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Abstract. The recent introduction of Edwards curves has significantly
reduced the cost of addition on elliptic curves. This paper presents new
explicit formulae for pairing implementation in Edwards coordinates.
We prove our method gives performances similar to those of Miller’s
algorithm in Jacobian coordinates and is thus of cryptographic interest
when one chooses Edwards curve implementations of protocols in elliptic
curve cryptography. The method is faster than the recent proposal of Das
and Sarkar for computing pairings on supersingular curves using Edwards
coordinates.
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1 Introduction

Pairings on elliptic curves are currently of great interest due to their applications
in a number of cryptographic protocols such as the tripartite Diffie Hellman [15],
identity-based encryption [5], short signatures [6] and group signatures [7]. In
this paper we propose to reasses the computational cost of pairings in the light
of the introduction by Edwards [11] of a new representation of the addition law
on elliptic curves. Recently, a method for computing pairings in Edwards and
twisted Edwards coordinates for supersingular curves was proposed in [10]. The
approach proposed in the present paper is very different from [10].

Our starting point concerning Edwards curves is a generalized result of Bern-
stein and Lange [3]. They showed that an elliptic curve defined over a field k of
characteristic different from 2 is birationally equivalent over some extension of k
to an Edwards curve, i.e. a curve of the form x2 +y2 = 1+dx2y2 with d /∈ {0, 1}.
A simple and symmetric addition law can be defined on such a curve:

(x1, y1), (x2, y2)→
(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)

. (1)

Bernstein and Lange showed that this addition law is in fact the standard ad-
dition law on the corresponding elliptic curve and gave explicit formulae for
additions and doublings, faster than all previously known formulae.



The algorithm used in pairing computation was first described by Miller and
is an extension of double-and-add method for finding a point multiple. Our goal
in this paper is to extend Miller’s algorithm to allow computation of pairings on
curves given in the Edwards coordinates. For benchmark purposes, we compare
the efficiency of our extension to the use of Jacobian coordinates, which is, to the
best of our knowledge, the faster existing method for computing pairings. In the
case of supersingular curves, we also compare it to results in [10]. We proceed as
in [16] and in [13] and count the number of field multiplications and squarings
that appear in the doubling part of Miller’s algorithm. This seems a fair basis
for comparison when we pair points of r-torsion, with r with small Hamming
weight. As the addition part of an iteration of Miller’s algorithm has become
increasingly important with the introduction of loop-shortening techniques, we
also give global estimates of the number of operations to be done in a Miller
iteration.

The difficulty when trying to express Miller’s algorithm in Edwards coor-
dinates is that it is hard to find the equations of rational functions that need
to be evaluated at each addition step. On a curve in Weierstrass form, this
equations are easily derived from the equation of straight lines. With the Ed-
wards’representation matters are more complex.
Our basic idea is to describe a map of degree 4 from the Edwards curve to a
curve of the form Es,p : s2p = (1 + dp)2 − 4p. This curve has an equation of
total degree 3 and just like for the Weierstrass form, we can easily compute the
equations of the two lines that appear naturally when adding two points P1 and
P2, i.e. the line l passing through P1 and P2 and the vertical line v that passes
through P1 + P2. We then pullback l and v to the Edwards curve. The output
of our algorithm is essentially the desired pairing. More precisely, we obtain the
4-th power of the usual pairing.

The remainder of this paper is organised as follows: Section 2 recalls basic
properties of Edwards curves and of the Edwards addition law. It also presents
Miller’s algorithm on an elliptic curve given by a Weierstrass equation. Section
3 introduces the curve Es,p and explains how to compute pairings on Edwards
curves by using this representation. Finally, in section 4 we give estimates of
the computational cost of the Tate pairing in Edwards coordinates and compare
this cost to that of a pairing implementation in Jacobian coordinates (for a
Weierstrass equation). We treat apart the case of curves with even embedding
degree k, which is prefered in most of the cryptographic applications. In this
case a major part of the computations is performed in a proper subfield of Fqk .

2 Preliminaries

2.1 Edwards coordinates

Edwards showed in [11] that every elliptic curve E defined over an algebraic
number field k is birationally equivalent over some extension of k to a curve of
equation:

x2 + y2 = c2(1 + x2y2). (2)



In this paper, we make use of the results concerning elliptic curves over finite
fields obtained by Bernstein et al. [2]:

Theorem 1. Fix a field Fq with char 6= 2. Let E be an elliptic curve over Fq.
E is birationally equivalent over Fq to an Edwards curve if and only if group
E(Fq) has an element of order 4.

Moreover, it was actually shown in [2] that the curve x2 + y2 = 1 + dx2y2

is birationally equivalent to an elliptic curve Ed : (1/(1 − d))v2 = u3 + 2((1 +
d)/(1− d))u2 + u via the rational map

ψ : Ed → E (3)

(u, v)→
(

2u

v
,
(u− 1)

(u+ 1)

)

.

One may compute the inverse rational map of ψ given by

(x, y)→
(

(1 + y)

(1− y) ,
2(1 + y)

(1 − y)x

)

. (4)

On an Edwards curve we consider the following addition law:

(x1, y1), (x2, y2)→
(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)

. (5)

In [3], it was shown that this addition law corresponds to the standard ad-
dition law on the birationally equivalent elliptic curve and that the Edwards
addition law is complete when d is not a square. This means it is defined for
all pairs of input points on the Edwards curve with no exceptions for doublings,
neutral element etc.

The neutral element of this addition law is O = (0, 1). For every point P =
(x, y) the opposite element is −P = (−x, y). The curve has a 4-torsion subgroup
defined over k. We note T2 = (0,−1) the point of order 2 and T4 = (1, 0),
−T4 = (−1, 0) the two points of order 4.

In the following sections we use projective coordinates. A projective point
(X,Y, Z) satisfying (X2 + Y 2)Z2 = Z4 + dX2Y 2 and Z 6= 0 corresponds to the
affine point (X/Z, Y/Z) on the curve x2 + y2 = 1 + dx2y2. The Edwards curve
has two points at infinity (0 : 1 : 0) and (1 : 0 : 0). These points are actually
singularities of the curve and resolving singularities produces four points defined
over k(

√
d), not over k, as stated in [3].

Edwards curves became interesting for elliptic curve cryptography when it
was proven by Bernstein and Lange in [3] that they provide addition and dou-
bling formulae faster than most previously known addition formulae . Table 1
below gives a cost comparison between operations of addition, doubling and
mixed addition (i.e. the Z-coordinate of one of the two points is 1) on the Ed-
wards curve and on the Weierstrass form in Jacobian coordinates. We remind
the reader that a point (X,Y, Z) in Jacobian coordinates corresponds to the



affine point (x, y) with x = X/Z2 and y = Y/Z3. We note by M the cost of a
field multiplication and by S the cost of a field squaring. We assume that the
cost of addition and that of multiplication by d negligible (we choose d a small
constant).

Table 1. Performance evaluation: Edwards versus Jacobian

Edwards coordinates Jacobian coordinates

addition 10M+1S 11M+5S
(plus S-M tradeoff)

doubling 3M+4S 1M+8S (plus 2 S-M tradeoffs)
or 4M+4S for a = −3

mixed addition 9M+1S 7M+4S
(plus M-S tradeoff)

2.2 Background on pairings

In this section we give a brief overview of the definition of the Tate pairing and
of Miller’s algorithm [17] used in pairing computation. This algorithm heavily
relies on the double and add method for finding a point multiple. Let E be an
elliptic curve of Weierstrass equation

y2 = x3 + ax+ b, (6)

defined over a finite field Fq . Consider r a large prime dividing #E(Fq) and k
the corresponding embedding degree, i.e. the smallest positive integer such that
r divides qk − 1.

Let P be a r-torsion point and for every integer i, denote by fi,P the func-
tion with divisor div (fi,P ) = i(P ) − (iP ) − (i − 1)(O). Note fr,P is such that
div (fr,P ) = r(P ) − r(O).

In order to define the Tate pairing we take Q an element of E(Fqk)/rE(Fqk ).
Let T be a point on the curve such that the support of the divisor D = (Q +
T )− (T ) is disjoint from the one of fr,P . We then define the Tate pairing as:

tr(P,Q) = fr,P (D). (7)

This value is a representative of an element of F ∗

qk/(F
∗

qk)r. However for crypto-
graphic protocols it is essential to have a unique representative so we will raise
it to the ((qk − 1)/r)-th power, obtaining an r-root of the unity. We call the
resulting value the (reduced) Tate pairing:

Tr(P,Q) = tr(P,Q)
qk

−1

r .

Before going into the details of Miller’s algorithm we recall the standard addition
law on an elliptic curve of Weierstrass equation. Suppose we want to compute



the sum of iP and jP for i, j ≥ 1. Let l be the line through iP and jP . Then
l intersects the cubic curve E at one further point R according to Bezout’s
theorem (see [14]). We take v the line between R and O (which is a vertical line
when R is not O). Then v intersects E at one more point which is defined to be
the sum of iP and jP , that is (i+ j)P .
The lines l and v are functions on the curve and the corresponding divisors are

div (l) = (iP ) + (jP ) + (R)− 3(O)

div (v) = (R) + ((i+ j)P )− 2(O).

One can then easily check the following relation:

fi+j,P = fi,P fj,P
l

v
. (8)

In the sequel we will call this relation Miller’s equation. Turning back to Miller’s
algorithm, suppose we want to compute fr,P (D). We compute at each step of the
algorithm on one side [m]P , where m is the integer with binary expansion given
by the i topmost bits of the binary expansion of r, and on the other side fm,P

evaluated at D, by exploiting the formula above. We call the set of operations
executed for each bit i of r a Miller operation.

Algorithm 1 Miller’s algorithm

Choose a random point T ∈ E(Fqk) and compute Q
′

= Q + T ∈ E(Fqk). Set n =
[log

2
(r)]− 1, K ← P , f ← 1.

while n ≥ 1 do

Compute equations of l and v arising in the doubling of K.
K ← 2K and f ← f2(l(Q

′

)v(T ))/(v(Q
′

)l(T )).
if the nth bit of r is one then

Compute equations of l and v arising in the addition of K and P .
K ← P + K,f ← f(l(Q

′

)v(S))/((l(S)v(Q
′

)).
end if

n← n− 1.
end while

The advantage of dealing with the Weierstrass form when running the algo-
rithm is that the equations of l and v are easy to find as they already appear
in the addition process. This is obviously not the case with the Edwards curve,
whose equation has degree 4. It is difficult to describe the equation of a function
with divisor equal to div(fi+j,P /fi,P fj,P ) and establish a relation of type (8).
An idea would be to consider the Miller equation on the birationally equivalent
Weierstrass curve and then to transport this equation on the Edwards curve.
However this yields an highly inefficient pairing computation. Our proposal is to
map the Edwards curve to another genus 1 curve with an equation of degree 3,
get l and v as straight lines and then pull them back to the Edwards curve.



3 Pairings on Edwards curves

In this section E denotes an Edwards curve defined over some finite field Fqk

of odd characteristic. Let us take a look at the action of the 4-torsion subgroup
defined over k on a fixed point on the Edwards curve P = (x, y), with xy 6= 0.
A simple computation shows that P + T4 = (y,−x), P + T2 = (−x,−y) and
P − T4 = (−y, x). We notice then that by noting p = (xy)2 and s = x/y − y/x
we characterize the point P up to an addition with a 4-torsion point. This leads
us to consider the following morphism from the Edwards curve to a curve of
equation Es,p : s2p = (1 + dp)2 − 4p:

φ : E → Es,p

φ(x, y) = ((xy)2,
x

y
− y

x
).

In this section we study the arithmetic of the Es,p curve, establish a Miller
equation on this curve and then take its pullback, getting a Miller equation this
time on the Edwards curve. This yields all the necessary tools to apply Miller’s
algorithm on the Edwards curve.

3.1 Arithmetic of the curve s2p = (1 + dp)2 − 4p

In this section we study the arithmetic of the curve:

Es,p : s2p = (1 + dp)2 − 4p.

The equation of Es,p in homogenous coordinates (P, S, Z) is given by S2P =
(Z + DP )2Z − 4PZ2. If we dehomogenize this equation by putting P = 1 we
get the Weierstrass equation of an elliptic curve

s2 = z3 + (2d− 4)z2 + d2z. (9)

We note Os,p = (0, 1, 0) the point at infinity and T2,s,p = (1, 0, 0) which is a
two torsion point.

The following definition is simply another way to write the addition law on
an elliptic curve in (p, s) coordinates.

Definition 1. Let P1, P2 ∈ Es,p, L the line connecting P1 and P2 (tangent line

to Es,p if P1 = P2), and R the third point of intersection of L with E. Let L
′

be
the vertical line through R (of equation p = pR). Then P1 +P2 is the point such
that L

′

intersects Es,p at R and P1 + P2 (the point symmetric to R with respect
to the p axis).

We now show that this addition law corresponds to the addition law induced
by the Edwards addition law via the map φ.

Theorem 2. Let P1 = (x1, y1) and P2 = (x2, y2) be two points on the Edwards
curve and P3 their sum. Then φ(P3) is the sum of φ(P1) and φ(P2) in the
addition law of Definition 1.



Proof. Consider ψ : Ed → E the map defined in Note 3. Then one can easily
see that φ ◦ ψ is an isogeny from Ed to the elliptic curve Es,p. Moreover it was
shown in Theorem 3.2 of [3] that the Edwards addition law on E is the same as
the addition law induced by ψ. It follows that the addition law induced by φ is
the same as the standard addition law on the elliptic curve, so it corresponds to
the addition law described at Definition 1. ⊓⊔

As in the sequel we need to compute the pullback of certain functions on the
Es,p curve we now compute the degree of this map.

Proposition 1. The map φ : E → Es,p is separable of degree 4.

Proof. Let P = (x, y) be a point on the Edwards curve. The doubling formula
gives:

2P =

(

2xy

1 + d(xy)2
,
y2 − x2

1− d(xy)2
)

=

(

2xy

x2 + y2
,

y2 − x2

2− (x2 + y2)

)

.

If xy 6= 0 then by noting p = (xy)2 and s = x/y − y/x we can write:

4P =

(

4ps(1− d2p2)

(1− d2p2)2 − 4dp2s2
,

4p(1 + dp)2 − ps2
(1− d2p2)2 + 4dp2s2

)

.

This means that by defining

ψ : Es,p → E

(p, s)→
(

4ps(1− d2p2)

(1 − d2p2)2 − 4dp2s2
,

4p(1 + dp)2 − ps2
(1− d2p2)2 + 4dp2s2

)

we get a rational map ψ such as φ◦ψ = [4] on E. It follows that degφ divides 16.
As degi φ is a power of the characteristic of Fq, we deduct that φ is a separable
map (we have supposed the characteristic of Fq different from 2). By putting
φ(P ) = Q we easily get φ−1(Q) = {P, P +T2, P +T4, P −T4}. We conclude that
degφ = 4.⊓⊔

3.2 Miller’s algorithm on the Edwards curve

Let P be a r-torsion point on the Edwards curve. We consider slightly modified

functions f
(4)
i,P :

f
(4)
i,P = i((P ) + (P + T4) + (P + T2) + (P − T4))

− ((iP ) + (iP + T4) + (iP + T2) + (iP − T4))

− (i− 1)((O) + (T4) + (T2) + (−T4)).



Then f
(4)
r,P = r((P )+ (P +T4)+ (P +T2)+ (P −T4))− r((O)+ (T4)+ (T2)+

(−T4)), which means that we can compute the Tate pairing up to a 4-th power:

Tr(P,Q)4 = f
(4)
r,P (Q)

qk
−1

r .

We also get the following Miller equation:

f
(4)
i+j,P = f

(4)
i,P f

(4)
j,P

l

v
, (10)

where l/v is the function of divisor

div(
l

v
) = ((iP ) + (iP + T4) + (iP + T2) + (iP − T4))

+ ((jP ) + (jP + T4) + (jP + T2) + (jP − T4))

− (((i+ j)P ) + ((i+ j)P + T4) + ((i+ j)P + T2) + ((i+ j)P − T4)))

− ((O) + (T4) + (T2) + (−T4)).

Let P
′

= φ(P ) and let ls,p and vs,p be functions on the Es,p curve such that

div (ls,p) = (iP
′

) + (jP
′

) + (−(i + j)P
′

) − 2(T2,s,p) − (Os,p) and div (vs,p) =

((i+ j)P
′

) + (−(i+ j)P
′

)− 2(T2,s,p).
We observe that we have l/v = φ∗(ls,p/vs,p) up to constants. It is easy to

find the equations of ls,p and vs,p as they appear naturally in the definition of

the sum iP
′

+ jP
′

, namely ls,p is the line connecting iP
′

and jP
′

, and vs,p is the

vertical line through (i+j)P
′

. As we will see in the next section, we can compute
their pullback via the map φ without any significant computational cost.

4 Pairing computation in Edwards coordinates

In this section we take a look into the details of the computation of pairings
in Edwards coordinates and give estimates of the computational costs of the
Miller operation. Following [16] and [13], we start by estimating the cost of

evaluating the function f
(4)
r,P (D) in terms of the cost of the doubling part of a

Miller operation, which is executed for every bit of r. This seems reasonable,
as it gives an evaluation which is independent from any fast exponentiation
techniques that might be used in the implementation of the algorithm, such as
the sliding window method or the use of a signed Hamming weight representation
for r. We recall that a signed representation (mn−1...m0)s is said to be in non-

adjacent form, or NAF for short, if mimi+1 = 0, for all i ≥ 0. It appears that
this representation is unique and on average the number of non-zero terms in a
NAF expansion of length n is n/3 (see [8]).

Moreover, in many cryptographic applications it is possible to choose r with
low Hamming weight. Construction of supersingular curves of embedding degrees
1 and 2 given in [16] enables the choice of a r of low Hamming weight. As for
ordinary curves, the construction of Cocks and Pinch as described in [4, p. 210]



allows for r to be chosen arbitrarily, so a prime of low Hamming weight can be
chosen. Further examples are provided by a construction of Brezing and Weng [9]
for prime embeddings degrees k, extended in [12] for all odd k < 200.

Example 1. The following example is given in [10]. Consider E : y2 = x3+x over
Fq, with q ∼= 3 mod 4. Then this curve is supersingular and its corresponding
Edwards form is x2 + y2 = 1 − (xy)2, so d = −1. One may choose for instance
p = 2520 + 2363− 2360− 1, r = 2160 + 23 − 1 or p = 21582 + 21551 − 21326 − 1, r =
2256 + 2225 − 1.

In order to give a complete evaluation of the complexity, we also count the
number of operations in the mixed addition step of the Miller operation and
compare it to the mixed addition step in Jacobian coordinates. As to the best
of our knowledge, estimates of the cost of the mixed addition step in Jacobian
coordinates do not exist in the literature, we also give an operation count of this
step in Appendix A.

4.1 The case k = 1

We write the functions l and v that appear in (10) as l = l1/l2 and v = v1/v2.
We show that the denominators l2 and v2 are constant. It follows that in the
double and add method, after initially setting K = P and f1 = f2 = 1, we only
have to do the following evaluations for the i-th bit of r:

K ← 2K

f1 ← f2
1 l1(T +Q)v1(T ) (11)

f2 ← f2
2 l1(T )v1(Q+ T ).

Following [3] the doubling formulas for K = (X1, Y1, Z1) are:

X3 = 2X1Y1(2Z
2
1 − (X2

1 + Y 2
1 )),

Y3 = (X2
1 + Y 2

1 )(Y 2
1 −X2

1 ),

Z3 = (X2
1 + Y 2

1 )(2Z2
1 − (X2

1 + Y 2
1 )).

On the curve Es,p we consider ls,p the tangent line to the curve at φ(K) =
(p1, s1) and vs,p the vertical line passing through φ(2K) = (p3, s3). These lines
have the following equations:

ls,p(s, p) = 2s1p
2
1(s− s1)− (p− p1)(2d(1 + dp1)− (s21 + 4))p1,

vs,p(s, p) = p− p3.

Consequently we get the following equations of l and v on the Edwards curve:

l(x, y) = l1(x, y)/l2 = ((X2
1 + Y 2

1 − Z2
1 )(X2

1 − Y 2
1 )((2X1Y1(x/y − y/x)

− 2(X2
1 − Y 2

1 ))− Z3(dZ
2
1 (xy)2 − (X2

1 + Y 2
1 − Z2

1 )))/Z6
1

v(x, y) = v1(x, y)/v2 = (dZ2
3 (xy)2 − (X2

3 + Y 2
3 − Z2

3 ))/Z2
3 .



At each step, we assume that X2
1 , Y 2

1 and Z2
1 , as well as dZ2

1 (xy)2 − (X2
1 +

Y 2
1 −Z2

1) have already been computed as a side effect of the function evaluation
corresponding to the last addition performed in the Miller operation for the
(i + 1)-th bit of r. Note that if the (i + 1)-th bit is 1, this addition is not a
doubling, but a mixed addition of K and P .

We choose to compute fr,P (D), with D = (Q+ T )− (T ) where T = (0, 1).3

We will actually make use of the following equation:

v1(T )/l1(T ) = 4Z2
1(Y 2

1 −X2
1 )/2X1Y1.

The operations to be done in the doubling step of Miller’s algorithm are
detailed in table 2:

Table 2. Operations of the doubling part of a Miller operation

A = (X1 + Y1)
2, B = X2

1 + Y 2

1 , C = A−B, D = Y 2

1 −X2

1 , (1S)
E = 2Z2

1 −B, X3 = C · E, Y3 = B ·D, Z3 = B · E (3M)
F = X2

3 , G = Y 2

3 , H = Z2

3 , I = Z2

1 ·D, (3S+1M)
K = C · (x/y − y/x) + 2D, L = (Y3 − I) ·K, M = Z3 · v1 (3M)

l1 = L−M, v1 = dH · (xy)2 − (B − Z2

1 ), (1M)
X1 = X3, Y1 = Y3, Z1 = Z3,

f1 = f2

1 · l1 · (4I), f2 = f2

2 · v1 · C. (2S+4M)

The mixed addition step in Miller’s algorithm in Edwards coordinates is the
following:

K ← K + P

f1 ← f1l1(T +Q)v1(T ) (12)

f2 ← f2l1(T )v1(T +Q).

We count the number of operations that must be executed when adding
K = (X1, Y1, Z1) and P = (X0, Y0, 1). The result is K + P = (X3, Y3, Z3) with:

X3 = Z1(X0Y1 + Y0X1)(Z
2
1 + dX0X1Y0Y1)

Y3 = Z1(Y0Y1 −X0X1)(Z
2
1 − dX0X1Y0Y1)

Z3 = (Z2
1 + dX0X1Y0Y1)(Z

2
1 − dX0X1Y0Y1)

3 In computations we actually work with l
′

1(x, y) = (xy)l1(x, y) instead of l1(x, y).
This trick has no effect on the final result and minimizes the number of operations
done when evaluating at point T . On the other hand, when evaluating at point
Q + T , whose x and y coordinates are both different from 0, we use l1 and leave
the xy factor aside. This will give a (xy)r factor in the end, which disappears when
considering the reduced Tate pairing.



We compute these coordinates in a slightly different way from [3]. We suppose
having precomputed X2

1 ,Y 2
1 and Z2

1 at the addition performed before in Miller’s
algorithm. We also suppose having precomputed X0Y0 once and for all in the
very beginning.
Next, we consider ls,p and vs,p, the straight lines passing through K

′

= φ(K)

and P
′

= φ(P ) and the vertical line passing through the point φ(K) +φ(P ). By
putting K

′

= (s1, p1), P
′

= (s0, p0) and φ(T ) + φ(P ) = (s3, p3) we get:

ls,p(s, p) = (p0 − p1)(s− s1)− (s0 − s1)(p− p1);

vs,p(s, p) = p− p3.

Consequently we get the following equations for pullbacks:

l(x, y) = l1(x, y)/l2 = (X2
1 + Y 2

1 − Z2
1 − dZ2

1 (X0Y0)
2))(X1Y1(

x

y
− y

x
)− (X2

1 − Y 2
1 ))

− (X2
1 − Y 2

1 −X1Y1(
X0

Y0
− Y0

X0
)(dZ2

1 (xy)2 − (X2
1 + Y 2

1 − Z2
1))/Z4

1 ;

v(x, y) = v1(x, y)/v2 = (dZ2
3 (xy)2 − (X2

3 + Y 2
3 − Z2

3))/Z2
3 .

Detailed computations of the mixed addition step are presented in table 3:

Table 3. Operations of the mixed addition step of a Miller operation

A = X1 · Y1, B = d · A · (X0Y0) (2M)
C = (X1 + X0) · (Y0 + Y1)− A−X0Y0; D = (X1 + Y0) · (Y1 −X0)− A + X0Y0 (2M)

X3 = Z1 · C · (Z
2

1 + B), Y3 = Z1 · (Z
2

1 + B) ·D, Z3 = (Z2

1 −B) · (Z2

1 + E) (5M)
E = X2

3 , F = Y 2

3 , G = Z2

3 (3S)
H = dZ2

1 · (X0Y0)
2, I = X1Y1 · (

x

y
−

y

x
)− (X2

1 − Y 2

1 ), J = (X2

1 + Y 2

1 − Z2

1 −H) · I (3M)

K = X1Y1 · (
X0

Y0

−
Y0

X0

), L = (X2

1 − Y 2

1 −K) · (dZ2

1(xy)2 − (X2

1 + Y 2

1 − Z2

1 )) (2M)

l1 = J − L, v1 = dG · (xy)2 − (E + F −G) (1M)
M = (X2

1 + Y 2

1 − Z2

1 −H) ·A (1M
f1 = f1 · l1 · (−E − F + G), f2 = f2 · v1 ·M (4M)

The operation count is presented in table 4.

Table 4. Comparison of costs in the case k = 1

doubling step mixed addition step

Jacobian coordinates 10M+10S 18M+3S

Edwards coordinates 12M+6S 20M+3S



4.2 The case of an even embedding degree

Koblitz and Menezes showed in [16] that if q and k are chosen such as p ≡ 1
(mod 12) and k = 2i3j, then the arithmetic of the extension field Fpk can be
implemented very efficiently as this field can be built up as a tower of extension
fields:

Fq ⊂ Fqd1 ⊂ Fqd2 ... ⊂ Fqk .

where the ith field Fqdi is obtained by adjoining a root of some irreducible

polynomial Xdi/di−1 − βi and di/di−1 ∈ {2, 3}.
We note by m,M (respectively s,S) the costs of multiplications (respectively

squarings) in the field Fp and in extension Fpk . Then according to [16] we get

M ≈ v(k)m and S ≈ v(k)s,

where v(k) = 3i5j . Moreover, a multiplication of an element in Fqk by an element
in Fq costs km operations. Suppose now that we want to compute the Tate
pairing Tr(P,Q).

In most cryptographic protocols there is some flexibility in the choice of the
order r subgroups generated by P and Q. P can be chosen such that < P > is
the unique subgroup of order r in E(Fq). Moreover, if the embedding degree is
even, it was shown that the subgroup < Q >⊂ E(Fqk ) can be taken so that the
x-coordinates of all its points lie in Fqk/2 and the y-coordinates are products of

elements of Fqk/2 with
√
β, where β is a nonsquare in Fqk/2and

√
β is a fixed

squareroot in Fqk (see [16] for details). Then the computational cost of the Tate
pairing is significantly lower as we can ignore terms that lie in a proper subfield
of Fqk . These terms can be ignored because k is the multiplicative order of q

modulo r, so (qk − 1)/r is a multiple of qk
′

− 1 for some proper divisor k
′

of
k. Besides it was shown in [1] that in this case the auxiliary point T can be

ignored and the pairing value is given by fr,P (Q)(q
k
−1)/r. Since the x-coordinate

of Q and hence v1(Q) is in Fqk/2 it follows that we can also ignore it. Hence the
function evaluation step in the doubling part of Miller’s algorithm 1 becomes

f1 ← f2
1 l1(Q). (13)

The same kind of considerations are to be done for Edwards coordinates. To
do this we need to take a look at the birational map that transforms a curve
of Weierstrass equation into a curve of Edwards equation. As stated in section
2.1 the curve x2 + y2 = 1 + dx2y2 is birationally equivalent to the curve of
equation (1/(1 − d))v2 = u3 + 2((1 + d)/(1 − d))u2 + u, via the rational map
(u, v)→ (2u

v ,
u−1
u+1 ).

It follows that in the case of an even embedding degree, the coordinates of
elements of < P > can be chosen in Fq. The subgroup < Q >∈ Fqk can be
chosen such as its elements have y-coordinates in the quadratic subextension
Fqk/2 and x-coordinates that can be written as products of elements of Fqk/2

with some squareroot of a nonsquare element β of Fqk/2 . Hence we can do the
same denominator elimination trick as above and the function evaluation step



in in the doubling part of the Miller operation has the same form as the one
in Jacobian coordinates of (13). Because some operations are done in Fqk and
others in Fq we compute l1 as follows:

l1(x, y) = ((Y3 − I) · C) · (x/y − y/x)− (Y3 − I) · 2D − Z3 · dZ2
1 · (xy)2

+ Z3 · (X2
1 + Y 2

1 − Z2
1 ),

The detailed computation of the doubling step is given in table 5.

Table 5. Operations of the doubling part of Miller’s equation

A = (X1 + Y1)
2, B = X2

1 + Y 2

1 , C = A−B, D = Y 2

1 −X2

1 (1s)
E = 2Z2

1 −B, X3 = C · E, Y3 = B ·D, Z3 = B · E (3m)
F = X2

3 ; G = Y 2

3 ; H = Z2

3 ; I = Z2

1 ·D. (1m+3s)
K = (Y3 − I) · C, L = K · (x/y − y/x), M = (Y3 − I) · 2D, N = Z3 · dZ

2

1 (3m+k/2m)
O = M · (xy)2, P = Z3 · (X

2

1 + Y 2

1 − Z2

1 ), l1 = L−M −O + P, (1m+k/2m)
X1 = X3, Y1 = Y3, Z1 = Z3,

f1 = f2

1 l1 (1M+1S)

Results are summarized in the table 6.

Table 6. Comparison of costs for the doubling step of the Miller operation in the case
of k even

k = 2 k ≥ 4

Jacobian coordinates 6s + 7m + S + M 6s + (k + 6)m + S + M

Jacobian coordinates for a = −3 4s + 8m + S + M 4s + (k + 7)m + S + M

Das/Sarkar Edwards coordinates
6s + 9m + S + M -

(supersingular curves)

Edwards coordinates 4s + 10m + S + M 4s + (k + 8)m + S + M

We can see that in the case of an even embedding degree the cost of an
implementation of Miller’s algorithm in Edwards coordinates will be comparable
to the cost of an implementation in Jacobian coordinates. We find it important to
state that, no matter the representation one might choose to implement Miller’s
algorithm in high embedding degrees, it would be impossible to avoid the costly
computation of M+S in equation (13), as the final result needs to be an element
of Fqk .

For the same reasons as above, the mixed addition in equation (12) becomes:

f1 → f1 · l1(Q) (14)

The operation count is quite similar to the one in table 3, so we do not detail
it here. Results and performance comparison are presented in the table 7.



Table 7. Comparison of costs for the mixed addition step of the Miller operation in
the case of k even

k = 2 k ≥ 4

Jacobian coordinates 3s + 15m + M 3s + (k + 13)m + 1M

Das/Sarkar Edwards coordinates
1s + 18m + M -

(supersingular curves)

Edwards coordinates 3s + 15m + M 3s + (k + 13)m + 1M

5 Conclusion

In this paper, we have given a new algorithm to compute pairings on Edwards
curves and compared its performance to that of an implementation of Miller’s
algorithm in Jacobian coordinates and to the method for Edwards coordinates
from [10]. Our count shows that our algorithm is slightly slower than Jacobian
coordinates for the most frequently used case of curves with an even embedding
degree and faster than the previously known approach for Edwards coordinates.
Moreover, in the special case of embedding degree one, it becomes faster than
Miller’s algorithm using Jacobian coordinates.

We did not include in our analysis the case of curves of odd embedding degree.
Although examples of such curves do exist in literature (see [9] and [12]), they
are less used in practice. We expect similar results to hold in such cases.
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A Pairing computation in Jacobian coordinates

We begin with the doubling step of the Miller operation for the bit i. We write
the functions l and v that appear in (8) as l = l1/l2 and v = v1/v2 (we will see
that the denominators are constant). So in the double and add method, after
initially setting K = P and f1 = f2 = 1, we have to do the following evaluations
for the ith bit of r:

K ← 2K

f1 ← f2
1 l1(T +Q)v1(T ) (15)

f2 ← f2
2 l1(T )v1(Q+ T ).

A doubling of the point K = (X1, Y1, Z1) takes the form 2K = (X3, Y3, Z3) with

X3 = (3X2
1 + aZ4

1 )2 − 8X1Y
2
1 ,

Y3 = (3X2
1 + aZ4

1 )(4X1Y
2
1 −X3)− 8Y 4

1 ,

Z3 = 2Y1Z1.

The functions l and v, corresponding respectively to the tangent line to the curve
at K and the vertical line through the point 2K have the following equations:

l(x, y) = l1(x, y)/l2 = (Z3Z
2
1y − 2Y 2

1 − (3X2
1 + aZ4

1 )(xZ2
1 −X1))/(Z3Z

2
1 )

v(x, y) = v1(x, y)/v2 = (Z2
3x−X3)/Z

2
3 .

As we need to evaluate l and v at Q + T and T , the constant denominators
l2 and v2 will cancel. According to [16], we suppose T = (0, 0) in order to
minimize computations. In the operation count we do not take into consideration
the computations of Z2

1 and Z2
1x − X1 as they have already been done in the

computation of Z2
3 and Z2

3x − X3 at the point addition executed just before.
Obviously, if the (i+ 1)th bit was a 1, the addition before was not a doubling,
but a mixed addition of K and P . The operations to be performed are described
in table A. We count 10M+10S in all.

Table 8. Operations of the doubling part of a Miller operation

A = (Z2

1 )2, B = X2

1 , C = Y 2

1 , D = C2 (4S)
E = (X1 + C)2 −B −D, F = 3B + aA (1S)

X3 = −2E + F 2; Y3 = −8D + F · (E −X3); Z3 = (Y1 + Z1)
2
− C − Z2

1 (1M+2S)
G = Z3 · Z

2

1 , H = G · y, I = F · (Z2

1x−X1) (3M)
J = Z2

3 , v1 = J · x−X3, K = F ·X1 (2M+1S)
f1 = f2

1 · l1 · (−X3) (2M+1S)
f1 = f2

1 · v1 ·K (2M+1S)

The mixed addition step implies the following operations:



K ← K + P

f1 ← f1l1(T +Q)v1(T ) (16)

f2 ← f2l1(T )v1(T +Q)

(17)

When adding K = (X1, Y1, Z1) and P = (X0, Y0, 1) the result takes this form
K + P = (X3, Y3, Z3) with

X3 = (X1 +X0Z
2
1 )(X1 −X0Z

2
1 )2 + (Y0Z

3
1 − Y1)

2,

Y3 = (Y0Z
3
1 − Y1)(X1(X1 −X0Z

2
1 )2 −X3) + Y1(X1 −X0Z

2
1 )2,

Z3 = Z1(X0Z
2
1 −X1).

The functions l and v have the following equations:

l(x, y) = l1(x, y)/l2 = (X1 −X0Z
2
1)(Z3

1y − Y1)− (Y0Z
3
1 − Y1)(Z

2
1x−X1)/Z

2
1Z3,

v(x, y) = v1(x, y)/v2 = (Z2
3x−X3)/Z

2
3 .

Computations are detailed in the table A. We count 18M+3S in all.

Table 9. Operations of the mixed addition step in a Miller operation

A = X0 · Z
2

1 , B = (X1 − A)2, C = Z2

1 · Z1 (2M+1S)
D = Y0 · C, E = (D − Y1)

2, F = X1 · B (2M+1S)
G = Y1 ·B, X3 = (X1 + A) ·B + E, Y3 = (D − Y1) · (F −X3) + G (3M)

Z3 = Z1 · (A−X1), H = C · y, I = Z2

3 , J = I · x (3M+1S)
K = Y1 · (X1 − A), L = X1 · (D − Y1) (2M)

l1 = (X1 − A) · (H − Y1)− (D − Y1) · (Z
2

1x−X1), v1 = J −X3 (2M)
f1 = f1 · l1 · (−X3) (2M)

f1 = f1 · v1 · (−K − L) (2M)


