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Abstract

Pease et al. introduced the problem of Byzantine Generals (BGP) to study the effects of
Byzantine faults in distributed protocols for reliable broadcast. It is well known that BGP among n
players tolerating up to t faults is (efficiently) possible if and only if n > 3t. To overcome this severe
limitation, Pease et al. introduced a variant of BGP, Authenticated Byzantine General (ABG). Here
players are supplemented with digital signatures (or similar tools) to thwart the challenge posed by
Byzantine faults. Subsequently, they proved that with the use of authentication, fault tolerance of
protocols for reliable broadcast can be amazingly increased to n > t (which is a huge improvement
over the n > 3t).

Byzantine faults are the most generic form of faults. In a network not all faults always mali-
cious. Some faulty nodes may only leak their data while others are malicious. Motivated from this,
we study the problem of ABG in (tb,tp)-mixed adversary model where the adversary can corrupt
up to any tb players actively and control up to any other tp players passively. We prove that in
such a setting, ABG over a completely connected synchronous network of n nodes tolerating a
(tb,tp)-adversary is possible iff n > 2tb+min(tb, tp) when tp > 0. Interestingly, our results can also
be seen as an attempt to unify the extant literature on BGP and ABG.

Keywords. Reliable broadcast, Authenticated Byzantine General, Mixed adversary.

1 Introduction

Fault tolerance of a distributed system is a highly desirable property, and has been the subject of
intensive research for many years. A fundamental problem in the theory of distributed systems is that
of designing protocols for simulating a broadcast channel over a point to point network in the presence
of faults. The problem, introduced by Lamport et al. [LSP82], is popularly known as “Byzantine
Generals problem”(BGP). Informally, the challenge is to maintain a coherent view of the world among
all the non-faulty players in spite of faulty players trying to disrupt the same. Specifically, in a protocol
for BGP over a synchronous network of n players, the General starts with an input from a fixed set
V = {0, 1}. At the end of the protocol (which may involve finitely many rounds of interaction), even
if up to any t of the n players are faulty, all non-faulty players output the same value u ∈ V and if
the General is non-faulty and starts with input v ∈ V , then u = v. Traditionally, the notion of faults
in the network is captured via a fictitious entity called adversary that can choose a subset of players
as “pawns”. An adversary that controls up to any t of the n players is denoted by t-adversary.

The problem was first studied on an all mighty t-adversary which can corrupt upto any t of the
n nodes in Byzantine fashion. These Byzantine nodes have unlimited computational power and can
behave arbitrarily, even colluding to bring the system down. In a completely connected synchronous
network with no additional setup, classical results of [LSP82, PSL80] show that reliable broadcast
among n parties in the presence of up to t Byzantine nodes is achievable if and only if t < n/3. Here
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a player is said to be non-faulty if and only if he faithfully executes the protocol delegated to him.
Note that, in the context of BGP, not all players under the control of the adversary need to be faulty.
This is because the adversary may choose to passively control some of the players who, by virtue of
correctly following the protocol, are non-faulty.

There exists a rich literature on BGP. After the semenial work of Pease et al. [LSP82, PSL80], stud-
ies were initiated under various settings like asynchronous networks [FLP85], partially synchronous
networks [DDS87], incomplete networks [Dol81], hypernetworks [FM00], non-threshold adversaries
[FM98], mixed-adversaries [AFM99], mobile adversaries [Gar94], and probabilistic correctness [Rab83]
to name a few. An important variant of BGP is the authenticated model proposed by Pease et
al. [PSL80], which as the title of this paper suggests, is our main focus. In this model, hereafter referred
as authenticated Byzantine General (ABG), players are supplemented with “magical” powers (say a
Public Key Infrastructure (PKI) and digital signatures) using which players can authenticate them-
selves and their messages. It is proved that in such a model, the tolerability against a t-adversary can be
amazingly increased to as high as t < n. Dolev and Strong [DS83] presented efficient protocols thereby
confirming the usefulness of authentication in both possibility as well as feasibility of distributed proto-
cols. Subsequent papers on this subject include [Bor95, Bor96b, ST87, Bor96a, KK09, GLR95, SW04].

1.1 Motivation

A large part of the literature considers the adversary to have same amount of control over all the corrupt
players. However, many a times this may not be true. For example, some nodes may act in Byzantine
manner while few others may atmost fail stop. In such a case modeling all the faults uniformly as
Byzantine will be gross misrepresent. An elegant way to capture this is via a mixed adversary where
by the adversary has varied control over different corrupt players i.e. it controls some players actively,
another fraction as fail-stop. Note that the mixed adversary model not only generalizes the adversary
models where only “monotype” corruption is considered but also facilitates a deeper understanding
of the relationship between computability/complexity of the task at hand and the adversary’s power.
With respect to BGP, mixed adversary model has been considered in [GP92, AFM99] to name a few.
Motivated from this, we initiate the study of ABG in a setting where a upto a fraction of the nodes
are Byzantine and another fraction of nodes “leak” their internal state to the adversary. We model
this via a (tb,tp)−adversary, whereby, the adversary controls upto any tb players actively and up to
another tp players passively. We strive to answer the following: what is the necessary and sufficient
condition(s) for simulating a broadcast channel over a completely connected point-to-point synchronous
network tolerating a (tb,tp)-adversary ? Note that this is same as simulating a broadcast channel for
the entire gamut of adversaries between tb = t, tp = 0 (ABG) and tb = t, tp = n− t (BGP).

1.2 Our Contributions and Results

The contributions of this paper are manyfold:

1. Better definition: As a first contribution of this work, we argue that the problem of ABG under
the influence of a (tb,tp)-adversary requires a slight modification in the standard definition of
ABG available in the extant literature. Our argument stems from the observation that a protocol
that satisfies the extant definition of ABG but does not meet our definition, fails to simulate
a broadcast channel, as originally intended. Therefore, the definition of ABG available in the
extant literature is not straightaway suitable in our setting. None the less, we essentially use
the same principles to define a suitably adapted and faithful definition in our setting.
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2. Complete characterization: We give the necessary and sufficient condition(s) for designing ABG
protocols tolerating a (tb,tp)-adversary. We prove that over a completely connected synchronous
network of n nodes with tp > 0, n > 2tb +min(tb, tp) is necessary and sufficient for existence of
ABG protocols tolerating a (tb,tp)-adversary. For tp = 0, the bound is n > tb as given by Pease
et al. [PSL80].

3. Unification: For the problem of reliable broadcast in the authenticated model (ABG), it is
assumed that the adversary can forge signatures of only those players which are under its control.
In contrast, the unauthenticated model (BGP), assumes no authentication tools. This can also
be seen as all the players using insecure signature schemes and therefore the adversary can forge
their signatures. With ABG tolerating a (tb,tp)-adversary, we initiate the study of the entire
gamut of broadcasts in between, viz., an adversary that can forge signatures of up to any tp
nodes apart from controlling up to tb nodes actively. Thus, BGP and ABG are merely two
extreme points of this entire gamut. Our work gives a characterization for the entire gamut.
Therefore, our work unifies the extant literature on BGP and ABG.

4. Fault tolerance of signature schemes: In the age of modern cryptography, it is reasonable to
assume availability of Public Key Infrastructure (PKI) and digital signatures over any commu-
nication network. All known PKI and digital signature schemes are usually based on the conjec-
tured hardness of some problems like integer factorization [RSA78], discrete logarithms [Gam85],
permutations [Sha94, Sha85], lattice based problems [GPV08, Reg04] to name a few. Further,
the proofs of the hardness of these problem seem to be beyond the reach of contemporary math-
ematics. Thus, it may well be the case that some of these schemes are eventually proven to be
insecure.

An elegant way to deal with this scenario is to consider the approach adopted by robust com-
biners [MPW07, HKN+05, MP06]. Informally, a (k, n)-robust combiner is a construction that
takes in n candidate protocols for a given functionality and combines them into one scheme
such that even if up to any k of the n protocols are rendered incorrect during actual execution,
the combined scheme is guaranteed to correctly implement the desired functionality. Note that
different sets of up to k candidate protocols may fail for different executions/inputs.

In context of ABG, different players may use different signature schemes. Since most known
signature schemes in literature are based upon unproven assumptions, some of these schemes
may eventually turn out to be insecure. Analogous to a (k, n)-robust combiner, one will prefer
to design ABG protocols that work correctly even if up to a fraction of the signature schemes
are rendered insecure. We capture this by assuming that the adversary can forge signatures of
up to another tp players. Thus, tp can also be seen as a robustness parameter of authentication
for ABG protocols.

1.3 Organization of the Paper

In section 2 we formally introduce our model. In section 2.1 we formally define the problem statement.
Section 3 gives the complete characterization of ABG tolerating a (tb, tp)-adversary over completely
connected synchronous networks, followed by the conclusion in section 4.

2 Our Model

We consider a set of n players denoted by P, computationally unbounded and fully connected. Com-
munication over the network is assumed to be synchronous. That is, the protocol is executed in a

3



sequence of rounds where in each round, a player can perform some local computation, send new mes-
sages to all the players, receive messages sent to him by players in the same round, (and if necessary
perform some more local computation), in that order. During the execution, the adversary may take
control of up to any tb+tp players. The adversary can make tb players to behave in any arbitrary
fashion and read the internal states of upto another tp players. W.l.o.g we assume that the adversary
always uses his full power, therefore tb ∩ tp = ∅. We further assume that the communication chan-
nel between any two players is perfectly reliable and authenticated i.e. the adversary cannot modify
messages sent between non-malicious parties. We also assume existence of a signature/authentication
scheme1 where the sender signs the message to be sent. This is modeled by all parties having an
additional setup-tape that is generated during the preprocessing phase.2 Typically in such a prepro-
cessing phase, the signature keys are generated. That is, each party gets its own private key, and
in addition, public verification keys for all other players. No player can forge any player’s signature
and the receiver can uniquely identify the sender of the message from the signature. However, the
adversary can forge the signature of all the (tb+tp) players under its control. W.l.o.g we assume that
players authenticate their messages with their private key.

2.1 Problem Definition

Consider a ABG protocol wherein a player, say Pi, is passively controlled by (tb,tp)-adversary. By
virtue of passive corruption, adversary can always forge messages on behalf of Pi (adversary can read
and thereafter use the private key used by Pi for authenticating its messages). In such a scenario,
at the end of the ABG protocol, is Pi required to output value same decided upon by honest players
? At a first glance the answer may be NO. The rationale being: Pi has lost his private key to the
adversary, therefore, in a way Pi is helping the adversary. Thus, any correct ABG protocol need not
ensure passively corrupt players (such as Pi) to output a value same as honest players. However, in
the sequel, we present a series of arguments to demonstrate that any valid ABG protocol tolerating
(tb,tp)-adversary is required to ensure that all passively corrupt players output same value as honest
players.

As a prelude, we remark that in literature, a player considered to be faulty if and only if that
player deviates from the designated protocol. Consequently, a player can be non-faulty in two ways
– first the adversary is absent and (therefore) player follows the protocol and second the adversary is
present passively and (therefore) player follows the protocol. For the rest of this paper, we refer to
the former kind of non-faulty player as honest and the latter as passively corrupt. Our arguments in
support of passively corrupt players are:

1. Simulation of broadcast channel: As highlighted in previous sections, aim of any (valid)BGP/ABG
protocol is to simulate a broadcast channel over a point to point (unreliable)network. This should
also hold for ABG under the influence of (tb,tp)-adversary. Now consider a physical broadcast
channel, say C, among a set of n players under the influence of (tb,tp)-adversary. Adversary can
corrupt upto tb players actively and another upto tp players passively. Via C, the General sends
his input value v ∈ {0, 1} to all the n players. By property of C, all the n players are guaranteed
to receive value v. All honest and passively corrupt players will output v. Adversary can make
all the actively corrupt players to output a value of his choice (which may be different from v).
It is evident from the above example that for any physical broadcast channel, passively corrupt

1In line with literature [PSL80], we assume the authentication scheme to be secure against a computationally un-
bounded adversary

2Note that keys cannot be generated with the system itself. It is assumed that the keys are generated using a trusted
system and distributed to players prior to running of the protocol similar to [LLR02].
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players will always decide upon a same as honest players. Thus, any ABG protocol aiming to
truly simulate a broadcast channel in the presence of (tb,tp)-adversary, has to ensure that all the
non-faulty (honest and passively corrupt) players output same value.

2. Authentication is a means, not the end: The objective of any (valid)BGP protocol is to simulate
a broadcast channel from a designated sender to a set of receivers. In order to facilitate this
process, authentication is used as a tool in protocols for BGP. Clearly, authentication is a means
and broadcast is the end. In such a scenario even if the tools fails to do its job (in the case of
passively corrupt players), why should the objective be altered ? In order to fulfill the original
objective, all non-faulty(honest and passively corrupt) players must output same value.

3. Ideal world/Real World: A popular paradigm used define the security of any task is the Ideal
world/Real World simulation technique [Can01]. We now show that in the ideal world for ABG
in the presence of a (tb,tp)-adversary, all non-faulty players always decide on same the value.
It then follows that the corresponding ABG protocol in the real world has to ensure that all
non-faulty players also decide on the same value.

Informally, consider a set of n players connected to a Trusted Third Party(TTP). (tb,tp)-
adversary follows its strategy. W.l.o.g let Pi be a passively corrupt player and Pj be a honest
player. The General sends a value to TTP. TTP forwards this value to all the n players. All
non-faulty players output the value received from TTP. Thus, in the ideal world, Pi and Pj
output same value.

4. Motivation from real life: In order to authenticate important documents, use of physical signa-
tures is a common practice in day-to-day life. Consider a person who forges signature of some
other person(s) for an undue benefit/advantage. It is well known that in such scenarios the law
penalizes the person committing the forgery and not the victim(s) of the forgery. Analogously,
for ABG under the influence of (tb,tp)-adversary, passively corrupt players should not be penal-
ized for the adversary being able to forge messages on their behalf. Thus, all passively corrupt
players should be part of agreement like honest players.

Based on the above discussion we now define ABG under the influence of a (tb,tp)-adversary. Through-
out the rest of this paper we refer to it as ABGmix.

Definition 1 (ABGmix) A designated General starts with an input from a fixed set V = {0, 1}. The
goal is for the players to eventually output decisions from the set V upholding the following conditions,
even in the presence of a (tb, tp)-adversary:

• Agreement: All non-faulty players decide on the same value u ∈ V .

• Validity: If the general is non-faulty and starts with the initial value v ∈ V , then u = v.

• Termination: All non-faulty players eventually decide.

For the clarity of the reader, we reiterate certain terms that have been used extensively in the paper.
A player is said to be faulty if and only if he deviates from the designated protocol. Consequently non-
faulty players are ones who do not deviate from the designated protocol. A passively corrupt player is
one who follows the designated protocol diligently, but the adversary has complete access to his internal
state. An honest player is one who follows the designated protocol, and over whom the adversary has
absolutely no control. For the purpose of this paper, we refer to both honest and passively corrupt
players together as non-faulty. Rest of the paper focuses on the complete characterization of ABGmix
over completely connected synchronous graphs.
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2.2 Definitions and Notations

We now formally define some of the terms used in this paper:

Definition 2 (Adversary Structure) An adversary structure Z for the player set P is a monotone
set of subsets of P, i.e. Z ⊆ 2P, where all subsets of Z are in Z if Z ∈ Z.

Definition 3 (Adversary Basis) For an adversary structure Z, Z̄ denotes the basis of the structure,
i.e. the set of the maximal sets in Z: Z̄ = {Z ∈ Z̄ : @Z ′ ∈ Z̄ : Z ⊂ Z ′}

An important aspect while studying the problem of boradcast and its variants is giving lower
bounds for fault tolerance. The main objective of this paper is to give lower bounds for ABGmix. We
now formalize certain concepts/terms used in our proofs. Let msgΩ

i (a, b)a denote the message sent
by player a to player b in ith round of execution Ω. The subscript a represents the last player who
authenticated the message. W.l.o.g we assume that players always authenticate the message before
sending. Then view of a player a during execution Ω at the end of round i, denoted by viewΩ

a,i, can
be represented as collection of all the messages it ever send and receives. Formally:

viewΩ
a,i =

⋃
k

(msgΩ
k (a, x)a,msgΩ

k (x, a)x), ∀k ∈ {1 . . . i}, ∀x ∈ P (1)

The messages sent by player a in any round i of some execution, say Ω, depends on the internal
state of a just before sending the message. The internal state of a player consists of all the data
the player possesses including the code the player is executing. For the case of ABG, the internal
state of a player a consists of 4 parameters: input value with which a starts, secret key used by a for
authentication, code being executed by a, and messages sent and received by a up to round i − 1 of
Ω. Since the outgoing messages in any round are a function of incoming messages, we can rewrite the
Equation 1 as:

viewΩ
a,i =

⋃
k

(msgΩ
k (x, a)x), ∀k ∈ {1 . . . i}, ∀x ∈ P (2)

To show that the views of 2 different players a, b in 2 different executions(of some ABGmix protocol)
Ω,Γ respectively till round i are same, we use the following fact: If both players a, b start with same
input, use the same secret key and run same code3, and if for every round 1 . . . i their corresponding
incoming messages are same, then their views till round i will also be same.4 Formally:

viewΩ
a,k ∼ viewΓ

b,k, iff, msgΩ
k (x, a) ∼ msgΓ

k (x, b), ∀k ∈ (1 . . . i), ∀x ∈ P (3)

3 Complete Characterization

In this section we give the necessary and sufficient condition(s) for existance of ABGmix protocol
tolerating a (tb,tp)-adversary over any completely connected synchronous network. We first show that

3To account for the fact that players a, b may even run different codes say θ and θ′, we require that the message
generated for a given player, say C, by θ on input I should be same as message generated for C by θ′ on input I

4[FLM85] captured this via Locality Axiom. In ABGmix a player may also use its private key to determine the
outgoing messages. Thus in case of ABGmix, players having same secret key in both the executions is must.
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there does not exists any ABGmix over a completely connected synchronous network N (Figure 1) of
three nodes P = {A,B,C} tolerating an adversary basis Ā = {((C), (A)), ((A), (∅)), ((B,A))}. For
the rest of this work ((x1, . . . , xi),(y1, . . . , yj)) represents a single element of adversary basis such that
adversary can corrupt x1, . . . , xi actively and simultaneously control y1, . . . , yj passively.

Lemma 1 There does not exists any protocol solving ABGmix over a completely connected syn-
chronous network N of three nodes P = {A,B,C} tolerating an adversary basis Ā = {((C), (A)), ((A), (∅)),
((B,A))}.

Proof: Proof by contradiction. We assume there exists a protocol Π that solves ABGmix over a
completely connected synchronous network of three nodes P = {A,B,C} tolerating an adversary
basis Ā = {((C), (A)), ((A), (∅)), ((B,A))}. The proof proceeds to demonstrate that there exists an
input assignment for which adversary(characterized by Ā) can ensure that non-faulty players in an
execution of Π do not always have a consistent output. This contradicts our assumption of Π.

A

C

B

A’

B C

A

B’C’

0

0

0 1

1

1

Figure 1: Network N and System S

To show that Ā can ensure that non-faulty players do not have a consistent output, we use the
technique for giving impossibility proofs, developed by Fischer et al. [FLM85]. Using Π we create a
protocol π′[Definition 4] in such a way that if Π exists then so does π′(Lemma 2). Using two copies of
π′ we construct a system S (Figure 1). We then show that S must exhibit a contradictory behavior.
This implies impossibility of the assumed protocol Π.

Formally, S is a synchronous system with a well defined output distribution for any particular
input assignment. Here we do not know what system S is supposed to do. Therefore, the definition
of ABG[Definition 1] does not tell us anything directly about what the players’ output should be. All
we know is that S is a synchronous system and has a well defined behavior. Further, no player in S
knows the complete system. Each player in aware of only his immediate neighbors.

Let α1, α2 and α3 be three distinct scenarios in execution of Π over N . In α1, A is the General
starting with input 0. Ā corrupts C actively and controls A passively. In α2, A is the General. Ā
corrupts A and makes him to interact with B as if A started with input 0, and, interact with C as
if A started with input 1. In α3, A is the General starting with input 1. Ā corrupts B actively and
controls A passively. Further, let α be an execution of L where each player starts with input value as
shown in Figure 1. All the players in α are honest and follow the designated protocol correctly.

We claim that no matter for how many rounds Π executes, for any round i, whatever view (Equa-
tion 2) A,B get in α, Ā can ensure that A,B respectively get same view in α1 i.e. viewαA,i ∼ view

α1
A,i.

This implies that the player A cannot ever differentiate between α1 and α (dubbed α1
A∼ α). Simi-

larly, player B cannot ever differentiate between α1 and α (α1
B∼ α). From the definition of ABGmix
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[Definition 1], in α1, both A,B should decide on value 0. Since α1
A∼ α and α1

B∼ α, both A,B in α
will also decide on value 0 (we are able to make claims regarding the outputs of A and B in α as their
views are same as those in α1. Thus by analyzing their outputs in α1, we can determine there outputs
in α). Similarly, Ā can ensure that α3

A′
∼ α and α3

C∼ α. Both A,C in α3 should decide on value 1.
Then so will both A′, C in α. Similarly, we claim that Ā can ensure that α2

B∼ α and α2
C∼ α. As per

the definition of ABGmix, B,C in α2 should agree on same value, then so should B,C in α. But B,C
have already decided upon values 0 and 1 respectively in α. This implies S must exhibit contradictory
behavior.

To complete the above proof, we need to show that Ā can always ensure that – A,B get same
view in α and α1, B,C get same view in α and α2 and A,C get same view in α and α3. We prove
the same in Lemma 3, 4, 5 respectively. We now define the protocol π′[Definition 4] and show that if
Π exists then so does π′(Lemma 2).

Definition 4 (π′) For players a, b ∈ P, any statement in Π of the kind “b sends message m to a” is
replaced by “b multicasts message m to all instances of a”(i.e. a,a′) 5 in π′. Similarly any statement
of the kind “c sends message m to a” in Π is replaced by “c multicasts message m to all instances of
a” in π′. Rest all statements in π′ are same as those in Π.

Lemma 2 If Π exists then π′ exists.

Proof : Implied from Definition 4.

As a prelude to Lemma 3, 4, 5, we introduce the notion of execution trees. In essence, we wish to
show that view of certain player(s) remains same in two distinct executions of some (valid) ABGmix
protocol. For example, in the proof of Lemma 1 we wish to prove that the adversary Ā can always
ensure that A(similarly B) gets same view in α and α1. From equation 3, it suffices to show that
Ā can always ensure that A(B) gets same messages in α1 and α. Thus, all we need to show is that
whatever messages A receives from B,C in α, Ā can always ensure that A gets the same messages
from B,C in α1 too. Similarly, whatever messages B receives from A,C in α, Ā can always ensure
that B gets the same in α1 too. Our technique is as follows – note that what node A receives in
round i of α(or α1) depends on what nodes B and C send to it in round i of α(or α1). So we need to
argue that these messages sent in round i of α and α1 respectively are same or can be made same by
adversary. Now the messages B,C send in round i of α and α1 depend on what they them self receive
in previous round i− 1. This in turn depends on what A,C(or A,B) send to B(or C) in round i− 2
of α and α1 respectively. Thus we need to argue that adversary can ensure that whatever messages
A,C(or A,B) send to B(or C) in round i− 2 of α is same as whatever messages A,C(or A,B) send
to B(or C) in round i− 2 of α1. Note that this continues in a recursive manner until recursion stops
at round 1. The entire recursion can be visualized as trees TAα and TAα1

rooted at A for executions α
and α1 respectively as shown in Figure 2.

We now formally describe execution tree T xα . We name the levels of tree in a bottom up manner.
Let the lowest level of tree be 1, next level be 2 and so on. An edge from a node y at level j to another
node z at level j+ 1 in the tree represents the message that y sends to z in round j of α. All edges are
directed from child to parent and are between adjacent levels only. We note the following – to show
that a player, say x, receives same messages in two different executions, say α and α1, it suffices to

5a and a′ are independent copies of a with same authentication key.
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Figure 2: TAα and TAα1

show that execution trees T xα and T xα1
are similar. We prove this similarity using induction on height

of T xα and T xα1
.

We now show that the adversary Ā can ensure that A,B get same view in α and α1. As a prelude,
we specify the behavior of the adversary for scenario α1:

1. Send outgoing messages of round i: Based on the messages received during round i−1, Ā decides
on the messages to be sent in round i. For round 1, Ā sends to B what an honest C would have
sent to B in execution α2. For i ≥ 2, Ā authenticates msgα1

i−1(B,C)B using C’s key and sends it
to A. For msgα1

i−1(A,C)A, Ā examines the message. If the message has not been authenticated
by B even once, it implies that the message has not yet been seen by B. If so, Ā authenticates
and sends same message to B as C would have sent to B in round i of execution α2. Formally,
Ā constructs msgα1

i−1(A,C)A, (Ā can construct msgα1
i−1(A,C)A, since it passively controls A and

has messages received by A in previous rounds) such that msgα1
i−1(A,C)A ∼ msgα2

i−1(A,C)A,
authenticates it using C’s key and sends it to B. If the message has been authenticated by B
even once, Ā simply authenticates msgα1

i−1(A,C)A using C’s key and sends it to B.

2. Receive incoming messages of round i: Ā obtains messages msgα1
i (A,C)A and msgα1

i (B,C)B
via C. (These are round i messages sent by A and B respectively to C). Similarly via A, Ā
obtains messages msgα1

i (B,A)B and msgα1
i (C,A)C . (These are also round i messages sent by B

and C respectively to A. Players respectively compute these messages according to their input,
secret key, protocol run by them and the view they get up to round i− 1).

Lemma 3 Ā can ensure viewαA ∼ view
α1
A and viewαB ∼ view

α1
B

Proof: From equation 3 it is sufficient to show that for any round i, whatever messages A(B)
gets in α, Ā can ensure that A(B) get same messages in α1 i.e. msgαi (x,A)x ∼ msgα1

i (x,A)x and
msgαi (x,B)x ∼ msgα1

i (x,B)x, ∀i > 0, ∀x ∈ P.
We argue for msgαi (x,A)x ∼ msgα1

i (x,A)x, ∀i > 0, ∀x ∈ P. Argument for msgαi (x,B)x ∼
msgα1

i (x,B)x follows similarly. To prove that for any round i, A gets same messages in α and α1,
we use induction on height of TAα and TAα1

(as shown in Figure 2). Only nodes present in TAα are
A,B,C,A′. Corresponding nodes present in TAα1

are A,B,C,A respectively. Notice that since B′ does
not appear in TAα , any A′ in TAα has an outgoing directed edge only and only to C. Similarly, since C ′

does not appear in TAα , any A in TAα has an outgoing directed edge only and only to B.

9



A

CB

A

CB
Figure 3: TAα and TAα1

at the end of round 1.

We analyze the executions trees TAα and TAα1
in a bottom up manner. Consider round 1 of executions

α and α1. Consider trees TAα and TAα1
at the end of round 1 as shown in Figure 3. We claim that A

in α and α1 receive similar messages at the end of round 1. B starts with same input, secret key and
executes same code in α and α1. Thus it will send same messages to A in round 1 of α and α1 i.e.
msgα1 (B,A)B ∼ msgα1

1 (B,A)B. Using aforementioned adversary strategy for α1, A can ensure that
msgα1 (C,A)C ∼ msgα1

1 (C,A)C . Thus A gets same messages at the end of round 1 in α and α1.

CB

CA

A

BA

CB

CA

A

BA’

Figure 4: TAα and TAα1
at the end of round 2.

We now claim that the similarity holds in round 2 as well i.e. msgα2 (x,A)x ∼ msgα1
2 (x,A)x.

Consider trees TAα and TAα1
at the end of round 2 as shown in Figure 4. Node A as well as B

start with same input value, secret key and execute same code in both α and α1 respectively, thus
msgα1 (A,B)A ∼ msgα1

1 (A,B)A and msgα1 (B,C)B ∼ msgα1
1 (B,C)B. Using aforementioned adversary

strategy for α1, A can ensure that msgα1 (C,B)C ∼ msgα1
1 (C,B)C . Now A and A′ start with different

inputs thus send different messages to C in round 1. However since A is passively corrupt and C is
Byzantine in α1, A can construct message msgα1

1 (A,C)A such that msgα1
1 (A,C)A ∼ msgα1 (A′, C)A.

Thus C can simulate to receive messages in α1 same as those in α at the end of round 1. Now B
receives same messages in α and α1 and has same input value, secret key and executes same code,
thus msgα2 (B,A)B ∼ msgα1

2 (B,A)B. Using aforementioned adversary strategy A can ensure that
msgα2 (C,A)C ∼ msgα1

2 (C,A)C . Thus msgα2 (x,A)x ∼ msgα1
2 (x,A)x, ∀x ∈ P holds.

A

C

BCA

B

B

CCALevel k−1

Level k+2

Level k+1

Level k

ABCB

A

Level 1

A

C

BC A’A

B

B

CCALevel k−1

Level k+2

Level k+1

Level k

A’BCB

Level 1

Figure 5: TAα and TAα1
at the end of k + 1 rounds.
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Let the similarity be true till some round k i.e. msgαi (x,A)x ∼ msgα1
i (x,A)x, ∀i|1 ≤ i ≤ k, ∀x ∈ P.

We now show that A can ensure that the similarity holds for round k + 1 also. Consider TAα and TAα1

at the end of k + 1 rounds as shown in Figure 5. For proving the induction step, we need to show
that A at level k+ 2 receives same messages in both trees. Consider edges between level k and k+ 1.
From induction hypothesis any node A up to level k+ 1 receives same messages in TAα and TAα1

. Since
A starts with same input value, secret key and executes same code in both α and α1 respectively,
thus will send same messages in round k i.e. msgαk (A,B)A ∼ msgα1

k (A,B)A. Similarly one can argue
that msgαk (B,C)B ∼ msgα1

k (B,C)B. This is because from the induction hypothesis step on heights
of TBα and TBα1

, one gets msgαi (x,B)x ∼ msgα1
i (x,B)x, ∀i|1 ≤ i ≤ k, ∀x ∈ P. Now consider A′ at

level k in in TAα and corresponding A at level k in in TAα1
. For time being assume A′ up to level k

in TAα receives same messages as corresponding A in TAα1
. Since A′ start with different input from A,

they send different messages to C in round k. We now claim that A can ensure that C at level k + 1
in TAα1

can simulate to receive same message from A′ as C at level k + 1 in TAα . This is because A
controls A passively in α1, thus can construct messages on behalf of A in α1. Formally A can construct
msgα1

k (A′, C)A′ such that msgα1
k (A′, C)A′ ∼ msgαk (A,C)A. Thus C a level k+1 receives same messages

in both trees. Similarly one can argue that C at level k receives same messages in TAα and TAα1
. Since

C starts with same input value, secret key and executes same code in both α and α1 respectively,
thus it will send same messages in round k + 1 to A i.e. msgα1

k+1(C,A)C ∼ msgαk+1(C,A)C . Similarly
one can argue that msgα1

k+1(B,A)B ∼ msgαk+1(B,A)B. Thus induction holds for round k + 1 too.
The proof is based on a assumption that A′ at level k in TAα receives same messages as corresponding
A in TAα1

. Note that A′ in TAα and A in TAα1
receives messages from B and C. Using induction and

arguments similar to those given above one can show that such an assumption indeed holds true. Thus
msgαi (x,A)x ∼ msgα1

i (x,A)x, ∀i > 0, ∀x ∈ P holds true.

Lemma 4 Ā can ensure viewαB ∼ view
α2
B and viewαC ∼ view

α2
C

Proof: We show that for any round i, adversary can ensure that B receives same messages in α and
α2 i.e. msgαi (x,B)x ∼ msgα2

i (x,B)x, ∀i > 0, ∀x ∈ P. We prove the same using induction on height of
TBα and TBα2

(as shown in Figure 8). Note that only nodes present in TBα are A,B,C,A′. Corresponding
nodes present in TBα2

are A,B,C,A respectively. Notice that since B′ does not appear in TBα , any A′

in TBα has an outgoing directed edge only and only to C. Similarly, since C ′ does not appear in TBα ,
any A in TBα has an outgoing directed edge only and only to B.

CC

B

A A

B

Figure 6: TBα and TBα2
at the end of round 1.

We begin analyzing the executions trees TBα and TBα2
in a bottom up manner. Consider trees TBα and

TBα2
at the end of round 1 as shown in Figure 3. C starts with same input, secret key and executes same

code in α and α2. Thus it will send same messages to B in round 1 of α and α2 i.e. msgα1 (C,B)C ∼
msgα2

1 (C,B)C . Since A is faulty in α2, A can ensure that msgα1 (A,B)B ∼ msgα2
1 (A,B)B. Thus B

gets same messages at the end of round 1 in α and α2 i.e. msgα1 (x,B)x ∼ msgα2
1 (x,B)x, ∀x ∈ P.

We now claim that the similarity holds in round 2 as well i.e. msgα2 (x,B)x ∼ msgα2
2 (x,B)x.

Consider trees TBα and TBα2
at the end of round 2 as shown in Figure 7. B as well as C start with same

input value, secret key and execute same code in both α and α2 respectively, thus msgα1 (B,A)B ∼
msgα2

1 (B,A)B, msgα1 (C,A)C ∼ msgα2
1 (C,A)C and msgα1 (B,C)B ∼ msgα2

1 (B,C)B. A can ensure that
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Figure 7: TBα and TBα2
at the end of round 2.

C

BC A’

B CCALevel k−1

Level k+2

Level k+1

Level k

A’BC

Level 1

C

BC

B CCALevel k−1

Level k+2

Level k+1

Level k

ABC

A

Level 1

B

A

B

AA

B

A

B

Figure 8: TBα and TBα2
at the end of k + 1 rounds.

msgα1 (A′, C)A′ ∼ msgα2
1 (A,C)A. At the end of round 1, A receives same messages in α and α2 and has

same input value, secret key and executes same code, thus msgα2 (A,B)A ∼ msgα2
2 (A,B)A. Similarly,

since C also receives same messages in α and α2 and has same input value, secret key and executes
same code, thus msgα2 (C,B)C ∼ msgα2

2 (C,B)C . Thus, msgα2 (x,B)x ∼ msgα2
2 (x,B)x, ∀x ∈ P.

Let the similarity be true till some round k i.e. msgαi (x,B)x ∼ msgα2
i (x,B)x, ∀i|1 ≤ i ≤ k, ∀x ∈ P.

We now show that A can ensure that the similarity holds for round k + 1 also. Consider TBα and TBα2

at the end of k+ 1 rounds as shown in Figure 8. For proving the induction step, we need to show that
B at level k+ 2 receives same messages in both trees. Consider edges between level k and k+ 1. From
induction hypothesis any node B up to level k receives same messages in TBα and TBα2

. Since B starts
with same input value, secret key and executes same code in both α and α2 respectively, thus will send
same messages in round k i.e. msgαk (B,A)B ∼ msgα2

k (B,A)B and msgαk (B,C)B ∼ msgα2
k (B,C)B.

Similarly one can argue that msgαk (C,A)C ∼ msgα2
k (C,A)C . This is because from the induction

hypothesis step on heights of TCα and TCα2
, one gets msgαi (x,C)x ∼ msgα2

i (x,C)x, ∀i|1 ≤ i ≤ k,
∀x ∈ P. Now consider A′ at level k in in TBα and corresponding A at level k in in TBα2

. For time being
assume A′ up to level k in TBα receives same messages as corresponding A in TBα2

. Since A is corrupt in
α2, A can always ensure that in round k of α2, A sends to C what A′ sends to C in round k of α. Thus A
at level k+1 receives same messages in both TBα and TBα2

. Since A starts with same input value, secret
key and executes same code in both α and α2 respectively, one gets msgαk+1(A,B)A ∼ msgα2

k+1(A,B)A.
Similarly, one gets msgαk+1(C,B)C ∼ msgα2

k+1(C,B)C . Thus induction holds for round k + 1 too. The
proof is based on a assumption that A′ at level k in TBα receives same messages as corresponding
A in TBα2

. Note that A′ in TBα and A in TBα2
receives messages from B and C. Using induction and

arguments similar to those given above one can show that such an assumption indeed holds true. Thus
msgαi (x,B)x ∼ msgα2

i (x,B)x, ∀i > 0, ∀x ∈ P holds true. Argument for msgαi (x,C)x ∼ msgα2
i (x,C)x,

∀i > 0, ∀x ∈ P follows similarly. Combining these with Equation 3, we get viewαB ∼ viewα2
B and
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viewαC ∼ view
α2
C

Lemma 5 Ā can ensure viewαC ∼ view
α3
C and viewαA′ ∼ viewα3

A .

Proof: Owing to the symmetry of System S, the proof is very similar to the proof of Lemma 3.
Details omitted.

We now present the main theorem of this work.

Theorem 6 (Main Theorem) There does not exists any protocol solving ABGmix over a completely
connected synchronous network N ′ of n nodes tolerating (tb,tp)-adversary if n ≤ 2tb +min(tb, tp), for
tp > 0.

Proof: Proof by contradiction. Let us assume that there exists a protocol η solving ABGmix over
a completely connected synchronous network N ′ of n nodes tolerating (tb,tp)-adversary if n ≤ 2tb +
min(tb, tp), for tp > 0. We show that using η one can construct a protocol Π solving ABGmix over a
completely connected synchronous network N of three nodes P = {A,B,C} tolerating an adversary
basis Ā = {((C), (A)), ((A), (∅)), ((B,A))}. From Lemma 1 we know that there does not exists any
such Π. This contradicts our assumption of η.

We partition the n players into three mutually disjoint nonempty sets IA, IB and IC such that
|IA| ≤ min(tb, tp), |IB| ≤ tb and |IC | ≤ tb. Since n ≤ 2tb + min(tb, tp), such a partitioning is always
possible. The edges in N ′ can now be considered as the bundle of edges between the groups IA, IB
and IC . Each of the three players A, B and C in Π simulate players in IA, IB and IC respectively.
Each player i in Π keeps track of the states of all the players in Ii. Player i assigns its input value to
every member of Ii, and simulates the steps of all the players in Ii as well as the messages sent and
received between pairs of players in Ii. Messages from players in Ii to players in Ij are simulated by
sending same messages from player i to player j. If any player in Ii terminates then so does player i.
If any player in Ii decides on value v, then so does player i.

We now prove that if η solves ABGmix over N ′ tolerating (tb,tp)-adversary when n ≤ 2tb +
min(tb, tp), then Π also solves ABGmix over N tolerating adversary basis A = {((C), (A)), ((A), (∅)),
((B,A))}. Let Ψ and Ψ′ be executions of η and Π respectively. W.l.o.g we let honest, passively corrupt
and malicious players in Ψ to exactly simulated by honest, passively corrupt and malicious players
respectively in Ψ′. As per our assumption Ψ solves ABGmix, thus satisfies Definition 1. We now show
that same holds for Ψ′ if it holds for Ψ. W.l.o.g in Ψ, let the general be from set Ii, then in Ψ′ player
i acts as the general. Note that in Ψ if Ii is controlled actively or passively by the adversary, then so
is i is Ψ′.

Let j,k (j 6= k) be two non-faulty players in Ψ′. j and k simulate at least one player each in Ψ.
Since j and k are non-faulty, so are all players in Ij , Ik. For Ψ, all players in Ij , Ik must terminate,
then so should j and k. In Ψ, all non-faulty players including all the players in Ij and Ik should decide
on same value, say u, then in Ψ′, j, k will also decide on u. In Ψ, if the general is non-faulty and
starts with input value v, then in Ψ′ too, the general will be non-faulty and starts with input value
v. In such a case in ψ, all non-faulty players including all the players in Ij and Ik should have u = v.
Then in Ψ′, j, k will also have u = v. Clearly, ψ′ also satisfies definition 1. Thus Π solves ABGmix
over N tolerating adversary basis A = {((C), (A)), ((A), (∅)), ((B,A))}.

Theorem 7 It is possible to design protocol solving ABGmix iff n > 2tb +min(tb, tp), for tp > 0.

Proof: Necessity follows from Theorem 6. For sufficiency, we present protocol solving ABGmix for
n > 2tb+min(tb, tp), tp > 0. We present the protocols separately for tb > tp and tb ≤ tp.
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Case of tb > tp: n > 2tb+min(tb, tp) reduces to n > 2tb + tp. For this we present a protocol and
prove its correctness in section 3.1.

Case of tb ≤ tp: n > 2tb+min(tb, tp) reduces to n > 3tb. Here any known BGP protocol works (one
such simple protocol is EIGByz protocol [Lyn96, page 120]). This is because for unauthenticated
setting tp = n− tb. This completes the sufficiency proof.

Remark: As evident from the results of Pease et al. [PSL80], for tp=0, ABGmix is possible iff n > tb.
It is interesting to note that for tp = 1, one gets n > 2tb + 1. Thus, with respect to fault tolerance of
ABGmix, tp = 0 or tp 6= 0 makes a huge difference.

3.1 Protocol for n > 2tb + tp

The proposed protocol is obtained by a sequence of transformations on EIG tree [BNDDS87]. A
detailed discussion on the construction of EIG tree is available in [BNDDS87] [Lyn96, page 108]. Our
protocol EIGPrune is given in Figure 9. Despite our protocol being exponential in number of messages,
we present the same for its ease of understanding.

EIGPrune Algorithm

General G send his value to every player. Every player assumes this value from the G as his
input value and and exchanges messages with others as per EIGStop protocol [Lyn96, page
103] for tb + tp + 1 rounds.

At the end of tb+tp+1 rounds of EIGStop protocol, player pi invokes Prune(EIG) [Definition 5].
Player pi applies the following decision rule – take majority of the values at the first level (i.e.
all the nodes with labels l such that l ∈ P) of its EIG tree. If a majority exists player, pi
decides on that value; else, pi decides on default value, v0.

Figure 9: EIGPrune algorithm

Definition 5 (Prune(EIG)) This method that takes an EIG tree as an input and deletes subtrees
say subtreej

i (subtreej i refers to a subtree in i’s EIG tree such that the subtree is rooted at node
whose’s label is j) of i′s EIG tree as given in the sequel. For each subtree subtreej i, where label j ∈ P,
a set Wj is constructed which contains all distinct values that ever appears in subtreej

i. If |Wj | > 1,
subtreej

i is deleted and modified EIG tree is returned.

We prove the correctness of EIGPrune via Lemma 8 – 11.

Lemma 8 The subtreej
i, where j is an honest player and i is a non-faulty player, will never be

deleted during Prune(EIG) operation.

Proof: This Lemma stems from the fact that any message signed by an honest player cannot be
changed in the course of the protocol. Thus, a subtreej

i, j being an honest player will never be
deleted in Prune(EIG) and will be consistent throughout for all non-faulty players.
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Lemma 9 After tb+tp+1 rounds, if a subtreej i has more than one value then ∀ k, subtreejk also has
more than one value, there by ensuring that all ∀ k, subtreejk are deleted (i, j, k are not necessarily
distinct), where i, k are non-faulty.

Proof: Any message sent in (tb + tp)th round has a label of length tb + tp and hence we are sure to
have either an honest player already having signed on it or in (tb + tp + 1)th round an honest player
would broadcast it. This ensures that a value cannot be changed/reintroduced in the (tb + tp + 1)th

round. In other words, a faulty player can either send different initial values in round one or change
a value in Round k, 2 ≤ k ≤ tb + tp, if and only if all players who have signed so far on that message
are under the control of adversary. In any case, the non-faulty players send these values in the next
round and hence the Lemma.

Lemma 10 subtreej
i and subtreej

k in the EIG trees of any two players i, k will have same values
after the subjecting the tree to Prune(EIG), where i, k are non-faulty players.

Proof: This follows from previous Lemma 9 as, if subtrees had different values; then as per the protocol
they would have broadcasted the values in their EIG tree in the next round and thus the subtrees
would have more than one different value resulting in their deletion during Prune(EIG) step.

Lemma 11 For n > 2tb + tp, EIGPrune algorithm solves ABGmix.

Proof: n−(tb+tp) represents the number of honest players and according to n > 2tb+tp, n−(tb+tp) >
tb. Thus honest majority is guaranteed which vacuously implies non-faulty majority. The decision
rule ensures that in case the General is non-faulty and starts with v, all non-faulty players decide on
v. Further if the General is faulty, all non-faulty should agree on same value. Let i and j be any
two non-faulty players. Since, decisions only occur at the end, and by previous lemma we see that
∀i, subtreej i can have only one value which consistent throughout all subtreeij , ∀i ∈ P. This implies
they have the same set of values. The decision rule then simply implies that i and j make the same
decision.

4 Conclusion

The folklore has been that use of authentication reduces the problem of simulating a broadcast in
presence to Byzantine faults to fail-stop failures. Thus, the protocols designed for fail-stop faults can
be quickly adapted to solve ABG. However in this paper, we have shown that this does not hold true
for the case of ABG under the influence of mixed adversary. In a way, the problem of ABGmix covers
the entire range of problems between ABG and BGP. Consequentially, the protocols for ABGmix take
ideas from both ABG and BGP. From our result of n > 2tb+min(tb, tp), it appears that studying this
problem over general networks will be interesting in its own right.
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