence of Mobile Faults. In Proceedings
of the 8th International Workshop on Distributed Algorithms – WDAG ’94, volume 857 of Lecture
Notes in Computer Science (LNCS), pages 253–264, 1994.

[14] L. Gong, P. Lincoln, and J. Rushby. Byzantine agreement with authentication: Observations and
applications in tolerating hybrid and link faults, 1995.

[15] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement.
2007.

13

[16] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382–401, 1982.

[17] N. Lynch. Distributed Algorithms. Morgan Kaufmann, San Mateo, CA, USA, 1996.

[18] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, 1980.

[19] M. O. Rabin. Randomized byzantine generals. In Proc. of the 24th Annu. IEEE Symp. on Founda-
tions of Computer Science, pages 403–409, 1983.

[20] Ulrich Schmid and Bettina Weiss. Synchronous byzantine agreement under hybrid process and link
failures. Research Report 1/2004, Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2004.

[21] T. K. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive simple fault-tolerant
algorithms. Distributed Computing, 2(2):80–94, 1987.

14

A Impossibility of 2 out of 3

In section 5 we gave a proof sketch of Lemma 2. We now formally prove the same.

Lemma 20 msgα
i (x,A)x ∼ msgα1

i (x,A)x and msgα
i (x,B)x ∼ msgα1

i (x,B)x, ∀i > 0, ∀x ∈ P.

Proof : We prove using induction. We prove that for any round i, whatever messages A,B recieve in α A
can ensure that A,B recieve same messages in α1 respectively. Note that what node A receives in round
i of α depends on what nodes B and C send to it in round i of α. Similarly what node A receives in
some round i of α1 depends on what nodes B and C send to it in round i of α1. So we need to argue
that these messages sent in round i of α and α1 are same or can be made same by adversary. In turn
what B,C send in round i of α and α1 depends on what they receive in previous round i − 1. Thus we
we need to argue that these messages sent in round i− 1 of α and α1 are same or can be made same by
adversary. But what these send in round i− 1 depends on what they receive respectively in round i− 2.
Note that this continues in a recursive manner until recursion stops at round 1. The entire recursion can
be visualized as trees TA

α and TA
α1

rooted at A for executions α and α1 respectively as shown in Figure 5.
In general this holds for any node x′(or x) in execution α of S and corresponding node x in execution α1

of G.
We now formally describe tree T x

α . We name the levels of tree in a bottom up manner. Let the lowest
level of tree be 1, next level be 2 and so on. An edge from a node y at level j to another node z at
level j + 1 in the tree represents the message that y sends to z in round j of α. All edges are directed
from child to parent and are between adjacent levels only. Observe that for the proof to go through,
in-degree for any node y′(or y) in system S has to be same as in-degree of corresponding node y in G.
Thus structurally both trees T x′

α (or T x
α) and T x

α1
will be exactly same (A node y′ in T x

α is replaced by
its corresponding node y in T x

α1
). Now consider a node b′(or b) at level j in T x

α . Then its corresponding
node at level j in T x

α1
is b. Note that if the messages received by b′ in T x

α is same as those received by
b in T x

α1
and both b′ and b start with same input value, same private key and run same code then both

will send same messages.

(a)

A

(b)

CB

B

A C
(a)

A

(b)

CB

B

A C

Figure 3: TA
α , TB

α and TA
α1

,
TB

α1
at the end of round 1.

We prove above theorem using induction on height of TB
α and TB

α1
. Only

nodes present in TB
α are A,B,C,A′. Corresponding nodes present in TB

α1
are

A,B,C,A respectively. Notice that since B′ does not appear in TB
α , any A′

in TA
α or TB

α has an outgoing directed edge only and only to C. We analyze
these trees in bottom up manner. Consider round 1 of executions α and
α1. Consider trees TA

α , TB
α and TA

α1
, TB

α1
at the end of round 1 as shown in

Figure 3. We claim that A in α and α1 receive similar messages at the end
of round 1. Likewise B in α and α1 respectively also receive similar messages at the end of round 1.
Consider (a) in Figure 3. B starts with same input, secret key and executes same code in α and α1.
Thus it will send same messages to A in round 1 of α and α1 i.e. msgα

1 (B,A)B ∼ msgα1
1 (B,A)B. Using

aforementioned adversary strategy for α1, A can ensure that msgα
1 (C,A)C ∼ msgα1

1 (C,A)C . Thus A
gets same messages at the end of round 1 in α and α1. Using arguments similar to those for (a), one can
show that for (b), B also gets same messages at the end of round 1 in α and α1.

CB

CA A’C
(a) (b)

A

B

A

B

C

BB

CB

CA AC
(a) (b)

A

B

A

B

C

BBAA’

Figure 4: TA
α , TB

α and TA
α1

, TB
α1

at the
end of round 2.

We now claim that the similarity holds in round 2 as
well i.e. msgα

2 (x,A)x ∼ msgα1
2 (x,A)x and msgα

2 (x,B)x ∼
msgα1

2 (x,B)x, ∀x ∈ P. Consider trees TA
α , TB

α and TA
α1

, TB
α1

at the end of round 2 as shown in Figure 4.
Consider TA

α and TA
α1

. Node A as well as B start with
same input value, secret key and execute same code in both
α and α1 respectively, thus msgα

1 (A,B)A ∼ msgα1
1 (A,B)A

and msgα
1 (B,C)B ∼ msgα1

1 (B,C)B. Using aforementioned ad-
versary strategy for α1, A can ensure that msgα

1 (C,B)C ∼

15

msgα1
1 (C,B)C . Now A and A′ start with different inputs thus send different messages to C in round 1.

However since A is passively corrupt and A is Byzantine in α1, A can construct message msgα1
1 (A,C)A

such that msgα1
1 (A,C)A ∼ msgα

1 (A′, C)A. Thus C can simulate to receive messages in α1 same as those
in α at the end of round 1. Now B receives same messages in α and α1 and has same input value, se-
cret key and executes same code, thus msgα

2 (B,A)B ∼ msgα1
2 (B,A)B. Using aforementioned adversary

strategy A can ensure that msgα
2 (C,A)C ∼ msgα1

2 (C,A)C . Thus msgα
2 (x,A)x ∼ msgα1

2 (x,A)x, ∀x ∈ P
holds. Similarly one can argue for msgα

2 (x,B)x ∼ msgα1
2 (x,B)x, ∀x ∈ P.

A

C

BC A’A

B

B

CCALevel k−1

Level k+2

Level k+1

Level k

A’BCB

A

C

BCA

B

B

CCALevel k−1

Level k+2

Level k+1

Level k

ABCB

A

Level 1Level 1

Figure 5: TA
α and TA

α1
at the end of k + 1 rounds.

Let the similarity be true till some round k i.e.
msgα

i (x,A)x ∼ msgα1
i (x,A)x and msgα

i (x,B)x ∼
msgα1

i (x,B)x, ∀i|1 ≤ i ≤ k, ∀x ∈ P. We now
show that A can ensure that the similarity holds
for round k + 1 also. Consider TA

α and TA
α1

at the
end of k + 1 rounds as shown in Figure 5.

For proving induction we need to show that A
at level k+2 receives same messages in both trees.
Consider edges between level k and k + 1. From
induction hypothesis any node A upto level k + 1 receives same messages in TA

α and TA
α1

. Since A
starts with same input value, secret key and executes same code in both α and α1 respectively, thus
will send same messages in round k i.e. msgα

k (A,B)A ∼ msgα1
k (A,B)A. Similarly one can argue that

msgα
k (B,C)B ∼ msgα1

k (B,C)B. Now consider A′ at level k in in TA
α and corresponding A at level k

in in TA
α1

. For time being assume A′ upto level k in TA
α receives same messages as corresponding A in

TA
α1

. Since A′ start with different input from A, they send different messages to C in round k. We now
claim that A can ensure that C at level k + 1 in TA

α1
can simulate to receive same message from A′ as

C at level k + 1 in TA
α . This is because A controls A passively in α1, thus can construct messages on

behalf of A in α1. Formally A can construct msgα1
k (A′, C)A′ such that msgα1

k (A′, C)A′ ∼ msgα
k (A,C)A.

Thus C a level k + 1 receives same messages in both trees. Similarly one can argue that C at level
k recieves same messages in TA

α and TA
α1

. Since C starts with same input value, secret key and exe-
cutes same code in both α and α1 respectively, thus it will send same messages in round k + 1 to A
i.e. msgα1

k+1(C,A)C ∼ msgα
k+1(C,A)C . Similarly one can argue that msgα1

k+1(B,A)B ∼ msgα
k+1(B,A)B.

Thus induction holds for round k + 1 too. The proof is based on a assumption that A′ at level k in TA
α

receives same messages as corresponding A in TA
α1

. Note that A′ in TA
α and A in TA

α1
recieves messages

from B and C. Using induction and arguments similar to those given above one can show that such an
assumption indeed holds true. Thus msgα

i (x,A)x ∼ msgα1
i (x,A)x, ∀i > 0, ∀x ∈ P holds true. Using

similar ideas as used above one can show that msgα
i (x,B)x ∼ msgα1

i (x,B)x, ∀i > 0, ∀x ∈ P.

Similar to proof of Lemma 20 one can formally prove the following lemmas:

Lemma 21 msgα
i (x,B)x ∼ msgα2

i (x,B)x and msgα
i (x,C)x ∼ msgα2

i (x,C)x, ∀i > 0, ∀x ∈ P

Lemma 22 msgα
i (x,C)x ∼ msgα3

i (x,C)x and msgα
i (x,A′)x ∼ msgα3

i (x,A)x, ∀i > 0, ∀x ∈ P

B Proof for Lemma 13

We now give the proof of Lemma 13 given in section 6. As a preclude we first prove the following lemma:

Lemma 23 msgβ
i (x,B)x ∼ msgβ1

i (x,B)x and msgβ
i (x,C)x ∼ msgβ1

i (x,C)x, ∀i > 0, ∀x ∈ P.

Proof : We prove using induction. Basic technique is similar to one used in appendix A. We prove that
for any round i, B and C receive same messages in executions β and β1 respectively. To prove that the

16

view [Definition 2] of B is same in β and β1 we apply induction on heights of TB
β and TB

β1
. Similarly

using TC
β and TC

β1
, we show view of C is same in β and β1.

B

A’ C D
(a)

C

A’ B D
(b)

B

C D
(a)

C

B D
(b)

A A

Figure 6: TB
β , TC

β and TB
β1

,
TC

β1
at the end of round 1.

Only nodes present in TB
β are B,C,D,A′, B′. Corresponding nodes

present in TB
β1

are B,C,D,A,B respectively. We analyze these trees in bot-
tom up manner. Consider trees TB

β , TC
β and TB

β1
, TC

β1
at the end of round 1 as

shown in Figure 6. We claim that B in β and β1 receive similar messages at
the end of round 1. Consider (a) in Figure 6. C starts with same input, secret
key and executes same code in β and β1. Thus it will send same messages to B
in round 1 of β and β1 i.e. msgβ

1 (C,B)C ∼ msgβ1
1 (C,B)C . Since A and D are

faulty in β1, using aforementioned adversary strategy A can ensure that msgβ
1 (A′, B)A′ ∼ msgβ1

1 (A,B)A

and msgβ
1 (D,B)D ∼ msgβ1

1 (D,B)D. Thus B gets same messages at the end of round 1 in β and β1.
Similarly one can show that C also gets same messages at the end of round 1 in β and β1.

We now claim that the similarity holds for round 2 as well i.e. msgβ
2 (x,B)x ∼ msgβ1

2 (x,B)x and
msgβ

2 (x,C)x ∼ msgβ1
2 (x,C)x, ∀x ∈ P. B

C D

DDC B A B C

B

CA’ D

A’ DDC B A’B’C

A

AB’ B

Figure 7: TB
β and TB

β1
at the end of

round 2.

Consider trees TB
β , TC

β and TB
β1

, TC
β1

at the end of round
2 as shown in Figure 7. Consider node C at level 1 in
TB

β and TB
β1

. Node B starts with same input value, se-
cret key and execute same code in both β and β1 respec-
tively, thus msgβ

1 (B,C)B ∼ msgβ1
1 (B,C)B. Since A,D are

faulty, A can ensure that msgβ
1 (A′, C)A′ ∼ msgβ1

1 (A,C)A and
msgβ

1 (D,C)D ∼ msgβ1
1 (D,C)D. Thus C receives same messages at the end of round 1 in β and β1. Since

C starts with same input value, secret key and execute same code in both β and β1 respectively, it sends
same message to B in round 2 i.e. msgβ

2 (C,B)C ∼ msgβ1
2 (C,B)C . Now consider A′ at level 2 in TB

β and A

at level 2 in TB
β1

. B′ in β starts with a different input from B in β1, thus msgβ
1 (B′, A′)B′ � msgβ1

1 (B,A)B.

However since A is faulty and B is passively corrupt in β1, A on behalf of B can construct msgβ1
1 (B,A)B

such that msgβ
1 (B′, A′)B′ ∼ msgβ1

1 (B,A)B. C starts with same input value, secret key and execute same
code in both β and β1 respectively, thus msgβ

1 (C,A′)C ∼ msgβ1
1 (C,A)C . Since D is faulty, A can ensure

that msgβ
1 (D,A′)D ∼ msgβ1

1 (D,A)D. Thus A′ in β receives same messages at the end of round 1 as
A in β1. Since A is faulty in β1, A can ensure that A in β1 sends message to B in round 2 same as
what A′ in β sends to B in round 2 i.e. msgβ

2 (A′, B)A′ ∼ msgβ1
2 (A,B)A. Similarly one can show that

msgβ
2 (D,B)D ∼ msgβ1

2 (D,B)D. Thus msgβ
2 (x,B)x ∼ msgβ1

2 (x,B)x, ∀x ∈ P. Similarly one can argue for
msgβ

2 (x,C)x ∼ msgβ1
2 (x,C)x, ∀x ∈ P.

B

CA’ D

A’ DDC B A’B’CB’

Level k+1

Level k

Level k+1

Level k

B

C D

DDC B A B C

A

AB

Level k+2 Level k+2

Level 1 Level 1

Figure 8: TB
β and TB

β1
at the end of k + 1 rounds.

Let the similarity be true till some round
k i.e. msgβ

i (x,B)x ∼ msgβ1
i (x,B)x and

msgβ
i (x,C)x ∼ msgβ1

i (x,C)x, ∀i|1 ≤ i ≤ k,
∀x ∈ P. We now show that A can ensure that
the similarity holds for round k+1 also. Con-
sider TB

α and TB
α1

at the end of k + 1 rounds
as shown in Figure 8. To prove induction we
need to show that B at level k + 2 receives
same messages in both trees. Consider node
D at level k+1. From induction hypothesis C receive same messages till round k in both trees. Also since
C starts with same input value, secret key and execute same code in both β and β1 respectively, it sends
same messages to D in round k i.e. msgβ

k (C,D)C ∼ msgβ1

k (C,D)C . For time being assume A′ receives
messages till round k in β1 same as what A receives till round k in β. Since A is faulty in β1, A can
ensure that A sends same message to D in β1 as A′ sends to D in β i.e. msgβ

k (A′, D)A′ ∼ msgβ1

k (A,D)A.

17

Similarly assume that B′ receives messages till round k in β1 same as what B receives messages till
round k in β. But B in β1 starts with a different input from B′ in β, thus they send different mes-
sages to D in β and β1. However since D is faulty and B is passively corrupt in β1, A can ensure
that msgβ

k (B′, D)B′ ∼ msgβ1

k (B,D)B. Thus D at level k + 1 receives same messages in TB
α and TB

α1
.

Since D is faulty in β1, A can ensure that msgβ
k+1(D,B)D ∼ msgβ1

k+1(D,B)D. Using similar arguments
one can show that msgβ

k+1(C,B)C ∼ msgβ1

k+1(C,B)C and msgβ
k+1(A

′, B)A′ ∼ msgβ1

k+1(A,B)A. Thus B
receives same messages in round k + 1 of β and β1. Thus induction hypothesis holds for round k + 1
too. Thus msgβ

i (x,B)x ∼ msgβ1
i (x,B)x, ∀i > 0, ∀x ∈ P holds true. Similarly one can argue for

msgβ
i (x,C)x ∼ msgβ1

i (x,C)x, ∀i > 0, ∀x ∈ P. The above proof is based on assumptions that A′ upto
level k in TB

α receives same messages as corresponding A in TB
β1

. Using induction and arguments similar
to given above one can show easily that both assumptions indeed holds true. Similarly one can prove
that B′ upto level k in TB

α receives same messages as corresponding B in TB
β1

.

Lemma 24 viewβ
B ∼ viewβ1

B and viewβ
C ∼ viewβ1

C

Proof: Follows from Equation 5 and Lemma 23.

Using ideas similar to one used in proof of Lemma 23, 24 one can prove the follwoing lemmas:

Lemma 25 msgβ
i (x,C)x ∼ msgβ2

i (x,C)x, msg
β
i (x,D)x ∼ msgβ2

i (x,D)x and msgβ
i (x,A′)x ∼ msgβ2

i (x,A)x

∀i > 0, ∀x ∈ P .

Lemma 26 viewβ
C ∼ viewβ2

C , viewβ
D ∼ viewβ2

D andviewβ
A′ ∼ viewβ2

A

Lemma 27 msgβ
i (x,A′)x ∼ msgβ3

i (x,A)x, msg
β
i (x,B′)x ∼ msgβ3

i (x,B)x, and msgβ
i (x,D)x ∼ msgβ3

i (x,D)x,
∀i > 0, ∀x ∈ P .

Lemma 28 viewβ
A′ ∼ viewβ3

A , viewβ
B′ ∼ viewβ3

B , viewβ
D ∼ viewβ3

D .

Lemma 29 There does not exists any protocol solving ABG over a complete graph of four nodes tolerating
adversary structure A = {((A,D), (B)), ((B), (A)), ((C), (B))}.

Proof : Proof by contradiction. Let there exists a protocol $ solving ABG over a complete graph of four
nodes tolerating adversary structure A = {((A,D), (B)), ((B), (A)), ((C), (B))}. From $ we construct a
protocol $′ [Definition 3] for system S′. β is an execution of $′ as shown in Figure 2. β1 is an execution
of $ in which A,D are faulty, C is honest and B is operationally honest. Both B,C start with input value
0, and since $ solves ABG, from validity condition both B,C must eventually output 0. From Lemma 24,
for B,C, β1 is indistinguishable from β i.e. β B∼ β1 and β

C∼ β1. Thus, B,C in β will eventually decide
on value 0 (We are able to make claims regarding player’s outputs in β as views of players are same in
β and β1. Thus by analyzing player’s outputs in β1, we can determine their outputs in β). Similarly

using Lemma 28 A′,B′,D cannot distinguish between β and β3 i.e. β A′
∼ β3, β

B′
∼ β3 and β

D∼ β3. Thus
in β, A′,B′ and D eventually agree on value 1. Now consider execution β2. B is byzantine corrupt, A is
operationally honest and C,D are honest. A,C and D start with input values 1,0,1 respectively. Since, $
solves ABG, from agreement condition all three should decide on same value. From Lemma 26, β A′

∼ β2,
β

C∼ β2 and β
D∼ β2. Thus A′,C and D should output same value in β as in β2. However in β, C has

already decided on 0 and A′,D have already decided on 1. This leads to a contradiction in $′. Using
Lemma 9, we can say that our assumption that there exists a protocol $ solving ABG over a complete
graph of four nodes tolerating adversary structure A = {((A,D), (B)), ((B), (A)), ((C), (B))} is wrong.

18

