
Attack on Kang et al.’s Identity-Based Strong
Designated Verifier Signature Scheme

Hongzhen Du1,2 and Qiaoyan Wen1

1 School of Science, Beijing University of Posts and Telecommunications,
Beijing 100876, China

2 Mathematics Department, Baoji University of Arts and Sciences,
Baoji 721007, China

E-mail: duhongzhen@gmail.com

Abstract: In this paper, we present a universal forgery attack on Kang

et al.’s identity-based strong designated verifier signature (IBSDVS)

scheme. We show anyone can forge a valid IBSDVS on an arbitrary

message without the knowledge of the private key of either the signer

or the designated verifier. Moreover, we point out that Kang et al.’s

scheme does not satisfy the properties of strongness and non-

delegatability. At last, an improved IBSDVS scheme for Kang et al.’s

scheme is presented, and it is provably secure and achieves all the

requirements for an IBSDVS.

Keywords: designated verifier signature, bilinear pairings, cryptanalysis

1 Introduction

The concept of designated verifier signature (DVS) was first proposed by

Jakobsson et al. [1] at Eurocrypt’96. Such signatures provide message

authentication without non-repudiation and have the property that only

designated recipient can check their validity. Designated verifier signatures

have several applications such as E-voting, call for tenders and software

licensing. In [1], Jakobsson et al. also introduced a stronger version of DVS

called strong designated verifier signature (SDVS). In this stronger scheme,

no third party can verify the validity of a designated verifier signature, since

the designated verifier’s private key is required in the verification phase. A

SDVS scheme should satisfy the properties of strongness, unforgeability, non-

transferability privacy, source hiding, and non-delegatability. In 2003,

Saeednia et al. [2] first formalized the notion of the SDVS and proposed an

efficient scheme in their paper. In 2004, Laguillaumie et al. constructed two

DVS schemes in [3, 4]. In [5], Susilo et al. first presented an identity-based

strong designated verifier signature (IBSDVS) scheme which is an identity-

based variant of SDVS scheme. Thereafter, several IBSDVS schemes [6, 7, 8]

have been proposed.

Recently, Kang et al. [9] proposed a new IBSDVS scheme which is more

efficient than previous schemes [5, 6, 7]. Kang et al. claimed that their scheme

is strong and satisfies the security property of unforgeability. However, we

point out that their scheme is universally forgeable and it can not satisfy the

property of strongness. Moreover, we find that their scheme is vulnerable to a

delegatability attack. That is, in their scheme, a signer can delegate his signing

ability, with respect to a fixed designated verifier, to a third party without

disclosing his private key.

2 Review of Kang et al.’s ID-based Strong Designated Verifier

Signature Scheme

We first review Kang et al.’s IBSDVS scheme [9] in brief.

- Setup: A bilinear map e: G1 × G1 → G2, for G1 and G2 are groups of same

prime order q. And P is a generator of group G1. Then, a Private Key

Generation (PKG) centre picks a random s∈Zq* as the master key and

computes the corresponding public key Ppub=sP. H1 and H2 are

cryptographic hash functions such that H1: {0, 1}*→G1 and H2: {0, 1}*→

Zq*. The system parameters are params= <q, G1, G2, e, P, Ppub, H1, H2>.

- Key-Extract: Given a user’s identity ID, PKG computes QID=H1(ID) and

outputs the user’s private key dID=sQID.

Assume that Alice is the signer and Bob is the designated verifier, and

Alice and Bob have their private/public key pairs (dA, QA) and (dB, QB),

respectively.

- IBSDVS- Sign: To sign a message m for Bob, Alice performs as below.

1. Choose a random value k∈Zq* and compute t=e(P, QB) k.

2. Set h=H2 (m, t).

3. Compute T=kP+hdA and σ =e(T, QB).

The signature on the message m is (t, σ).

- IBSDVS-Verify: Given params, the signer's public key QA and the signature

(t, σ) on m, Bob sets h=H2(m, t) and accepts the signature if and only if the

following equation holds.

(,)h
A Bte Q dσ =

- IBSDVS-Simulation: Bob can produce the signature (t, σ) intended for

himself by performing the following:

1. Choose a random value k ′∈Zq* and compute (,)k
Bt e P Q ′′ = .

2. Set 2 (,)h H m t′ ′= .

3. Compute (,)h
A Bt e Q dσ ′′ ′= .

Then, the tuple (,)t σ′ ′ is a valid signature on message m.

About the correctness and the security analysis of the scheme refer to [9].

3 Cryptanalysis of Kang et al.’s IBSDVS Scheme

In this section, we show that Kang et al.’s scheme can not achieve the

requirements of unforgeability, strongness and non-delegatability.

3.1 Forgery Attack

We propose a universal forgery attack on Kang et al.’s scheme.

Assume that Charlie is an adversary without the knowledge of the private

keys of the signer Alice and the designated verifier Bob. But he can forge a

valid IBSDVS on any message with his choice as follows:

After intercepting a designated verifier signature (t, σ) on a message m (It is

easy), Charlie performs as below:

1. Set h=H2 (m, t).

2. Compute v=h-1(mod q).

Then, Charlie can easily get e (QA, dB) from the following equality.

(,)
v

A Be Q d
t
σ⎛ ⎞= ⎜ ⎟
⎝ ⎠

.

Using the element e (QA, dB), Charlie is able to impersonate Alice (or Bob)

to generate a designated verifier signature on any message by performing

the following:

- Sign: To sign a message m′ for Bob on behalf of Alice (or Bob), Charlie

performs as below.

1. Choose a random value r′∈Zq* and compute (,)k
Bt e P Q ′′ = .

2. Set 2 (,)h H m t′ ′ ′= .

3. Compute (,)h
A Bt e Q dσ ′′ ′= .

The forged designated verifier signature on the message m′ is (,)t σ′ ′ .

- Verify: The forged message-signature pair (m′ , (,)t σ′ ′) can be accepted by

Bob since the verifying equality (,)h
A Bt e Q dσ ′′ ′= always holds.

Hence, Kang et al.’s scheme is not secure against a universal forgery. That

is, in their scheme, an adversary can forge a signature on any message after

having a designated verifier signature.

3.2 Violation of Strongness Property

Kang et al. claimed that their scheme is a strong DVS scheme and no third

party can verify the validity of a signature. However, we show their scheme

can not satisfy this property.

Assume (t, σ) is a signature on a message m. A third party who intercepts (t,

σ) can get e (QA, dB) by using the above attack technique. With the value e (QA,

dB), the third party runs the IBSDVS-Verify algorithm and can easily verify

the validity of the subsequent signatures without the secret key of the

designated verifier. This violates the property of strong designated verifier

signatures.

3.3 Delegatability Attack

Kang et al.’s scheme is insecure against delegatability attack, since the

signer Alice can delegate her signing capability to any third party without

disclosing her secret key. To do so, she only sends a value e(QB, dA) to a third

party. Using e(QB, dA), the third party can easily generate a designated verifier

signature on any message m as follows:

1. Choose a random value k∈Zq* and compute t=e(P, QB) k.

2. Set h=H2 (m, t).

3. Compute σ=te(QB, dA)h.

The signature on the message m is (t, σ) and it is able to pass the signature

verification.

4 A Secure IBSDVS Scheme

In this section, we provide a modification for Kang et al.’s scheme. Unlike

their scheme, ours achieves all security requirements of strong designated

verifier signatures and it satisfies the properties of unforgeability, non-

transferability privacy, source hiding, and non-delegatability.

Without losing generality, we only describe the IBSDVS-Sign, IBSDVS-

Verify and IBSDVS-Simulation algorithms, and other algorithms are the same

as those defined in [9].

- IBSDVS- Sign: To sign a message m for Bob, Alice performs as below.

1. Choose a random value k∈Zq* and compute t=kQA.

2. Set h=H2 (m, t).

3. Compute T= (k + h)dA and σ =e(T, QB).

The signature on the message m is (t, σ).

- IBSDVS-Verify: Given params, Alice's public key QA and the signature (t,

σ) on m, Bob performs as follows:

1. Set h=H2 (m, t).

2. Check whether
?

(,)A Be t hQ dσ = + holds with equality. If so, then

accept the signature. Otherwise, reject it.

- IBSDVS-Simulation: Bob can produce the signature (t, σ) intended for

himself, by performing the following:

1. Choose a random value k ′∈Zq* and compute At k Q′ ′= .

2. Set 2 (,)h H m t′ ′= .

3. Compute (,)A Be t h Q dσ ′ ′ ′= + .

Then, the tuple (,)t σ′ ′ is a valid signature on message m.

5 Security Analysis

1) Correctness

()
()
()

(,)
() ,

() ,

,
(,)

B

A B

A B

A A B

A B

e T Q
e k h d Q

e k h Q d

e kQ hQ d
e t hQ d

σ =

= +

= +

= +

= +

2) Strongness
The IBSDVS-Verify algorithm of our scheme requires the designated

verifier Bob’s private key dB, and no one but Bob can perform the signature
verification even if the value e(QA, dB) is disclosed. Thus, our scheme is a
strong IBSDVS scheme.

3) Unforgeability

To prove the property of unforgeabilty, we review a computational hard

problem related to our scheme.

Computational Bilinear Diffie-Hellman Problem (CBDHP) in groups (G1,

G2) is defined as follows: given (P, aP, bP, cP) for some unknown values a, b,

c∈Zq*, to compute v∈G2 such that v=e(P, P)abc.

Theorem 1. Our IBSDVS scheme is unforgeable if the assumption of the

CBDH in G1 is intractable. That is, if a valid IBSDV signature can be

generated without the knowledge of the private keys of Alice and Bob, there

exists an algorithm C that can solve the CBDH problem in a polynomial time.

Proof. If there is an adversary F, which is able to forge a designated

verifier signature, we can build an algorithm C, which can solve the CBDH

problem with non-negligible probability. Algorithm C takes as inputs P, aP,

bP, cP ∈G1, where a, b, c∈Zq* are unknown to C, and C attempts to extract

e(P, P)abc after interacting with F. In our setting, C sets QA=aP, QB=bP and

P0=cP, and gives params {G1, G2, P0, H1, H2} to F.

For simplicity, we assume that H1 queries are distinct and any query

involving an identity ID comes after a H1 query on the identity ID.

–H1-queries on an input IDi: C recovers a list 1
listH and returns the

previously defined value if it exists. Otherwise, C acts as follows:

1
*

,
() ,

, ,

i A

i i i B

i i q

aP if ID ID
Q H ID bP if ID ID

t P otherwise t Z

⎧ =
⎪

= = =⎨
⎪ ∈⎩

Then, C adds (IDi, Qi, ti) into the list 1
listH and returns the value Qi to F.

–Key-Extract queries on an input IDi: C recovers the corresponding tuple

(IDi, Qi, ti) from the list listH1 and performs as below:

1) If IDi ≠IDA or IDB, then returns di=ticP to F and inserts (IDi, Qi, di) to a

list listE .

2) Otherwise, C aborts and outputs “failure”.

–H2-queries on input (mi , ti): C picks a random hi∈Zq* and returns it to F,

and adds the tuple (mi , ti, hi) to a list 2
listH .

–IBSDVS-Sign queries on a message m and a signer/designated verifier’s

identity IDi / IDj, C acts as below:

–If IDi≠IDA or IDB, C recovers the corresponding tuple (IDi, Qi, di) from

the list Elist and computes as follows:

1. Choose a random value k∈Zq* and compute t=kQi.

2. Set h=H2 (m, t).

3. Compute T= (k+h)di and σ =e(T, Qj).

Then, returns the designated verifier signature (t, σ) to F.

–If IDj≠IDA or IDB, C recovers the corresponding tuple (IDj, Qj, dj) from

the list listE and computes as follows:

1. Choose a random value k∈Zq* and compute t=kQi.

2. Set h=H2 (m, t).

3. Compute σ= e(t+hQi , dj).

Then, returns the signature (t, σ) to F.

–Otherwise, C stops the simulation.

–IBSDVS-Verify queries on input a signature (t, σ) on a message m and

a signer/designated verifier’s identity IDi / IDj . C checks whether {IDi, IDj} =

{IDA, IDB} holds. If it holds, quits it. Otherwise, C finds the designated

verifier’s private key dj and verifies the validity of the signature by the

IBSDVS-Verify algorithm.

Finally, F outputs a valid IBSDV signature (t*, h*, σ*) on a message m*

with the signer’s identity IDi* and the designated verifier’s identity IDj*. If

{IDi*, IDj*} ≠{IDA, IDB}, C outputs “failure” and aborts. Otherwise, C finds

the tuple (m*, t*, h*) in H2
list and replays F with the same random tape but

different choices of H2, as done in the forking lemma [10]. C gets another

forgery (m*, (t*, h′ ,σ ′)) such that *h h′ ≠ . Afterwards, since

* (* * ,)A Be t h Q dσ = +

(* ,)A Be t h Q dσ ′ ′= + ,

C has a value ()* (*) ,A Be h h Q dσ
σ

⎛ ⎞ ′= −⎜ ⎟′⎝ ⎠
.

Assume that 1(*) (mod)h h h q−′= − . Then C outputs * hσ
σ

⎛ ⎞
⎜ ⎟′⎝ ⎠

as the solution to

the CBDH problem because * (,) (,) (,)
h

abc
A Be Q d e aP bcP e P Pσ

σ
⎛ ⎞ = = =⎜ ⎟′⎝ ⎠

. □

4) Non-transferability

Our scheme achieves the property of non-transferability privacy because

the designated verifier Bob can always simulate the received signature (t, σ)

by generating a valid signature. More precisely, he can compute

At k Q′ ′= with a random value k ′ ∈Zq* and compute σ ′ =

2((,) ,)A Be t H m t Q d′ ′+ for a message m such that (,)t σ′ ′ passes the signature

verification. Obviously, the distribution of (,)t σ′ ′ is perfectly

indistinguishable from that of an original signature generated by algorithm

IBSDVS-Sign. As a result, Bob cannot prove to a third party that the signature

(t, σ) was produced by Alice.

5) Source hiding

Even if Alice’s private key dA and Bob’s private key dB are known to a third

party, the third party cannot identify whether dA or dB has been used in the

construction of the term σ, as (() ,) (() ,)A B A Be k h d Q e k h Q dσ = + = + .

 6) Non-delegatability

Our scheme satisfies the property of non-delegatability. In fact, even if

Alice gives the value e(QB, dA) or the other derivative of her private key to a

third party, the third party can not generate a valid designated verifier

signature (t, σ) because the construction of the term σ requires Alice’s private

key.

6 Conclusion

We first show that Kang e t al.’s IBSDVS scheme [9] is not secure against

both universal forgery attack and delegatability attack. Moreover, we find that

their IBSDVS scheme can not satisfy strongness property. And then we

present an improved scheme for scheme [9] and the improved scheme

satisfies properties of strongness, unforgeability, non-transferability, source

hiding, and non-delegatability.

References

[1] M. Jakobsson, K. Sako, K. R. Impaliazzo. Designated verifier proofs and their applications.

In Eurocrypt 1996, LNCS 1070, Springer-Verlag, 1996, pp. 143-154.

[2] S. Saeednia, S. Kremer, O. Markovitch. An efficient strong designated verifier signature

scheme. CICS 2003, LNCS 2971, Springer-Verlag, 2003, pp. 40-54.

[3] F. Laguillaumie, D. Vergnaud. Designated verifier signatures: anonymity and efficient

construction from any bilinear map, in: SCN2004, LNCS, vol. 3352, Springer-Verlag, 2004,

pp. 105–119.

[4] F. Laguillaumie, D. Vergnaud. Multi-designated verifiers signatures, in: ICICS 2004, LNCS

3269, Springer-Verlag, 2004, pp. 495–507.

[5] W. Susilo, F. Zhang, Y. Mu. Identity-based strong designated verifier signature schemes,

ACISP 2004, LNCS 3108, pp. 313-324.

[6] K. Kumar, G. Shailaja, A. Saxena. Identity based strong designated verifier signature

scheme. http//www.eprint.iacr.org/2006/134.

[7] J. Zhang, J. Mao. A novel ID-based designated verifier signature scheme, Information

Science, 178(3), 2008, pp. 766-773.

[8] X. Huang, W. Susilo, Y. Mu, F. Zhang. Short designated verifier signature scheme and its

identity-based variant, International Journal of Network Security, 6(1), 2008, pp. 82-93.

[9] B. Kang, C. Boyd, E. Dawson. A novel identity-based strong designated verifier signature

scheme, The Journal of Systems and Software (2008), doi: 10.1016/j.jss.2008.06.014.

[10] M. Bellare, G. Neven. Multi-Signatures in the Plain Public-Key Model and a General

Forking Lemma. ACM-CCS 2006, 390-399.

