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Abstract. Group Key Management (GKM) solves the problem of efficiently establishing and managing
secure communication in dynamic groups. Many GKM schemes that have been proposed so far have
been broken, as they cite ambiguous arguments and lack formal proofs. In fact, no concrete framework
and security model for GKM exists in literature. This paper addresses this serious problem by providing
firm foundations for Group Key Management. We provide a generalized framework for centralized GKM
along with a formal security model and strong definitions for the security properties that dynamic groups
demand. We also show a generic construction of a centralized GKM scheme from any given multi-
receiver ID-based Key Encapsulation Mechanism (mID-KEM). By doing so, we unify two concepts
that are significantly different in terms of what they achieve. Our construction is simple and efficient.
We prove that the resulting GKM inherits the security of the underlying mID-KEM up to CCA security.
We also illustrate our general conversion using the mID-KEM proposed in 2007 by Delerablée.

Keywords: Provable Security, General Framework, Security Model, Group Communication, Multicast
Security, Group Key Management, ID-based Cryptography, Generic Conversion

1 Introduction

The growth and commercialization of the Internet offers a large variety of scenarios where group
communication using multicast will greatly save bandwidth and sender resources. Immediate exam-
ples include news feeds and stock quotes, video transmissions, teleconferencing, software updates,
movie on demand and more. (See [6] for a more complete survey on multicast applications.) Secure
multicast sessions can be implemented by applying encryption schemes. The messages are protected
by encryption using a chosen key, which, in the context of group communication, is known as Ses-
sion Key or Data Encryption Key (DEK). Only those who know the DEK can recover the original
message. Therefore, the problem of securely sending data to authorized group members reduces to
securely sending the DEKs to the authorized group. Furthermore, changes in membership may re-
quire that the group key be refreshed. Such a key refreshing procedure prevents a joining (leaving)
member from decoding messages exchanged in the past (future), even if he has recorded earlier
messages, in their encrypted form (encrypted with the old (new) keys).

However, distributing the group key to valid members is a complex problem. Although refreshing
the DEK before the join of a new member is trivial (send a new group key to the group members
encrypted with the old group key), performing it after a member leaves is far more complicated.
The old key cannot be used to distribute a new one, because the leaving member knows the old
key. Therefore, a group key distributor must provide some other scalable mechanism to refresh the
data encryption key.
? Work Supported by Project No. CSE/05-06/075/MICO/CPAN on Foundation Research in Cryptography spon-
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Group Key Establishment — Group Key Establishment (GKE) (which includes techniques of
group key exchange and group key agreement) allows n ≥ 2 principals to agree upon a common
secret key. An excellent introduction and survey of GKE is given by Boyd and Mathuria [5]. But
GKE stops with initial establishment of keys by the users of the group. Dynamic groups require not
only initial key establishment but also auxiliary operations such as member addition and member
exclusion.

Group Key Management — Group Key Management (GKM) provides a solution to this prob-
lem. As defined by Menezes et al. in [17], key management is the set of techniques and procedures
supporting the establishment and maintenance of keying relationships between authorized parties.
It plays an important role enforcing access control on the group key (DEK) (and consequently on
the group communication). Since the authorized parties here form a group, the schemes which solve
this problem are known as group key management schemes in literature. According to [19], group
key management can be classified as follows.

– Centralized Group Key Management — In these schemes, there is a Key Distribution Center
(KDC), also known as Central Authority (CA) who maintains the entire group, performing
operations which involve allocating keys to members, communicating the Data Encryption Key
(DEK) to the members, etc.

– Decentralized Group Key Management — In decentralized group key management schemes,
members of a multicast group are split into several smaller subgroups which are managed by
different subgroup controllers. This reduces the load on the KDC. Properties associated with
decentralized group key management schemes are key independence, keys vs. data, type of
communication, etc.

– Distributed Group Key Management — The distributed key management approach is charac-
terized by having no group controller. The group key can be generated either in a contributory
fashion, or by one member. Parameters like the number of rounds, number of messages and
computation during setup are used to evaluate the efficiency of such protocols.

Security Properties. Any secure GKM scheme must satisfy certain desired security properties.
We briefly discuss each of these properties informally below. Later, we will define them formally.

1. Perfect Forward Secrecy — It ensures that when a rekey operation is performed for the
group, a member cannot decipher previous messages encrypted with any of the older DEKs.

2. Group Forward Secrecy — It prevents a leaving or expelled group member from continuing
to access group communication.

3. Group Backward Secrecy — It prevents a new member from decoding messages exchanged
before he joined the group.

4. Collusion Resistance — It ensures that even if all the members who currently do not belong
to the group collude, they will not be able to decipher group messages encrypted with the
current DEK.

Multi-receiver ID-based Key Encapsulation Mechanism (mID-KEM) — A multi-receiver
key encapsulation mechanism (mKEM) enables a cryptographic key (which may be used subse-
quently for other purposes) to be securely sent across to a set of receivers. Smart [22] introduced
the notion of mKEM in 2004. It was extended later, in [2, 3], to multi-receiver ID-based Key En-
capsulation Mechanism (mID-KEM), i.e., mKEM in the ID-based setting. Later, [11] proposed an
mID-KEM that has an efficient trade-off between the ciphertext size and the private key size. Re-
cently, Abdalla et al. [1] proposed an mID-KEM construction where ciphertexts are of constant
size, but private keys grow quadratic in the number of receivers. Furukawa [20] and Delerablée [13]
independently proposed an mID-KEM scheme which achieves constant size ciphertext at the cost
of the public key size growing linearly in the number of receivers.
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1.1 Related Work on Centralized Group Key Management

One of the major contributions of this paper is a generic framework and concrete security model
for centralized GKM. Here, we discuss the related work done in the area of centralized GKM, and
highlight the major drawbacks of various existing schemes, so as to better emphasize the need for
such a formal security model.
The key generation concept used by Group Key Management Protocol (GKMP) [15] is a cooperative
generation between two protocol entities. There are several key generation algorithms viable for
use in GKMP (i.e., RSA, Diffie-Hellman, elliptic curves). All these algorithms use asymmetric key
technology to pass information between two entities to create a single cryptographic key. Apart
from protocols like GKMP, the centralized group key management schemes can be hierarchical tree
based and flat-table based. We briefly mention a few tree based group key management protocols
below (a detailed description of all these protocols can be found in [19]).

– Logical Key Hierarchy (LKH) [26] — Here, the KDC is the root of the tree and it maintains
a tree of keys. The leaves of the tree are the group members, and each node is associated
with a Key Encryption Key (KEK). Each group member (leaf) maintains a copy of the KEKs
associated with all the nodes that are part of the unique path from itself to the root. If a member
joins or leaves, the KDC updates the KEKs of all the nodes that are part of the corresponding
root-to-leaf path, preserving group secrecy.

– One-Way Function Tree (OFT) [21] — Here, a node’s KEK is generated rather than just
attributed. The KEKs held by a node’s children are blinded using a one-way function and then
mixed together using a mixing function, resulting in the KEK held by the node.

– One-Way Function Chain Tree [7] — Here, a pseudo random generator is used to generate the
new KEKs rather than a one-way function and it is done only during user removal.

– Hierarchical a-ary Tree with Clustering [9] — Here, the group with n members is divided into
clusters of size m and each cluster is assigned to a unique leaf node, resulting in n/m clusters.
All members in a cluster share the same cluster KEK. Every member of a cluster is also assigned
a unique key which is shared only with the KDC.

The group rekeying method proposed in [16] uses the Chinese Remainder Theorem (CRT) to
construct a secure lock that is used to lock the decryption group key. Because the lock is common
among all valid members, the transmission efficiency of the message decryption key is O(1) if the
message size is disregarded. However, this method suffers from scalability problems.
Cliques [24] provides a way to distribute group session keys in dynamic groups. However, it doesn’t
scale well to a large group. Molva et al. [18] proposed a scalable solution for dynamic groups.
Nevertheless, the scheme has to modify the structure of intermediate components of the multicast
communication such as routers or proxies and it suffers from collusion attacks.
In the flat-table based schemes proposed by Waldvogel et al. [25], a table is used to reduce the
number of keys stored at the KDC. When a member leaves, all the keys associated with that
member are changed by the KDC. The rekeying method in the scheme by Chang et al. [10] uses
boolean function minimization to minimize the number of messages needed to rekey the group.
However, this method suffers from collusion attacks. There are other schemes based on attribute
based encryption, like FT (CP-ABE) by Cheung et al. [12] which provide security against collusion
as well.
Drawbacks. In most of the schemes that are cited above, there is no formal security proof pre-
sented in a suitable security model. Therefore, most of them base their security claims on informal
arguments. Even though [24] presents a somewhat formal proof, it is not clear from the proof as to
how each security property is satisfied. Waldvogel et al. [25] argue how their scheme is secure only
against certain types of attacks such as denial-of-service, man-in-the-middle, etc. And almost all
the tree based schemes lack perfect forward secrecy. Some of the flat-table based schemes are not
secure against collusion attacks.
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1.2 Our Contribution

To the best of our knowledge, we are the first to propose a generic framework for centralized Group
Key Management (GKM) and more importantly, to present a formal security model, defining each
of the security properties (forward secrecy, backward secrecy, perfect forward secrecy and collusion
resistance) formally. None of the existing GKM schemes have been formally proven secure due to
the lack of such a formal security model. Numerous attacks [23] have been mounted on various
GKM schemes proposed so far. We construct adversarial games for each of the security properties
mentioned above, to provide a framework in which one can formally prove a GKM scheme secure.
Next, we construct a generalized conversion from any multi-receiver ID-based Key Encapsulation
Mechanism to a full-fledged centralized Group Key Management scheme, which is so simple (yet
powerful) that there is no significant overhead while going from mID-KEM to GKM. Thus we show
that any efficient mID-KEM is enough to obtain an efficient GKM. Further, we proceed to use
formal reduction techniques to establish the security of the GKM scheme, using our own security
model. We prove forward secrecy, backward secrecy and collusion resistance of our GKM scheme by
reduction to the underlying mID-KEM. For perfect forward secrecy, we build our proof on one-way
functions. We also illustrate our generalization by extending the mID-KEM proposed in [13], which
achieves constant-size ciphertext for communicating the Data Encryption Key (DEK) to GKM.
This is the first GKM scheme to achieve constant-size rekeying message length.

1.3 Organization

The rest of the paper is organized as follows. First, in Section 2, we review basic concepts like
one-way functions and bilinear maps, which are necessary for our construction. Next, in Section 3,
we give the formal framework for generic Group Key Management, namely the assumptions and
algorithms involved in a general GKM scheme. The corresponding formal security model for GKM,
which includes the description of oracles, the adversarial games and concrete definitions of security
for the required security properties, is presented in Section 4. Next, we quickly present the general
framework and formal security model of an mID-KEM in Section 5. Following this, we use our formal
framework and its accompanying security model for GKM to describe the construction of a GKM
scheme from any given mID-KEM and formally prove its security in Sections 6 and 7 respectively.
Finally, in Section 8 we illustrate our construction by converting the efficient mID-KEM proposed
recently by Delerablée [13] to the most efficient GKM proposed till date. We conclude with some
open problems in Section 9.

2 Preliminaries

In this section, we review important concepts like one-way functions, bilinear maps and negligible
functions that are used in the forthcoming sections.

2.1 One-Way Functions

A function F : {0, 1}∗ → {0, 1}∗ is called one-way if the following conditions hold.

– Easy to Compute. There exists a (deterministic) polynomial time algorithm A such that on
input x, algorithm A outputs F(x).

– Hard to Invert. Let Un denote a random variable uniformly distributed over {0, 1}n. For every
probabilistic polynomial time algorithm A′, every polynomial p(·), and all sufficiently large n,

Pr
[
A′(f(Un), 1n) ∈ f−1(f(Un))

] ≤ 1
p(n)

We denote the advantage of an adversary B in inverting a one-way function F as

Advinv
F = Pr [F(B(F(x))) = F(x)|x ← {0, 1}n]
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2.2 Bilinear Maps

We present the necessary facts about bilinear maps and bilinear map groups. Let G be an additive
cyclic group and G1 be a multiplicative cyclic group, both of prime order p. A bilinear map or a
bilinear pairing is a map ê : G×G→ G1 with the following properties.

– Bilinearity. For all P, Q,R ∈ G,
• ê(P + Q,R) = ê(P, R) · ê(Q,R)
• ê(P,Q + R) = ê(P,Q) · ê(P,R)
• ê(aP, bQ) = ê(P,Q)ab

– Non-Degeneracy. There exist P, Q ∈ G such that ê(P, Q) 6= IG1 , where IG1 is the identity
element of G1.

– Computability. There exists an efficient algorithm to compute ê(P, Q) for all P, Q ∈ G.

Modified Weil pairing [4] and Tate pairing [14] are examples of cryptographic bilinear maps
where G is an elliptic curve group and G1 is a subgroup of a finite field.

2.3 Negligible Functions

We call a function µ : N→ R negligible if, for every possible polynomial p(·), there exists an N such
that for all n > N , we have µ(n) < 1

p(n) . Negligible functions remain negligible when multiplied by
any fixed polynomial.

3 A Formal Framework for Group Key Management

We restrict our discussions in this paper to centralized group key management (centralized GKM)
schemes. Here, there is an entity known as the Central Authority (CA), who maintains a dynamically
changing group of members (users) by performing operations that include, but are not restricted to,
allocating unique secret keys to members, establishing the common Data Encryption Key (DEK)
among members, and ensuring and maintaining group secrecy at all times, especially when a member
joins or leaves the group. Every group member is uniquely identified with an identifier. In the case
of ID-based systems for example, this identifier may be the member’s identity itself.

At an abstract level, GKM consists of initially establishing a group key and “managing” it through-
out the lifetime of the group. By management, we mean activities that the CA carries out in order to
preserve the desired security properties of the group. In centralized schemes, key establishment sim-
plifies to secure key distribution, that is, the CA broadcasts a ciphertext which the group members
decipher to obtain the key. A standalone cryptographic primitive that achieves this is multi-receiver
Key Encapsulation Mechanism (mKEM).

It becomes natural, therefore, to think of centralized GKM schemes as being constructed out of
mKEMs. Many GKM schemes do not explicitly view it this way. For example, in LKH [26], the
KDC first distributes the KEKs which are then used to encrypt the DEK. The underlying mKEM
here is a simple symmetric key encryption scheme. The FT (CP-ABE) scheme [12] explicitly uses
a public key technique called ciphertext policy - attribute based encryption to establish the DEK.
Normal multi-receiver encryption schemes also fall into the category of mKEMs; the difference lies
in the fact that, in encryption schemes, the key that is encrypted is known beforehand and is a
necessary input to the encryption algorithm. Whereas, in traditional KEMs, it is impossible to know
the key that is encapsulated beforehand; the encapsulation algorithm outputs both the ciphertext
and the key that would emerge during its decapsulation.

We now describe the algorithms that form the building blocks of a generic basic GKM scheme. The
description is largely functional in nature; the implementation details are specific to the underlying
mKEM and the GKM scheme using it.
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1. Setup(k,N,Sinit, E)
– Input. k is a security parameter, N is the maximum number of group members (the ca-

pacity)3, Sinit is the set of identifiers of initial group members and E is an underlying
multi-receiver key encapsulation mechanism, which is described by the following algorithms.
Note that our description is that of a most general mKEM, including normal multi-receiver
encryption schemes. Depending upon the specific mKEM that is used, some inputs to the
algorithms may not actually be necessary.
(a) SetupE(k,N) — This algorithm takes as input a security parameter k and the maximum

number of receivers N and outputs the public system parameters (or public key) as PK,
the secret keys SKi of users with identifiers i, and, if used, a master secret key MSK.

(b) EncapsulateE(DEK,PK,MSK,S) — This algorithm takes as input the key DEK to
be encrypted4, the public key PK, the master secret key MSK (if used) and the set S
of receivers who alone can decrypt and recover DEK (known as authorized, privileged
or intended receivers). It returns a ciphertext, more specifically known in our context
as a header Hdr, and in the case of a non-trivial mKEM (mKEMs that are not simply
encryption schemes), also returns the DEK corresponding to the header.

(c) DecapsulateE(Hdr,PK,SKi,S) — This algorithm takes as input the ciphertext or
header Hdr, the public key PK, the secret key SKi of one of the authorized decrypting
receivers whose identifier is i, and the set S of authorized receivers5. It returns the
encrypted key DEK corresponding to the header Hdr.

– The CA runs SetupE(k,N,Sinit) to obtain PKE , SKE
i for all users with identifiers i, and

MSKE . Using these, the CA generates the public key PK, the secret keys SKi (SKE
i must

explicitly be part of SKi as the users would need it for decapsulation) and the master secret
key MSK of the GKM scheme.

– Every member with identifier i in the set Sinit of current group members is given through
secure channels, his secret key SKi and the initial Data Encryption Key (DEK), which may
be chosen randomly from the key space K.

2. Rekey(S,PK,MSK, E)
– Input. S is the set of identifiers of the current group members, PK is the public key, MSK

is the master secret key, and E is the underlying mKEM.
– Every group member first updates his secret key and securely erases the old one. The exact

mechanism, for example, whether this updating process involves an input from the CA or
is independent of it, would depend on the specific GKM scheme. Failure to securely erase
the old key would enable someone who gains control of the group member’s hardware to
retrieve the old key using hardware forensics. If a group member does not securely erase the
previous key, it is considered a violation of the protocol, meaning that he has already been
compromised. Also, the CA can choose to update the public key as well, if required.

– The CA runs EncapsulateE(DEKE ,PKE ,MSKE ,S), at the end of which he has with him,
the pair (HdrE , DEKE). Using this, he computes the pair (Hdr,DEK) for the group and
broadcasts Hdr.

– The group members with identifiers i retrieve HdrE from Hdr and decrypt it by execut-
ing DecapsulateE(HdrE ,PKE ,SKE

i ,S) to obtain DEKE , from which DEK is recovered.
Again, the exact mechanism is specific to the GKM scheme.

3 This is an optional input as there may be GKM schemes which can accommodate any number of group members
and do not require an upper bound to be specified before Setup.

4 This input will not be required (indeed, it would be impossible to know the key being encrypted beforehand) when
the mKEM used is not a normal multi-receiver encryption scheme (where the key would simply be encrypted (just
like a message) and sent to the user(s)).

5 While most existing mKEMs require the specification of this set, there may be some which do not require that S
be specified.
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3. Join(i,S,PK,MSK, E)

– Input. i is the identifier of the member who wishes to join the group, S is the set of
identifiers of current group members, PK is the public key, MSK is the master secret key,
and E is the underlying mKEM.

– A member with identifier i /∈ S who wishes to join the group establishes a secure connection
with the CA who may perform some checks before authorizing the user to join the group.

– The CA updates the set S ← S∪{i}, and gives SKi to the joining member through a secure
channel.

– The CA then runs Rekey(S,PK,MSK, E).

4. Leave(L,S,PK,MSK, E)

– Input. L is the set of identifiers of the members who wish to leave the group or are being
banned (revoked), S is the set of identifiers of current group members, PK is the public
key, MSK is the master secret key, and E is the underlying mKEM.

– The CA updates the set S ← S − L.
– The CA then runs Rekey(S,PK,MSK, E).

Note. Many GKM schemes exist that specify different techniques for Leave depending on
whether L is singleton or not.

Note. The CA may choose to perform the Rekey operation periodically even if no member joins
or leaves the group, in order to maintain the “freshness” of the group and the data encryption key.
This measure is necessary to ensure perfect forward secrecy.

4 Security Model for Group Key Management

In this section, we present formally, the security model for GKM. We proceed as follows. First,
we describe the notations that are used throughout the rest of this paper. Then, we describe the
oracles that are used in the adversarial games, following which we formally describe these games
for each of the four security properties that were informally discussed above.

4.1 Notations

We stress that it is vital that the notations that are presented here are understood beyond doubt,
as we have used them liberally in the rest of this paper. We use St to denote the set of identifiers
of group members at time instant t. We have introduced time as a variable in order to model the
dynamics of GKM. Table 4.1 summarizes the notations dealing with time.

t An arbitrary instant of time
tnow The current time instant (the present time)

tCorrupt The time at which the corrupt query was issued6

tChallenge The time for which the challenge ciphertext is to be generated7

tJoin(i) The time at which the user with identifier i most recently joined the group
tLeave(i) The time at which the user with identifier i most recently left the group

t−now The time instant just before tnow

Table 4.1. Time-Related Notations

6 There is no ambiguity because, as we shall see, in every adversarial game, the adversary makes at most one corrupt
query

7 In other words, the group parameters used in generating the challenge ciphertext will be those at time tChallenge



8 Naga Naresh K. and Ragavendran G. and Rahul S. and Pandu Rangan C.

4.2 Oracles

The adversarial games involve a challenger to present the adversary with an interface consisting
of the oracles that model the algorithms of the real scheme. Below, we describe, again only in
functional terms, the oracles to be implemented by a challenger of a generic GKM scheme.

1. OJoin(i) — This oracle simulates the Join algorithm of the GKM, to include the member i in
the current group.
– Input. i should be the identifier of a member who is not currently part of the group.
– The oracle aborts if i ∈ St−now

.
– The set of identifiers of current group members is updated as Stnow ← St−now

∪ {i}.
– The Rekey algorithm is run and the new ciphertext is recorded.

2. OLeave(i) 8 — This oracle simulates the Leave algorithm of the GKM, to expel the member i
from the current group.
– Input. i should be the identifier of a member who is currently part of the group.
– The oracle aborts if i /∈ St−now

.
– The set of identifiers of current group members is updated as Stnow ← St−now

− {i}.
– The Rekey algorithm is run and the new ciphertext is recorded.

3. OCiphertext(t) — This oracle is used to retrieve the broadcasted ciphertext of Rekey operations.
– Input. t should be the present time or a time in the past.
– The oracle aborts if t > tnow.
– The ciphertext (header) corresponding to time t is returned. By “corresponding to”, we

mean the following.
• If a Rekey operation was done at time t, then the ciphertext broadcasted during that

Rekey operation is returned.
• Otherwise, the ciphertext broadcasted during the most recent Rekey operation done

before time t is returned.

4. ODecrypt(Hdr, t) — This oracle is used to retrieve the DEK from its encrypted form.
– Input. Hdr should be a ciphertext and t should be the present time or a time in the past.
– The oracle aborts if t > tnow.
– The set St of group members at time t is recalled and the secret key SKi corresponding to

a user with identifier i ∈ St at time t is obtained.
– HdrE and SKE

i are derived from Hdr and SKi respectively.
– DecapsulateE(HdrE ,PKE ,SKE

i ,St) is run, and the resultant DEK is returned.

5. OCorrupt(i, type) — This oracle simulates the compromise of a member.
– Input. i should be the identifier of a member, and type should be one of fs (forward

secrecy), bs (backward secrecy) or pfs (perfect forward secrecy), indicating the type of
security that is being attacked using this compromised member.

– The oracle aborts if type = pfs and i /∈ Stnow because, for perfect forward secrecy, the
member who is to be corrupted must be part of the group when he is compromised.

– Depending on whether type is fs, bs or pfs, the secret key corresponding to the user with
identifier i at time tLeave(i), tJoin(i) or tnow respectively is returned.

Note. The challenger who runs these oracles must have some mechanism of recording the set of
group members, secret keys and ciphertexts as time progresses. The most natural way of doing this
is to maintain lists (indexed by time) for each of these variables and keep appending the new values
to the respective lists whenever changes occur.
8 For a set L of leaving members, this oracle can be called repeatedly on each member in L
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4.3 Formal Definitions of Security

Normal multi-receiver cryptographic schemes which do not involve operations carried out over a
time-line, but are just a collection of algorithms that are executed once, have two clearly defined
extremes when describing the intensity of attacks — static attacks, while proving the security
against which, the adversary is required to submit the identifiers of the entities whom he would
attack during the challenge phase of the game, and adaptive attacks, in which case, the adversary
is under no such restriction. In Group Key Management, we consider static and adaptive security
not only along the dimension of receiver identifiers, but also along the time dimension. While
describing adversarial games for time-static security, the adversary would be required to submit
beforehand the time at which he would like the challenge to be generated, which would eventually
be given to him during the challenge phase. The adversary is not required to do so for time-adaptive
security. From now, when we simply say “static” (“adaptive”), we mean static (adaptive) in both
dimensions. In contexts where a mixed security is discussed, we will be explicit with respect to the
two dimensions.

Before describing the adversarial games involved, we formally define the four security notions that
were informally discussed in Section 1. For simplicity, we define only the CCA2 security against
adaptive attacks here. We discuss briefly about other notions in a separate paragraph at the end
of this section.

Definition 1. A (k,N) − GKM scheme is forward secure against adaptive chosen ciphertext at-
tacks (secure in the sense of fs-CCA2) if for all polynomials N(·), the advantage Advfs−CCA2

GKM of
any probabilistic polynomial time adversary Afs−GKM in the game Gfs−GKM

CCA2 against a challenger
Cfs−GKM is negligible in the security parameter k.

Definition 2. A (k, N) − GKM scheme is backward secure against adaptive chosen ciphertext
attacks (secure in the sense of bs-CCA2) if for all polynomials N(·), the advantage Advbs−CCA2

GKM of
any probabilistic polynomial time adversary Abs−GKM in the game Gbs−GKM

CCA2 against a challenger
Cbs−GKM is negligible in the security parameter k.

Definition 3. A (k, N)−GKM scheme is perfect forward secure against adaptive chosen ciphertext
attacks (secure in the sense of pfs-CCA2) if for all polynomials N(·), the advantage Advpfs−CCA2

GKM of
any probabilistic polynomial time adversary Apfs−GKM in the game Gpfs−GKM

CCA2 against a challenger
Cpfs−GKM is negligible in the security parameter k.

Definition 4. A (k, N) − GKM scheme is collusion resistant against adaptive chosen ciphertext
attacks (secure in the sense of cr-CCA2) if for all polynomials N(·), the advantage Advcr−CCA2

GKM of
any probabilistic polynomial time adversary Acr−GKM in the game Gcr−GKM

CCA2 against a challenger
Ccr−GKM is negligible in the security parameter k.

These definitions are not complete because we have neither described the adversarial games
nor defined the advantage of an adversary. First, in Game 4.1, we describe formally a generic
adversarial CCA2 game GGKM

CCA2. Then we define the games Gfs−GKM
CCA2 , Gbs−GKM

CCA2 and Gpfs−GKM
CCA2

as special cases of this generic game. Following this, in Game 4.2, we describe formally the game
Gcr−GKM

CCA2 for collusion resistance.
We define the adversarial games that model attacks against forward secrecy, backward secrecy,
perfect forward secrecy and collusion resistance as follows.

– Forward Secrecy — Gfs−GKM
CCA2 = GGKM

CCA2(Cfs−GKM,Afs−GKM, fs). In this adversarial game,
we allow the adversary to corrupt any member of his choice at any time he wishes (before the
challenge phase). Meanwhile, he can also query other oracles to learn about the system. A GKM
scheme satisfies forward secrecy, if a member who has left the group cannot decipher any future
ciphertexts intended to the group when he is not part of the group. Since we are talking about a
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Game 4.1 GGKM
CCA2(CGKM,AGKM, type)

This generic game is played between a challenger CGKM and an adversary AGKM . The variable type signifies the
type of security that the adversary claims he can break, and can take on any of three values fs, bs, or pfs.

Both the challenger and the adversary are given the security parameter k, the maximum number of group members
N , and the specification of the underlying mKEM E . The game consists of the following phases which are presented
in the order in which they occur. In addition to carrying out these phases, the challenger takes care of simulating the
Rekey operation periodically (if periodic rekey is carried out in the GKM scheme that is being attacked).

Setup Phase — The challenger runs Setup(k,N,Sinit, E), for any choice of Sinit by the adversary. The public key
PK is given to the adversary AGKM . A Rekey operation is simulated immediately after, and the time-line is started
at this instant (t = 0).

Query Phase 1 — During this phase, the adversary is given access to the oracles as described below.

– Queries of the form OJoin(i) and OLeave(i). The adversary can use these queries to control the group dynamics,
i.e., he can make a member with identifier i join or leave the group using these queries.

– Queries of the form OCiphertext(t). These queries help the adversary to retrieve the Hdr corresponding to the
most recent Rekey operation performed at or before a past time t (Note the Join and Leave operations also
involve a Rekey operation and such rekeys are also taken into account).

– Queries of the form ODecrypt(Hdr, t). The adversary can use these queries to learn the DEK corresponding to
any Hdr of his choice, as decrypted at any time t in the past. The challenger responds by decrypting Hdr using
the secret key SKu of some user u ∈ St.

Corrupt Phase — The adversary, at any time tCorrupt of his choice, invokes OCorrupt(ic, type), where ic is the
identifier of a member of the adversary’s choice. The only constraint is that if type = pfs, then the member with
identifier ic must currently be part of the group. The adversary receives, in return, the secret key SKic corresponding
to time tLeave(ic), tJoin(ic), or tnow, depending whether type is fs, bs or pfs respectively. Note that unlike in the
other phases, the Corrupt oracle can be invoked only once in this phase.

Query Phase 2 — The description of this phase is identical to that of Query Phase 1 — the adversary is given
access to OJoin, OLeave, OCiphertext and ODecrypt.

Challenge Phase — The adversary issues one challenge query to the challenger CGKM specifying the time tChallenge,
subject to one of the following restrictions depending on the value of type.

– If type = fs, the restrictions are tChallenge = tnow and ic /∈ StChallenge .

– If type = bs, the restrictions are tChallenge < tJoin(ic) and ic /∈ StChallenge .

– If type = pfs, the restrictions are tChallenge < tCorrupt and ic ∈ StChallenge .

The challenger runs EncapsulateE(DEKE ,PKE ,MSKE ,StChallenge), at the end of which he has the (HdrE , DEKE)
pair. Using this, he computes (Hdr∗, DEK∗) corresponding to time tChallenge, following which he selects a random
bit b, sets Kb to DEK∗ and K1−b to a random DEK from the key space K and challenges the adversary with 〈Hdr∗,
K0, K1〉.
Query Phase 3 — The adversary can continue to adaptively issue queries to all the oracles as in earlier query
phases, subject to the restriction that (Hdr∗, tChallenge) is not given as a query to ODecrypt.

Guess Phase The adversary outputs a guess b′ of b from {0, 1} and he wins the game if b′ = b. The adversary’s
advantage in winning the game is defined as AdvCCA2

GKM = |Pr[b′ = b]− 1
2
|

Note. We have provided two Query Phases before the Challenge Phase to model a situation in which the
Adversary can corrupt a member at a time of his choice before receiving the challenge.
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corrupted member who has left the group, during the corrupt phase, we give the adversary the
secret key of the corrupted member at the time of his leaving the group. We allow the adversary
to enter the challenge phase at any time after the corrupt phase. In particular, he may choose to
make the challenge query at the time he thinks is most convenient for him to win the challenge.
Of course, since we are dealing with forward secrecy, when the adversary makes the challenge
query, the corrupted member should not be part of the group.

– Backward Secrecy — Gbs−GKM
CCA2 = GGKM

CCA2(Cbs−GKM,Abs−GKM, bs). In this adversarial game,
we allow the adversary to corrupt any member of his choice at any time he wishes (before the
challenge phase). Meanwhile, he can also query other oracles to learn about the system. A GKM
scheme satisfies backward secrecy, if a member who has joined the group cannot decipher any
past ciphertexts intended to the group when he was not part of the group. Since we are talking
about a corrupted member who has joined the group, during the corrupt phase, we give the
adversary the secret key of the corrupted member at the time of his joining the group. And,
during the challenge phase, we allow the adversary to specify any time of his choice (before the
corrupted member last joined the group) as the time tChallenge during which the challenge is
to be generated. Of course, since we are dealing with backward secrecy, the corrupted member
should not be part of the group during tChallenge.

– Perfect Forward Secrecy — Gpfs−GKM
CCA2 = GGKM

CCA2(Cpfs−GKM,Apfs−GKM, pfs). In this adver-
sarial game, we allow the adversary to corrupt any member of his choice at any time he wishes
(before the challenge phase). A constraint that we impose here is that this member should be
part of the group when he is being corrupted. This is because perfect forward secrecy deals with
the situation when a member is compromised when he is part of the group. Accordingly, we give
the adversary the secret key of the corrupted member at the time of corruption. Meanwhile, he
can also query other oracles to learn about the system. The compromised group member should
not be able to decipher any past ciphertexts. So, we require that the time tChallenge at which
the adversary wants the challenge to be generated occurs before the member was corrupted.
Another constraint is that the corrupted member should be part of the group during tChallenge.
Otherwise, it would model backward secrecy.

– Collusion Resistance — Gcr−GKM
CCA2 . This game is described in Game 4.2. Collusion resistance

means that at any point in time, even if all the members who are currently not part of the
group collude, they will not be able to decipher the present ciphertext. To model this, in this
adversarial game, during the challenge phase, we give the secret keys9 of all the users who are
currently not part of the group to the adversary.

Other Security Notions. We have defined only adaptive CCA2 security for GKM . Now, without
going into detailed definitions for other security definitions, which would result in considerable
repetition, we explain the intuition behind them. We consider adaptive CCA and adaptive CPA
security as well as static versions of these security notions.

– Adaptive CCA Security — The adversarial game G(·)−GKM
CCA for adaptive CCA security is the

same as the game G(·)−GKM
CCA2 , except that in the Query phase that follows the Challenge phase,

the adversary is denied access to ODecrypt altogether.
– Adaptive CPA Security — The adversarial game G(·)−GKM

CPA for adaptive CPA security is the
same as the game G(·)−GKM

CCA , except that in all the Query phases, the adversary is denied access
to ODecrypt.

– Static Security — The adversarial games G(·)−GKM
sCCA2 , G(·)−GKM

sCCA and G(·)−GKM
sCPA for static security

are the same as the respective games for adaptive security, except that the adversary must
submit StChallenge

(for identifier-static) and tChallenge (for time-static) to the challenger in the
beginning of the Setup phase.

9 Since secret keys are time dependent, we give the adversary the secret keys of the members corresponding to the
time when they last left the group.



12 Naga Naresh K. and Ragavendran G. and Rahul S. and Pandu Rangan C.

Game 4.2 Gcr−GKM
CCA2

This game is played between the challenger Ccr−GKM and the adversary Acr−GKM . Both the challenger and the
adversary are given the security parameter k, the maximum number of group members N , and the specification
of the underlying mKEM E . The game consists of the following phases which are presented in the order in which
they occur. In addition to carrying out these phases, the challenger takes care of simulating the Rekey operation
periodically (if periodic rekey is carried out in the GKM scheme that is being attacked).

Setup Phase — Same as in GGKM
CCA2(Ccr−GKM ,Acr−GKM , ·).

Query Phase 1 — Same as in GGKM
CCA2(Ccr−GKM ,Acr−GKM , ·).

Challenge Phase — The adversary issues one challenge query to the challenger Ccr−GKM at any time in-
stant tChallenge. First, the adversary is given the secret keys SKi corresponding to time tLeave(i) of all the
group members with identifiers i /∈ StChallenge . The challenger obtains the (HdrE , DEKE) pair by running

EncapsulateE(DEKE ,PKE ,MSKE ,StChallenge). Using this, he computes (Hdr∗, DEK∗) corresponding to time
tChallenge, following which he selects a random bit b, sets Kb to DEK∗ and K1−b to a random DEK from the key
space K and challenges the adversary with 〈Hdr∗, K0, K1〉.
Query Phase 2 — The adversary can continue to adaptively issue queries to all the oracles as in earlier query phase,
subject to the restriction that (Hdr∗, tChallenge) is not given as a query to ODecrypt.

Guess Phase The adversary outputs a guess b′ of b from {0, 1} and he wins the game if b′ = b. The adversary’s
advantage in winning the game is defined as Advcr−CCA2

GKM = |Pr[b′ = b]− 1
2
|

5 Multi-receiver ID-based Key Encapsulation Mechanism (mID-KEM)

In this section, we quickly review the basic framework of an mID-KEM and the formal security
model for the same. In the forthcoming sections, we shall be using these as black-boxes while taking
a general mID-KEM to a GKM scheme and proving its security.

5.1 General Framework of an mID-KEM

We describe the framework of a non-trivial mID-KEM here. By non-trivial, we mean that we do not
consider normal encryption schemes (which may trivially be used to encrypt keys just like messages)
as KEMs for the purposes of our discussion. An mID-KEM consists of a Private Key Generator
(PKG), who generates, using a master secret key MSK, the private keys SKIDi of group members
with identities IDi and transmits these keys to them through secure channels. The sender, uses
the public key PK and identities of the intended or privileged receivers to generate a ciphertext
or header, which can be decrypted only by the privileged receivers to obtain a key. More formally,
a multi-receiver ID-based Key Encapsulation Mechanism (mID-KEM) with security parameter k
and maximum size N of the set of privileged members, consists of the following four algorithms10.

Setup(k,N) — This algorithm takes as input a security parameter k and the maximum size of the
set of authorized receivers N , and outputs a master secret key MSK and a public key PK. The
PKG is given MSK, and PK is made public.

Extract(MSK, IDi,PK) — This algorithm takes as input the master secret key MSK, a user
identity IDi, and the public key PK, and outputs the private key SKIDi of the user, which is
securely transported to the user.

Encapsulate(S,PK) — This algorithm takes as input a set of identities of privileged (intended)
receivers S = {ID1, ID2, . . . , IDt}, with t ≤ N and the public key PK, and outputs a pair
(Hdr,DEK). Hdr is called the header and DEK ∈ K, where K is the key space.

Decapsulate(S, IDi,SKIDi
,Hdr,PK). Takes as input the set S of identities of the intended

receivers, the identity IDi of one of the intended receivers, and the corresponding private key
SKIDi , a header Hdr, and the public key PK. If IDi ∈ S, the algorithm outputs the key K.
10 Our description of an mID-KEM does fall into the generic framework of the underlying mKEM discussed in Section

3; the only difference is that the Setup algorithm is split here into two algorithms Setup and Extract
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5.2 Security Model for mID-KEM

The adversarial game involves a challenger to present the adversary with an interface consisting of
oracles that model the algorithms of the real scheme. Below, we describe in functional terms, the
oracles to be implemented by a challenger of a generic mID-KEM.

1. OExtract(IDi) — Here, IDi is the identity of a user. The oracle returns the secret key SKIDi

of the user by using the Extract algorithm.

2. ODecapsulate(IDi,S,Hdr) — Here, IDi is the identity of an intended user, S is the set of
identities of the intended (privileged) users, and Hdr is a header to be decrypted. The oracle
returns the DEK corresponding to Hdr by using the Decapsulate algorithm.

We define CCA2 security for mID-KEM using the adversarial game GmID−KEM
CCA2 that is described

in Game 5.1.

Definition 5. A (k,N)−mID−KEM is CCA2 secure against adaptive chosen ciphertext attacks
if for all polynomials N(·), the advantage AdvCCA2

mID−KEM of any probabilistic polynomial time ad-
versary AmID−KEM in the game GmID−KEM

CCA2 against a challenger CmID−KEM is negligible in the
security parameter k.

Game 5.1 GmID−KEM
CCA2

This game is played between the challenger CmID−KEM and the adversary AmID−KEM . Both the challenger and the
adversary are given the security parameter k and the maximum number of receivers N . The game consists of the
following phases that are presented in the order in which they occur.

Setup Phase — The challenger runs Setup(k,N) and the public key PK is given to the adversary AmID−KEM .

Query Phase 1 — During this phase the adversary is given access to the oracles as described below.

– Queries of the form OExtract(IDi) — The adversary can use this query to learn the secret keys of any of the
members of his choice.

– Queries of the form ODecapsulate(IDi,S,Hdr) — The adversary can use this query to learn the DEK corre-
sponding to any Hdr meant for any subset of privileged users.

Challenge Phase — During this phase the adversary issues one challenge query to the challenger, submitting a set
S∗ of identities of users of the adversary’s choice. The only restriction is that S∗ should not contain an identity of a
user whose secret key was queried earlier by the adversary. The challenger then uses the Encapsulate algorithm with
S∗ as input to obtain a (Hdr∗, DEK∗) pair. He then chooses a bit b ∈ {0, 1} at random and sets Kb to DEK∗ and
K1−b to a random element from the key space K. He then challenges the adversary with 〈Hdr∗, K0, K1〉.
Query Phase 2 — During this phase the adversary can continue to query the oracles as before, subject to the
following restrictions.

– He should not query the Extract oracle for the secret key of any member whose identity belongs to S∗.
– He should not query the Decapsulate oracle with (IDi,S∗, Hdr∗), for any IDi ∈ S∗.

Guess Phase — During this phase, the adversary outputs a guess b′ of b from {0, 1} and he wins the game if b′ = b.
The adversary’s advantage in winning the game is defined as AdvCCA2

mID−KEM = |Pr[b′ = b]− 1
2
|.

Other Security Notions. We have defined only adaptive CCA2 security for mID-KEM. Now,
without going into detailed definitions for other security definitions, which would result in consid-
erable repetition, we explain the intuition behind them. We consider adaptive CCA and adaptive
CPA security as well as static versions of these security notions.
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– Adaptive CCA Security — The adversarial game GmID−KEM
CCA for adaptive CCA security is the

same as the game GmID−KEM
CCA2 , except that in the Query phase that follows the Challenge phase,

the adversary is denied access to ODecrypt altogether.

– Adaptive CPA Security — The adversarial game GmID−KEM
CPA for adaptive CPA security is the

same as the game GmID−KEM
CCA , except that in all the Query phases, the adversary is denied

access to ODecrypt.

– Static Security — The adversarial games GmID−KEM
sCCA2 , GmID−KEM

sCCA and GmID−KEM
sCPA for static

security are the same as the respective games for adaptive security, except that the adversary
must submit, in the beginning of the Setup phase, to the challenger, the set S∗ of identities of
users he wishes to be challenged upon.11

6 A Generic Conversion to Centralized GKM from mID-KEM

Let mID − KEM be the underlying mID-KEM and let GKM be the centralized GKM scheme that
is to be constructed using mID − KEM. Before we formally describe the constituent algorithms
of GKM as per our construction, we state informally what it does and the intuition behind it.

Consider the following trivial (and hypothetical) construction of GKM. For Setup, run the Setup
algorithm of mID − KEM, make the public key public, run the Extract algorithm of mID − KEM
for all the group members, and securely transport their secret keys and the initial DEK to them. For
Rekey, simply execute the Encapsulate algorithm of mID − KEM and broadcast the new header to
the members, who can retrieve the new DEK by running the Decapsulate algorithm. For Join and
Leave, just update the set of identities of the current group members accordingly and do a Rekey
operation. It is not difficult to see that this GKM will be forward secure, backward secure and
collusion resistant if mID − KEM is provably secure. But it is not perfect forward secure because,
a header generated now can be decrypted by the group member (who was part of the group when
the ciphertext was generated) at any point in the future. This enables a group member to decrypt
past headers and recover past DEKs. We circumvent this problem by introducing time-dependent
secret keys for group members, so that a group member cannot use his current secret key to decrypt
a header that was generated in the past.

Informally, all that our construction does is to introduce an additional time-varying secret key
component g that is common to all group members, with which the header of mID − KEM is
XORed before being broadcasted to the group. The group members first recover the header because
they know the secret g, and then decrypt it to recover the DEK. Both the CA and the members
update this secret g during every Rekey operation by using a one-way function, the old value of g,
and a randomness parameter that is broadcasted by the CA. Since we are using a one-way function
to update the secret keys, a group member cannot derive a past secret key from his present secret
key. (If he manages to do that, then he can decrypt past headers.) Of course, the group member can
store his past secret keys, but we prohibit this in our construction, considering it to be a violation
of the protocol.

Formally, GKM consists of the following algorithms, all of which are run by the CA, who plays the
role of the PKG of mID − KEM as well.

Setup(k,N,Sinit,mID − KEM)

– Input. Take as input the security parameter k, the maximum number of group members N ,
the set Sinit of the identities of initial group members, and mID − KEM, the underlying multi-
receiver key encapsulation mechanism.

11 Consequently, in Query Phase 1 of GmID−KEM
(·) , the adversary should not query the Extract oracle for any identities

that are present in S∗.
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– Choose a one-way function F : Z∗p → Z∗p, and a random seed g ∈ Z∗p, where p is a large prime
such that |p| = k.

– Run SetupmID−KEM(k,N) to obtain PKmID−KEM and MSKmID−KEM. Construct the public
key PK = 〈PKmID−KEM,F ,mID − KEM〉 and make it public.

– Set MSK = 〈MSKmID−KEM, g〉.
– Choose a data encryption key DEK at random from the key space K.

– Run ExtractmID−KEM(IDi) for each identity IDi ∈ Sinit to obtain the secret keys of all the
members SKmID−KEM

IDi
. Compute SKIDi = (SKmID−KEM

IDi
, g) for all IDi ∈ Sinit and securely

send these keys to the corresponding members. Also send the initial DEK securely to these
members.

Note. The second component of the secret key SKIDi is a Z∗p-element and is common to all the
group members. We refer to this component of the key as the dynamic key. It is “dynamic” because,
as we shall see, it is updated regularly during every Rekey operation.

Rekey(S,PK)

– Input. Take as input the set S of the identities of current group members, and the public key
PK.

– Select a random r ∈ Z∗p and update the dynamic key by using the one-way function F as
g ← r · F(g).

– Run EncapsulatemID−KEM(S, PKmID−KEM) to obtain a (HdrmID−KEM, DEK) pair.

– Construct HdrGKM = HdrmID−KEM ⊕ (g) 12 and broadcast 〈HdrGKM, r〉 to the group.

– Every group member also updates the second component of his secret key (the dynamic key)
as g ← r · F(g) and securely erases the old copy of g values.

– Every group member with identity IDi will retrieve HdrmID−KEM = HdrGKM ⊕ g and run
DecapsulatemID−KEM(S, IDi, SKmID−KEM

IDi
,HdrmID−KEM, PKmID−KEM) to obtain DEK.

Note. The CA keeps running the Rekey algorithm periodically even though the group may remain
static without any Join or Leave operations.

Join(IDi,S,PK)

– Input. Take as input the identity IDi of a member who wishes to join the group, the set S of
identities of current group members, and the public key PK.

– The joining member establishes a secure connection with the CA, who may perform some checks
before authorizing the member to join the group. If authorized, run ExtractmID−KEM(IDi) to
obtain the secret key SKmID−KEM

IDi
of the member.

– Compute SKIDi = (SKmID−KEM
IDi

, g) and securely send it to the joining member.

– Update the set of identities of current group members as S ← S ∪ {IDi}.
– Run Rekey(S,PK).

Leave(L,S,PK)

– Input. Take as input the set L of identities of members who wish to leave the group or are
revoked, the set S of identities of current group members, and the public key PK.

– Update the set of identities of current group members as S ← S − L.
– Run Rekey(S,PK).

12 The XOR operation is done bitwise. g is represented as bits and is padded with additional zeroes if necessary.
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7 Formal Security Proof for GKM
We now prove that GKM is secure against adaptive13 Chosen Ciphertext Attacks (CCA) with
respect to all the four security properties by assuming the adaptive CCA security of the underlying
mID-KEM and the hardness of inverting one-way functions. For proofs which involve the reduction
of an adversary of mID − KEM to an adversary of GKM, we will be running the following two
adversarial games in parallel.

– GmID−KEM
CCA — The CCA game corresponding to mID − KEM. The challenger for this game

is denoted by CmID−KEM and the adversary for this game is denoted by AmID−KEM.

– G(·)−GKM
CCA — The (·)-CCA game corresponding to GKM. Here, (·) can refer to fs, bs, pfs or

cr depending on the security property that is being proved. The challenger and adversary for
this game are denoted by C(·)−GKM and A(·)−GKM respectively.

For proofs which involve the reduction of the problem of inverting a given one-way function to the
problem of breaking the security of GKM, we will just run the game G(·)−GKM

CCA .

Before presenting the formal proof, we give a short informal overview of the two proof techniques
that we employ.

– Proofs for Forward Secrecy, Backward Secrecy and Collusion Resistance — For these properties,
we shall be reducing AmID−KEM to A(·)−GKM. That is, we assume the existence of an adversary
A(·)−GKM who can break a particular security property of GKM and use him to construct the
adversary AmID−KEM who can break the security of mID − KEM. For this purpose, we let
AmID−KEM take on the role of C(·)−GKM and interact with A(·)−GKM on one side through the
game G(·)−GKM

CCA and simultaneously interact with CmID−KEM through the game GmID−KEM
CCA .

Thus, the task of AmID−KEM is to use its interaction with A(·)−GKM to try and win against
CmID−KEM.

– Proof for Perfect Forward Secrecy — For this property, we shall be reducing the problem of
inverting a one-way function F to the problem of breaking perfect forward secrecy of GKM.
This reduction is somewhat weak in the sense that we do not give an exact algorithm for
inverting a given one-way function, but merely show the existence of such an algorithm. This is
done by acting as the challenger Cpfs−GKM of the adversary Apfs−GKM, and interacting with
him through the game Gpfs−GKM

CCA . Thus, the task of Cpfs−GKM is to force Apfs−GKM to invert
the one-way function F , if at all he is to win Gpfs−GKM

CCA .

We now describe the working of C(·)−GKM, who is an important entity in all our proofs.14 He
maintains five lists Lc, Ls, Lg, Lj and L` as described below.

• Lc contains entries of the form 〈t,HdrGKM〉, where HdrGKM is the broadcast ciphertext of the
Rekey operation performed at time t.

• Ls contains entries of the form 〈t,St〉, where St is the set of identities of the group members
present at time t.

• Lg contains entries of the form 〈t, gt〉, where gt is the dynamic key at time t.
• Lj contains entries of the form 〈ID, tJoin(ID)〉. Recall that tJoin(ID) is the most recent time

at which the member with identity ID joined the group. For every ID, there will be a unique
entry in this list.

• L` contains entries of the form 〈ID, tLeave(ID)〉. Recall that tLeave(ID) is the most recent time
at which the member with identity ID left the group. For every ID, there will be a unique
entry in this list.

13 Both time-adaptive and identity-adaptive
14 It must be kept in mind that in the proofs for forward secrecy, backward secrecy and collusion resistance, C(·)−GKM

is also AmID−KEM
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C(·)−GKM, acting as the challenger for A(·)−GKM, must provide access to all the oracles involved in
G(·)−GKM

CCA . In those three proofs in which he is also an adversary for mID − KEM, he has access
to the oracles provided by CmID−KEM, namely OmID−KEM

Extract and OmID−KEM
Decapsulate . In the proof in which

there is no access to these oracles, he can simulate them himself.15 In any case, we describe how
C(·)−GKM simulates the oracles of GKM using those of mID − KEM and a little bookkeeping.

– OJoin(IDi) — C(·)−GKM does the following.
1. Retrieve the last entry, (t′,St′), from Ls and check if IDi ∈ St′ . If so, then abort. Else, set
Stnow = St′ ∪ {IDi} and append (tnow,Stnow) to Ls.

2. Retrieve gt−now
from Lg (gt−now

= gt′′ , where (t′′, gt′′) is the last entry in Lg), pick a random
r ∈ Z∗p, compute gtnow = r · F(gt−now

) and append the entry (tnow, gtnow) to Lg.

3. Run EncapsulatemID−KEM(Stnow , PKmID−KEM) to obtain HdrmID−KEM corresponding
to a new DEK, compute HdrGKM = 〈HdrmID−KEM ⊕ gtnow , r〉 and append the entry
(tnow,HdrGKM) to Lc.

4. Record the join by appending the entry (IDi, tnow) to Lj . If there already exists an entry
corresponding to IDi, overwrite it.

– OLeave(IDi) — C(·)−GKM does the following.
1. Retrieve the last entry, (t′,St′), from Ls and check if IDi /∈ St′ . If so, then abort. Else, set
Stnow = St′ − {IDi} and append (tnow,Stnow) to Ls.

2. Retrieve gt−now
from Lg (gt−now

= gt′′ , where (t′′, gt′′) is the last entry in Lg), pick a random
r ∈ Z∗p, compute gtnow = r · F(gt−now

) and append the entry (tnow, gtnow) to Lg.

3. Run EncapsulatemID−KEM(Stnow , PKmID−KEM) to obtain HdrmID−KEM corresponding
to a new DEK, compute HdrGKM = 〈HdrmID−KEM ⊕ gtnow , r〉 and append the entry
(tnow,HdrGKM) to Lc.

4. Record the leave by appending the entry (IDi, tnow) to L`. If there already exists an entry
corresponding to IDi, overwrite it.

– OCiphertext(t) — C(·)−GKM aborts if t > tnow. Otherwise, he retrieves, if present, the entry
(t′,HdrGKM) from Lc such that t′ is the most recent (numerically largest) time stamp satisfying
t′ ≤ t and returns HdrGKM. If no such entry is present, he returns ⊥.

– ODecrypt(HdrGKM, t) — C(·)−GKM aborts if t > tnow. Otherwise, he does the following.
1. Retrieve, if present, the entries (t′,St′) from Ls and (t′, gt′) from Lg such that t′ is the most

recent (numerically largest) time stamp satisfying t′ ≤ t. If no such entries are present,
return ⊥.

2. Generate the header HdrmID−KEM = HdrGKM ⊕ gt′ corresponding to mID − KEM and
return the result of OmID−KEM

Decapsulate (IDi,St′ ,HdrmID−KEM), where IDi is chosen at random
from St′ .

– OCorrupt(IDi, type) — C(·)−GKM does the following.
1. When type = fs, retrieve if present, the entries (IDi, tLeave(IDi)) and (tLeave(IDi), gtLeave(IDi))

from L` and Lg respectively. If no such entries are present, return ⊥. Else obtain SIDi by
querying OmID−KEM

Extract (IDi) and return SKIDi = (SKmID−KEM
IDi

, gtLeave(IDi)).
2. When type = bs, retrieve if present, the entries (IDi, tJoin(IDi)) and (tJoin(IDi), gtJoin(IDi))

from Lj and Lg respectively. If no such entries are present, return ⊥. Else obtain SIDi by
querying OmID−KEM

Extract (IDi) and return SKIDi = (SKmID−KEM
IDi

, gtJoin(IDi)).

3. When type = pfs, retrieve the last entry (t, gt) from Lg, query OmID−KEM
Extract (IDi) to obtain

SIDi and return SKIDi = (SKmID−KEM
IDi

, gt).

15 He is able to do so because there is no game GmID−KEM
CCA and no corresponding challenger to win against.
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We now present the four security theorems and their formal proofs.

Theorem 1. GKM is fs-CCA secure if mID − KEM is at least CCA secure.

Proof. Here, we describe how the adversary AmID−KEM on one side acts as the challenger Cfs−GKM

who interacts with Afs−GKM, while simultaneously interacting with CmID−KEM on the other side,
trying to win against him. Since the two games are being run in parallel and we describe the events
in chronological order, the description below switches between the phases of the two games. To
ensure some clarity, we present the description from the point of view of the game Gfs−GKM

CCA .

1. Setup Phase — The challenger CmID−KEM runs SetupmID−KEM(k, N) to obtain PKmID−KEM,
and gives it to AmID−KEM, who constructs PK = 〈PKmID−KEM,F ,mID − KEM〉 and gives
it to Afs−GKM. He also picks a random seed g from Z∗p and sets the master secret key MSK
to 〈MSKmID−KEM, g〉.

2. Query Phase 1 — Afs−GKM is allowed to query the oracles OJoin, OLeave, OCiphertext and
ODecrypt.

3. Corrupt Phase — Afs−GKM chooses IDic , an identity which he wants to corrupt and makes
the query OCorrupt(IDic , fs) at time tCorrupt (which is the choice of Afs−GKM).

4. Query Phase 2 — Afs−GKM can query the oracles as in Query Phase 1.

5. Challenge Phase — Afs−GKM issues one challenge query to its challenger AmID−KEM at time
tChallenge (which is the choice of Afs−GKM), subject to the restriction that IDic /∈ StChallenge

.
Now, AmID−KEM does the following before responding with the challenge.
– Retrieve the set StChallenge

from the list Ls.

– Issue a challenge query, specifying the set StChallenge
, to the challenger CmID−KEM.

– Receive the challenge (Hdr∗mID−KEM,K0,K1).
– Compute Hdr∗GKM as 〈Hdr∗mID−KEM ⊕ gtChallenge

, rtChallenge
〉.16

AmID−KEM returns (Hdr∗GKM,K0,K1) as the challenge to Afs−GKM.

6. Guess Phase — Afs−GKM outputs a bit b′ ∈ {0, 1} as its guess. AmID−KEM passes on b′ as its
guess to CmID−KEM.

It is easy to see that the advantage of Afs−GKM in breaking the forward secrecy of GKM is the
same as that of AmID−KEM in breaking the CCA security of mID − KEM.

Advfs−CCA
GKM = AdvCCA

mID−KEM = |Pr[b = b′]− 1
2
|

This means that if there exists no adversary AmID−KEM who can break the CCA security of
mID − KEM with non-negligible advantage, then there cannot be any adversary Afs−GKM who
can break the forward secrecy of GKM with non-negligible advantage.

Theorem 2. GKM is bs-CCA secure if mID − KEM is at least CCA secure.

Proof. Here, we describe how the adversary AmID−KEM on one side acts as the challenger Cbs−GKM

who interacts with Abs−GKM, while simultaneously interacting with CmID−KEM on the other side,
trying to win against him. Since the two games are being run in parallel and we describe the events
in chronological order, the description below switches between the phases of the two games. To
ensure some clarity, we present the description from the point of view of the game Gbs−GKM

CCA .

16 gtChallenge is retrieved from the list Lg. Since gtChallenge = rtChallenge ·F(g
t−
Challenge

), it can be seen that rtChallenge

can be computed using gtChallenge and g
t−
Challenge

, both of which are available in Lg.
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1. Setup Phase — The challenger CmID−KEM runs SetupmID−KEM(k, N) to obtain PKmID−KEM,
and gives it to AmID−KEM, who constructs PK = 〈PKmID−KEM,F ,mID − KEM〉 and gives
it to Abs−GKM. He also picks a random seed g from Z∗p and sets the master secret key MSK to
〈MSKmID−KEM, g〉.

2. Query Phase 1 — Abs−GKM is allowed to query the oracles OJoin, OLeave, OCiphertext and
ODecrypt.

3. Corrupt Phase — Abs−GKM chooses IDic , an identity which he wants to corrupt and makes the
query OCorrupt(IDic , bs) at time tCorrupt (which is the choice of Abs−GKM).

4. Query Phase 2 — Abs−GKM can query the oracles as in Query Phase 1.

5. Challenge Phase —Abs−GKM issues one challenge query to its challengerAmID−KEM, specifying
a time tChallenge (which is the choice of Abs−GKM), subject to the restrictions that IDic /∈
StChallenge

and tChallenge ≤ tJoin(IDic). Now, AmID−KEM does the following before responding
with the challenge.
– Retrieve the set StChallenge

from the list Ls.

– Issue a challenge query, specifying the set StChallenge
, to the challenger CmID−KEM.

– Receive the challenge (Hdr∗mID−KEM,K0,K1).
– Compute Hdr∗GKM as 〈Hdr∗mID−KEM ⊕ gtChallenge

, rtChallenge
〉.17

AmID−KEM returns (Hdr∗GKM,K0,K1) as the challenge to Abs−GKM.

6. Guess Phase — Abs−GKM outputs a bit b′ ∈ {0, 1} as its guess. AmID−KEM passes on b′ as its
guess to CmID−KEM.

It is easy to see that the advantage of Abs−GKM in breaking the backward secrecy of GKM is the
same as that of AmID−KEM in breaking the CCA security of mID − KEM.

Advbs−CCA
GKM = AdvCCA

mID−KEM = |Pr[b = b′]− 1
2
|

This means that if there exists no adversary AmID−KEM who can break the CCA security of
mID − KEM with non-negligible advantage, then there cannot be any adversary Abs−GKM who
can break the backward secrecy of GKM with non-negligible advantage.

Theorem 3. GKM is pfs-CCA secure if inverting F is hard.

Proof. This proof differs somewhat from the other proofs because we are reducing the security of
GKM to the one-wayness of F . Here, we describe how the challenger Cpfs−GKM interacts with
Apfs−GKM and forces him to invert the one-way function F in order for him to win against
Cpfs−GKM. The game that is being described is Gpfs−GKM

CCA .

1. Setup Phase — Cpfs−GKM runs SetupmID−KEM(k, N) to obtain PKmID−KEM. He constructs
PK = 〈PKmID−KEM,F ,mID − KEM〉 and gives it to Apfs−GKM. He also picks a random
seed g from Z∗p and sets the master secret key MSK to 〈MSKmID−KEM, g〉.

2. Query Phase 1 — Apfs−GKM is allowed to query the oracles OJoin, OLeave, OCiphertext and
ODecrypt.

3. Corrupt Phase — Apfs−GKM chooses IDic , an identity which he wants to corrupt and makes
the query OCorrupt(IDic , bs) at time tCorrupt (which is the choice of Apfs−GKM).

17 gtChallenge is retrieved from the list Lg. Since gtChallenge = rtChallenge ·F(g
t−
Challenge

), it can be seen that rtChallenge

can be computed using gtChallenge and g
t−
Challenge

, both of which are available in Lg.
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4. Query Phase 2 — Apfs−GKM can query the oracles as in Query Phase 1.

5. Challenge Phase — Apfs−GKM issues one challenge query to Cpfs−GKM, specifying a time
tChallenge (which is the choice of Apfs−GKM), subject to the restrictions that IDic ∈ StChallenge

and tJoin(IDic) < tChallenge < tCorrupt. Now, Cpfs−GKM does the following before responding
with the challenge.

– Retrieve the set StChallenge
from the list Ls.

– Run EncapsulatemID−KEM(StChallenge
, PKmID−KEM) and obtain a (HdrmID−KEM, DEK)

pair.

– Compute Hdr∗GKM ← 〈HdrmID−KEM ⊕ gtChallenge
, rtChallenge

〉.18

– Randomly select a bit b ∈ {0, 1} and set Kb = DEK and K1−b to a random element from
the key space K.

Now, Cpfs−GKM returns (Hdr∗GKM,K0,K1) as the challenge to Apfs−GKM.

6. Guess Phase — Apfs−GKM outputs a bit b′ ∈ {0, 1} as its guess.

Note that since gtChallenge
= rtChallenge

· F(gt−Challenge
) and rtChallenge

is random in Z∗p, gtChallenge
is

also random. Therefore, the challenge Hdr∗GKM is also random. So, the only way by which the
adversary Apfs−GKM can get any information about from Hdr∗GKM about the DEK corresponding
to HdrmID−KEM is by obtaining HdrmID−KEM itself. This implies that, if he is able to obtain
HdrmID−KEM, then he is also able to obtain gtChallenge

19 from gtCorrupt . Since tChallenge < tCorrupt,
this shows the ability of the adversary to invert the one-way function F . Hence the advantage of
the adversary Apfs−GKM is at most his advantage in inverting the one-way function F .

Advpfs−CCA
GKM < Advinv

F

This means that if there exists no algorithm that can invert a one-way function F with non-
negligible advantage, then there cannot be any adversary Apfs−GKM who can break the perfect
forward secrecy of GKM with non-negligible advantage.

Theorem 4. GKM is cr-CCA secure if mID − KEM is at least CCA secure.

Proof. Here, we describe how the adversary AmID−KEM on one side acts as the challenger Ccr−GKM

who interacts with Acr−GKM, while simultaneously interacting with CmID−KEM on the other side,
trying to win against him. Since the two games are being run in parallel and we describe the events
in chronological order, the description below switches between the phases of the two games. To
ensure some clarity, we present the description from the point of view of the game Gcr−GKM

CCA .

1. Setup Phase — The challenger CmID−KEM runs SetupmID−KEM(k, N) to obtain PKmID−KEM,
and gives it to AmID−KEM, who constructs PK = 〈PKmID−KEM,F ,mID − KEM〉 and gives
it to Acr−GKM. He also picks a random seed g from Z∗p and sets the master secret key MSK to
〈MSKmID−KEM, g〉.

2. Query Phase —Acr−GKM is allowed to query the oraclesOJoin,OLeave,OCiphertext andODecrypt.

3. Challenge Phase — Acr−GKM issues one challenge query to its challenger AmID−KEM at time
tChallenge (which is the choice of Acr−GKM). Now, AmID−KEM does the following before re-
sponding with the challenge.

18 gtChallenge is retrieved from the list Lg. Since gtChallenge = rtChallenge ·F(g
t−
Challenge

), it can be seen that rtChallenge

can be computed using gtChallenge and g
t−
Challenge

, both of which are available in Lg.
19 Obtaining gtChallenge from Hdr∗GKM and HdrmID−KEM just involves an XOR operation
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– Retrieve the set StChallenge
from the list Ls, and gtLeave(IDi) from the list Lg, for all IDi /∈

StChallenge
.

– For each identity IDi /∈ StChallenge
, issue the query OmID−KEM

Extract (IDi) to obtain SIDi and
return SKIDi = (SIDi , gtLeave(IDi)).

– Issue a challenge query, specifying the set StChallenge
, to the challenger CmID−KEM.

– Receive the challenge (Hdr∗mID−KEM,K0,K1).
– Compute Hdr∗GKM as 〈Hdr∗mID−KEM ⊕ gtChallenge

, rtChallenge
〉.20

AmID−KEM returns (Hdr∗GKM,K0,K1) as the challenge to Acr−GKM.

4. Guess Phase — Acr−GKM outputs a bit b′ ∈ {0, 1} as its guess. AmID−KEM passes on b′ as its
guess to CmID−KEM.

It is easy to see that the advantage of Acr−GKM in breaking the collusion resistance of GKM is the
same as that of AmID−KEM in breaking the CCA security of mID − KEM.

Advcr−CCA
GKM = AdvCCA

mID−KEM = |Pr[b = b′]− 1
2
|

This means that if there exists no adversary AmID−KEM who can break the CCA security of
mID − KEM with non-negligible advantage, then there cannot be any adversary Acr−GKM who
can break the collusion resistance of GKM with non-negligible probability.

8 An Illustration of the Generic Conversion to GKM

In this section, we present an example of the generalized transformation to GKM that was presented
in Section 6. We construct the most efficient centralized GKM scheme proposed till date using the
efficient mID − KEM that was proposed by Delerablée [13] in 2007. This is the first efficient and
scalable GKM scheme to achieve a constant size rekeying message framework. Before going into
the details, we first recall Delerablée’s scheme.

8.1 Delerablée’s mID-KEM

Setup(k,N) — Given the security parameter k and the maximum number of receivers N , a bilinear
map group system B = (p,G1,G2,GT , ê(·, ·)) is constructed such that |p| = k. Also, two generators
f ∈ G1 and h ∈ G2 and a secret value γ ∈ Z∗p are randomly selected. Choose a cryptographic hash
function H : {0, 1}∗ → Z∗p. The master secret key is defined as MSK = (f, γ). The public key is
PK = (ω, v, h, hγ , . . . , hγN

) where ω = fγ , and v = ê(f, h).

Extract(MSK, IDi,PK) — Given MSK = (f, γ), the public key PK and the identity IDi, it

outputs SKIDi = f
1

γ+H(IDi)

Encapsulate(S,PK) — Assume for notational simplicity that S = {IDj}s
j=1, with s ≤ N . Given

PK, it randomly picks r ∈ Z∗p and computes Hdr = (C1, C2) and DEK ∈ K where

C1 = ω−α, C2 = h
α·

s∏
i=1

(γ+H(IDi))
, DEK = vα

and outputs (Hdr,DEK).

Decapsulate(S, IDi,SKIDi
,Hdr,PK) — In order to retrieve the DEK encapsulated in the

header Hdr = (C1, C2), the user with identity IDi and the corresponding private key SKIDi =

f
1

γ+H(IDi) (with IDi ∈ S) computes the data encryption key as follows.
20 gtChallenge is retrieved from the list Lg. Since gtChallenge = rtChallenge ·F(g

t−
Challenge

), it can be seen that rtChallenge

can be computed using gtChallenge and g
t−
Challenge

, both of which are available in Lg.
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DEK =
(
ê(C1, h

pi,S(γ)) · ê(skIDi , C2)
) 1

s∏
j=1,j 6=i

H(IDj)

with

pi,S(γ) =
1
γ
·



s∏

j=1,j 6=i

(γ +H(IDj))−
s∏

j=1,j 6=i

H(IDj)




Delerablée has shown this scheme to be secure against static chosen plaintext attacks. Because of
this, the centralized GKM scheme that we derive from this mID-KEM will also enjoy only identity-
static CPA security. However, our GKM scheme will be secure against time-adaptive attacks. As
noted in [13], her mID-KEM can be converted to one that is secure against chosen ciphertext attacks
by using the result of [8], on using which the resultant GKM scheme would also be secure against
CCA.

8.2 The Centralized GKM Scheme from Delerablée’s mID-KEM

Now, we present, without much ado, the identity-static, time-adaptive CPA secure centralized GKM
scheme that is constructed out of Delerablée’s mID-KEM. While describing this GKM scheme, we
follow the general framework that we presented in Section 3.

Setup(k,N,Sinit)

– Input. Take as input the security parameter k, the maximum number of group members N ,
the set Sinit of the identities of initial group members.

– A bilinear map group system B = (p,G1,G2,GT , ê(·, ·)) is constructed such that |p| = k.
– Two generators f ∈ G1 and h ∈ G2 and a secret value γ ∈ Z∗p are randomly selected.
– Choose a cryptographic hash function H : {0, 1}∗ → Z∗p and a one-way function F : Z∗p → Z∗p.
– Pick a random g ∈ Z∗p, a seed for the one-way function.

– The master secret key is defined as MSK = (f, γ, g) and PK = (ω, v, h, hγ , . . . , hγN
,H,F) is

the public key where ω = fγ , and v = ê(f, h).
– Choose a data encryption key DEK at random from the key space K.

– Compute SKi = (f
1

γ+H(IDi) , g) for all IDi ∈ Sinit and securely send these keys to the corre-
sponding members. Also send the initial DEK securely to these members.

Rekey(S,PK)

– Input. Take as input the set S of the identities of current group members, and the public key
PK.

– Pick a random r ∈ Z∗p and update the dynamic key by using the one-way function F as
g ← r · F(g).

– Compute

C1 = ω−α, C2 = h
α·

s∏
i=1

(γ+H(IDi))
, DEK = vα

– Construct HdrGKM = 〈Hdr ⊕ g, r〉, where Hdr = (C1, C2) and broadcast it to the group.
– Every group member parses HdrGKM as (C0, r), updates the second component of his secret

key (the dynamic key) as g ← r · F(g), and securely erases any copies of older g values.
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– Every group member with identity IDi will retrieve Hdr = C0 ⊕ g, parse Hdr = (C1, C2), and
compute

DEK =
(
ê(C1, h

pi,S(γ)) · ê(skIDi , C2)
) 1

s∏
j=1,j 6=i

H(IDj)

with

pi,S(γ) =
1
γ
·



s∏

j=1,j 6=i

(γ +H(IDj))−
s∏

j=1,j 6=i

H(IDj)




to obtain DEK.

Join(IDi,S,PK)

– Input. Take as input the identity IDi of a member who wishes to join the group, the set S of
identities of current group members, and the public key PK.

– The joining member establishes a secure connection with the CA, who may perform some checks
before authorizing the member to join the group. If authorized, compute SKi = (f

1
γ+H(IDi) , g)

and securely send it to the joining member.
– Update the set of identities of current group members as S ← S ∪ {IDi}.
– Run Rekey(S,PK).

Leave(L,S,PK)

– Input. Take as input the set L of identities of members who wish to leave the group or are
revoked, the set S of identities of current group members, and the public key PK.

– Update the set of identities of current group members as S ← S − L.
– Run Rekey(S,PK).

9 Conclusion

In this paper, we have identified the lack of a formal framework and security model for Group
Key Management. To fill this gap, in Sections 3 and 4, we proposed a generic framework for GKM
and a fitting formal security model in which we defined the vital security properties that any GKM
scheme should satisfy. We have also shown in Sections 6 and 7 how to convert any multi-receiver ID-
based key encapsulation mechanism to a centralized GKM scheme and formally prove its security
properties, assuming the security of the mID-KEM and the existence of one-way functions. Though
simple and efficient, a drawback of our generic conversion is that the GKM inherits the security
strength of the underlying mID-KEM only up to CCA. In Section 8, we also gave an illustration of
our generic conversion taking the mID-KEM of [13].

Future Work. There are many open problems that the research community can investigate. To
start with, since we have shown that an adaptive CCA secure mID-KEM is sufficient to construct
an adaptive CCA secure GKM scheme, construction of mID-KEMs which are efficient and secure
against adaptive attacks should be attempted. Next, the generic conversion from mID-KEM to
GKM would be complete if the security-inheritance of the resulting GKM goes further to CCA2. It
would also be worthwhile to investigate if mKEMs (that are not ID-based) can also be converted
to GKM schemes. At this juncture, we wish to point out that even decentralized GKM lacks a
formal framework with an accompanying robust security model. Decentralized schemes come in
handy when the system becomes huge and there is pressure on the central authority who manages
the entire group. It becomes important, therefore, to investigate whether a generic conversion from
mKEMs to decentralized GKM schemes is possible.
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