
Playing Hide-and-Seek with a Focused Mobile Adversary:
Maximizing Data Survival in Unattended Sensor Networks

Roberto Di Pietro1

UNESCO Chair in
Data Privacy

Universitat Rovira i Virgili
roberto.dipietro@urv.cat

Luigi V. Mancini
Universita’ di Roma

“La Sapienza”
Dipartimento di Informatica
mancini@di.uniroma1.it

Claudio Soriente2

University of California, Irvine
Computer Science Department

csorient@ics.uci.edu

Angelo Spognardi
INRIA Rhône-Alpes

Equipe Planete
spognard@inrialpes.fr

Gene Tsudik
University of California, Irvine

Computer Science Department
gts@ics.uci.edu

ABSTRACT
Some sensor network settings involve disconnected or unat-
tended operation with periodic visits by a mobile sink. An
unattended sensor network operating in a hostile environ-
ment can collect data that represents a high-value target for
the adversary. Since an unattended sensor can not immedi-
ately off-load sensed data to a safe external entity (such as a
sink), the adversary can easily mount a focused attack aim-
ing to erase or modify target data. To maximize chances of
data survival, sensors must collaboratively attempt to mis-
lead the adversary and hide the location, the origin and the
contents of collected data.

In this paper, we focus on applications of well-known se-
curity techniques to maximize chances of data survival in
unattended sensor networks, where sensed data can not be
off-loaded to a sink in real time. Our investigation yields
some interesting insights and surprising results. The high-
lights of our work are: (1) thorough exploration of the data
survival challenge, (2) exploration of the design space for
possible solutions, (3) construction of several practical and
effective techniques, and (4) their evaluation.

1. INTRODUCTION
In recent years, sensors and sensor networks have

been extremely popular in the research community. Much
of prior research explored various aspects of Wireless
Sensor Networks (WSNs), including: system architec-
ture, routing, security, power-awareness and data ab-
straction. In particular, security issues in WSNs have
received a lot of attention. One common assumption
in prior WSN security research is that data collection
is performed in, or near, real time. In other words,

1Also with Università di Roma Tre, Dipartimento di Matem-
atica. E-mail: dipietro@mat.uniroma3.it
2Part of this work was completed while visiting the UN-
ESCO Chair in Data Privacy at Universitat Rovira i Virgili

a trusted entity (such as a sink) is assumed to be al-
ways present. Individual sensors submit their data to
the sink either periodically or based on some external
trigger, e.g., a change in the sensed environment or an
explicit request by the sink.

Another emerging sensor network type involves sen-
sor mobility and opportunistic connectivity among sen-
sors as well as between sensors and the sink [17, 21,
19]. This concept is similar to Delay Tolerant Net-
works (DTNs). It is characterized by sensors’ inability
to communicate with other sensors, for reasons such as:
limited transmission ranges, power constraints or signal
propagation problems. (e.g., line-of-sight limitations or
physical obstacles).

In this paper, we focus on WSN scenarios and appli-
cations that do not fit into either the real-time data col-
lection model or the opportunistic DTN-like model. We
are interested in sensor networks where sensors are con-
nected but there is no real-time communication with the
sink. We refer to such networks as Unattended WSNs or
UWSNs. We narrow our scope even further to UWSNs
operating in a hostile – or at least untrusted – environ-
ment where the adversary has free reign. Specifically,
the adversary has one central goal: to prevent certain
data collected by sensors from ever reaching the sink.
We elaborate on this below.

One example of hostile unattended environment could
be a network of nuclear emission sensors deployed in a
recalcitrant country (under, say, an international treaty)
in order to monitor any potential nuclear activity. An-
other example is an underground sensor network aimed
at monitoring sound and vibration produced by troop
movements (or border crossings). One can also imag-
ine an airborne sensor network tracking fluctuations in
air turbulence and pressure to detect enemy aircrafts.
Among the features that unify these examples is the
likely presence of a powerful – yet careful – adversary.

1

Informally speaking, we say that the adversary is pow-
erful if it can subvert a number of sensors at will, while
it is considered careful if it wishes to remain undetected
in the process.
Quite recently, the U.S. Defense Advanced Research
Projects Agency (DARPA) initiated a new research pro-
gram to develop so-called LANdroids [12]: smart robotic
radio relay nodes for battlefield deployment. LANdroid
nodes are supposed to be deployed in hostile environ-
ment, establish an ad-hoc network, and provide connec-
tivity as well as valuable information for soldiers that
would later approach the deployment area. LANdroids
might retain valuable information for a long time, un-
til soldiers move close to the network. In the interim,
the adversary might attempt to delete or modify that
information, without disrupting network operations, so
as to remain undetected.

In such settings, the greatest challenge is to ensure
data survival for long enough that it can be collected
by the itinerant sink. Clearly, if the adversary is unable
to break into (i.e., compromise) a single sensor or in-
hibit communication between a sensor and an eventual
collector or sink, it has no hope of destroying the data.
However, we envisage a more realistic adversary who is
aware of the origin(s) of targeted data and is also as-
sumed capable of compromising any sensor it chooses,
up to a specific threshold (fraction or absolute number)
of sensors, within a certain time interval. This type of
adversary has been studied in the cryptographic litera-
ture where it is usually referred to as a Mobile Adversary
[15]. An entire branch of cryptography, called Proactive
Cryptography has been dedicated to developing crypto-
graphic techniques (e.g., decryption and digital signa-
tures [7, 8]) that remain secure in the presence of a
mobile adversary. Although our adversary models are
similar, the UWSN application domain is very differ-
ent from that in proactive cryptography (as described
below), thus motivating radically different solutions.

Scope..
This paper represents the very first attempt to de-

velop cryptographic defenses for coping with a focused
mobile adversary in UWSNs. However, as becomes
clear throughout, this paper does not address a num-
ber of important problems. This is partly because of
space limitations and partly due to the novel nature of
the topic and problem at hand. We expect that this
paper will result in follow-on investigations on our part
as well on the part of the larger research community.

We also stress that our work is oriented towards sen-
sor networks and is not particularly novel in terms of
cryptography. Its novelty stems from applying well-
known and accepted cryptographic tools to solving a
novel networking problem.

Our Contributions.
This paper aims to make the following contributions:

1. Problem Exposure: although some recent work [6]
first brought the problem to light, it focused on
trivial and intuitive data survival strategies. In
contrast, the present work delves much deeper into
the problem and constructs effective and efficient
countermeasures that achieve our main goal of max-
imizing data survival in UWSNs in the presence of
a powerful mobile adversary.

2. Novel Techniques & Analysis: we thoroughly ex-
plore the design space of cryptographic solutions
and – without resorting to expensive and/or exotic
techniques – develop several practical and optimal
(or near-optimal) data survival strategies. Our in-
vestigation yields some unexpected results and our
evaluations of proposed techniques demonstrate a
surprising degree of data survival even when the
adversary is very agile and powerful, while the sen-
sor network remains unattended for a relatively
long time.

Organization.
Section 2 introduces our environment assumptions.

Then, Section 3 explores potential data survival strate-
gies for the UWSN, adversarial counter-strategies and
a number of design parameters. Section 4 investigates
encryption–related issues and parameters. Section 5
presents our analysis. Next, Section 6 overviews rele-
vant prior work. Finally, Section 7 provides a summary
and some directions for future work.

2. SYSTEM ASSUMPTIONS
In this section we present our assumptions about the

sensor network environment and the adversary.

2.1 Network Environment
We envisage a UWSN which operates as follows:

• Sensors are programmed to sense and collect data
periodically. There is a fixed global periodicity
parameter p denoting the time interval between
successive sensing operations.

• Each sensor collects a single unit of data for each
interval. In an UWSN composed of n sensors, we
say, each sensor sj collects data dr

j for interval r.

• The network is unattended. There exists a param-
eter q (q = v ∗ p for some integer v) which denotes
the maximum time between successive visits of the
sink or collector. (We use the term sink from here
on to mean both.)

2

• As soon as each sensor off-loads its accumulated
data to the sink, it erases its entire storage. More-
over, the sink re-initializes all sensors’ secret ma-
terial upon each visit. (In other words, any secret
values held by a sensor right before the sink visit
are completely independent from those held after
the visit.)

• The network is connected at all times. Any two
sensors can communicate either directly or indi-
rectly, via other sensors. Although we use the term
UWSN, we make no assumption about the wire-
less nature of the network. Indeed, our results are
orthogonal to the underlying routing protocol.

• There are no power constraints. At least initially,
we are not concerned with power consumption of
various survival techniques. (This assumption will
be re-considered later.)

• Ample storage. Each sensor is equipped with enough
storage to accommodate O(v) sensed data.

As seen from our assumptions, even apart from the
unattended nature of the network, we are considering
a kind of a sensor network not typically encountered in
the research literature.

2.2 Portrait of the Adversary
We now focus on the description of the anticipated

adversary. We refer to it as ADV from here on.

• Compromise power: ADV is capable of compromis-
ing at most k out of the total of n sensors during
any single interval. k may be a fixed integer value
or a fraction of n – number of sensors in the net-
work. Once ADV compromises a sensor, and as
long as it remains compromised, we assume that
ADV reads all of its storage and monitors all in-
coming and outgoing communications. We do not
assume that the subset of compromised sensors is
clustered or contiguous, i.e., concurrently compro-
mised sensors can be spread through the entire
network.

• Network knowledge: ADV knows the composition
and the topology of the network; even if the net-
work topology changes over time.

• Limited erasure capacity: between any two succes-
sive sink visits (within v intervals) ADV can erase
no more than a given number t of measurements
from the network. Erasing more than that raises
an alarm on the sink and contradicts ADV’s goal
of remaining undetected.1

1Whereas, a few missing reports might be considered by the
sink as to be a consequence of sensor failure.

• No interference: except for the above, ADV does
not interfere with communications of any sensor
and does not modify any other data sensed by –
or stored on – sensors it compromises. (This as-
sumption will be re-considered later.)

• Atomic movement: ADV moves in one fell swoop,
i.e., at the end of each interval it selects at most k
sensors to compromise in the next interval and mi-
grates to them in one monolithic step. Note that
the two sets of compromised sensors may intersect
or even be the same. Our assumptions about ad-
versary movements, is similar to the one in [11].

• Stealthy operation: ADV’s movements between in-
tervals are unpredictable and untraceable. As it
moves from one set of k sensors to the next, ADV
leaves no trace behind. This implies that a com-
promised sensor released by ADV is fully oper-
ational and it is infeasible to determine whether
that sensor has ever been compromised.

Apropos the last item, we assume that ADV does
not modify any data it encounters as it compromises
sensors. It also does not inject any data of its own.
An important consequence is that, in this paper, we
are not addressing the data authenticity problem. We
are concerned only with data survival, which motivates
hiding: (1) data origin, (2) data content, and (3) time
of data collection. The reason for hiding these three
values is apparent – we want to minimize information
available to ADV as it roams around the UWSN looking
for the target data.

We distinguish between a proactive and a reactive
adversary. The latter is assumed to be dormant (in-
active) until it gets a signal that certain data must
be erased. As soon as this happens, ADV reacts and
starts compromising, in each round, up to k sensors. In
contrast, a proactive ADV roams the network ahead of
time, waiting for a signal to erase certain data. The
reason for this distinction is discussed later on in the
paper.

2.3 Notation
In Table 1 we summarize the notation used in the

rest of the paper. We use the terms round and interval
interchangeably, to denote the time between successive
sensor measurements.

3. STRATEGIES AND DESIGN PARAME-
TERS

3.1 Survival and Attack Strategies
Our main goal is to maximize survival probability for

data collected by sensor si at interval r (that is, dr
i).

Survival means that this data is eventually delivered

3

n size of the UWSN
i, j sensor indices
si sensor i

r, r′ round/interval indices
dr

i data collected by sensor i at interval r
S(dr

i , r
′) sensor hosting dr

i at round r′ > r
Kr

i key used by sensor si at round r

Ur′
set of data items undecipherable by ADV in round r′

v number of rounds between successive sink visits
Cr set of compromised sensors at round r
k maximum size of Cr; assumed constant

Table 1: Notation Summary

to the sink. At round r ADV learns from an external
signal which data he has to erase, namely, it learns both
si and r. Unfortunately for us, ADV does not reveal the
data it is interested in erasing; thus, we know neither
of these values, except that 1 ≤ i ≤ n and 0 ≤ r ≤ v.
We must therefore assume that all data is potentially
targeted by ADV.

Focusing strictly on non-cryptographic techniques [6]
considered two intuitive data survival strategies:
MOVE-ONCE: at every round r, each sensor sj collects
data dr

j , randomly picks a sensor S(dr
j , r + 1) and sends

dr
j to it. Thereafter, dr

j remains at its new “home” until
the next sink visit.
KEEP-MOVING: at each round r each sensor moves
each hosted data item separately, i.e., for each data item
that it stores (and collects), it picks a random sensor
and moves there the stored item. As we show later in
the paper, this strategy does not significantly increase
data survival chances.

Whichever survival strategy is used, one must assume
that ADV is aware of it. Knowing the survival strat-
egy lets ADV pick a counter-strategy that maximizes
chances of deleting the target data. [6] considered sev-
eral counter-strategies that, given a sufficiently large v
(number ofrounds between sink visits), guaranteed that
ADV wins the game as long as data is kept in the clear.
These survival strategies vary only as far as exactly how
many rounds it takes ADV to win.

The use of encryption allows us to hide the origin,
the time of collection and the content of sensed data.
If ADV can not recognize target data, former attack
strategies no longer apply and ADV is forced to erase
data blindly, i.e., to guess which ciphertext hides the
target data. In the analysis below, we use Ur′

to de-
note the set of all encrypted data items that ADV can
not decrypt at round r′. We stress that message eaves-
dropping or interception does not affect our security
analysis, since we focus only on the indistinguishability
of messages. The greater the size of Ur′

, the higher the
probability that the target data will persist until the
next sink visit. In particular, given t possible erasures,
ADV has probability t

|Ur′ | of succeeding. The survival

strategy aims to increase the size of Ur′
. Whereas,

ADV’s counter-strategy is to roam the network and
learn as much information as possible in order to max-
imize the chances of finding and erasing dr

i . To this
end, ADV’s goal is to limit the growth of |Ur′ |, and, if
possible, even to decrease it.

3.2 Design Parameters

Encryption.
In the context of this paper, the most important is-

sue is encryption. If UWSN sensors use encryption in
conjunction to hiding data location (by moving data
around), they can hide not only the contents of col-
lected data but also the identity of the sensor that col-
lected it as well as the round identifier (i.e., the time of
collection). Use of encryption is a natural choice, how-
ever, it comes with certain non-negligible costs, such
as key management and the overhead due to crypto-
graphic operations. Encryption also motivates certain
assumptions and technicalities which we discuss in the
rest of this paper. As mentioned earlier, the problem
of data survival without encryption was treated in [6]
where it was clearly demonstrated that, given enough
rounds, ADV always wins.

Authentication.
Another important issue is authentication, i.e., whether

the sink can establish with certainty both data integrity
and data origin authenticity. As mentioned in Section
2.2, we are not dealing with authentication in this pa-
per. More concretely, we assume that all data is en-
crypted using Plaintext-Aware Encryption [2] whereby
any modification (without knowledge of the secret key)
will produce gibberish upon attempted decryption.

We expect that follow-on work will address richer ad-
versary model which allows ADV to modify existing
data and/or inject fake data into compromised sensors.

Replication.
The final parameter we consider is replication, i.e.,

whether sensors create multiple copies of sensed data
before moving it to other locations. Replication has
some obvious advantages and drawbacks. The main ad-
vantage is increased chances of data survival, while the
main drawback is increased storage and communication
overhead. Replication of cleartext data was previously
studied in [6]. Although replication of encrypted data
is more effective than cleartext replication for defend-
ing against our focused mobile adversary, we consider
replication an independent issue and do not discuss it
further in this paper.

4. ENCRYPTION PARAMETERS AND FEA-
TURES

4

We are primarily concerned with encryption as a means
of hiding the origin and time of collection (and to a
lesser extent, the contents) of sensed data. Further-
more, we assume that, regardless of encryption partic-
ulars, encryption is always randomized [18], which (in-
formally) means that given two encryptions under the
same key, it is unfeasible to determine whether the cor-
responding plaintexts are the same.

We now discuss encryption features and parameters.
To simplify the discussion, we show the “decision tree”
in Figure 1 where leaves represent specific techniques.
Note that the asterisks (*) associated with the leaves
provide an intuitive measure of the quality of the data
survival strategy represented: the more asterisks, the
bigger the set |Ur′ |.2 Justifications for the rankings –
as well as the meaning of the dashed arrow – are clarified
below, in the course of our discussion.

As usual, the choice of public key or symmetric (shared
key) algorithm is the main variable when introducing
encryption. We remain agnostic with respect to this
choice and consider both cases.

4.1 Symmetric Encryption
Our construction with conventional encryption is straight-

forward:

1. Each sensor sj shares a distinct initial key K0
j with

the sink.

2. When sj senses a data unit dr
j (at round r), sj

encrypts it to produce Ej
r = E(Kr

j , dr
j , r, sj , etc.).

3. Finally, sj picks a random destination sensor sl

and sends Ej
r to it.

4. If KEEP-MOVING strategy is used, sj sends each
stored data item to random destination sensors.

Since symmetric encryption is inherently invertible,
we need to worry about what happens when ADV com-
promises sensor si which originated target data dr

i . By
the time ADV compromises si, dr

i is off-loaded to an-
other sensor S(dr

i , r
′) (assuming r′ is the current round).

However, if si’s key K0
i does not change, as soon as

ADV learns this key, it becomes capable of recognizing
dr

i – by decrypting its cyphertext with K0
i – whenever, at

some future round r′, ADV compromises S(dr
i , r
′). We

therefore claim that the security offered by symmetric
encryption is the same as in the case of not using en-
cryption. This is why Figure 1 shows a dashed arrow
from the right-most leaf to top box, denoting the es-
sential equivalence of using a constant (non-evolving)
2However, note that ∗ has a special meaning: the exact
quality depends on the relationship between r′ and k. In
particular, for r′ < n/k, it is better than that provided by
a single asterisk. On the other hand, if r′ > n/k the quality
is lower than that of all other techniques.

shared key for encryption and not using encryption at
all.

To cope with sensor compromise, we need a property
commonly referred to as Forward Secrecy [3] which, in
our case, can be easily obtained by evolving the key in
each round, using any suitable one-way function OWF ().
Concretely, we introduce an additional step between
steps 2 and 3 described above:

2(a) sj computes Kr+1
j = OWF (Kr

j) where OWF ()
is a cryptographically suitable one-way function,
such as SHA-2. Then, Kr

j is deleted.

A minor issue is how the sink would decrypt data, i.e.,
how it would determine which decryption key to use.
This actually does not pose a problem since the sink
has all initial keys of the form K0

j . It can attempt to
decrypt a ciphertext using all n∗v possible keys. While
this might seem excessive, we point out that symmetric
encryption is very inexpensive and the sink is assumed
to have no computational constraints.

Unfortunately, symmetric encryption offers security
only against a reactive ADV. To see this, consider a
proactive ADV who roams the network for n

k rounds
prior to receiving a signal that, at round r =

(
n
k + 1

)
sensor si generated target data dr

i . ADV has already
“visited” all n sensors in previous n

k rounds. Therefore,
it is able to derive each symmetric keys used by every
sensor in round r.3 At this point, ADV just needs to
find the current location of Er

i and erase it, before the
sink visits the network. Of course, this is the worst-
case scenario where ADV is guaranteed to win. More
generally, a proactive ADV does not necessarily have
the luxury of n

k rounds before receiving the signal.
One possible, but limited, measure against a proac-

tive ADV is super-encryption, i.e., further encryption
of already encrypted (Er

i) data by the host sensor. The
motivation is to address the case when, before getting
the signal, ADV compromises only either the originator
si or the host sensor sj = S(dr

i , r + 1). If so, at round
r + 1, dr

i is stored at sj as:

E(Kr
j , Ei

r) = E(Kr
j , E(Kr

i , dr
i , r, si, etc.))

To recognize dr
i , ADV needs to decrypt both layers,

which is impossible without knowledge of both Kr
i and

Kr
j . Note that the above implicitly refers to the MOVE-

ONCE strategy. It is easy to extend super-encryption
to the KEEP-MOVING.

In summary, symmetric super-encryption offers only
limited help against a proactive ADV. Its exact effec-
tiveness is assessed below in Section 5.1.3.

4.2 Public Key Encryption

3Since knowing a sensor’s key for a given round allows it to
derive the same sensor’s keys for all subsequent rounds.

5

Figure 1: Decision Tree

In the past, public key encryption was often avoided
in the sensor network security literature since its higher
cost was viewed as a poor match for low-end sensors.
However, due to recent advances, public key encryption
is becoming more appealing [20]. Furthermore, as we
show below, use of public key encryption offers a level of
security unattainable with symmetric encryption. The
base case for public key encryption has the following
features:

• The sink has a long-term public key, PKsink, known
to all sensors.

• When sj collects data dr
j (at round r), sj encrypts

it to produce Er
j = E(PKsink, K

r
j , dr

j , r, sj , etc.) 4.

• As in the symmetric case, sj picks a random des-
tination sensor sl and sends Er

j to it.

• As before, with KEEP-MOVING, all stored data
items are sent to random sensors as well.

Note that sensors have no secret (private) keys of their
own – they merely use the sink’s public key to encrypt
data. However, even this simple approach results in
ADV being unable to distinguish target data among all
other encrypted data it finds on compromised sensors.

Since ADV does not know the sink’s decryption key
(SKsink), the only way it can attempt to detect target
data is by trying to encrypt its duplicate5 under the
4Kr

j is the randomness provided at round r by the random
number generator of sj
5We assume that ADV can easily guess the actual sensed
data dr

i .

sink’s public key, PKsink.
This is where our randomized encryption assumption

comes in handy. With randomized encryption, each en-
cryption operation involves generating a one-time ran-
dom number and folding it into the plaintext (e.g., as
in OAEP+ [18]) such that, without knowledge of that
unique random number, it is computationally unfeasible
to re-create the same ciphertext. Consequently, ADV
is unable to distinguish among (as far as which sen-
sor encrypted them, what values are encrypted an/or
at what interval) different encrypted values it finds on
compromised sensors.

There is, however, a crucial security distinction based
on the source of random numbers. If random numbers
are obtained from a strong (fully or, at least partially,
physical) source of randomness, then we can achieve the
maximum level of security. To argue this claim infor-
mally, consider that a true random number generator
(TRNG) generates information-theoretically indepen-
dent values. That is, given an arbitrarily long sequence
of consecutive TRNG-generated numbers, removing any
one number from the sequence makes any guess of the
missing number equally likely. (We also assume that the
random numbers are sufficiently long to make exhaus-
tive guessing computationally infeasible, i.e., at least
128 bits.) Therefore, the only way for proactive ADV
to recognize Er

i is if the compromised set Cr includes
si at the exact round r when ADV receives the signal.
This is, indeed, the highest level of security we can pos-
sibly hope to achieve —in other words, ADV can win
only due to dumb luck.

6

If, on the other hand, random numbers are obtained
from a pseudo-random number generator (PRNG), the
resulting security is equivalent to that of the symmetric
encryption case with key evolution. This is because a
typical PRNG produces numbers by starting with a seed
value and repeatedly applying a suitably strong one-
way function. Hence, it is functionally equivalent to the
key-evolution feature described in the previous section.
This leads us to conclude that: if sensors have no
real source of randomness, there is no reason to
use public key encryption, since it costs more
than symmetric encryption and does not offer
better security.

On the other hand, an interesting feature of public
key encryption is that some techniques (e.g., [1]) allow
what is referred to as re-encryption. In our context,
this means that a sensor which receives an already-
encrypted data from another sensor, can re-encrypt that
data such that the previous sensor would be unable to
recognize its own encrypted data thereafter. Two ad-
vantages of using re-encryption are:

• It does not require multiple decryption operations
to obtain the cleartext (unlike super-encryption).

• It does not cause ciphertext expansion.

The use of re-encryption is beneficial considering that
ADV, as it breaks into sensors, might attempt to copy
and remember encrypted values that sensors in Cr gen-
erate, encrypt and off-load during the same round. (That
way it could detect them later.) If all sensors re-encrypt
all values they receive from others, ADV is placed at
a further disadvantage. We demonstrate effects of re-
encryption below, in Section 5.2.

Unfortunately, re-encryption imposes a peculiar lim-
itation: it precludes the use of hybrid (envelope) en-
cryption. By hybrid we mean the way that public key
encryption is typically used in practice: a one-time sym-
metric key is generated and encrypted using the public
key, and the bulk data is then encrypted using the said
symmetric key. Hybrid encryption produces a two-part
ciphertext: public and symmetric. Re-encryption can
be applied to the former but not to the latter. (Of
course, super-encryption can be used instead, but that
would negate all advantages of using re-encryption.)
Therefore, re-encryption is useful only if data (dr

i) is
sufficiently short to fit into a single public key encryp-
tion block.6

5. ANALYSIS AND DISCUSSION
In this section we analyze the cryptographic tech-

niques outlined above. In doing so, we explore the leaves
6In principle, one could use public key encryption over mul-
tiple blocks of data and re-encrypt each ciphertext block
separately; however, we consider this to be a very particu-
larly unappealing approach.

of the decision tree in Figure 1, and provide survival
probability of the target data for both MOVE-ONCE
and KEEP-MOVING network defence strategies.

5.1 Symmetric Encryption
We assess the effectiveness of symmetric encryption

along with features, such as key evolution and super-
encryption.

5.1.1 Plain Encryption
With MOVE-ONCE, ADV wins in at most dn

k e rounds
with the following counter-strategy. In the first round
after the occurrence of target data (round r + 1), ADV
chooses Cr+1 such that si ∈ Cr+1. This way it learns
K0

i – the key used by si to encrypt dr
i . It then uses K0

i

to try to decrypt all ciphertexts found on all currently
compromised sensors. It thus takes ADV at most dn

k e
rounds to visit all sensors and find dr

i . In the following,
without losing of generality, we will assume that n

k is
an integer.

With KEEP-MOVING, ADV wins in n
2k rounds, on

average [6]. It learns K0
i at round r + 1 (by choosing

Cr+1 such that si ∈ Cr+1), and deletes dr
i as soon as it

is found in one of the compromised sensors.
In summary, if plain symmetric encryption is used

and the number of rounds between successive sink visit
exceeds n

k , ADV can always recognize and, once found,
erase target data, regardless of the data moving strat-
egy. Furthermore, symmetric encryption alone offers no
advantage over cleartext survival strategies.

5.1.2 Key Evolution
Adding a simple per round key evolution feature, re-

sults in the continual increase of Ur′
for the first r + n

k
rounds assuming that ADV starts compromising sen-
sors at round r + 1. Ur′

then remains constant for all
subsequent rounds.

To justify this claim, recall our discussion in Section
4.1. At each round, every sensor’s key is computed by
applying OWF to the key used at the previous round. If
ADV initially compromises a generic sensor sj at round
r, it learns Kr

j and can thus compute Kr′

j for any r′ > r.
However, it can not compute any key used by sj prior
to round r. In particular, if a reactive ADV decides to
erase target data at round r and starts compromising
sensors at round r+1, it can not learn Kr

i , even if Cr+1

is chosen such that si ∈ Cr+1.
Consequently, any data item encrypted with a key

that ADV can not compute at round r′, is an element
of Ur′

. If ADV starts collecting keys at round r + 1,
then after n

k rounds, it learns one key for every sensor in
the network and |Ur′ | stops growing for all r′ > r + n

k .
In Figure 2 we plot the growth of |Ur′ | for several

values of k.

7

+200

+400

+600

+800

+1000

r’=r r’=r+5 r’=r+10 r’=r+15 r’=r+20

N
um

be
r o

f i
nd

is
tin

gu
is

ha
bl

e
m

es
sa

ge
s

Round

|Ur|

k=20

k=10

k=5

n=100, k=5
n=100, k=10
n=100, k=20

Figure 2: Growth of |Ur′ | - the set of indistin-
guishable encrypted data items.

5.1.3 Super-Encryption
Super-encryption entails each host sensor encrypting

(already-encrypted) data items it receives. For exam-
ple, dr

i originally obtained by si and sent to sj at round
r, and then sent to sl at round r + 1, will be stored by
sl as: E(Kr+1

l , E(Kr
j , Ei

r)).
With MOVE-ONCE, ADV can find and erase target

data in at most n
k rounds – as in Section 5.1.1 – with

the following counter-strategy:
(1) Assume dr

i is stored at sj as E(Kr
j , Er

i).
(2) ADV chooses Cr+1 such that si ∈ Cr+1; this way

it learns Kr
i .

(3) For each compromised sensor in Cr+1 and for each
ciphertext found therein, ADV first attempts decryp-
tion with the sensor’s current key, and then attempts
decrypting the output with Kr

i : if dr
i is found, ADV

deletes it. Note that it takes at most n
k rounds to tra-

verse all sensors of the network.
We now look at the KEEP-MOVING strategy. Let Cr′

be the set of sensors not compromised within the first
r′ rounds. At any round r′, all ciphertexts encrypted
at least once by any sensor in Cr′ is undecipherable by
ADV. The probability that dr (any data item collected
at round r), at each round r ≤ j ≤ r′, is encrypted
and then super-encrypted with a key acquired by ADV
during any round prior to j, is

∏j=r′−r
j=0

jk
n . Thus, the

probability of dr being encrypted or super-encrypted
at least once with a key unknown to ADV (between
round r and r′) is: 1 −

∏j=r′−r
j=0

jk
n . For data obtained

after round r + n
k , that probability is 0, since ADV has

compromised all the sensors once and corrupted all the
possible keys.

Then, with n new data items per round, it will be
simply

|Ur′
| = r′n (1)

for r′ ≤ r, while it will be:

|Ur′
| = (r + 1)n +

r′−r∑
i=1

n

1−
r′−r∏
j=i

jk

n

 (2)

for r < r′ ≤ r + n
k and simply

|Ur′
| = 0 (3)

for r′ > r + n
k .

Super-encryption has a small caveat: as described
in Section 3.2, data is assumed to be encrypted using
Plaintext-Aware Encryption (PAE) [2] thereby causing
ciphertext expansion. Thus, for each layer of encryp-
tion, ciphertext grows by a constant number (e.g., 128)
of bits. While this is not an issue for MOVE-ONCE,
with KEEP-MOVING ciphertext size grows linearly with
the number of moves (rounds). Also, ciphertxt size in
KEEP-MOVING leaks number of moves that a particular
ciphertext has gone through.

5.1.4 Key Evolution and Super-encryption
We now look at the variant combining Key Evolution

and Super-Encryption. With MOVE-ONCE, at round
r′, ADV can not decrypt ciphertexts in the following
three categories:

• Encrypted and super-encrypted with unknown keys:(
(n− (r′ − r)k)

n− (r′ − r)k
n

)
• Encrypted with a known key and super-encrypted

with an unknown key:(
(r′ − r)k

n− (r′ − r)k
n

)
• Encrypted with an unknown key and super-encrypted

with a known key:(
(n− (r′ − r)k)

(r′ − r)k
n

)
Thus, |Ur′ | grows as follows:

|Ur′
| =

(r+1)n+

r′∑
i=r+1

(
n− (i−r)2k2

n

)
if r<r′<r+n

k

|Ur+ n
k−1| if r′≥r+n

k
(4)

With KEEP-MOVING, things change: a ciphertext is
not in Ur′

if and only if all keys used to encrypt and
super-encrypt it are known to ADV. The number of
ciphertexts ADV can decrypt is given by the following
recurrence equation:

Wr′ =
(r′ − r)2k2

n
+

(r′ − r)k
n

Wr′−1, W0 = 0

8

while the total number of ciphertexts is n(r′ + 1). Hence,
combining these two results, we conclude that with the
KEEP-MOVING strategy |Ur′ | grows as:

|Ur′
| =

 (r′ + 1)n−W r′
if r < r′ < r + n

k

|Ur+ n
k−1| if r′ ≥ r + n

k

(5)

5.2 Public Key Encryption
We now turn to the public key setting outlined in Sec-

tion 4.2. Without focusing on a specific public key cryp-
tosystem, we investigate several features of public key
cryptography conducive to data survival. As mentioned
in Section 4.2, one important issue is the source of ran-
domness: whether sensors have true random number
generators (TRNGs) or pseudo-random number gener-
ators (PRNGs). As argued in Section 4.2 and shown
in Figure 1, public key encryption with a PRNG of-
fers the same data survival probability as symmetric en-
cryption with key evolution. Also, PRNG-based public
key encryption with re-encryption offers the same data
survival probability as symmetric encryption with key
evolution and super-encryption. We thus focus on ef-
fectiveness of public key encryption with TRNGs, both
with and without re-encryption.

5.2.1 TRNG-based Scheme
If each sensor has a TRNG,ADV can only distinguish

ciphertexts produced by sensors compromised within a
given round. (Also, ADV can recognize the same ci-
phertexts after they are moved elsewhere, if it encoun-
ters them later.) ADV can not distinguish other ci-
phertexts since it is computationally infeasible to learn
random values generated by other sensors, whether pre-
viously compromised or not.

If MOVE-ONCE is employed, at round r + 1 (and
thereafter) any ciphertext produced at round r (Ej

r) is
located at sensor S(dr

j , r + 1). Regardless of whether
ADV is reactive or proactive, we claim that the set of
ciphertexts indistinguishable from target data dr

i grows
with every round by, on average, n − 2k new cipher-
texts: k new ciphertexts are produced by currently-
compromised sensors, and additional k ciphertext – on
average – are delivered to those sensors, because sensed
during the actual round. Assuming that target data is
produced in round r, at any round r′, the size of Ur′

is

|Ur′
| = (r + 1)n + (r′ − r)(n− 2k) and

|Ur′
| = (r′ + 1)(n− 2k)

for a reactive and a proactive ADV, respectively.
With KEEP-MOVING,ADV can not determine whether

ciphertexts received by compromised sensors have been
produced during the current round, i.e., Ur′

grows with
every round by, on average, n− k ciphertexts. Thus,

|Ur′
| = (r + 1)n + (r′ − r)(n− k) and

|Ur′
| = (r′ + 1)(n− k)

for a reactive and a proactive ADV, respectively.

5.2.2 TRNG Scheme with Re-Encryption
Combining TRNG-equipped sensors with re-encryption

yields a somewhat stronger outcome.
With MOVE-ONCE, each ciphertext is re-encrypted

(just once) by a randomly selected host sensor. The
analysis is similar to the previous case (no re-encryption)
except that, at any round r′, the size of Ur′

is:

|Ur′
| = (r + 1)n + (r′ − r)

(
n− 2k + k

n− k

n

)
and

|Ur′
| = (r′ + 1)

(
n− 2k + k

n− k

n

)
for a reactive and a proactive ADV, respectively. The
growth of |Ur′ | is thus faster, since even a fraction(

n−k
n

)
of k ciphertexts generated by sensors in Cr′ are

not distinguishable by ADV after being moved else-
where, due to immediate re-encryption by the respective
host sensors.

Recall that KEEP-MOVING involves re-encryption of
all ciphertexts upon every move. At each round, ADV
can only keep track of ciphertexts produced by (and
exchanged with) the set of sensors it currently compro-
mised. At round r′, ADV can track only k ciphertexts
obtained by sensors in Cr′ and sent to sensors in the
same set. On average, k (n−k)

n ciphertexts will be sent to
– and re-encrypted by – non-compromised sensors (i.e.,
sensors not in Cr′). In each subsequent round, on aver-
age, a ciphertext tracked by ADV in the previous round
will be still trackable with probability k

n . We thus have:

|Ur′
| = (r + 1)n + (r′ − r)n−

r′∑
i=r+1

ki+1

ni
and

|Ur′
| = (r′ + 1)n−

r′∑
i=1

ki+1

ni

for a reactive and a proactive ADV, respectively.

5.3 Comparison
Figure 3 plots the size of Ur′

yielded by different
strategies discussed thus far. It assumes a UWSN with
100 sensors where ADV can compromise at most k = 10
sensors per round. It clearly shows that, with public key
encryption and a TRNG, |Ur′ | grows at constant rate
at every round, even after ADV compromises each sen-
sor at least once. On the other hand, with symmetric

9

Figure 3: Comparison

+500

+1000

+1500

+2000

r’=r r’=r+5 r’=r+10 r’=r+15 r’=r+20

N
um

be
r o

f i
nd

is
tin

gu
is

ha
bl

e
m

es
sa

ge
s

Round

Comparison of all cryptographic techniques; n = 100, k = 10

|Ur|

Symmetric Key Evolution (MOVE-ONCE)
Symmetric Key Evolution (KEEP-MOVING)
Symmetric Key Super Encryption (KEEP-MOVING)
Symmetric Key Evolution + Super Encryption (MOVE-ONCE)
Symmetric Key Evolution + Super Encryption (KEEP-MOVING)
Public Key Encryption (MOVE-ONCE)
Public Key Encryption (KEEP-MOVING)
Public Key Encryption + Re-Encryption (MOVE-ONCE)
Public Key Encryption + Re-Encryption (KEEP-MOVING)

key evolution (with or without super-encryption), ADV
stops the growth of |Ur′ | after n

k rounds, having com-
promised each sensor at least once. Figure 3 also shows
the better performance of super-encryption, compared
to only key evolution for the first n

k rounds. Thereafter,
ADV can decrypt any ciphertext.

The results reflected of our analysis can be summa-
rized as follows:

• Unlike the case of cleartext data migration ex-
plored in [6], when (any) encryption is used, KEEP-
MOVING offers very little advantage over MOVE-
ONCE.

• Public key encryption with PRNG and symmetric
key encryption with key evolution, offer equiva-
lent data survival chances, regardless of the data
moving strategy. Each is secure against a reactive
(but not a proactive) ADV. Consequently, unless
scalability of key management for the sink is an
important issue, there is no reason to use public
key encryption with PRNG-equipped sensors.

• With a TRNG copuled with public key encryp-
tion, difference between MOVE-ONCE and KEEP-
MOVING is very little. Also, re-encryption slightly
affect the defence quality. Since both KEEP-MOVING
and re-encryption require more overhead, their in-
troduction is desirable only when energy consump-
tion is not a main issue.

• Re-encryption can be a useful tool, however, it lim-
its sensors to use “pure” public key encryption,
i.e., no hybrid/envelope encryption is possible.

5.4 Invasive ADV
The previous analysis is based on the assumption that

ADV does not interfere with sensors behavior. As men-
tioned in Section 2.2, we do not address the problem of

authenticity of sensed data, then we do not consider the
possibility that ADV modifies in any way data found in
sensor storages. Nevertheless, we can relax the non in-
terference assumption, and let ADV slightly influence
sensor behaviours. Indeed, if ADV wants to remain un-
detected, it is forced not to change much in the way
sensors handle sensed and received data. For example,
ADV might change compromised sensors code so that,
even if the network strategy is KEEP-MOVING, com-
promised sensor retain received data (as in the MOVE-
ONCE strategy). This change would not be detected by
the sink, unless super-encryption is used7. With any
other crypto technique, the sink can not tell the num-
ber of sensors that processed a given ciphertext, so it
can not distinguish between MOVE-ONCE and KEEP-
MOVING. Nevertheless, our analysis show that KEEP-
MOVING provides little advantage compared to MOVE-
ONCE, so ADV does not gain much in changing cor-
rupted sensor’ strategy. Moreover, a simple analysis on
the number of data units stored by each sensor, would
reveal to the sink that a part of the network is using a
strategy different to the expected one.
ADV could also change sensor behavior so that each

compromised sensor sends its data to other compro-
mised peers. This way, re-encryption is not effective for
data generated at compromised sensors. In particular,
if compromised sensors exchange messages only among
them, the size of |Ur′ | becomes:

|Ur′
| = (r + 1)n + (r′ − r) (n− 2k) and

|Ur′
| = (r′ + 1) (n− 2k)

with the MOVE-ONCE strategy, for a reactive and a
proactive ADV, respectively.

If we consider the KEEP-MOVING strategy, the size
of |Ur′ | becomes:

|Ur′
| = (r + 1)n + (r′ − r)(n− k) and

|Ur′
| = (r′ + 1)(n− k)

for a reactive and a proactive ADV, respectively.
A more invasive adversary would be easily detected

by the sink. For example, if ADV forces to use arbitrary
keys, the sink would detect the anomaly when it visits
the network to collect sensed data.

6. RELATED WORK
The problem of data availability in MANETs has

been extensively studied, in the relatively benign con-
text of communication faults and network partitions.
This thread of works aims to preserve data availability
7Recall that with super-encryption, ciphertext size provides
a hint on the number of sensors that added a layer of en-
cryption.

10

to any MANET node, even when the network is frag-
mented.
Specifically, Hara, et al. [10] introduced simple yet ef-
fective algorithms to replicate data in MANETs, such
that, a node in a disconnected partition can access any
required data with high probability. The system also
provides some means to deal with replica consistency,
in case of updates to the original data, and a simple
technique for location management to guarantee that
nodes access the closest data replica. The authors do
assume node compromise.

In another related result, Giannuzzi, et al. [9] stud-
ied data availability through replication when an ad hoc
network is partitioned. This work shows that the prob-
ability of accessing certain data is dependent not only
on the number of its replicas but also on the network
density as well as on the nodes’ transmission radius.
Neither this work takes into account the possibility of
node compromise.

The work of Chessa, et al. [5] introduced a dis-
tributed data storage approach for mobile wireless net-
works, based on the peer-to-peer paradigm. This dis-
tributed storage provides support to create and share
files under a write-once model, and also ensures data
confidentiality and dependability by encoding files in a
Redundant Residue Number System (RRNS). Unfortu-
nately, confidentiality is broken as soon as one node is
corrupted and the adversary learns the moduli used to
encode data under the RRNS.

Finally, some results (e.g., [4, 16]) leverage the exis-
tence of multiple paths between end-nodes to statisti-
cally improve data confidentiality and data availability
in hostile MANET environments, where both insider
and outsider adversaries may be present. Anyway, [4]
envision a passive eavesdropper adversary, while the ad-
versary anticipated in [16] does not compromise nodes
originating a given message, but only the one along its
path to the destination.

A more recent result addressing data availability in
WSNs is [13]. It develops a scheme to maximize the
amount of data recovered by the sink and shows how
the proposed scheme improves data availability when a
portion of the network is invalidated by natural disas-
ters, such as a flood or an earthquake.

Benenson, et al. [22] investigated possible strategies
for preventing a mobile adversary from learning certain
sensed data and/or for preventing contiguous unautho-
rized access, once the data has been learned. Data is
randomly moved around the network and an adversary
who once had access to the data stored at some cap-
tured sensor, must compromise other sensors in order
to retain its access to the target data. Several algo-
rithms are introduced to provide efficient data retrieval
and update.

UWSNs have also recently been considered in the con-

text of minimizing storage and bandwidth overhead due
to data authentication in the presence of a powerful ad-
versary [14]. The proposed forward-secure aggregate
authentication techniques can efficiently provide for-
ward security, i.e., having compromised a sensor, the
adversary is unable to modify any data collected prior
to compromise. Our focus is in this paper is quite differ-
ent: we assume that the adversary is actively pursuing
certain data and is not reluctant to delete any data it
finds.

7. CONCLUSION
This paper represents the initial attempt to apply

cryptography in the context of data survival in unat-
tended WSNs. As we have shown, the presence of a ca-
pable focused mobile adversary, raises many challenges.
However, the good news is that simple cryptographic
defenses coupled with data mobility strategies can be
of great help in ensuring data survival. We explored
a number of variables and evaluated several proposed
techniques. Analytical and simulation results show that
proposed techniques achieve significant probabilities of
data survival. Despite our simple network model, we
believe that the issues raised in this paper can pave
the way for further research. In our future work we
plan to introduce new assumptions and variables such
as communication and storage overhead, as well as new
adversarial models.

8. REFERENCES
[1] G. Ateniese, J. Camenisch, and B. de Medeiros.

Untraceable RFID tags via insubvertible
encryption. In CCS ’05, pages 92–101, 2005.

[2] M. Bellare and A. Palacio. Towards
plaintext-aware public-key encryption without
random oracles. Cryptology ePrint Archive,
Report 2004/221, 2004.

[3] M. Bellare and B. S. Yee. Forward-security in
private-key cryptography. In CT-RSA, pages
1–18, 2003.

[4] V. Berman and B. Mukherjee. Data security in
manets using multipath routing and directional
transmission. In IEEE International Conference
on Communications (ICC’06), pages 2322–2328,
2006.

[5] S. Chessa and P. Maestrini. Dependable and
secure data storage and retrieval in mobile,
wireless networks. In DSN 2003, pages 207–216,
2003.

[6] R. Di Pietro, L. V. Mancini, C. Soriente,
A. Spognardi, and G. Tsudik. Catch me (if you
can): Data survival in unattended sensor
networks. In IEEE PerCom, 2008, to appear.

[7] R. Gennaro, S. Jarecki, H. Krawczyk, and
T. Rabin. Robust and efficient sharing of RSA

11

functions. In CRYPTO, pages 157–172, 1996.
[8] R. Gennaro, S. Jarecki, H. Krawczyk, and

T. Rabin. Robust threshold DSS signatures. In
EUROCRYPT, pages 354–371, 1996.

[9] V. Gianuzzi. Data replication effectiveness in
mobile ad-hoc networks. In ACM PE-WASUN
’04, pages 17–22, 2004.

[10] T. Hara and S. K. Madria. Data replication for
improving data accessibility in ad hoc networks.
IEEE Trans. Mob. Comput., 5:1515–1532, 2006.

[11] A. Herzberg, S. Jarecki, H. Krawczyk, and
M. Yung. Proactive secret sharing or: How to
cope with perpetual leakage. In D. Coppersmith,
editor, CRYPTO, volume 963 of Lecture Notes in
Computer Science, pages 339–352. Springer, 1995.

[12] Information Processing Technology Office (IPTO)
Defense Advanced Research Projects Agency
(DARPA). BAA 07-46 LANdroids Broad Agency
Announcement. http://www.darpa.mil/IPTO/
solicit/open/BAA-07-46_PIP.pdf, 2007.

[13] A. Kamra, V. Misra, J. Feldman, and
D. Rubenstein. Growth codes: maximizing sensor
network data persistence. SIGCOMM Comput.
Commun. Rev., 36(4):255–266, 2006.

[14] D. Ma and G. Tsudik. Forward-secure sequential
aggregate authentication. In IEEE Symposium on
Research in Security and Privacy, (S&P’07),
2007, to appear.

[15] R. Ostrovsky and M. Yung. How to withstand
mobile virus attacks. In PODC, pages 51–59,
1991.

[16] P. Papadimitratos and Z. Haas. Secure data
communication in mobile ad hoc networks. IEEE
JSAC, 24(2):343–356, 2006.

[17] P. Pathirana, N. Bulusu, A. Savkin, and S. Jha.
Node localization using mobile robots in
delay-tolerant sensor networks. Mobile
Computing, IEEE Transactions on, 4(3):285–296,
May-June 2005.

[18] V. Shoup. Oaep reconsidered. Cryptology ePrint
Archive, Report 2000/060, 2000.

[19] T. Small and Z. J. Haas. Resource and
performance tradeoffs in delay-tolerant wireless
networks. In WDTN ’05: Proceedings of the 2005
ACM SIGCOMM workshop on Delay-tolerant
networking, pages 260–267, New York, NY, USA,
2005. ACM.

[20] A. Wander, N. Gura, H. Eberle, V. Gupta, and
S. C. Shantz. Energy analysis of public-key
cryptography for wireless sensor networks. In
Percom ’05, pages 324–328, 2005.

[21] Y. Wang and H. Wu. Delay/fault-tolerant mobile
sensor network (DFT-MSN): A new paradigm for
pervasive information gathering. IEEE Trans.
Mob. Comput., 6(9):1021–1034, 2007.

[22] P. C. Z. Benenson and F. Freiling. Simple evasive
data storage in sensor networks. In PDCS, 2005.

12

