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Abstract

We present new techniques for realizing Ciphertext-Policy Attribute Encryption (CP-ABE)
under concrete and noninteractive cryptographic assumptions. Our solutions allow any encryp-
tor to specify access control in terms of an LSSS matrix, M , over the attributes in the system.
We present three different constructions that allow different tradeoffs between the systems ef-
ficiency and the complexity of the assumptions used. All three constructions use a common
methodology of “directly” solving the CP-ABE problem that enable us to get much better
efficiency than prior approaches.

1 Introduction

Public-Key encryption is a powerful mechanism for protecting the confidentiality of stored and
transmitted information. Traditionally, encryption is viewed as a method for a user to share data
to a targeted user or device. While this is useful for applications where the data provider knows
specifically which user he wants to share with, in many applications the provider will want to share
data according to some policy based on the receiving user’s credentials.

Sahai and Waters [31] presented a new vision for encryption where the data provider can express
how he wants to share data in the encryption algorithm itself. The data provider will provide a
predicate f(·) describing how he wants to share the data and a user will be ascribed a secret
key associated with their credentials X; the user with credentials X can decrypt a ciphertext
encrypted with predicate f if f(X) = 1. Sahai and Waters [31] presented a particular formulation
of this problem that they called Attribute-Based Encryption (ABE), in which a user’s credentials is
represented by a set of string called ’attributes’ and the predicate is represented by a formula over
these attributes. Several techniques used by SW were inspired by prior work on Identity-Based
Encryption [32, 11, 22, 16, 8]. One drawback of the Sahai-Waters approach is that their initial
construction was limited to handling formulas consisting of one threshold gate.

In subsequent work, Goyal, Pandey, Sahai, and Waters [26] further clarified the concept of
Attribute-Based Encryption. In particular, they proposed two complimentary forms of ABE. In
the first, Key-Policy ABE, attributes are used to annotate the ciphertexts and formula’s over these
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attributes are ascribed to users’ secret keys. The second type, Ciphertext-Policy ABE, is compli-
mentary in that attributes are used to describe the user’s credentials and the formulas over these
credentials are attached to the ciphertext by the encrypting party. In addition, Goyal et. al. [26]
provided a construction for Key-Policy ABE that was very expressive in that in allowed keys to be
expressed by any monotonic formula over encrypted data. The system was proved selectively secure
under the Bilinear Diffie-Hellman assumption. However, they left creating expressive Ciphertext
Policy ABE schemes as an open problem.

The first work to explicitly address the problem of Ciphertext-Policy Attribute-Based Encryp-
tion was by Bethencourt, Sahai, and Waters [7]. They described an efficient system that was
expressive in that it allowed an encryptor to express an access predicate f in terms of any mono-
tonic formula over attributes. Their system achieved analogous expressiveness and efficiency to the
Goyal et. al. construction, but in the Ciphertext-Policy ABE setting. While the BSW construction
is very expressive, the proof model used was less than ideal — the authors only showed the scheme
secure in the generic group model, an artificial model which assumes the attacker needs to access
an oracle in order to perform any group operations.1

Ciphertext Policy ABE in the Standard Model The lack of satisfaction from with generic
group model proofs is motivation for the problem of finding an expressive CP-ABE system under
a more solid model. There have been multiple approaches in this direction.

First, in retrospect, we can view the basic Sahai-Waters[31] construction most“naturally” as
Key-Policy ABE for a threshold gate. In their work, Sahai and Waters also describe how approach
something akin to Ciphertext-Policy ABE for threshold gates by “grafting” so called “dummy
attributes” over their basic system. Essentially, they transformed a KP-ABE system into a CP-
ABE one with the expressiveness of a single threshold gate. 2 Cheung and Newport[21] provide
a direct construction for constructing a policy with a single AND gate under the Bilinear Diffie-
Hellman assumption. Their approach has the drawbacks that it only allows a fixed number of
system attributes and is limited to an AND gate (does not enable thresholds). In retrospect these
two limitations actually make it less expressive than the SW transformation, although this wasn’t
necessarily immediately apparent.

Most recently, Goyal, Jain, Pandey, and Sahai [25] provide a “bounded” CP-ABE construction.
Their general approach was to show how to transform a KP-ABE system into a CP-ABE one.
In particular, they provided a mapping onto a “universal” access tree of up to depth d formulas
consisting of threshold gates of input size m, where m and d are chosen by the setup algorithm.
The big drawback of their approach is that they need a complete tree of depth d to cover all
possible access trees of depth d. Therefore, the size of this tree grows exponentially with d as
O(md), even though most used formulas of depth d will likely be of a size n that is much smaller.
On the surface it appears that both the public parameter and private key will grow exponentially
as O(md). However, the authors point out that a formula of size n can be “balanced” such that
any formula (tree) of size n can be covered by a complete tree of size approximately O(n3.42).
Correspondingly, the important parameters of ciphertext and private key sizes add encryption and
decryption complexity blow up by an n3.42 factor. While this final transformation does provide a

1Alternatively, we could derive a concrete, but interactive and complicated assumption directly from the scheme
itself and argue that the scheme is secure under this assumption. However, this view is also not very satisfactory.

2The Sahai-Waters construction was given prior to the Key-Policy and Ciphertext-Policy distinction; our inter-
pretation is a retrospective one.
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polynomial solution, the blowup is too large to be of use in practice.
The authors describe their methods as being a generalization of the transformation onto Key

Policy ABE techniques first used by Sahai and Waters. Indeed they make heavy use of dummy
attributes methodology introduced by Sahai and Waters. The fact that these grafting methods
lead to a large blowup in parameter and private key size, are arguably indicative that a “direct”
approach is needed to achieve a system with reasonable efficiency.

Our Contribution We present new techniques for realizing Ciphertext-Policy ABE systems
from a general set of access structures in the standard model under concrete and non-interactive
assumptions. Our techniques allow for any attribute access structure that can be expressed by
a Linear Secret Sharing Scheme (LSSS) matrix M . Previously used structures such as formulas
(equivalently tree structures) can be expressed in terms of a LSSS. Thus our constructions permit
slightly more expressive access structures than the Bethencourt, Sahai, and Waters construction.

Our techniques provide a framework for directly realizing CP-ABE systems. Within our frame-
work we provide three different constructions each realizable under a different non-interactive as-
sumption. In particular, we provide solutions under the decisional versions of the Bilinear Diffie-
Hellman (BDH) assumption, the Bilinear-Diffie-Hellman Exponent (BDHE) assumption, and a new
assumption we call the parallel Bilinear Diffie-Hellman assumption. These different constructions
provide tradeoffs of the efficiency of the system versus the strength of the assumption used.

In all of our systems a ciphertext is associated with an ` × n LSSS matrix M and function
ρ(·) that maps rows of M to attribute strings. (One can think of each leaf node of a tree access
structure scheme (e.g.,[26] corresponding to a row of M and ρ as a function describing the attribute
of the leaf node). When an algorithm encrypts for a structure M it randomly shares a secret s ∈ Zp

according to the matrix M . A user’s private key is associate with a set S of attributes and he will
be able to decrypt a ciphertext iff his attributes “satisfy” the access matrix associated with the
ciphertext.

The performance tradeoffs in our constructions reflect how efficiently a simulator can “program”
the LSSS matrix M∗ of the challenge ciphertext (in the selective model of security). Consider a
LSSS matrix M∗ of size l∗ × n∗. For each row i of M∗ the simulator needs to program in ` pieces
of information (M∗

i,1, . . . ,M
∗
i,`) into the parameters related to the attribute assigned to that row.

We first show how to achieve a construction with much better efficiency and no setup limitation
on the size of n under the `∗-BDHE assumption. We refer to this as our “main” construction, since
it will also serve as a template for our others. Our construction achieves much smaller ciphertexts
of O(`) group elements and private keys of size O(|S|) group elements, matching the efficiency of
the BSW construction. The main leverage point is that by using an assumption that gives the
simulator `∗ different elements the simulator can compress a whole row of the challenge matrix into
one group element of the parameters in the reduction.

The one drawback of this technique is that it can only work if an attribute appears at most
once in a ciphertext. However, this can easily be overcome with a simple encoding of the attributes,
where we assign a different string for each time an attribute is associated with a row in an access
structure. For example, the attribute “Professor” can be encoded as “Professor:1”, “Professor:2”,
etc. The downside of this transformation is that a users’ secret key will grow as |S| · kmax, where
kmax is the maximum number of times an attribute can be associated with a row in a ciphertext.

Next, provide a construction overcomes this limitation by using an assumption that gives `∗

“parallel” instances of the BDHE problem. This extra information allows us to create a reduction
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for a construction with O(|S|) size private keys and no limitations on the amount of times an
attribute is used.

Finally, we show how to modify the main scheme to realize a proof under the decisional Bilinear
Diffie Hellman (BDH) assumption. In our BDH construction this results in ciphertexts consisting
of O(` ·n) group elements for a ciphertext `×n access matrix. A private key for an attribute set S
consist of O(|S| × nmax) group elements, where nmax is the maximum width of any access matrix
specified by the setup algorithm.

Taken all together our constructions provide a set of solutions to the Ciphertext-Policy ABE
problem. Each solution is much more efficient than the Goyal, Jain, Pandey, and Sahai [25] con-
struction. In addition, each of the assumption choices that we provide are much more preferable
to the generic group model usedof Bethencourt, Sahai, and Waters [7] for proving security.

It is also interesting to consider the options provided with each assumption. Recently, there
has been a large number of new number theoretic assumptions introduced in cryptography systems
applying bilinear maps. Often, it is not clear where stronger assumptions are needed and where
there are not. One contribution of this work is that it provides an exposition in this line of work of
the tradeoffs one can make in the assumption complexity against a system’s efficiency. On one hand,
we show how an assumption that carries more information can be used to compress parameters
and achieve more efficient systems. On the other, we show how to modify our system to obtain a
weaker assumption.

1.1 Related Work

Some of the roots of ABE can be traced back to Identity-Based Encryption [32, 11, 22, 16, 8, 36,
23, 12] (IBE). One can view IBE as a very special case of ABE.

Different authors [34, 29, 4, 15, 3, 5] have considered similar problems without considering
collusion resistance. In these works a data provider specifies an access formula by such that a
group of users can decrypt if the union of their credentials satisfies the formula. By only requiring
the union of the credentials one does not worry about collusion attacks. In these schemes a setup
authority simply assigns a separate public key to each credential and gives the corresponding secret
key to each user that possesses the credential. Encryption is done by splitting secrets and then
encrypting each share to the appropriate public key. Some of these schemes were inspired by earlier
work [20, 19].

Since the introduction of Attribute-Based Encryption by Sahai and Waters [31], there have
been several papers [26, 7, 18, 30, 25] that have proposed different varieties of ABE. Most of them
have been for monotonic access structures over attributes; one exception is the work of Ostrovsky,
Sahai, and Waters [30] that showed how to realize negation by integrating revocation schemes into
the GPSW ABE cryptosystem.

Most work on ABE is focused on complex access controls for hiding an encrypted payload of
data. A related line of work called predicate encryption or searching on encrypted data attempts
to evaluate predicates over the encrypted data itself [35, 10, 1, 14, 13, 33, 28]. These systems have
the advantages of hiding the associated access structures themselves and thus providing a level of
“anonymity”; however, these systems tend to be much less expressive than access control systems
that leave the access structures in the clear.

Other examples of encryption systems with more “structure” added include Hierarchical Identity-
Based Encryption [27, 24] and Wildcard IBE [2].
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1.2 Organization

In Section 2 we give relevant background on LSSS, the definitions for Ciphertext-Policy ABE,
and our number theoretic assumptions. We begin by giving our decisional BDHE construction in
Section 3. This construction will expose the general framework for our constructions and proofs.
Next, we present a construction provably secure under the decisional parallel BDHE assumption
in Section 4. Finally, we show how to realize CP-ABE under the decisional BDH assumption in
Section 5 and conclude in Section 6.

2 Background

We first give formal definitions for access structures and relevant background on Linear Secret
Sharing Schemes (LSSS). Then we give the security definitions of ciphertext policy attribute based
encryption (CP-ABE). Finally, we give background information on bilinear maps.

2.1 Access Structures

Definition 1 (Access Structure [6]). Let {P1, P2, . . . , Pn} be a set of parties. A collection
A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C then C ∈ A. An access structure
(respectively, monotone access structure) is a collection (respectively, monotone collection) A of
non-empty subsets of {P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In our context, the role of the parties is taken by the attributes. Thus, the access structure
A will contain the authorized sets of attributes. We restrict our attention to monotone access
structures. However, it is also possible to (inefficiently) realize general access structures using our
techniques by having the not of an attribute as a separate attribute altogether. Thus, the number
of attributes in the system will be doubled. From now on, unless stated otherwise, by an access
structure we mean a monotone access structure.

2.2 Linear Secret Sharing Schemes

We will make essential use of linear secret-sharing schemes. We adapt our definitions from those
given in [6]:

Definition 2 (Linear Secret-Sharing Schemes (LSSS)). A secret-sharing scheme Π over a
set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.

2. There exists a matrix M called the share-generating matrix for Π. The matrix M has ` rows
and n columns. For all i = 1, . . . , `, the i’th row of M we let the function ρ defined the party
labeling row i as ρ(i). When we consider the column vector v = (s, r2, . . . , rn), where s ∈ Zp

is the secret to be shared, and r2, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of
` shares of the secret s according to Π. The share (Mv)i belongs to party ρ(i).

It is shown in [6] that every linear secret sharing-scheme according to the above definition also
enjoys the linear reconstruction property, defined as follows: Suppose that Π is an LSSS for the
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access structure A. Let S ∈ A be any authorized set, and let I ⊂ {1, 2, . . . , `} be defined as
I = {i : ρ(i) ∈ S}. Then, there exist constants {ω ∈ Zp}i∈I such that, if {λi} are valid shares of
any secret s according to Π, then

∑
i∈I ωiλi = s.

Furthermore, it is shown in [6] that these constants {ωi} can be found in time polynomial in
the size of the share-generating matrix M .

2.3 Ciphertext-Policy ABE

An ciphertext-policy attribute based encryption scheme consists of four fundamental algorithms:
Setup, Encrypt, KeyGen, and Decrypt. In addition, we allow for the option of a fifth algorithm
Delegate; however, in our exposition we don’t explicitly give the delegation algorithm.

Setup. The setup algorithm takes no input other than the implicit security parameter. It outputs
the public parameters PK and a master key MK.

Encrypt(PK,M, A). The encryption algorithm takes as input the public parameters PK, a mes-
sage M , and an access structure A over the universe of attributes. The algorithm will encrypt M
and produce a ciphertext CT such that only a user that possesses a set of attributes that satis-
fies the access structure will be able to decrypt the message. We will assume that the ciphertext
implicitly contains A.

Key Generation(MK, S). The key generation algorithm takes as input the master key MK and
a set of attributes S that describe the key. It outputs a private key SK.

Decrypt(PK,CT,SK). The decryption algorithm takes as input the public parameters PK, a
ciphertext CT, which contains an access policy A, and a private key SK, which is a private key for
a set S of attributes. If the set S of attributes satisfies the access structure A then the algorithm
will decrypt the ciphertext and return a message M .

Delegate(SK, S̃). The delegate algorithm takes as input a secret key SK for some set of attributes
S and a set S̃ ⊆ S. It output a secret key S̃K for the set of attributes S̃.

We now describe a security model for ciphertext-policy ABE schemes. Like identity-based
encryption schemes [32, 11, 22] the security model allows the adversary to query for any private
keys that cannot be used to decrypt the challenge ciphertext. In CP-ABE the ciphertexts are
identified with access structures and the private keys with attributes. It follows that in our security
definition the adversary will choose to be challenged on an encryption to an access structure A∗

and can ask for any private key S such that S does not satisfy S∗. We now give the formal security
game.

Security Model for CP-ABE

Setup. The challenger runs the Setup algorithm and gives the public parameters, PK to the
adversary.

Phase 1. The adversary makes repeated private keys corresponding to sets of attributes S1, . . . , Sq1 .
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Challenge. The adversary submits two equal length messages M0 and M1. In addition the
adversary gives a challenge access structure A∗ such that none of the sets S1, . . . , Sq1 from
Phase 1 satisfy the access structure. The challenger flips a random coin b, and encrypts Mb

under A∗. The ciphertext CT∗ is given to the adversary.

Phase 2. Phase 1 is repeated with the restriction that none of sets of attributes Sq1+1, . . . , Sq

satisfy the access structure corresponding to the challenge.

Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b] − 1
2 . We note that the

model can easily be extended to handle chosen-ciphertext attacks by allowing for decryption queries
in Phase 1 and Phase 2.

Definition 3. An ciphertext-policy attribute-based encryption scheme is secure if all polynomial
time adversaries have at most a negligible advantage in the above game.

We say that a system is selectively secure if we add an Init stage before setup where the adversary
commits to the challenge access structure A∗.

2.4 Bilinear Maps

We present a few facts related to groups with efficiently computable bilinear maps and then give
our number theoretic assumptions.

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a generator of G
and e be a bilinear map, e : G×G → GT . The bilinear map e has the following properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1.

We say that G is a bilinear group if the group operation in G and the bilinear map e : G×G → GT

are both efficiently computable. Notice that the map e is symmetric since e(ga, gb) = e(g, g)ab =
e(gb, ga).

2.4.1 Decisional Bilinear Diffie-Hellman Assumption

We define the decisional Bilinear Diffie-Hellman problem as follows. A challenger chooses a group
G of prime order p according to the security parameter. Let a, b, s ∈ Zp be chosen at random
and g be a generator of G. The adversary when given (g, ga, gb, gs) must distinguish a valid tuple
e(g, g)abs ∈ GT from a random element R in GT .

An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decisional BDH in G if∣∣∣∣Pr
[
B
(
g, ga, gb, gs, T = e(g, g)abs) = 0

]
− Pr

[
B
(
g, ga, gb, gs, T = R

)
= 0
] ∣∣∣∣ ≥ ε

Definition 2.1. We say that the decisional BDH assumption holds if no polytime algorithm has a
non-negligible advantage in solving the decisional BDH problem.
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2.4.2 Decisional Bilinear Diffie-Hellman Exponent Assumption

We define the decisional q-Bilinear Diffie-Hellman Exponent problem as follows. Choose a group G
of prime order p according to the security parameter. Let a, s ∈ Zp be chosen at random and g be
a generator of G. Let gi denote gai

. The adversary when given ~y = (g, g1, . . . , gq, , gq+2, . . . , g2q, g
s)

must distinguish e(g, g)aq+1s ∈ GT from a random element in GT .
An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decisional q-BDHE in G if∣∣∣∣Pr

[
B
(
~y, T = e(g, g)aq+1s) = 0

]
− Pr

[
B
(
~y, T = R

)
= 0
] ∣∣∣∣ ≥ ε

Definition 2.2. We say that the decisional q-BDHE assumption holds if no polytime algorithm
has a non-negligible advantage in solving the (decision) q-BDHE problem.

2.4.3 Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption

We define the decisional q-parallel Bilinear Diffie-Hellman Exponent problem as follows. Choose a
group G of prime order p according to the security parameter. Let a, s ∈ Zp be chosen at random
and g be a generator of G. If an adversary is given ~y=

g, gs, ga, . . . , g(aq), , g(aq+2), . . . , g(a2q)

∀1≤j≤q gs·bj , ga/bj , . . . , g(aq/bj), , g(aq+2/bj), . . . , g(a2q/bj)

∀1≤j,k≤q,k 6=j ga·s·bk/bj , . . . , g(aq ·s·bk/bj)

it must remain hard to distinguish e(g, g)aq+1s ∈ GT from a random element in GT .
An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decisional q-parallel BDHE

in G if ∣∣∣∣Pr
[
B
(
~y, T = e(g, g)aq+1s) = 0

]
− Pr

[
B
(
~y, T = R

)
= 0
] ∣∣∣∣ ≥ ε

Definition 2.3. We say that the (decision) q parallel-BDHE assumption holds if no polytime
algorithm has a non-negligible advantage in solving the decisional q-parallel BDHE problem.

3 Main Construction

We begin by giving our construction that is provably secure under the Bilinear Diffie-Hellman
Exponent assumption. This construction is the simplest of the three and the proof illustrates how
the assumption allows us to compress information into the parameters. We will later use it as a
template for designing our other constructions. In the core construction an attribute can only be
used in a most one row in the ciphertext access matrix M (the function ρ(·) is injective); however,
this can be overcome with certain encodings of attributes. As illustrated in the introduction we
can handle any particular attribute being used in up to kmax rows per ciphertext with a blowup
of private keys by a factor of kmax. For simplicity, we describe only the core construction without
this transformation.

For ease of exposition, we describe our construction in the random oracle model; however, we
show how to modify our scheme for a standard model solution in Appendix A. Our construction
follows.
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Setup() The setup algorithm chooses a group G of prime order p and a generator g. In addition,
it chooses random exponents α, a ∈ Zp. In addition, we will use a hash function H : {0, 1}∗ → G
that we will model as a random oracle. The public key is published as

PK = g, e(g, g)α, ga.

The authority sets MSK = gα as the master secret key.

Encrypt(PK, (M,ρ),M ) The encryption algorithm takes as input the public parameters PK
and a message M to encrypt. In addition, it takes as input an LSSS access structure (M,ρ). The
function ρ associates rows of M to attributes. In this construction we limit ρ to be an injective
function, that is an attribute is associated with at most one row of M .

Let M be an `×n matrix. The algorithm first chooses a random vector ~v = (s, y2, ..., yn) ∈ Zn
p .

These values will be used to share the encryption exponent s. For, i = 1 to ` it calculates λi = ~v ·Mi,
where Mi is the vector corresponding to the ith row of M .

The ciphertext is published as

CT =
(
C = Me(g, g)αs, C ′ = gs, C1 = gaλ1H(ρ(1))−s, . . . , C` = gaλ`H(ρ(`))−s

)
along with a description of M,ρ(·).

KeyGen(MSK, S) The key generation algorithm takes as input the master secret key and a set
S of attributes. The algorithm first chooses a random t ∈ Zp. It creates the private key as

K = gαgat L = gt ∀x ∈ S Kx = H(x)t.

Decrypt(CT,SK) The decryption algorithm takes as input a ciphertext CT for a linear access
structure (M,ρ) and a private key for a set S. Suppose that S satisfies the access structure and
let I ⊂ {1, 2, . . . , `} be defined as I = {i : ρ(i) ∈ S}. Then, let {ω ∈ Zp}i∈I be a set of constants
such that if {λi} are valid shares of any secret s according to M , then

∑
i∈I ωiλi = s. We note

that there could potentially be several different ways of choosing the ωi values to satisfy this. In
addition, we emphasize that the decryption algorithm only needs knowledge of M, I to determine
these constants.

The decryption algorithm first computes

e(C ′,K)/

(∏
i∈I

(e(Ci, L)e(C ′,Kρ(i)))
ωi

)

= e(g, g)αse(g, g)ast/

(∏
i∈I

e(g, g)taλiωi

)
= e(g, g)αs.

The decryptor can then divide out this value from C and obtain the message M.

3.1 Proof

We prove the following theorem.
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Theorem 3.1. Suppose the decisional q-BDHE assumption holds. Then no poly-time adversary
can selectively break our system with a challenge matrix of size `∗ × n∗, where n∗ ≤ q.

Suppose we have an adversaryA with non-negligible advantage ε =AdvA in the selective security
game against our construction. Moreover, suppose it chooses a challenge matrix M∗ of dimension at
most q columns. We show how to build a simulator, B, that plays the decisional q-BDHE problem.

Init The simulator takes in the BDHE challenge ~y = (g, gs, ga, . . . , gaq
, , gaq+2

. . . , ga2q
), T . The

adversary gives the algorithm the challenge access structure (M∗, ρ∗), where M∗ has n∗ ≤ q
columns.

Setup The simulator chooses random α′ ∈ Zp and implicitly sets α = α′ + aq+1 by letting
e(g, g)α = e(ga, gaq

)e(g, g)α′ .
We describe how the simulator programs the random oracle H by building a table. Consider

a call to H(x). If H(x) was already defined in the table, then simply return the same answer as
before; otherwise, choose a random value zx ∈ Zp. If there exists an i such that ρ∗(i) = x, then let

H(x) = gzxgaM∗
i,1 · ga2M∗

i,2 · · · gan∗M∗
i,n∗ .

Otherwise, let H(x) = gzx .
We point out a couple of facts. First, the responses from the oracle are distributed randomly

due to the gzx factor. Second, by our restriction that ρ∗ to be an injective function for any x there
is at most one i such that ρ∗(i) = x; therefore, our assignment is unambiguous.

Intuitively, for each attribute x that is represented in the challenge ciphertext we are able to
program the parameter H(x) to reflect the corresponding row M∗ from the simulator’s point of
view. We see that the q ≥ n∗ terms from the assumption enable us to represent this in just one
group element H(x) without ambiguity.

Phase I In this phase the simulator answers private key queries. Suppose the simulator is given
a private key query for a set S where S does not satisfy M∗.

The simulator first chooses a random r ∈ Zp. Then it finds a vector ~w = (w1, . . . , wn∗) ∈ Zp
n∗

such that w1 = −1 and for all i where ρ∗(i) ∈ S we have that ~w ·M∗
i = 0. By our the definition of

a LSSS such a vector must exist, since S does not satisfy M∗.
The simulator begins by implicitly defining t as:

r + w1a
q + w2a

q−1 + · · ·+ wn∗a
q−n∗+1.

It performs this by setting L = gr
∏

i=1,...,n∗(g
aq+1−i

)wi = gt.
We now observe that by our definition of t, we have that gat contains a term of g−aq+1

, which
will cancel out with the unknown term in gα. The simulator can compute K as:

K = gα′gar
∏

i=2,...,n∗

(gaq+2−i
)wi .

Now we must calculate Kx ∀x ∈ S. First, we consider x ∈ S for which there is no i such that
ρ∗(i) = x. For those we can simply let Kx = Lzx .
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The more difficult task is to create keys for attributes x, where x is used in the access structure.
For these keys we must make sure that there are no terms of the form gaq+1

that we cannot simulate.
Notice, that in calculating H(x)t all terms of this form come (in the exponent) from Mi,jaj ·wja

q+1−j

for some j, where ρ∗(i) = x. However, we have that Mi · ~w = 0; therefore, everything with an
exponent of aq+1 cancels when combined.

The simulator creates Kx in this case as follows. Suppose ρ∗(i) = x. Then

Kx = Lzx
∏

j=1,...,n∗

gr
∏

k=1,...,n∗

k 6=j

(gaq+1+j−k
)wk


Mi,j

.

Challenge Finally, we build the challenge ciphertext. The adversary gives two messages M0,M1

to the simulator. The simulator flips a coin β. It creates C = MβT and C ′ = gs.
The tricky part is to simulate the Ci values since the term H(ρ∗(i))s will contain terms of the

form gajs, that we do not know how to simulate. However, the simulator can choose the secret
splitting, such that these cancel out. Intuitively, the simulator will choose random y2, . . . , yn∗ ∈ Zp

and the share the secret using the vector

~v = (s, sa + y′2, sa
2 + y′3, . . . , sa

n∗−1 + y′n∗) ∈ Zp
n∗ .

This allows the important terms from H(ρ(i))−s to cancel out with the important terms of gaλi .
For i = 1, . . . , n∗ the challenge ciphertext components are then generated as

Ci =

 ∏
j=1,...,n∗

(ga)Mi,jy′j

 (gs)−zρ∗(i) .

Phase II Same as phase I.

Guess The adversary will eventually output a guess β′ of β. The simulator then outputs 0 to
guesses that T = e(g, g)aq+1s if β = β′; otherwise, it and outputs 1 to indicate that it believes T is
a random group element in GT .

When T is a tuple the simulator B gives a perfect simulation so we have that

Pr
[
B
(
~y, T = e(g, g)aq+1s

)
= 0
]

=
1
2

+ AdvA.

When T is a random group element the message Mβ is completely hidden from the adversary
and we have Pr [B (~y, T = R) = 0] = 1

2 . Therefore, B can play the decisional q-BDHE game with
non-negligible advantage.

3.2 Delegation, CCA-Security, and Removing Random Oracles

We remark that delegation can be realized in essentially the same manner as in the Bethencourt,
Sahai, and Waters systems and give a brief sketch. In CP-ABE delegation can be realized by
deleting attributes from a key. For instance, if a user has a key for the attribute set {“Manager”,
“Accounting” } she might like to delegate a key for just the attribute “Accounting”. In our
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system, to remove an attribute x from a key one needs to transform the key by removing the key
component Kx and rerandomize the other key components. To enable this an authority needs to
also include ga in the parameters. Notice that this term was already available in the reduction,
thus the security proof is essentially unaffected.

In addition, CCA-security can be realized in the standard model by using the techniques of
Canetti, Halevi, and Katz [17] by some simple alternations to the system that apply delegation. In
the random oracle model standard methods for realizing CCA-security can be applied.

Finally, we can realize our construction in the standard model by applying a hash function
similar to the one given by Sahai and Waters [31] and used in other subsequent work. In the setup
suppose we restrict the access matrix to have at most `max rows and users to have at most Attrmax

attributes. Then we can replace the hash function H(x) with a function U(x) = gp(x) for a random
polynomial of degree Attrmax + `max − 1. Details are given in Appendix A. We also note that the
random oracle can be trivially removed if we restrict ourselves to a small fixed size of attributes in
the system.

3.3 Necessity of injectiveness in ρ() function

The current construction states that the ρ() function that maps rows of a ciphertext access matrix
M to attributes must be injective. This implies that an attribute cannot appear twice in an access
structure. One natural question is whether this is an inherent requirement of the construction or
whether it is an artifact of the proof provided.

We show an example of an attack when the ρ() function is not injective. Suppose the a ciphertext
matrix M has a function ρ that maps the first four row as

ρ(1) = ρ(2) = “AttributeX′′ ρ(3) = ρ(4) = “AttributeY′′.

Suppose that after randomly choosing ~v = (s, y2, . . . , yn) the first four shares of the ciphertext were

λ1 = 2s + y2 , λ2 = s + y3 , λ3 = −y2 , λ4 = −y3.

Then an attacker can compute C1 · C−1
2 · C3 · C−1

4 = gas. Then he can use a key that does not
satisfy the access structure to decrypt by computing e(K, C ′)/e(L, gas) = e(g, g)α·s.

Due to this attack, the limitation of ρ to be injective is inherent in this construction. As we
stated earlier we can apply a simply naming transformation that works around around this issue.
With increasing the private key size by a factor of kmax we can allow for an attribute to be used
kmax times. However, in the next section we provide a construction that gets around this issue
altogether with no performance penalty.

4 An Unrestricted Construction

In the last section we described a construction that was naturally restricted to using an attribute
at most once in the access structure. While we could work our way around this, using a naming
transformation we need to pick a value kmax and restrict ourselves to having an attribute appear
at most kmax times and having our private keys grow by a factor of kmax.

We now show a new construction that is completely unrestricted and thus realizes efficiency on
par with the Bethencourt, Sahai, and Waters [7] system, but under a concrete and non-interactive
assumption. The main problem with our last system, as illustrated in the last subsection, is that

12



the ciphertext components Ci can be combined. In this construction we make a small modification
that further randomizes the ciphertexts to prevent against such an attack even when the ρ function
is non-injective.

One big challenge is that the use of a non-injective ρ function complicates are proof methodology.
In particular, in our reduction we programmed our random oracle for H(x) based on the i-th row
of M∗ if ρ∗(i) = x. However, if there exist i 6= j such that x = H(i) = H(j) then there is an
issue since we must program both row i and row j in the simulation. To deal with this we apply
an assumption called parallel BDHE that gives us “parallel” pieces of the BDHE problem. In our
reduction we can use these extra pieces to program all the information in during the simulation.

Setup() The setup algorithm chooses a group G of prime order p and a generator g. In addition,
it chooses random exponents α, a ∈ Zp. In addition, we will use a hash function H : {0, 1}∗ → G
that we will model as a random oracle. The public key is published as

PK = g, e(g, g)α, ga.

The authority sets MSK = gα as the master secret key.

Encrypt(PK, (M,ρ),M ) The encryption algorithm takes as input the public parameters PK
and a message M to encrypt. In addition, it takes as input an LSSS access structure (M,ρ). The
function ρ associates rows of M to attributes. In this construction we limit ρ to be an injective
function, that is an attribute is associated with at most one row of M .

Let M be an `×n matrix. The algorithm first chooses a random vector ~v = (s, y2, ..., yn) ∈ Zn
p .

These values will be used to share the encryption exponent s. For i = 1 to `, it calculates λi = ~v ·Mi,
where Mi is the vector corresponding to the ith row of M . In addition, the algorithm chooses
random r1, . . . , r` ∈ Zp.

The ciphertext is published as CT =

C = Me(g, g)αs, C ′ = gs, (C1 = gaλ1H(ρ(1))−r1 , D1 = gr1), . . . , (Cn = gaλnH(ρ(n))−rn , Dn = grn)

along with a description of (M,ρ).

KeyGen(MSK, S) The key generation algorithm takes as input the master secret key and a set
S of attributes. The algorithm first chooses a random t ∈ Zp. It creates the private key as

K = gαgat L = gt ∀x ∈ S Kx = H(x)t.

We remark that key generation is actually the same as in our previous construction.

Decrypt(CT,SK) The decryption algorithm takes as input a ciphertext CT for access structure
(M,ρ) and a private key for a set S. Suppose that S satisfies the access structure and let I ⊂
{1, 2, . . . , `} be defined as I = {i : ρ(i) ∈ S}. Then, let {ω ∈ Zp}i∈I be a set of constants such
that if {λi} are valid shares of any secret s according to M , then

∑
i∈I ωiλi = s. (Note there could

potentially be different ways of choosing the ωi values to satisfy this.)
The decryption algorithm first computes

e(C ′,K)/
(∏

i∈I(e(Ci, L)e(Di,Kρ(i)))ωi
)

= e(g, g)αse(g, g)ast/
(∏

i∈I e(g, g)taλiωi
)

= e(g, g)αs

The decryption algorithm can then divide out this value from C and obtain the message M.
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4.1 Proof

We prove the following theorem.

Theorem 4.1. Suppose the decisional q-parallel BDHE assumption holds. Then no polytime ad-
versary can selectively break our system with a challenge matrix of size `∗ × n∗, where `∗, n∗ ≤ q.

Suppose we have an adversaryA with non-negligible advantage ε =AdvA in the selective security
game against our construction. Moreover, suppose it chooses a challenge matrix M∗ where both
dimensions are at most q. We show how to build a simulator, B, that plays the decisional q-BDHE
problem.

Init The simulator takes in a q-parallel BDHE challenge ~y, T . The adversary gives the algorithm
the challenge access structure (M∗, ρ∗), where M∗ has n∗ columns.

Setup The simulator chooses random α′ ∈ Zp and implicitly sets α = α′ + aq+1 by letting
e(g, g)α = e(ga, gaq

)e(g, g)α′ .
We describe how the simulator programs the random oracle H by building a table. Consider

a call to H(x). If H(x) was already defined in the table, then simply return the same answer as
before.

Otherwise, begin by choosing a random value zx. Let X denote the set of indices i, such that
ρ∗(i) = x. The simulator programs the oracle as

H(x) = gzx
∏
i∈X

gaMi,1/bi · ga2Mi,2/bi · · · ganMi,n/bi .

Note that if X = ∅ then we have H(x) = gzx . Also note that the responses from the oracle are
distributed randomly due to the gzx value.

Phase I In this phase the simulator answers private key queries. Suppose the simulator is given
a private key query for a set S where S does not satisfy M∗.

The simulator first chooses a random r ∈ Zp. Then it finds a vector ~w = (w1, . . . , wn∗) ∈ Zp
n

such that w1 = −1 and for all i where ρ∗(i) ∈ S we have that ~W ·Mi = 0. By the definition of a
LSSS such a vector must exist.

The simulator begins by implicitly defining t as

r + w1a
q + w2a

q−1 + · · ·+ wn∗a
1

. It performs this by setting L = gr
∏

i=1,...,n∗(g
aq+1−i

)wi = gt.
We observe that by our definition of t, we have that gat contains a term of g−aq+1

, which will
cancel out with the unknown term in gα when creating K. The simulator can compute K as:

K = gα′gar
∏

i=2,...,n∗

(gaq+2−i
)wi .

Now we must calculate Kx ∀x ∈ S. First, we consider x ∈ S for which there is no i such that
ρ∗(i) = x. For those we can simply let Kx = Lzx .
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The more difficult task is to create key components Kx for attributes x ∈ S, where x is used in
the access structure. For these keys we must make sure that there are no terms of the form gaq+1/bi

that we can’t simulate. However, we have that Mi · ~w = 0; therefore, all of these terms cancel.
Again, let X be the set of all i such that ρ∗(i) = x. The simulator creates Kx in this case as

follows.

Kx = Lzx
∏
i∈X

∏
j=1,...,n∗

gr
∏

k=1,...,n∗

k 6=j

(gaq+1+j−k/bi)wk


Mi,j

Challenge Finally, we build the challenge ciphertext. The adversary gives two messages M0,M1

to the simulator. The simulator flips a coin β. It creates C = MβT and C ′ = gs.
The tricky part is to simulate the Ci values since this contains terms that we must cancel out.

However, the simulator can choose the secret splitting, such that these cancel out. Intuitively, the
simulator will choose random y2, . . . , yn∗ and the share the secret using the vector

~v = (s, sa + y2, sa
2 + y3, . . . , sa

n−1 + yn∗) ∈ Zp
n∗ .

In addition, it chooses random values r′1, . . . , r
′
`.

For i = 1, . . . , n∗, we define Ri as the set of all k 6= i such that ρ∗(i) = ρ∗(k). In other words,
the set of all other row indices that have the same attribute as row i. The challenge ciphertext
components are then generated as

Di = gr′igsbi

Ci = H(ρ∗(i))r′i

 ∏
j=1,...,n∗

(ga)Mi,jyj

 (gbi·s)−zρ∗(i)

∏
k∈Ri

∏
j=1,...,n∗

(gaj ·s·(bi/bk))Mk,j


Phase II Same as phase I.

Guess The adversary will eventually output a guess β′ of β. The simulator then outputs 0 to
guesses that T = e(g, g)aq+1s if β = β′; otherwise, it and outputs 1 to indicate that it believes T is
a random group element in GT .

When T is a tuple the simulator B gives a perfect simulation so we have that

Pr
[
B
(
~y, T = e(g, g)aq+1s

)
= 0
]

=
1
2

+ AdvA.

When T is a random group element the message Mβ is completely hidden from the adversary and
we have Pr [B (~y, T = R) = 0] = 1

2 . Therefore, B can play the decisional q-parallel BDHE game
with non-negligible advantage.

5 Bilinear Diffie-Hellman Construction

While our unrestricted construction realizes a potentially ideal type of efficiency, we would like to
also show that secure CP-ABE systems can be realized from static assumptions. Here we show how
to realize our framework under the decisional Bilinear Diffie Hellman d-(BDH) assumption.
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The primary challenge with realizing a construction provably secure under BDH is we need a way
for a reduction to embed the challenge matrix M∗ in the parameters. Since the BDH assumption
gives the reduction less components to embed this, there is no obvious path for reducing the
previous constructions to d-BDH. We surmount this obstacle by expanding our ciphertexts and
public parameter space. By doing this we enable our reduction to embed the challenge matrix.

Our construction is parametrized by a integer nmax that specifies the maximum number of
columns in a ciphertext. Like our first construction we restrict ρ() to be an injective functions, but
can alleviate this restriction by applying a similar transformation to allow an attribute to appear
kmax times for some specified kmax. Our construction follows.

Setup(nmax) The setup algorithm chooses a group G of prime order p and a generator g. In addi-
tion, it chooses random exponents α, a ∈ Zp. In addition, we will use a hash functions H1, . . . ,Hnmax

where Hi : {0, 1}∗ → G that we will model as a random oracle. Note that it is simple to derive
these n hash functions from one hash function. The public key is published as

PK = g, e(g, g)α, ga.

The authority sets MSK = gα as the master secret key.

Encrypt(PK, (M,ρ),M ) The encryption algorithm takes as input the public parameters PK
and a message M to encrypt. In addition, it takes as input an LSSS access structure (M,ρ). The
function ρ associates rows of M to attributes. In this construction we limit ρ to be an injective
function, that is an attribute is associated with at most one row of M .

Let M be an ` × n matrix. Note n may be less than or equal to nmax. The algorithm first
chooses a random vector ~v = (s, y2, ..., yn) ∈ Zn

p . These values will be used to share the encryption
exponent s.

The ciphertext is published as

CT = C = Me(g, g)αs, C ′ = gs, ∀ i=1,...,`
j=1,...,n

Ci,j = gaMi,jvjH(ρ(i))−s

along with a description of M,ρ.

KeyGen(MSK, S) The key generation algorithm takes as input the master secret key and a set
S of attributes. The algorithm first chooses a random t1, . . . , tnmax ∈ Zp. It creates the private key
as

K = gαgat1 L1 = gt1 , . . . , Ln = gtnmax ∀x ∈ S Kx =
∏

j=1,...,nmax

Hj(x)tj .

Decrypt(CT,SK) The decryption algorithm takes as input a ciphertext CT for access structure
(M,ρ) and a private key for a set S. Suppose that S satisfies the access structure and let I ⊂
{1, 2, . . . , `} be defined as I = {i : ρ(i) ∈ S}. Then, let {ω ∈ Zp}i∈I be a set of constants such
that, if {λi} are valid shares of any secret s according to M , then

∑
i∈I ωiλi = s. (Note there could

potentially be different ways of choosing the ωi values to satisfy this.)
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The decryption algorithm first computes

e(C ′,K)/

 ∏
j=1,...,n

e(Lj ,
∏
i∈I

Cωi
i,j)

∏
i∈I

e(Kωi

ρ(i), C
′)

= e(C ′,K)/

 ∏
j=1,...,n

e(gtj , g
P

i∈I aMi,jvjωi) · e(gtj ,
∏
i∈I

H(ρ(i)−sωi)

∏
i∈I

e(Kωi

ρ(i), g
s)

= e(C ′,K)/
∏

j=1,...,n

e(gtj , g
P

i∈I aMi,jvjωi)

= e(C ′,K)/e(gt1 , g
P

i∈I aMi,1v1ωi)
= e(gs, gαgat1)/e(g, g)at1s

= e(g, g)αs

The decryptor can then divide out this value from C and obtain the message M.

5.1 Proof

We prove the following theorem.

Theorem 5.1. Suppose the decisional BDH assumption holds. Then no polytime adversary can
selectively break our system.

Suppose we have an adversaryA with non-negligible advantage ε =AdvA in the selective security
game against our construction. We show how to build a simulator, B, that plays the decisional
BDH problem.

Init The simulator takes in the BDH challenge g, ga, gb, gs, ga, T . The adversary gives the al-
gorithm the challenge access structure (M∗, ρ∗), where M∗ has n∗ columns. The adversary also
specifies an nmax ≥ n∗.

Setup The simulator chooses random α′ ∈ Zp and implicitly sets α = ab+α′ by letting e(g, g)α =
e(ga, gb)e(g, g)α′ .

Next, we describe how the simulator programs the random oracles H1, . . . ,Hnmax by building
tables. Consider a call to Hj(x). If Hj(x) was already defined in the table, then simply return the
same answer as before. Otherwise, choose a random value zx,j ∈ Zp. If there exists an i such that
ρ∗(i) = x and i ≤ n∗, then let

Hj(x) = gzx,jgaMi,j

Otherwise, let H(x) = gzx,j .
We point out a couple of facts. First, the responses from the oracle are distributed randomly

due to the gzx value. Second, by our restriction for any x there is at most one i such that ρ∗(i) = x,
therefore our assignment is unambiguous.
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Phase I In this phase the simulator answers private key queries. Suppose the simulator is given
a private key query for a set S where S does not satisfy M∗.

The simulator first chooses a random r1, . . . , rnmax ∈ Zp. For this discussion we define Mi,j = 0
for n∗ < j ≤ nmax. Then it finds a vector ~w = (w1, . . . , wnmax) ∈ Zp

nmax such that w1 = −1 and
for all i where ρ∗(i) ∈ S we have that ~W ·Mi = 0. By the definition of a LSSS such a vector must
exist. Note we can simply let wj = 0 and consider Mi,j = 0 for n∗ < j ≤ nmax.

The simulator begins by implicitly defining tj as

rj + wj · b

.
It can then calculate all Lj as Lj = grj (gb)wj

We now observe that by our definition of t1, we have that gat1 contains a term of gab, which
will cancel out with the unknown term in gα. The simulator can compute K as:

K = gα′gar1 .

Now we must calculate Kx ∀x ∈ S. First, we consider x ∈ S for which there is no i such that
ρ∗(i) = x. For those we can simply let Kx =

∏
j=1,...,n L

zx,j

j .
The more difficult task is to create keys for attributes x, where x is used in the access structure.

For these keys we must make sure that there are no terms of the form gab that we can’t simulate.
Notice, that in calculating

∏
j H(x)j all terms of this form come from Mi,ja ·wjb for some j, where

ρ∗(i) = x. However, we have that Mi · ~w = 0; therefore, all of these terms cancel.
The simulator creates Kx in this case as

Kx =
∏

j=1,...,nmax

gzx,jrj · gbzx,j · gaMi,jrj .

Challenge Finally, we build the challenge ciphertext. The adversary gives two messages M0,M1

to the simulator. The simulator flips a coin β. It creates C = MβT and C ′ = gs.
The tricky part is to simulate the Ci,j values since the term Hj(ρ∗(i))s will contain terms of

the form gas, that we do not know how to simulate. However, the simulator can choose the secret
splitting, such that these cancel out. Intuitively, the simulator will choose random y2, . . . , yn∗ and
the share the secret using the vector

~v = (s, s + y2, s + y3, . . . , s + yn∗) ∈ Zp
n∗ .

For i = 1, . . . , n the challenge ciphertext components are then generated as

Ci,j = (ga)Mi,jyj (gs)−zρ∗(i),j .

Phase II Same as Phase I.

Guess The adversary will eventually output a guess β′ of β. The simulator then outputs 0 to
guesses that T = e(g, g)abs if β = β′; otherwise, it and outputs 1 to indicate that it believes T is a
random group element in GT .
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When T is a tuple the simulator B gives a perfect simulation so we have that

Pr
[
B
(
~y, T = e(g, g)abs

)
= 0
]

=
1
2

+ AdvA.

When T is a random group element the message Mβ is completely hidden from the adversary and we
have Pr [B (~y, T = R) = 0] = 1

2 . Therefore, B can play the decisional BDH game with non-negligible
advantage.

6 Conclusions

We presented the first ciphertext-policy attribute-based encryption systems that are efficient, ex-
pressive, and provably secure under concrete assumptions. All of our constructions fall under a
common methodology of embedding an LSSS challenge matrix directly into the public parameters.
Our constructions provide a tradeoff in terms of efficiency and the complexity of assumptions.
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A Removing the Random Oracle

In this section we describe how to realize our methodology in the standard model. In the proofs of
our previous constructions the reduction applied the random oracle to “program” in the challenge
ciphertext. the hash function. In the standard model we can achieve a similar type of programming
by simply using a hash function that has enough degrees of randomness to plug in the same
information.

We realize our standard model construction by adapting our main construction from Section 3.
We then prove it secure under the decisional BDHE assumption in the standard model. We remark
that similar techniques can be used to realize our other two constructions in the standard model,
although we do not provide the details here. The adapted construction follows.
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Setup(Attrmax,`max) The setup algorithm takes as inputs the maximum number of attributes
a user’s key may have and the maximum number of columns in a ciphertext access matrix. The
setup algorithm chooses a group G of prime order p and a generator g. For ease of exposition, we
will assume attributes can be represented in Zp. In practice, one would simply apply a collision
resistant hash function from

The algorithm it chooses random exponents α, a ∈ Zp. In addition, we will define a hash
function U : Zp → G. It does this by implicitly choosing a polynomial p(x) ∈ Zp of degree
m = Attrmax + `max − 1. Next it computes u0 = gp(0), . . . , um = gp(m). These m + 1 values when
published will allow anyone (by interpolation) to compute gp(x) for any x ∈ Zp. The public key is
published as

PK = g, e(g, g)α, ga, u0, . . . , um.

The authority sets MSK = gα as the master secret key.

Encrypt(PK, (M,ρ),M ) The encryption algorithm takes as input the public parameters PK
and a message M to encrypt. In addition, it takes as input an LSSS access structure (M,ρ). The
function ρ associates rows of M to attributes. In this construction we limit ρ to be an injective
function, that is an attribute is associated with at most one row of M . That any attribute is
associated with at most one row.

Let M be an `×n matrix. The algorithm first chooses a random vector ~v = (s, y2, ..., yn) ∈ Zn
p .

These values will be used to share the encryption exponent s. For, i = 1 to ` it calculates λi = ~v ·Mi,
where Mi is the vector corresponding to the ith row of M .

The ciphertext is published as

CT =
(
C = Me(g, g)αs, C ′ = gs, C1 = gaλ1U(ρ(1))−s, . . . , C` = gaλ`U(ρ(`))−s

)
along with a description of M,ρ(·).

KeyGen(MSK, S) The key generation algorithm takes as input the master secret key and a set
S of attributes. The algorithm first chooses a random t ∈ Zp. It creates the private key as

K = gαgat L = gt ∀x ∈ S Kx = U(x)t.

Decrypt(CT,SK) The decryption algorithm takes as input a ciphertext CT for a linear access
structure (M,ρ) and a private key for a set S. Suppose that S satisfies the access structure and let
I ⊂ {1, 2, . . . , `} be defined as I = {i : ρ(i) ∈ S}. Then, let {ω ∈ Zp}i∈I be a set of constants such
that if {λi} are valid shares of any secret s according to M , then

∑
i∈I ωiλi = s. (Note that there

could potentially be several different ways of choosing the ωi values to satisfy this.)
The decryption algorithm first computes

e(C ′,K)/

(∏
i∈I

(e(Ci, L)e(C ′,Kρ(i)))
ωi

)

= e(g, g)αse(g, g)ast/

(∏
i∈I

e(g, g)taλiωi

)
= e(g, g)αs.

The decryptor can then divide out this value from C and obtain the message M.
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A.1 Proof

We prove the following theorem.

Theorem A.1. Suppose the decisional q-BDHE assumption holds. Then no poly-time adversary
can selectively break our system with a challenge matrix of size `∗ × n∗ and maximum number of
attributes per key of Attrmax where n∗ + Attrmax ≤ q.

Suppose we have an adversaryA with non-negligible advantage ε =AdvA in the selective security
game against our construction. Moreover, suppose it chooses a challenge matrix M∗ of dimension at
most q columns. We show how to build a simulator, B, that plays the decisional q-BDHE problem.

Init The simulator takes in the BDHE challenge ~y = (g, gs, ga, . . . , gaq
, , gaq+2

. . . , ga2q
), T . The

adversary gives the algorithm the challenge access structure (M∗, ρ∗), where M∗ has n∗ ≤ q
columns.

Setup The simulator chooses random α′ ∈ Zp and implicitly sets α = α′ + aq+1 by letting
e(g, g)α = e(ga, gaq

)e(g, g)α′ .
We describe how the simulator programs the function U = p(x). It chooses n∗ + Attrmax + 1

polynomials p0, p1, . . . , pn∗+Attrmax each of degree Attrmax + `∗. Polynomial p0 is chosen randomly.
It lets polynomials pn∗+1, . . . , pn∗+Attrmax be set to 0 for all `∗ x values where we have an i such
that ρ∗(i) = x and random elsewhere. The polynomials p1, . . . , pn∗ are set such that for each x
such that x = ρ∗(i) we set pj(x) = M∗

i,j for j ∈ [1, n∗].
We then conceptually will set

p(x) =
∑

j∈[0,n∗+Attrmax]

pj · αj .

Using interpolation and the powers gaj
from the assumption we can compute u0, . . . , uAttrmax+nmax .

We point out a couple of facts. First, the parameters are distributed randomly due to the p0

component of the polynomial. Second, by our restriction that ρ∗ to be an injective function for any
x there is at most one i such that ρ∗(i) = x; therefore, our assignment is unambiguous.

Intuitively, for each attribute x that is represented in the challenge ciphertext we are able to
program the function U(x) to reflect the corresponding row M∗ from the simulator’s point of view.

Phase I In this phase the simulator answers private key queries. Suppose the simulator is given
a private key query for a set S where S does not satisfy M∗.

The simulator first chooses a random r ∈ Zp. Next, define the vector ~bx such that bx,j = pj(x).
Then it finds a vector ~w = (w1, . . . , wn∗+Attrmax) ∈ Zp

n∗ such that w1 = −1 and for all x ∈ S

we have ~bx · ~w = 0. By our the definition of a LSSS such a vector must exist, since S does not
satisfy M∗. The first components w1, . . . , wn∗ are chosen as before to satisfy all x ∈ S where x is
an attribute in the challenge set. The other vector components wn∗+1 + wn∗+Attrmax can be chosen
to satisfy the orthogonality condition for all other x with high probability. Note this is possible
since the polynomials are of degree Attrmax + n∗.

The simulator begins by implicitly defining t as:

r + w1a
q + w2a

q−1 + · · ·+ wn∗+Attrmaxa
q−n∗+Attrmax+1.
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It performs this by setting L = gr
∏

i=1,...,n∗(g
aq+1−i

)wi = gt.
We now observe that by our definition of t, we have that gat contains a term of g−aq+1

, which
will cancel out with the unknown term in gα. The simulator can compute K as:

K = gα′gAA
∏

i=2,...,n∗

(gaq+2−i
)wi .

Now we must calculate Kx ∀x ∈ S. For these key components we must make sure that there
are no terms of the form gaq+1

that we cannot simulate. Notice, that in calculating H(x)t all terms
of this form come (in the exponent) from Mi,jaj · wja

q+1−j for some j, where ρ∗(i) = x. However,
we have that Mi · ~w = 0; therefore, everything with an exponent of aq+1 cancels when combined.

The simulator creates Kx in this case as follows. Suppose ρ∗(i) = x. Then

Kx = Lp0(x)
∏

j=1,...,n∗+Attrmax

gr
∏

k=1,...,n∗+Attrmax
k 6=j

(gaq+1+j−k
)wk


pj(x)

.

Challenge Finally, we build the challenge ciphertext. The adversary gives two messages M0,M1

to the simulator. The simulator flips a coin β. It creates C = MβT and C ′ = gs.
The tricky part is to simulate the Ci values since the term H(ρ∗(i))s will contain terms of the

form gajs, that we do not know how to simulate. However, the simulator can choose the secret
splitting, such that these cancel out. Intuitively, the simulator will choose random y2, . . . , yn∗ ∈ Zp

and the share the secret using the vector

~v = (s, Sam + y′2, SSA2 + y′3, . . . , Samn∗−1 + y′n∗) ∈ Zp
n∗ .

This allows the important terms from H(ρ(i))−s to cancel out with the important terms of gaλi .
For i = 1, . . . , n∗ the challenge ciphertext components are then generated as

Ci =

 ∏
j=1,...,n∗

(ga)Mi,jy′j

 (gs)−zρ∗(i) .

Phase II Same as phase I.

Guess The adversary will eventually output a guess β′ of β. The simulator then outputs 0 to
guesses that T = e(g, g)aq+1s if β = β′; otherwise, it and outputs 1 to indicate that it believes T is
a random group element in GT .

When T is a tuple the simulator B gives a perfect simulation so we have that

Pr
[
B
(
~y, T = e(g, g)aq+1s

)
= 0
]

=
1
2

+ AdvA.

When T is a random group element the message Mβ is completely hidden from the adversary
and we have Pr [B (~y, T = R) = 0] = 1

2 . Therefore, B can play the decisional n∗-BDHE game with
non-negligible advantage.
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B Generic Security of Parallel BDHE

We briefly show that the decisional parallel-BDHE assumption is generically secure. We use the
generic proof template of Boneh, Boyen, and Goh [9].

We first recall the decisional q-parallel Bilinear Diffie-Hellman Exponent problem from Section 2.
Choose a group G of prime order p according to the security parameter. Let a, s ∈ Zp be chosen
at random and g be a generator of G. If an adversary is given ~y=

g, gs, ga, . . . , g(aq), , g(aq+2), . . . , g(a2q)

∀1≤j≤q gs·bj , ga/bj , . . . , g(aq/bj), , g(aq+2/bj), . . . , g(a2q/bj)

∀1≤j,k≤q,k 6=j ga·s·bk/bj , . . . , g(aq ·s·bk/bj)

it must remain hard to distinguish e(g, g)aq+1s ∈ GT from a random element in GT .
Using the terminology from BBG we need to show that f = aq+1s in independent of the

polynomials P and Q. Since all given terms are in the bilinear group we have that Q = {1} and
we have that

P = {1, s, ∀i∈[1,2q],j,k∈[1,q],i6=q+1,j 6=k ai, ai/bj , s · bj , ai · s · bk/bj}

We first note that this case at first might appear to be outside the BBG framework, since the
polynomials are rational function (due to the b−1

j terms. However, by a simple renaming of terms

we can see this is equivalent to an assumption where we use a generator u and let g = g
Q

j∈[1,q] bj .
Applying this substitution we get a a set of polynomials where maximum degree of any polynomial
in the set P is 3q + 1.

We need to also check that f is symbolically independent of the of any two polynomials in P,Q.
To realize f from P,Q we would need to have a term of the form am+1s. We note that no such
terms can be realized from the product of two polynomials p, p′ ∈ P . To form such a term it would
need to have a single factor of s. However, if we use the polynomial s as p then no other potential
p′ has am + 1. If we use ais · bk/bj as p, then no matter what p′ is used there will be a factor of bj

left. It follows from the BBG framework that this is generically secure.
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