
Authenticated Byzantine Generals Strike Again

Anuj Gupta Prasant Gopal Piyush Bansal Kannan Srinathan
Center for Security, Theory and Algorithmic Research

International Institute of Information Technology, Hyderabad, India
{anujgupta@research. prasant@research. piyush bansal@research. srinathan@}iiit.ac.in

Abstract

Pease et al. introduced the problem of Authenticated Byzantine General (ABG) where players
could use digital signatures (or similar tools) to thwart the challenge posed by Byzantine faults in dis-
tributed protocols for agreement. Subsequently it is well known that ABG among n players tolerating
up to t faults is (efficiently) possible if and only if n > t (which is a huge improvement over the n > 3t
condition in the absence of authentication for the same functionality). We study the problem of ABG
in (tb,tp)-mixed adversary model where adversary can corrupt up to any tb players actively and control
up to any other tp players passively. We prove that ABG over a completely connected synchronous
network of n nodes tolerating a (tb,tp)-adversary is possible if and only if n > 2tb+min(tb, tp) when
tp > 0. For the case of tp=0 and tb=t, the existing result of n > t holds.

Keywords. Broadcast, Authenticated Byzantine General, Mixed adversary.

1 Introduction

Designing protocols for simulating a broadcast channel over a point to point network in presence of faults
is a fundamental problem in theory of distributed computing. The problem is popularly referred to as
the “Byzantine Generals problem”(BGP), introduced by Lamport et al. [18]. Informally, the challenge is
to maintain a coherent view of the world among all the non-faulty players in spite of faulty players trying
to disrupt the same. Specifically, in a protocol for BGP over a synchronous network of n players, the
General starts with an input from a fixed set V = {0, 1}. At the end of the protocol (which may involve
finitely many rounds of interaction), even if up to any t of the n players are faulty, all non-faulty players
output the same value u ∈ V and if the General is non-faulty and starts with input v ∈ V , then u = v. In
a completely connected synchronous network with no additional setup, classical results of [18, 21] show
that reliable broadcast among n parties in presence of up to t number of malicious players is achievable
if and only if t < n/3. Here a player is said to be non-faulty if and only if he faithfully executes the
protocol delegated to him. Traditionally, the notion of failures in the system is captured via a fictitious
entity called adversary that may control a subset of players. An adversary that controls up to any t
of the n players is denoted by t-adversary. Note that, in the context of BGP, not all players under the
control of the adversary need to be faulty. This is because the adversary may choose to passively control
some of the players who, by virtue of correctly following the protocol, are non-faulty.

There exists a rich literature on the problem of BGP. After [18, 21], studies were initiated under
various settings like asynchronous networks [11], partially synchronous networks [9], incomplete networks
[8], hypernetworks [13], non-threshold adversaries [12], mixed-adversaries [1], mobile adversaries [14], and
probabilistic correctness [22] to name a few. An important variant of BGP is the authenticated model
proposed by Pease et al. [21], which as the title of this paper suggests, is our main focus. In this model,
which we hereafter refer to as authenticated Byzantine General (ABG), the players are supplemented with
“magical” powers (say a Public Key Infrastructure (PKI) and digital signatures) using which the players

1

can authenticate themselves and their messages. It is proved that in such a model, the tolerability against
a t-adversary can be amazingly increased to as high as t < n. Dolev and Strong [7] presented efficient
protocols thereby confirming the usefulness of authentication in both possibility as well as feasibility of
distributed protocols. Subsequent papers on this subject include [3, 5, 24, 4, 17, 16, 23]. In essence, the
state-of-the-art in ABG can be summarized by the following folklore (as noted by Nancy Lynch [20, page
116] too): “Protocols for agreement tolerating a fail-stop t-adversary, modified so that all messages are
signed and only correctly signed messages are accepted, solve the agreement problem for the authenticated
Byzantine fault model”.

A large part of literature in the area of fault tolerant distributed computing considers adversary to
have same amount of control over all the corrupt players. Mixed adversary model is motivated from a
scenario where adversary has varied control over different corrupt players i.e. it controls some players
passively, some others actively, another fraction as fail-stop and so on. Note that mixed adversary
model not only generalizes the adversary models where only one type of corruption is considered but
also permits to understand the effects on computability/complexity of the task at hand as a function
of the adversary’s power. With respect to BGP, mixed adversary model has been considered in the
past, [15, 1] to name a few. Motivated from this, we aim to study the problem of ABG under influence of
a (tb,tp)-adversary where adversary can corrupt up to any tb players actively and control another up to
any tp players passively. Adversary can make actively corrupt players to behave in arbitrary manner and
can read the internal state of passively corrupt players. Note that the solution to the problem of ABG
with authentication under influence of a (tb,tp)-adversary answers the question of simulating a broadcast
channel for the entire gamut of adversary strategies between tb = t & tp = 0 (ABG) and tb = t &
tp = n− t (BGP).

2 Our Contributions and Results

The first contribution of this paper is to argue that for the case of (tb,tp)-adversary, the problem definition
of ABG itself needs to be modified. As a preclude to the argument, we remark that literature considers
a player to be faulty if and only if that player deviates from the designated protocol. Consequently, a
player can be non-faulty in two ways – first the adversary is absent and (therefore) player follows the
protocol and second the adversary is present passively and (therefore) player follows the protocol. (For
the rest of the paper we refer to the former kind of non-faulty player as honest and the latter as passively
corrupt.)

Consider the following scenario : Given a physical broadcast channel among a set of n players, the
General sends a value on this physical broadcast channel. If the General is honest and sends a value
say v, then all the n players are guaranteed to receive value v. Then all the honest players will output
v. By virtue of correctly following the protocol, all passively corrupt players will also output v. Thus
all non-faulty will output same value v. Note that adversary can make all the actively corrupt players
to output a value different from what they receive.1 In case the General himself is faulty all non-faulty
players will output same value.

Preceding paragraph necessitates the following finding: Any protocol aiming to truly simulate a
broadcast channel in the presence of (tb,tp)-adversary, has to ensure that all non-faulty (honest and
passively corrupt, i.e. n− tb) players output same value. Note that in an authenticated setting such as
ABG, passive control also models situations where a player executes the designated protocol faithfully
but is unaware of the fact that his private key has been compromised. In such a case, from the arguments
presented in preceding paragraph, it is evident that a protocol for ABG that does not facilitate passively

1A similar argument can be given using a TTP (Trusted Third Party) [6]. The designated ‘General’ sends its value v to
TTP. TTP forwards it to all the players. Since all honest and passively corrupt players follow the ideal protocol diligently,
they all output v.

2

controlled players to agree too, does not truly simulate a broadcast channel. For the rest of the paper we
call this model as “ABG under mixed adversary” (ABGmix). We formally define ABGmix in section 3.

From the result of n > t [21], one might feel that in the presence of (tb,tp)-adversary, n > tb+tp
(using tb+tp=t) is sufficient for possibility of ABGmix. However we show that this is not the case, and
n > tb+tp is necessary but not sufficient to simulate a broadcast channel as originally intended. We
support our claim by studying a simple synchronous system consisting of three players (as illustrated in
graph G in Figure 1). For n > tb+tp to be a sufficient condition for ABGmix over any complete graph
tolerating (tb,tp)-adversary, there should exist a protocol solving ABGmix tolerating (tb,tp)-adversary,
whenever n > tb+tp is satisfied. However, in Section 4 we prove that for the case of three players over
a completely connected graph G if the strategy of the (1, 1)-adversary is to actively control one of the
players and passively control another one player, then there cannot exist any protocol that can guarantee
consistency among the outputs of all the non-faulty players. In light of this observation we initiate the
study of ABGmix in presence of (tb,tp)-adversary. As a second contribution of this paper we formally
prove that ABGmix tolerating a (tb,tp)-adversary is possible if and only if n > 2tb+min(tb,tp), tp > 0
(which explains our discussion as to why a (1, 1)-adversary is not tolerable over complete graph of three
nodes). For the case of tp=0 and tb=t, the existing result of n > t [21] still holds.

3 Our Model and Notations

We consider a set of n players, computationally unbounded, denoted by P, fully connected. Player Pi

is modeled as an interactive Turing Machine with n− 1 pairs of incoming and outgoing communication
tapes. Communication over the network is assumed to be synchronous. That is, the protocol is executed
in a sequence of rounds where in each round, a player can perform some local computation, send new
messages to all the players, receive messages sent to him by players in the same round, (and if necessary
perform some more local computation), in that order. In the send phase of each round, players write
messages onto their outgoing communication tapes, and in the receive phase, players read the content of
their incoming communication tapes. During the execution, the adversary may take control of up to any
tb+tp players. Adversary can make tb players to behave in any arbitrary fashion and read the internal
states of another tp players. W.l.o.g we assume that adversary always uses his full power, and hence
tb ∩ tp = ∅. We further assume that the communication channel between any two players is perfectly
reliable i.e. adversary cannot modify messages sent between non-malicious parties. We also assume
existence of a (signature/authentication) scheme where the sender signs the message to be sent. This is
modeled by all parties also having an additional setup-tape that is generated during the preprocessing
phase.2 Typically in such a preprocessing phase, the signature keys are generated. That is, each party
gets its own private key, and in addition, public verification keys for all other players. No player can
forge any other player’s signature and the receiver can uniquely identify the sender of the message using
the signature. However, the adversary can forge the signature of all the (tb+tp) players under its control.
W.l.o.g we assume that players authenticate themselves and their messages with the help of a private
key. Based on the discussion in the previous section, we now formally define ABGmix:

Definition 1 (ABGmix) A designated General starts with an input from a fixed set V = {0, 1}. The
goal is for the players to eventually output decisions from the set V upholding the following conditions,
even in the presence of a (tb, tp)-adversary:

• Agreement: All non-faulty players decide on the same value u ∈ V .

• Validity: If the general is non-faulty and starts with the initial value v ∈ V , then u = v.
2Note that keys cannot be generated with the system itself. It is assumed that the keys are generated using a trusted

system and distributed to players prior to running of the protocol similar to [19].

3

• Termination: All non-faulty players eventually decide.

For clarity of the reader, we reiterate certain terms that have been used extensively in the paper. A
player is said to be faulty if and only if he deviates from the designated protocol. Consequently non-
faulty players are ones who do not deviate from the designated protocol. Note that adversary may have
some access to some(or all) non-faulty players such as reading their internal state. A passively corrupt
player is one who follows the designated protocol diligently, but adversary has complete access to his
internal state. An honest player is one who follows the designated protocol, and over whom adversary
has absolutely no control. For the purpose of this paper, both honest and passively corrupt players are
non-faulty. Rest of the paper focuses on complete characterization of ABGmix over complete graphs.

Organization of the paper: We start the technical exposition by giving a motivating example to
study the problem of ABGmix in section 4. In section 5, we give mathematically rigorous definitions of
some terms used in the formal proofs. Section 6 gives the complete characterization of ABGmix tolerating
(tb, tp)-adversary over complete graphs, followed by the conclusion in section 7. Owing to space constraints
the formal proof of the motivating example considered in section 4 is given in Appendix A.

4 Motivating Example

0

0

1

0

1

1

G

A

C

B

S A’

B C

A

B’C’

Figure 1: System G and S.

As a motivating example to study ABGmix in presence of
(tb,tp)-adversary, we first show that there does not exists
any protocol solving ABGmix over a complete graph of 3
players influenced by a (1, 1)-adversary. This essentially
shows that result of ABGmix cannot be n > tb+tp as is
the case with n > t result for ABG [21]. The proof for impossibility of protocol is motivated from [10].
Here we only give a proof sketch, a detailed formal proof is available in Appendix A.

We start by assuming that there exists a protocol π that solves ABGmix for three players, P =
{A,B,C} tolerating (1, 1)-adversary. We then construct a system S as shown in Figure 1. Using π
we create a protocol π′ (executed by each player in S) in such a way that if π exists then so does π′.
Further, let α1 be an execution of π in G in which B is an honest player, adversary A corrupts C in
byzantine fashion and A in passive manner. Here A is the General and starts with input 0. Similarly let
α2 be the execution of π in G in which B is an honest player. A corrupts C passively and controls A
in byzantine fashion. Here A acts as the general. A sends 0 to B and 1 to C. Let α3 be an execution
of π in G in which C is an honest player. A corrupts A passively, and B in byzantine fashion. Here
A acts as the General and starts with input 1. Let α be an execution of π′ in S in which each player
starts with input value as shown in Figure 1. All the players in α are honest and follow the prescribed
protocol(π′) correctly. We then prove that whatever view (informally view of a player means all the
messages the player ever gets to see during the entire protocol execution. We formally define view in
section 5) A,B get in α, A can generate the same view for A,B in α1. Since A can ensure that view of
both A,B is same in α and α1, we show that A,B in α will decide on value 0. Similarly one can prove
that A′, C in α will decide on value 1. On similar lines we then prove that since B,C in α2 should agree
on same value, then so should B,C in α, but B,C have already decided upon values 0 and 1 respec-
tively in α, leading to a contradiction in π′. This contradicts our original assumption about existence of π.

To complete the proof sketch, we now give an idea as to how A can ensure that A,B gets same view
in α1 and α. Consider an execution Γ of π′ in S which is exactly same as α except that in Γ A′ starts
with input value 0. Since in α, no message from B′ or C ′ can ever reach any of A,B,C or A′, A can
ensure that A and B get same messages in Γ and α1 (All A has to do is to start with input value 1 and

4

follow the designated protocol). Now in α, all messages received by A and B respectively are same as
those in Γ except those messages that have been processed by A′ at least once(since A′ starts with input
value 0 in Γ and input value 1 in α). If in α1, A can simulate this difference between α and Γ, we can
say that A can make view of A and B same in α and α1. We now claim that for any round i, i ≥ 1, it
is always possible for A to do so. Note that owing to the typical construction of S, in α A′ can send a
message to A or B only via C. This ensures that in α, any message from A′ can reach A or B only after
it has been processed by C. Now in α1, C is faulty and A controls A passively. Thus whatever C sends
to A and B in α, A can send the same to A and B in α1. Similarly one prove that whatever view B,C
get in α, A can generate the same view for B,C in α2 and whatever view C,A′ get in α, A can generate
the same view for C,A in α3.

Formally one can prove the following lemmas. Here viewφ
Z represents view of player Z during entire

execution φ. Detailed formal proofs of these lemmas are given in Appendix A.

Lemma 1 viewα
A ∼ viewα1

A and viewα
B ∼ viewα1

B

Lemma 2 viewα
B ∼ viewα2

B and viewα
C ∼ viewα2

C .

Lemma 3 viewα
A′ ∼ viewα3

A and viewα
C ∼ viewα3

C .

Note: We remark that undirected systems does not seem to work in proving above lemmas. An interested
reader is encouraged to try proving Lemmas 1, 2, 3 using undirected system’s technique used in extant
literature [10, 19]. Curiously though, the impossibility can be proved using a directed system. This is
because using directed edges one can restrict the paths through which messages are sent to some selected
nodes. This is important because in order to make the views same, it is essential to ensure that whatever
message is sent in S, adversary A can generate similar messages in different executions in G. Specifically
for the proof of above mentioned lemmas to go through, it is essential that A,B,C or A′ donot ever get
any message from either of B′ or C ′ in execution α. In Appendix A we elaborate as to why the proof for
Lemmas 1, 2, 3 breaks down, in case this constraint in execution α is not satisfied.

5 Mathematical Definitions

Prior to giving the complete characterization of ABGmix tolerating (tb,tp)-adversary, we mathematically
define certain terms which are used in this work. We start with view. Intuitively, by view we want to
capture all that a player can ever see during the entire execution of the protocol. Thus the view of a
player is formed by all the messages it ever sends and receives during the execution of the protocol. Let
msgΩ

i (a, b)a denote the message sent by player a to player b in ith round of execution Ω. The subscript
a represents the last player who authenticated the message. W.l.o.g we assume that players always
authenticate the message before sending. Then view of a player a during execution Ω at the end of
round i, denoted by viewΩ

a,i, can be represented as collection of all the messages it ever send and receives.
Formally:

viewΩ
a,i =

⋃
k

(msgΩ
k (a, x)a,msg

Ω
k (x, a)x), ∀k ∈ {1 . . . i}, ∀x ∈ P (1)

The messages sent by player a in any round i of some execution say Ω depends on 4 parameters: input
value with which a starts, secret key used by a for authentication, code(say π) being executed by a, and
messages received by a up to round i − 1 of Ω. Since the outgoing messages are a function of incoming
messages, we can rewrite the equation 1 as:

5

viewΩ
a,i =

⋃
k

(msgΩ
k (x, a)x), ∀k ∈ {1 . . . i}, ∀x ∈ P (2)

In order to show that the views of 2 different players a, b running in 2 different executions Ω,Γ respectively
till round i are same, we use the following fact: If both players a, b start with same input, use the same
secret key and run similar code 3, and if for every round 1 . . . i their corresponding incoming messages
are same, then their views till round i will also be same. 4 Formally:

viewΩ
a,k ∼ viewΓ

b,k, iff, msgΩ
k (x, a) ∼ msgΓ

k (x, b), ∀k ∈ (1 . . . i), ∀x ∈ P (3)

6 Characterization of ABGmix over Complete Graphs

0

0

1

1

1

1

0 1

D’ C’

S’
G’

AD

C B

B

C

A

D

A’

B’

Figure 2: System G′ and S′.

We now give the necessary and sufficient conditions for pos-
sibility of ABGmix over completely connected synchronous
networks. We show that ABGmix over a complete graph
is possible if and only if n > 2tb+min(tb, tp). We first give
the necessity proof followed by sufficiency.

6.1 Necessity

We first show that there does not exists any protocol solving ABGmix over a complete graph of four
nodes tolerating adversary basis A = {((A,D), (B)), ((B), (A)), ((C), (B))}. For the rest of paper,
((x1 . . . xi)(y1 . . . yj)) represents a single element of adversary basis such that adversary can corrupt
x1 . . . xi actively and simultaneously control y1 . . . yj passively. The proof technique used and the intu-
ition behind impossibility is same as that in section 4. Formally we prove the impossibility by contradic-
tion. We assume there exists a protocol $ that solves ABGmix over a complete graph of four nodes G′

tolerating adversary basis A = {((A,D), (B)), ((B), (A)), ((C), (B))}. We then construct a new system
S′ as shown in Figure 2. Each player in S′ runs $′. We now formally define $′ and further prove that
if $ exists then so does $′.

Definition 2 ($′) For all players a, b ∈ P, any statement of kind “b sends message m to a” in $ is
replaced by “b multicasts message m to all instances of a(i.e. a, a′) 1 which are connected by a directed
edge from b to a” in $′. Rest all statements in $′ are same as $.

Lemma 4 If $ exists then $′ exists.

Proof : Implied from Definition 2.

Construction of S′: Take two copies of each player in G′, construct a octagonal system S′ as shown
in Figure 2. Player A is connected to B,C,D′; B is connected to A,C,D,A′,D′; player C is connected to
A,B,D,A′,B′; player D is connected B,C,A′,B′ and so on. Connectivity in S′ is shown using directed
edges. A node a behaving in a byzantine fashion with a pair of honest nodes, is captured by connecting
one of the honest nodes to a and other to a′ 4. Note that connectivity in S′ is not same as in G′. To be

3Note that a, b may even run different codes say θ and θ′, however message generated for a given player say C by θ for
a given input I should be same as message generated for C by θ′ for same input I. For our proof $ and $′ are similar in
this respect, see definition 2

4 [10] captured this via Locality Axiom. In ABGmix a player may also use its private key to determine the outgoing
messages. Thus in case of ABGmix, both players having same secret key is must.

6

precise, in-neighborhood of any node a(or a′) in S′ is same as in-neighborhood of corresponding node a
in G′, however out-neighborhood of some nodes in S′ is not same as out-neighborhood of corresponding
nodes in G′. This would make a difference if players in both systems were running same protocol($).
S′ is constructed in a such a way that whatever messages are sent to some selected players in S′, same
messages can be ensured by adversary to those very selected players in G′. Each player in S′ knows only
its immediate neighbors and not the complete graph S′. In reality, a player may be connected to either
a or a′, but it cannot differentiate between the two. It knows its neighbor only by its local name which
may be a. We neither know what system S′ does nor what $′ solves. Since, S′ does not form an ABGmix

setting, therefore the definition of ABGmix [Definition 1] does not tell us anything directly about the
output of players in$′. All we know is that S′ is a synchronous system and$′ has a well defined behavior.

Let β1 be an execution of $ in G′ where C is an honest player. A corrupts A,D in byzantine fashion
and controls B passively. Here B is the general and starts with input value 0. Similarly let β2 be the
execution of $ in which C,D are honest players. A corrupts A passively and B in byzantine fashion.
Here B is the general. B sends a 1 to A,D and a 0 to C. Let β3 be an execution of $ in which A,D
are honest players. A controls B passively, corrupts C in byzantine fashion. Here B is the general and
starts with input value 1. Let β be an execution of $′ in S′ in which each player starts with input value
as shown in Figure 2. All the players in β are honest and follow the designated protocol correctly. We
now show that whatever view [equation 2] B,C get in β, A can generate the same view for B,C in β1.
Similarly we prove that whatever view C,D,A′ get in β, A can generate the same view for C,D,A in β2

and whatever view A′,B′,D get in β, A can generate the same view for A,B,D in β3.

We now give the adversary strategy in executions β1:

1. Send outgoing messages of round i: Based on the messages received during round i− 1, A decides
on the messages to be sent in round i. In round 1, A sends to C what an honest A and D would
have sent to C in round 1 of β2. For i ≥ 2, A authenticates msgβ1

i−1(C,A)C using A’s secret key
and sends it to B,D. Similarly, A authenticates msgβ1

i−1(C,D)C using D’s secret key and sends it
to A,B. For msgβ1

i−1(B,A)B, A examines the message. If the message has not been authenticated
by C even once then A authenticates and sends same message to C as an honest A would have sent
to C in β2. Formally, A constructs msgβ1

i−1(B,A)B, such that msgβ1
i−1(B,A)B ∼ msgβ2

i−1(B,A)B,
authenticates it using A’s key and sends it to C. Ifmsgβ1

i−1(B,A)B has been authenticated by C even
once, A simply authenticates the message using A’s key and sends it to C. Likewise A examines
msgβ1

i−1(B,D)B. If the message has not been authenticated by C even once A authenticates and
sends same message to C as an honest D would have sent to C in execution β2. Formally, A
constructs msgβ1

i−1(B,D)B such that msgβ1
i−1(B,D)B ∼ msgβ2

i−1(B,D)B, authenticates it using D’s
key and sends it to C. If msgβ1

i−1(B,D)B has been authenticated by C even once, A authenticates
the message using D’s key and sends it to C.

2. Receive incoming messages of round i: A obtain messages msgβ1
i (B,A)A, msgβ1

i (C,A)C and
msgβ1

i (D,A)D via A. Similarly via D A gets msgβ1
i (A,D)A, msgβ1

i (B,D)B and msgβ1
i (C,D)C .

(These are round i messages sent by B,C, D to A and A,B,C to D respectively). Similarly, A
obtains msgβ1

i (A,B)A, msgβ1
i (C,B)C and msgβ1

i (D,B)D via B. (These are round i messages sent
by A,C,D to B. A,C,D respectively compute these messages according to their input value, secret
key, protocol run by them and the view they get upto receive phase of round i− 1.)

We now argue that the messages received by B,C in round i of β are same as the messages received by
B,C respectively in round i of β1.

Lemma 5 msgβ
i (x,B)x ∼ msgβ1

i (x,B)x and msgβ
i (x,C)x ∼ msgβ1

i (x,C)x, ∀i > 0, ∀x ∈ P.

7

Proof : We prove using induction. Basic technique is similar to one used in Appendix A. We prove that
for any round i, B and C receive same messages in executions β and β1 respectively. Note that we have
to show that adversary can same messages can be sent no matter for how many rounds protocol is run.
Note that what players send in round k is also dependent on what they recieve in round k − 1 which in
turn in also dependent on they in turn recieve in round k − 2 and so on. Note that this continues in a
recursive manner until recursion stops at round 1. The entire recursion can be visualized as trees which
we refer to as execution trees TB

β and TB
β1

as one shown in Figure 5. We now formally describe tree T x
β .

We name the levels of tree in a bottom up manner. Let the lowest level of tree be 1, next level be 2 and
so on. An edge from a node y at level j to another node z at level j+1 in the tree represents the message
that y sends to z in round j of β. All edges are directed from child to parent and are between adjacent
levels only. Observe that for the proof to go through, in-degree for any node y′(or y) in system S′ has to
be same as in-degree of corresponding node y in G′. Thus structurally both trees T x′

β (or T x
β) and T x

β1
will

be exactly same (A node y′ in T x
β is replaced by its corresponding node y in T x

β1
). Now consider a node

b′(or b) at level j in T x
β . Then its corresponding node at level j in T x

β1
is b. Note that if the messages

received by b′ in T x
β is same as those received by b in T x

β1
and both b′ and b start with same input value,

same private key and run same code then both will send same messages.
B

A’ C D
(a)

C

A’ B D
(b)

B

C D
(a)

C

B D
(b)

A A

Figure 3: TB
β , TC

β and TB
β1

,
TC

β1
at the end of round 1.

To prove that the view [Definition 2] of B is same in β and β1 we ap-
ply induction on heights of TB

β and TB
β1

. Similarly using TC
β and TC

β1
, we

show view of C is same in β and β1. Note that only nodes present in TB
β

are B,C,D,A′, B′. Corresponding nodes present in TB
β1

are B,C,D,A,B
respectively. We analyze these trees in bottom up manner. Consider trees
TB

β , TC
β and TB

β1
, TC

β1
at the end of round 1 as shown in Figure 3. We claim

that B in β and β1 receive similar messages at the end of round 1. Consider
(a) in Figure 3. C starts with same input, secret key and executes same code in β and β1. Thus it will
send same messages to B in round 1 of β and β1 i.e. msgβ

1 (C,B)C ∼ msgβ1
1 (C,B)C . Since A and D are

faulty in β1, using aforementioned adversary strategy A can ensure that msgβ
1 (A′, B)A′ ∼ msgβ1

1 (A,B)A

and msgβ
1 (D,B)D ∼ msgβ1

1 (D,B)D. Thus B gets same messages at the end of round 1 in β and β1.
Similarly one can show that C also gets same messages at the end of round 1 in β and β1.

We now claim that the similarity holds for round 2 as well i.e. msgβ
2 (x,B)x ∼ msgβ1

2 (x,B)x and
msgβ

2 (x,C)x ∼ msgβ1
2 (x,C)x, ∀x ∈ P. B

C D

DDC B A B C

B

CA’ D

A’ DDC B A’B’C

A

AB’ B

Figure 4: TB
β and TB

β1
at the end of

round 2.

Consider trees TB
β , TC

β and TB
β1

, TC
β1

at the end of round
2 as shown in Figure 4. Consider node C at level 1 in
TB

β and TB
β1

. Node B starts with same input value, se-
cret key and execute same code in both β and β1 respec-
tively, thus msgβ

1 (B,C)B ∼ msgβ1
1 (B,C)B. Since A,D are

faulty, A can ensure that msgβ
1 (A′, C)A′ ∼ msgβ1

1 (A,C)A and
msgβ

1 (D,C)D ∼ msgβ1
1 (D,C)D. Thus C receives same messages at the end of round 1 in β and β1. Since

C starts with same input value, secret key and execute same code in both β and β1 respectively, it sends
same message to B in round 2 i.e. msgβ

2 (C,B)C ∼ msgβ1
2 (C,B)C . Now consider A′ at level 2 in TB

β and A

at level 2 in TB
β1

. B′ in β starts with a different input from B in β1, thus msgβ
1 (B′, A′)B′ � msgβ1

1 (B,A)B.

However since A is faulty and B is passively corrupt in β1, A on behalf of B can construct msgβ1
1 (B,A)B

such that msgβ
1 (B′, A′)B′ ∼ msgβ1

1 (B,A)B. C starts with same input value, secret key and execute same
code in both β and β1 respectively, thus msgβ

1 (C,A′)C ∼ msgβ1
1 (C,A)C . Since D is faulty, A can ensure

that msgβ
1 (D,A′)D ∼ msgβ1

1 (D,A)D. Thus A′ in β receives same messages at the end of round 1 as
A in β1. Since A is faulty in β1, A can ensure that A in β1 sends message to B in round 2 same as
what A′ in β sends to B in round 2 i.e. msgβ

2 (A′, B)A′ ∼ msgβ1
2 (A,B)A. Similarly one can show that

msgβ
2 (D,B)D ∼ msgβ1

2 (D,B)D. Thus msgβ
2 (x,B)x ∼ msgβ1

2 (x,B)x, ∀x ∈ P. Similarly one can argue for

8

msgβ
2 (x,C)x ∼ msgβ1

2 (x,C)x, ∀x ∈ P.

B

CA’ D

A’ DDC B A’B’CB’

Level k+1

Level k

Level k+1

Level k

B

C D

DDC B A B C

A

AB

Level k+2 Level k+2

Level 1 Level 1

Figure 5: TB
β and TB

β1
at the end of k + 1 rounds.

Let the similarity be true till some round
k i.e. msgβ

i (x,B)x ∼ msgβ1
i (x,B)x and

msgβ
i (x,C)x ∼ msgβ1

i (x,C)x, ∀i|1 ≤ i ≤ k,
∀x ∈ P. We now show that A can ensure that
the similarity holds for round k+1 also. Con-
sider TB

α and TB
α1

at the end of k + 1 rounds
as shown in Figure 5. To prove induction we
need to show that B at level k + 2 receives
same messages in both trees. Consider node
D at level k+1. From induction hypothesis C receive same messages till round k in both trees. Also since
C starts with same input value, secret key and execute same code in both β and β1 respectively, it sends
same messages to D in round k i.e. msgβ

k (C,D)C ∼ msgβ1

k (C,D)C . For time being assume A′ receives
messages till round k in β1 same as what A receives till round k in β. Since A is faulty in β1, A can
ensure that A sends same message to D in β1 as A′ sends to D in β i.e. msgβ

k (A′, D)A′ ∼ msgβ1

k (A,D)A.
Similarly assume that B′ receives messages till round k in β1 same as what B receives messages till
round k in β. But B in β1 starts with a different input from B′ in β, thus they send different mes-
sages to D in β and β1. However since D is faulty and B is passively corrupt in β1, A can ensure
that msgβ

k (B′, D)B′ ∼ msgβ1

k (B,D)B. Thus D at level k + 1 receives same messages in TB
α and TB

α1
.

Since D is faulty in β1, A can ensure that msgβ
k+1(D,B)D ∼ msgβ1

k+1(D,B)D. Using similar arguments
one can show that msgβ

k+1(C,B)C ∼ msgβ1

k+1(C,B)C and msgβ
k+1(A

′, B)A′ ∼ msgβ1

k+1(A,B)A. Thus B
receives same messages in round k + 1 of β and β1. Thus induction hypothesis holds for round k + 1
too. Thus msgβ

i (x,B)x ∼ msgβ1
i (x,B)x, ∀i > 0, ∀x ∈ P holds true. Similarly one can argue for

msgβ
i (x,C)x ∼ msgβ1

i (x,C)x, ∀i > 0, ∀x ∈ P. The above proof is based on assumptions that A′ upto
level k in TB

α receives same messages as corresponding A in TB
β1

. Using induction and arguments similar
to given above one can show easily that both assumptions indeed holds true. Similarly one can prove
that B′ upto level k in TB

α receives same messages as corresponding B in TB
β1

.

Lemma 6 viewβ
B ∼ viewβ1

B and viewβ
C ∼ viewβ1

C

Proof : Follows from equation 3 and Lemma 5.

We now give adversary strategy for β2 and β3 respectively. For β2:

1. Send outgoing messages of round i: Based on the messages received in round i−1, A decides on the
messages to be sent in round i. In round 1, A sends to C what an honest B would have sent to C in
round 1 of β1. Similarly A sends to D what an honest B would have sent to D in round 1 of β3 and
A sends to A what an honest B would have sent to A in round 1 of β3. For i ≥ 2, A authenticates
msgβ2

i−1(C,B)B using B’s secret key and sends it to A,D. Similarly, A authenticates msgβ2
i−1(D,B)D

using B’s secret key and sends it to A,C. For msgβ2
i−1(A,B)A, A examines the message. If the

message has not been authenticated by either C or D even once, then A authenticates and sends
same message to C as an honest B would have sent to C in β1. Similarly A authenticates and
sends same message to D as an honest B would have sent to D in β3. Formally, A constructs
msgβ2

i−1(A,B)A, such that msgβ2
i−1(A,B)A ∼ msgβ1

i−1(A,B)A, authenticates it using B’s key and
sends it to C. Similarly A constructs msgβ2

i−1(A,B)A, such that msgβ2
i−1(A,B)A ∼ msgβ3

i−1(A,B)A,
authenticates it using B’s key and sends it to D. If msgβ2

i−1(A,B)A has been authenticated by either
C or D even once, A simply authenticates the message using B’s key and sends it to C and D.

9

2. Receive incoming messages of round i: A obtains messages msgβ2
i (A,B)A, msgβ2

i (C,B)C and
msgβ2

i (D,B)D from B in β2 (These are round i messages sent by A,C,D to B. They respectively
compute these messages according to their input, protocol run by them and the view they get upto
receive phase of round i−1.). Similarly A obtains msgβ2

i (B,A)B, msgβ2
i (C,A)C and msgβ2

i (D,A)D

from A in β2 (These are round i messages sent by B,C,D to A).

Adversary strategy for β3:

1. Send outgoing messages of round i: Based on the messages received in round i − 1, A decides on
the messages to be sent in i. In round 1, A sends to D what an honest C would have sent to D
in round 1 of β2. For i ≥ 2 A authenticates msgβ3

i−1(A,C)A using secret key of C and sends it
to B,D. Similarly it authenticates msgβ3

i−1(D,C)D using C’s secret key and sends it to A,B. For
msgβ3

i−1(B,C)B, A examines the message. If the message has not been authenticated by either A or
D even once, then A authenticates and sends same message to A as an honest C would have sent
to A in β2 and sends same to D as an honest C would have sent to D in execution β2. Formally, A
constructs msgβ3

i−1(B,C)B, such that msgβ3
i−1(B,C)B ∼ msgβ2

i−1(B,C)B authenticates it using C’s
key and sends it to A,D. If msgβ3

i−1(B,C)B has been authenticated by either of A or D even once,
A simply authenticates the message using C’s key and sends it to A,D.

2. Receive incoming messages of round i: A obtains messages msgβ3
i (A,C)A, msgβ3

i (B,C)B and
msgβ3

i (D,C)D via C. (These are round i messages sent by A,B and D to C). Similarly A obtains
msgβ3

i (A,B)A, msgβ3
i (C,B)C and msgβ3

i (D,B)D via B. (These are round i messages sent by A,C
and D to B. A,C and D respectively compute these messages according to the protocol run by
them and the view they get receive phase of round i− 1.)

Using aforementioned adversary strategies and technique similar to one used in proof of Lemma 5, 6 one
can prove the following four lemmas. Due to space constraints proofs are omitted.

Lemma 7 msgβ
i (x,C)x ∼ msgβ2

i (x,C)x, msg
β
i (x,D)x ∼ msgβ2

i (x,D)x and msgβ
i (x,A′)x ∼ msgβ2

i (x,A)x

∀i > 0, ∀x ∈ P .

Lemma 8 viewβ
C ∼ viewβ2

C , viewβ
D ∼ viewβ2

D andviewβ
A′ ∼ viewβ2

A

Lemma 9 msgβ
i (x,A′)x ∼ msgβ3

i (x,A)x, msg
β
i (x,B′)x ∼ msgβ3

i (x,B)x, and msgβ
i (x,D)x ∼ msgβ3

i (x,D)x,
∀i > 0, ∀x ∈ P .

Lemma 10 viewβ
A′ ∼ viewβ3

A , viewβ
B′ ∼ viewβ3

B , viewβ
D ∼ viewβ3

D .

Lemma 11 There does not exists any protocol solving ABGmix over a complete graph of four nodes(G’)
tolerating adversary basis A = {((A,D), (B)), ((B), (A)), ((C), (B))}.

Proof : Proof by contradiction. Let there exists a protocol $ solving ABGmix over a complete graph of
four nodes tolerating adversary basis A = {((A,D), (B)), ((B), (A)), ((C), (B))}. From $ we construct a
protocol $′ [Definition 2] for system S′. β is an execution of $′ as shown in Figure 2. β1 is an execution
of $ in which A,D are faulty, C is honest and B is passively corrupt. Both B,C start with input value 0,
and since $ solves ABGmix, from validity condition both B,C must eventually output 0. From Lemma 6,
for B,C, β1 is indistinguishable from β i.e. β B∼ β1 and β

C∼ β1. Thus, B,C in β will eventually decide
on value 0 (We are able to make claims regarding player’s outputs in β as views of players are same in
β and β1. Thus by analyzing player’s outputs in β1, we can determine their outputs in β). Similarly

using Lemma 10 A′,B′,D cannot distinguish between β and β3 i.e. β A′
∼ β3, β

B′
∼ β3 and β

D∼ β3. Thus

10

in β, A′,B′ and D eventually agree on value 1. Now consider execution β2. B is byzantine corrupt, A
is passively corrupt and C,D are honest. A,C and D start with input values 1,0,1 respectively. Since,
$ solves ABGmix, from agreement condition all three should decide on same value. From Lemma 8,
β

A′
∼ β2, β

C∼ β2 and β D∼ β2. Thus A′,C and D should output same value in β as in β2. However in β, C
has already decided on 0 and A′,D have already decided on 1. This leads to a contradiction in $′. Using
Lemma 4, we can say that our assumption that there exists a protocol $ solving ABGmix over a com-
plete graph of four nodes tolerating adversary basis A = {((A,D), (B)), ((B), (A)), ((C), (B))} is wrong.

We now give the main theorem of this paper.

Theorem 12 There does not exists any protocol solving ABGmix over a complete graph G of n nodes
tolerating (tb,tp)-adversary if n ≤ 2tb +min(tb, tp), for |tp| > 0.

Proof : Proof by contradiction. We assume there exists a protocol η solving ABGmix tolerating (tb,tp)
adversary when n ≤ 2tb + min(tb, tp). We show how to transform η into a solution η′ which solves
ABGmix for four players completely connected, tolerating A = {((A,D), (B)), ((B), (A)),
((C), (B))}. Divide n players in η into sets IA, IB, IC , ID, such that their respective sizes aremin(tb, tp),min(tb, tp), tb, (tb−
min(tb, tp)). A can corrupt any of the following sets IA, IB, IC , ID, (IA∪ID), (IB∪ID) actively and players
in IA, IB, ID passively. Note that the players from the set IC cannot be corrupted passively. Each of
the four players A,B,C and D in η′ simulate players in IA, IB, IC , ID respectively. Each player i in η′

keeps track of the states of all the players in Ii. Player i assigns its input value to every member of Ii,
and simulates the steps of all the players in Ii as well as the messages sent and received between pairs of
players in Ii. Messages from players in Ii to players in Ij are simulated by sending same messages from
player i to player j. If any player in Ii terminates then so does player i. If any player in Ii decides on
value v, then so does player i.
We now show that η′ solves ABGmix tolerating A = {((A,D), (B)), ((B), (A)), ((C), (B))}. For simplicity
we assign any actively and passively corrupted players of η to be exactly those that are simulated by
actively and passively corrupted player in η′. Let ψ′ be an execution of η′ with the faults characterized
by A = {((A,D), (B)), ((B), (A)), ((C), (B))}. Let ψ be an execution of η. As per our assumption ψ
solves ABGmix, thus ψ satisfies termination, agreement and validity conditions [Definition 1]. We now
show that same holds for ψ′ if it holds for ψ. In ψ, let the general be from set Ik, then in ψ′, player k
acts as the general. Note that in ψ if Ik is controlled actively or passively by the adversary, then so is
k is ψ′. Let j,l (j 6= l) be two non-faulty players in ψ′. j and l simulates at least one player each in ψ.
w.l.o.g let them simulate players in Ij , Il. Since j and l are non-faulty, so are all players in Ij , Il. For ψ,
all players in Ij , Il must terminate, then so should j and l. In ψ, all non-faulty players including Ij , Il
should agree on same value say u, then in ψ′, j, l also agree on u. In ψ, if the general is non-faulty and
starts with value v, then in ψ′ too, general will be non-faulty and starts with value v. In such a case in
ψ, all non-faulty players including Ij , Il should have u = v, then in ψ′, j, l should have u = v. Thus ψ′

also satisfies termination, validity and agreement conditions. Then η′ should solve ABGmix tolerating A
= {((A,D), (B)), ((B), (A)), ((C), (B))}. But from Lemma 11, we know that there does not exists any
protocol solving ABGmix tolerating A = {((A,D), (B)), ((B), (A)), ((C), (B))}. Thus our assumption
that there exists a solution η solving ABGmix for n ≤ 2tb +min(tb, tp) is wrong.

6.2 Sufficiency

We now give protocol for n > 2tb+min(tb, tp). Given (tb, tp), one can always find if tp < tb or tp ≥ tb.
First consider the case of tp < tb. Then n > 2tb+min(tb, tp) reduces to n > 2tb + tp. The proposed
protocol for this is obtained by a sequence of transformations on EIG [2]. A detailed description of the
construction of EIG tree is available in [20, page 108]. The General sends his input to every player. Each

11

player starts with this as input value and exchanges messages with others as per EIGStop protocol in
[20, page 110] for tb + tp + 1 rounds.

Definition 3 (Prune(EIG)) Prune(EIG) is a method that takes an EIG tree as an input and deletes
subtrees say subtreej i (subtreej i refers to a subtree in i’s EIG tree such that the subtree is rooted at node
whose’s label is j) of i′s EIG tree as given in the sequel. For each subtree subtreej i, where label j ∈ P,
a set Wj is constructed which contains all distinct values that ever appears in subtreej

i. If |Wj | > 1,
subtreej

i is deleted and modified EIG tree is returned.

At the end of tb+tp+1 rounds of EIGStop protocol, we invoke Prune(EIG). Player i applies the following
decision rule. Namely, Player i takes a majority of the values at the first level 5 of its EIG tree (note
that he does not need to take a majority over the entire EIG tree). If a majority exists player i decides
on that value; otherwise, i decides on a default value, v0.

Lemma 13 The subtreej i, where j is an honest player and i is a non-faulty player, will never be deleted
during Prune(EIG) operation.

Proof: This Lemma stems from the fact that any message signed by an honest player cannot be changed
in the course of the protocol. Thus, a subtreej

i, j being an honest player will never be deleted in
Prune(EIG) and will be consistent throughout for all non-faulty players.

Lemma 14 After tb + tp + 1 rounds, if a subtreej
i has more than one value then ∀ k, subtreejk also

has more than one value, there by ensuring that all ∀ k, subtreejk are deleted (i, j, k are not necessarily
distinct), where i, k are non-faulty.

Proof: Any message sent in (tb + tp)th round has a label of length tb + tp and hence we are sure to have
either an honest player already having signed on it or in (tb + tp + 1)th round an honest player would
broadcast it. This ensures that a value cannot be changed/reintroduced in the (tb + tp + 1)th round. In
other words, a faulty player can either send different initial values in round one or change a value in
Round k, 2 ≤ k ≤ tb + tp, if and only if all players who have signed so far on that message are under the
control of adversary. In any case, the non-faulty players send these values in the next round and hence
the Lemma.

Lemma 15 subtreej
i and subtreejk in the EIG trees of any two players i, k will have same values after

the subjecting the tree to Prune(EIG), where i, k are non-faulty players.

Proof: This follows from previous Lemma 14 as, if subtrees had different values; then as per the protocol
they would have broadcasted the values in their EIG tree in the next round and thus the subtrees would
have more than one different value resulting in their deletion during Prune(EIG) step.

Theorem 16 For n > 2tb + tp, EIG algorithm given above solves ABGmix.

Proof: Termination is obvious, by the decision rule. Note that n− (tb + tp) represent number of honest
players and according to n > 2tb + tp, n − (tb + tp) > tb. Thus honest majority is guaranteed which
vacuously implies non-faulty majority. Now if General starts with v, then all the non-faulty players also
start with v. The decision rule ensures that in case the General starts with v, v is the only possible
decision value. Thus validity also holds. For agreement, let i and j be any two non-faulty players that
decide. Since, decisions only occur at the end, and by previous lemma we see that ∀i, subtreej i can have
only one value which consistent throughout all subtreeij ,∀i ∈ P. This implies they have the same set of

5all nodes with labels l such that l ∈ P.

12

values. The decision rule then simply implies that i and j make the same decision. In case of source
being faulty, the agreement simply implies that all non-faulty players decide on same value.

For the case when tp ≥ tb, n > 2tb+min(tb, tp) reduces to n > 3tb. For such a case any protocol for
unauthenticated Byzantine agreement (such as one given on [20, page 119]) works. This is because for
unauthenticated setting tp = n− tb. This completes the sufficiency proof.

7 Conclusion

The folklore has been that use of authentication reduces the problem of simulating a broadcast in presence
to Byzantine faults to fail-stop failures. Thus, the protocols designed for fail-stop faults can be quickly
adapted to solve ABG. However in this paper, we have shown that this does not hold true for the case
of ABG under the influence of mixed adversary. In a way, the problem of ABGmix covers the entire
range of problems between ABG and BGP. Consequentially, the protocols for ABGmix take ideas from
both ABG and BGP. From our result of n > 2tb+min(tb, tp), it appears that studying this problem over
general networks will be interesting in its own right.

References
[1] Bernd Altmann, Matthias Fitzi, and Ueli M. Maurer. Byzantine agreement secure against general adversaries in the dual failure

model. In Proceedings of the 13th International Symposium on Distributed Computing, pages 123–137, London, UK, 1999.
Springer-Verlag.

[2] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond Strong. Shifting gears: changing algorithms on the fly to expedite
byzantine agreement. In PODC ’87: Proceedings of the sixth annual ACM Symposium on Principles of distributed computing,
pages 42–51, New York, NY, USA, 1987. ACM Press.

[3] Malte Borcherding. On the number of authenticated rounds in byzantine agreement. In WDAG ’95: Proceedings of the 9th
International Workshop on Distributed Algorithms, pages 230–241, London, UK, 1995. Springer-Verlag.

[4] Malte Borcherding. Levels of authentication in distributed agreement. In WDAG ’96: Proceedings of the 10th International
Workshop on Distributed Algorithms, pages 40–55, London, UK, 1996. Springer-Verlag.

[5] Malte Borcherding. Partially authenticated algorithms for byzantine agreement. In ISCA: Proceedings of the 9th International
Conference on Parallel and Distributed Computing Systems, pages 8–11, 1996.

[6] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology: the journal of the Interna-
tional Association for Cryptologic Research, 13(1):143–202, 2000.

[7] D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM Journal on Computing, 12(4):656–666,
1983.

[8] Danny Dolev. The byzantine generals strike again. Technical report, Stanford, CA, USA, 1981.

[9] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed for distributed consensus. J. ACM,
34(1):77–97, 1987.

[10] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for distributed consensus problems. In PODC
’85: Proceedings of the fourth annual ACM symposium on Principles of distributed computing, pages 59–70, New York, NY, USA,
1985. ACM.

[11] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty process. J.
ACM, 32(2):374–382, 1985.

[12] Matthias Fitzi and Ueli M. Maurer. Efficient byzantine agreement secure against general adversaries. In International Symposium
on Distributed Computing, pages 134–148, 1998.

[13] Mattias Fitzi and Ueli Maurer. From partial consistency to global broadcast. In STOC ’00: Proceedings of the thirty-second
annual ACM symposium on Theory of computing, pages 494–503, New York, NY, USA, 2000. ACM.

[14] J. A. Garay. Reaching (and Maintaining) Agreement in the Presence of Mobile Faults. In Proceedings of the 8th International
Workshop on Distributed Algorithms – WDAG ’94, volume 857 of Lecture Notes in Computer Science (LNCS), pages 253–264,
1994.

13

[15] J. A. Garay and K. J. Perry. A Continuum of Failure Models for Distributed Computing. In Proceedings of the 6th International
Workshop on Distributed Algorithms, volume 647 of Lecture Notes in Computer Science (LNCS), pages 153–165. Springer-Verlag,
1992.

[16] L. Gong, P. Lincoln, and J. Rushby. Byzantine agreement with authentication: Observations and applications in tolerating hybrid
and link faults, 1995.

[17] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement. 2007.

[18] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[19] Y. Lindell, A. Lysysanskaya, and T. Rabin. On the Composition of Authenticated Byzantine Agreement. In Proceedings of the
34th Symposium on Theory of Computing (STOC), pages 514–523. ACM Press, 2002.

[20] N. Lynch. Distributed Algorithms. Morgan Kaufmann, San Mateo, CA, USA, 1996.

[21] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM, 27(2):228–234, 1980.

[22] M. O. Rabin. Randomized byzantine generals. In Proc. of the 24th Annu. IEEE Symp. on Foundations of Computer Science,
pages 403–409, 1983.

[23] Ulrich Schmid and Bettina Weiss. Synchronous byzantine agreement under hybrid process and link failures. Research Report
1/2004, Technische Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2004.

[24] T. K. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distributed Com-
puting, 2(2):80–94, 1987.

14

A Appendix

A.1 Impossibility of ABGmix over G tolerating (1, 1)-adversary

In section 4 we gave a proof sketch for impossibility of ABGmix over a complete graph of three nodes
tolerating a (1, 1)-adversary. We now formally prove the same. We start by assuming that there exists a
protocol π that solves ABGmix for three players, P = {A,B,C}, tolerating (1, 1)-adversary. Let original
graph of 3 players be G as shown in Figure 1. We construct a new system S, shown in Figure 1, using
two copies of each player where each player runs some algorithm π′. We first formally define π′ then
prove that π′ exists if π exists.

Definition 4 (π′) For all players a, b ∈ P, any statement in π of the kind “b sends message m to a” is
replaced by “b multicasts message m to all instances of a(i.e. a,a′) 1 which are connected by a directed
edge from b to a” in π′. Rest all statements in π′ are same as those in π.

Lemma 17 If π exists then π′ exists.

Proof : Implied from Definition 4.

Construction of S: Take two copies of each player in G and construct a hexagonal system S as shown
in Figure 1. Player A is connected to B,C,C ′; player B is connected to A,C,A′; C is connected to A,B,A′;
A′ is connected to B,C,B′; B′ is connected to A′,C ′ and C ′ is connected to A,B′. Connectivity in S is
shown using directed edges. A node a behaving in a byzantine fashion with a pair of honest nodes, is
captured by connecting one of the honest nodes to a and other to a′. a and a′ are independent copies of
the player a with same authentication key. What we want to ensure is that S is constructed in a such
a way that whatever messages are sent to some selected players in S, same messages can be ensured by
adversary to those very selected players in G. It is evident that connectivity in S is not same as in G. To
be precise, in-neighborhood of any node a(or a′) in S is same as in-neighborhood of corresponding node
a in G, however out-neighborhood of some nodes in S is not same as out-neighborhood of corresponding
nodes in G. This would make a difference if players in both systems were running same algorithm(π).
Also note that each player in S knows only its immediate neighbors and not the complete graph. Also, in
reality a player may be connected to either a or a′, but it cannot differentiate between the two. It knows
its neighbor only by its local name which may be a. Here we neither know what system S is supposed
to do nor what π′ solves. Since S does not form ABGmix setting, therefore the definition of ABGmix

[Definition 1] does not tell us anything directly about the players’ output in S. All we know is that S is
a synchronous system and π′ has a well defined behavior.

Let α1 be an execution of π in G in which B is an honest player, adversary A corrupts C in byzantine
fashion and A in passive manner. Here A is the General and starts with input 0. Similarly let α2 be the
execution of π in G in which B is an honest player. A corrupts C passively and A in byzantine fashion.
Here A acts as the general. A sends 0 to B and 1 to C. Let α3 be an execution of π in G in which C is an
honest player. A corrupts A passively and B in byzantine fashion. Here A acts as the General and starts
with input 1. Let α be an execution of π′ in S in which each player starts with input value as shown in
Figure 1. Notice that all the players in α are honest and follow the prescribed protocol correctly.

We will show that some players in α do not always show a well defined behavior thus leading to a
contradiction in π′. To do so we will prove that whatever view A,B get in α, A can generate the same
view for A,B in α1. On similar lines we prove that whatever view B,C get in α, A can generate the
same view for B,C in α2 and whatever view C,A′ get in α, A can generate the same view for C,A in α3.
We define view mathematically as in equation ??. We first formally give the adversary strategy in α1:

1a and a′ are independent copies of the player a with same authentication key.

15

1. Send outgoing messages of round i: Based on the messages received during round i− 1, A decides
on the messages to be sent in round i. For round 1, A sends to B what an honest C would have
sent to B in execution α2. For i ≥ 2, A authenticates msgα1

i−1(B,C)B using C’s key and sends it to
A. For msgα1

i−1(A,C)A, A examines the message. If the message has not been authenticated by B
even once, it implies that the message has not yet been seen by B. Then A authenticates and sends
same message to B as C would have sent to B in round i of execution α2. Formally, A constructs
msgα1

i−1(A,C)A,(A can construct msgα1
i−1(A,C)A, since it passively controls A and has messages

received by A in previous rounds.) such that msgα1
i−1(A,C)A ∼ msgα2

i−1(A,C)A, authenticates it
using C’s key and sends it to B. If the message has been authenticated by B even once, A simply
authenticates msgα1

i−1(A,C)A using C’s key and sends it to B.

2. Receive incoming messages of round i: A obtains messages msgα1
i (A,C)A and msgα1

i (B,C)B via
C. (These are round i messages sent by A and B respectively to C). Similarly via A, A obtains
messages msgα1

i (B,A)B and msgα1
i (C,A)C . (These are also round i messages sent by B and C

respectively to A. Players respectively compute these messages according to their input, secret key,
protocol run by them and the view they get upto round i− 1).

Consider execution α from the perspective of A and B. We now show that messages received by A and
B in round i of α are same as messages received by A and B respectively in round i of α1.

Lemma 18 msgα
i (x,A)x ∼ msgα1

i (x,A)x and msgα
i (x,B)x ∼ msgα1

i (x,B)x, ∀i > 0, ∀x ∈ P.

Proof : We prove using induction. We prove that for any round i, whatever messages A,B receive in α A
can ensure that A,B receive same messages in α1 respectively. Note that what node A receives in round
i of α depends on what nodes B and C send to it in round i of α. Similarly what node A receives in
some round i of α1 depends on what nodes B and C send to it in round i of α1. So we need to argue
that these messages sent in round i of α and α1 are same or can be made same by adversary. In turn
what B,C send in round i of α and α1 depends on what they receive in previous round i − 1. Thus we
we need to argue that these messages sent in round i− 1 of α and α1 are same or can be made same by
adversary. But what these send in round i− 1 depends on what they receive respectively in round i− 2.
Note that this continues in a recursive manner until recursion stops at round 1. The entire recursion can
be visualized as trees TA

α and TA
α1

rooted at A for executions α and α1 respectively as shown in Figure 8.
In general this holds for any node x′(or x) in execution α of S and corresponding node x in execution α1

of G.
We now formally describe tree T x

α . We name the levels of tree in a bottom up manner. Let the lowest
level of tree be 1, next level be 2 and so on. An edge from a node y at level j to another node z at
level j + 1 in the tree represents the message that y sends to z in round j of α. All edges are directed
from child to parent and are between adjacent levels only. Observe that for the proof to go through,
in-degree for any node y′(or y) in system S has to be same as in-degree of corresponding node y in G.
Thus structurally both trees T x′

α (or T x
α) and T x

α1
will be exactly same (A node y′ in T x

α is replaced by
its corresponding node y in T x

α1
). Now consider a node b′(or b) at level j in T x

α . Then its corresponding
node at level j in T x

α1
is b. Note that if the messages received by b′ in T x

α is same as those received by
b in T x

α1
and both b′ and b start with same input value, same private key and run same code then both

will send same messages.

(a)

A

(b)

CB

B

A C
(a)

A

(b)

CB

B

A C

Figure 6: TA
α , TB

α and TA
α1

,
TB

α1
at the end of round 1.

We prove above theorem using induction on height of TB
α and TB

α1
. Only

nodes present in TB
α are A,B,C,A′. Corresponding nodes present in TB

α1
are

A,B,C,A respectively. Notice that since B′ does not appear in TB
α , any A′

in TA
α or TB

α has an outgoing directed edge only and only to C. We analyze
these trees in bottom up manner. Consider round 1 of executions α and
α1. Consider trees TA

α , TB
α and TA

α1
, TB

α1
at the end of round 1 as shown in

16

Figure 6. We claim that A in α and α1 receive similar messages at the end
of round 1. Likewise B in α and α1 respectively also receive similar messages at the end of round 1.
Consider (a) in Figure 6. B starts with same input, secret key and executes same code in α and α1.
Thus it will send same messages to A in round 1 of α and α1 i.e. msgα

1 (B,A)B ∼ msgα1
1 (B,A)B. Using

aforementioned adversary strategy for α1, A can ensure that msgα
1 (C,A)C ∼ msgα1

1 (C,A)C . Thus A
gets same messages at the end of round 1 in α and α1. Using arguments similar to those for (a), one can
show that for (b), B also gets same messages at the end of round 1 in α and α1.

CB

CA A’C
(a) (b)

A

B

A

B

C

BB

CB

CA AC
(a) (b)

A

B

A

B

C

BBAA’

Figure 7: TA
α , TB

α and TA
α1

, TB
α1

at the
end of round 2.

We now claim that the similarity holds in round 2 as
well i.e. msgα

2 (x,A)x ∼ msgα1
2 (x,A)x and msgα

2 (x,B)x ∼
msgα1

2 (x,B)x, ∀x ∈ P. Consider trees TA
α , TB

α and TA
α1

, TB
α1

at the end of round 2 as shown in Figure 7.
Consider TA

α and TA
α1

. Node A as well as B start with
same input value, secret key and execute same code in both
α and α1 respectively, thus msgα

1 (A,B)A ∼ msgα1
1 (A,B)A

and msgα
1 (B,C)B ∼ msgα1

1 (B,C)B. Using aforementioned ad-
versary strategy for α1, A can ensure that msgα

1 (C,B)C ∼
msgα1

1 (C,B)C . Now A and A′ start with different inputs thus send different messages to C in round 1.
However since A is passively corrupt and A is Byzantine in α1, A can construct message msgα1

1 (A,C)A

such that msgα1
1 (A,C)A ∼ msgα

1 (A′, C)A. Thus C can simulate to receive messages in α1 same as those
in α at the end of round 1. Now B receives same messages in α and α1 and has same input value, se-
cret key and executes same code, thus msgα

2 (B,A)B ∼ msgα1
2 (B,A)B. Using aforementioned adversary

strategy A can ensure that msgα
2 (C,A)C ∼ msgα1

2 (C,A)C . Thus msgα
2 (x,A)x ∼ msgα1

2 (x,A)x, ∀x ∈ P
holds. Similarly one can argue for msgα

2 (x,B)x ∼ msgα1
2 (x,B)x, ∀x ∈ P.

A

C

BC A’A

B

B

CCALevel k−1

Level k+2

Level k+1

Level k

A’BCB

A

C

BCA

B

B

CCALevel k−1

Level k+2

Level k+1

Level k

ABCB

A

Level 1Level 1

Figure 8: TA
α and TA

α1
at the end of k + 1 rounds.

Let the similarity be true till some round k i.e.
msgα

i (x,A)x ∼ msgα1
i (x,A)x and msgα

i (x,B)x ∼
msgα1

i (x,B)x, ∀i|1 ≤ i ≤ k, ∀x ∈ P. We now
show that A can ensure that the similarity holds
for round k + 1 also. Consider TA

α and TA
α1

at the
end of k + 1 rounds as shown in Figure 8.

For proving induction we need to show that A
at level k+2 receives same messages in both trees.
Consider edges between level k and k + 1. From
induction hypothesis any node A upto level k + 1 receives same messages in TA

α and TA
α1

. Since A
starts with same input value, secret key and executes same code in both α and α1 respectively, thus
will send same messages in round k i.e. msgα

k (A,B)A ∼ msgα1
k (A,B)A. Similarly one can argue that

msgα
k (B,C)B ∼ msgα1

k (B,C)B. Now consider A′ at level k in in TA
α and corresponding A at level k in in

TA
α1

. For time being assume A′ upto level k in TA
α receives same messages as corresponding A in TA

α1
. Since

A′ start with different input from A, they send different messages to C in round k. We now claim that A
can ensure that C at level k+ 1 in TA

α1
can simulate to receive same message from A′ as C at level k+ 1

in TA
α . This is because A controls A passively in α1, thus can construct messages on behalf of A in α1.

Formally A can construct msgα1
k (A′, C)A′ such that msgα1

k (A′, C)A′ ∼ msgα
k (A,C)A. Thus C a level k+1

receives same messages in both trees. Similarly one can argue that C at level k receives same messages in
TA

α and TA
α1

. Since C starts with same input value, secret key and executes same code in both α and α1

respectively, thus it will send same messages in round k + 1 to A i.e. msgα1
k+1(C,A)C ∼ msgα

k+1(C,A)C .
Similarly one can argue that msgα1

k+1(B,A)B ∼ msgα
k+1(B,A)B. Thus induction holds for round k+1 too.

The proof is based on a assumption that A′ at level k in TA
α receives same messages as corresponding

A in TA
α1

. Note that A′ in TA
α and A in TA

α1
receives messages from B and C. Using induction and

arguments similar to those given above one can show that such an assumption indeed holds true. Thus

17

msgα
i (x,A)x ∼ msgα1

i (x,A)x, ∀i > 0, ∀x ∈ P holds true. Using similar ideas as used above one can show
that msgα

i (x,B)x ∼ msgα1
i (x,B)x, ∀i > 0, ∀x ∈ P.

Lemma 19 viewα
A ∼ viewα1

A and viewα
B ∼ viewα1

B

Proof : Recall from equation 3, to show that view of A in α and α1 are same, it is sufficient to show that
for any round i messages received by A in α and α1 respectively are same. This follows from Lemma 18
. Thus viewα

A ∼ viewα1
A and viewα

B ∼ viewα1
B .

We now formally give the adversary strategy in α2:

1. Send outgoing messages of round i: Based on the messages received during round i− 1, A decides
on the messages to be sent in round i. For round 1, A sends to B what an honest A would have
sent to B in execution α1. Similarly A sends to C what an honest A would have sent to C in
execution α3. For i ≥ 2, A examines the message msgα2

i−1(C,A)C . If the message has not been
authenticated by B even once, A authenticates and sends same message to B as A would have
sent to B in round i of execution α1. Formally, A constructs msgα2

i−1(C,A)C ,(A can construct
msgα2

i−1(C,A)C , since it passively controls C and has messages received by C in previous round.)
such that msgα2

i−1(C,A)A ∼ msgα1
i−1(C,A)C , authenticates it using A’s key and sends it to B. If the

message has been authenticated by B even once, A simply authenticates msgα2
i−1(C,A)C using A’s

key and sends it to B. Similarly A authenticates msgα2
i−1(B,A)B using A’s key and sends it to C.

2. Receive incoming messages of round i: A obtains messages msgα2
i (C,A)C and msgα2

i (B,A)B via
A. (These are round i messages in α2 sent by C and B respectively to A). Similarly via C, A
obtains messages msgα2

i (A,C)A and msgα2
i (B,C)B in α2. (These are also round i messages sent by

A and B respectively to C. Players respectively compute these messages according to their input,
secret key, protocol run by them and the view they get upto round i− 1).

Lemma 20 msgα
i (x,B)x ∼ msgα2

i (x,B)x and msgα
i (x,C)x ∼ msgα2

i (x,C)x, ∀i > 0, ∀x ∈ P

Proof : Using adversary strategy in α2, similar to proof of Lemma 18. Proof omitted.

Lemma 21 viewα
B ∼ viewα2

B and viewα
C ∼ viewα2

C .

Proof : Using Equation 3 and Lemma 20.

Adversary strategy for α3:

1. Send outgoing messages of round i: Based on the messages received during round i− 1, A decides
on the messages to be sent in round i. For round 1, A sends to C what an honest B would have
sent to C in α2 and A sends to A what an honest B would have sent to A in α2. For i ≥ 2, A
authenticates msgα3

i−1(C,B)C using B’s key and sends it to A. For msgα3
i−1(A,B)A, A examines

the message. If the message has not been authenticated by C even once, then A authenticates
and sends same message to C as an honest B would have sent to C in round i of execution α2.
Formally, A constructs msgα3

i−1(A,B)A,(A can construct msgα3
i−1(A,B)A, since it passively controls

A and has messages received by A in previous rounds.) such that msgα3
i−1(A,B)A ∼ msgα2

i−1(A,B)A,
authenticates it using B’s key and sends it to C. If the message has been authenticated by C even
once, A simply authenticates msgα3

i−1(A,B)A using B’s key and sends it to C.

2. Receive incoming messages of round i: A obtains messages msgα3
i (A,B)A and msgα3

i (C,B)C in α3

via B. (These are round i messages sent by A and C respectively to B). Similarly via A, A obtains
messages msgα3

i (B,A)B and msgα1
i (C,A)C in α3. (These are also round i messages sent by B and

C respectively to A. Players respectively compute these messages according to their input, secret
key, protocol run by them and the view they get upto round i− 1).

18

Lemma 22 msgα
i (x,C)x ∼ msgα3

i (x,C)x and msgα
i (x,A′)x ∼ msgα3

i (x,A)x, ∀i > 0, ∀x ∈ P

Proof : Using adversary strategy in α3, similar to proof of Lemma 18. Proof omitted.

Lemma 23 viewα
A′ ∼ viewα3

A and viewα
C ∼ viewα3

C .

Proof : Follows from Equation 3 and Lemma 22.

Theorem 24 There does not exists any protocol solving ABGmix over a complete graph on 3 players
tolerating (1, 1)-adversary.

Proof : Proof by contradiction. We assume there exists a protocol π solving ABGmix over a complete
graph on 3 players influenced by a (1, 1)-adversary. Now consider execution α in system S where each
player executes π′[Definition 4] . In α1, C is faulty, B is honest and A is passively corrupt, and A is
the general and starts with input 0, and since π solves ABGmix, from the validity condition both A,B
must eventually decide on 0. From Lemma 19, for A,B, α and α1 are indistinguishable i.e. α A∼ α1 and
α

B∼ α1. Thus A,B in α will eventually decide on 0. (We are able to make claims regarding the outputs
of A and B in α as their views are same as those in α1. Thus by analyzing their outputs in α1, we can
determine there outputs in α.) Similarly in α3, A is the general and starts with input 1, thus both A and

C should output 1. Using Lemma 23, α and α3 are indistinguishable to C,A′ i.e. α C∼ α3 and α
A′
∼ α3.

Thus C,A′ in α should agree on 1. Now consider α2. A is faulty, C is honest and B is passively corrupt,
and A acts as general and sends different values to B and C. Since π solves ABGmix, from agreement
condition[Definition 1], both B and C should output the same value. Using Lemma 21, B,C in α should
output same value, but B and C have already decided on values 0 and 1 respectively. This leads to a con-
tradiction in π′. Thus there cannot exists a π′ leading to impossibility of existence of π(from Lemma 17).

19

