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Abstract

We consider a hybrid version of Damg̊ard’s ElGamal public-key encryption scheme that
incorporates the use of a symmetric cipher and a hash function for key-derivation. We prove
that under appropriate choice of the hash function this scheme is IND-CCA2 secure under the
Decisional Diffie-Hellman assumption in the standard model. Our results can be generalized
to universal hash proof systems where our main technical contribution can be viewed as an
efficient generic transformation from 1-universal to 2-universal hash proof systems.
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1 Introduction

In 1991, Damg̊ard [6] proposed a new public-key encryption scheme and proved it secure against
lunchtime attacks [17] (CCA1 secure) under the knowledge of exponent assumption.1 His scheme
can be viewed as a “double-base” variant of the original ElGamal encryption scheme [8] and
therefore it is often denoted as Damg̊ard’s ElGamal in the literature. In this paper we revisit
Damg̊ard’s ElGamal, incorporating the knowledge about the design and analysis of public-
key encryption schemes gained since its original publication in 1991. Since Damg̊ard’s original
proposal is trivially malleable (and hence not IND-CCA2 secure), we consider a modern hybrid [5]
variant of it (called hybrid Damg̊ard’s ElGamal) which incorporates the use of a strongly secure
symmetric cipher and a hash function as key-derivation function.

The main result of this paper is as follows. We prove hybrid Damg̊ard’s ElGamal secure
against chosen-ciphertext attack [19] (IND-CCA2) if the following properties hold:

1. the standard Decisional Diffie-Hellman (DDH) is hard;
2. the symmetric cipher is secure in the sense of authenticated encryption (e.g., an encrypt-

then-mac based cipher);
3. the hash function is a 4-wise independent hash function with a sufficiently small image

compared to the order of the group.
Our security analysis is in the standard model and does not make use of idealized models such
as the random oracle model [2]. To the best of our knowledge this is the first IND-CCA2 security
proof of hybrid Damg̊ard’s ElGamal under standard security assumptions.

We stress that the motivation for modifying Damg̊ard’s original ElGamal scheme [6] and
all our security claims rely on techniques from Cramer and Shoup’s breakthrough paradigm of
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1 This assumption basically states that given two group elements (g1, g2) with unknown discrete logarithm
ω = logg1

(g2), the only way to efficiently compute (gx
1 , gx

2 ) is to know the exponent x.
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universal hash proof systems [3, 4, 5] and its more recent extensions [14, 9, 12], all of which
were only published several years after Damg̊ard’s original article. In fact, universal hash proof
systems provide a framework for the theoretical explanation of our results: Hybrid Damg̊ard’s
ElGamal instantiated with a strongly secure cipher (and no hash function) can be viewed as
the Kurosawa-Desmedt paradigm [14] instantiated with the DDH-based 1-universal hash proof
system from [4]. Hence, this scheme can be proved IND-CCA1 (lunchtime) secure but it is still
not IND-CCA2 secure. At the core of our IND-CCA2 construction lies the application of a 4-
wise independent hash function to provide an efficient conversion from 1-universal to 2-universal
hash proof system. For this result we need a generalization of the leftover hash lemma [11] that
may be of independent interest. Only the application of the 4-wise independent hash function
makes the hash proof system 2-universal which in turn makes it possible to prove the scheme’s
IND-CCA2 security.

We prove that this is also true in general: a 4-wise independent hash function with sufficiently
small image can be used to upgrade a 1-universal hash proof system to a 2-universal one. Our
transformation based on 4-wise independent hash function improves the one from Cramer and
Shoup [4] which incorporates a linear overhead. As a direct application of this we obtain a
number of new and efficient IND-CCA2 secure hybrid encryption schemes from known 1-universal
hash proof systems with a hard subset membership problem such as Paillier’s DCR assumption,
the quadratic residue assumption [4], and the class of n-Linear assumptions [12].

1.1 Related work

Due to its efficiency, Damg̊ard’s original scheme has attracted a handful of investigations; these
resulted in the following statements we discuss now:
• Damg̊ard himself proved it IND-CCA1 secure under an assumption that is today known as

the “knowledge of exponent” assumption. However, this assumption is very strong and has
often been critized in the literature. In particular, it is not efficiently falsifiable according
to the classification of Naor [16].

• Gjøsteen [10] proved Damg̊ard’s ElGamal IND-CCA1 secure under some interactive version
of the DDH assumption, where the adversary is given oracle access to some (restricted)
DDH oracle.
• Recently, and independent of this work, Wu and Stinson [22], and at the same time Lip-

maa [15] improve on the above two results. However, their security results are much weaker
than ours: they only prove IND-CCA1 security of Damg̊ard’s ElGamal, still requiring se-
curity assumption that are either interactive or of “knowledge of exponent” type.

We stress that the above security results are about the original Damg̊ard’s ElGamal scheme
without any modification.

2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its size. If k ∈ N
then 1k denotes the string of k ones. If S is a set then s

$← S denotes the operation of picking
an element s of S uniformly at random. We write A(x, y, . . .) to indicate that A is an algorithm
with inputs x, y, . . . and by z

$← A(x, y, . . .) we denote the operation of running A with inputs
(x, y, . . .) and letting z be the output. Unless denoted otherwise, logarithms over the reals are
base 2.
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2.2 Public-Key Encryption

A public key encryption scheme PKE = (Kg,Enc,Dec) with message space MsgSp(k) consists of
three polynomial time algorithms (PTAs), of which the first two, Kg and Enc, are probabilistic
and the last one, Dec, is deterministic. Public/secret keys for security parameter k ∈ N are
generated using (pk , sk) $← Kg(1k). Given such a key pair, a message m ∈ MsgSp(k) is encrypted
by C $← Enc(pk ,m); a ciphertext is decrypted by m $← Dec(sk,C ), where possibly Dec outputs
⊥ to denote an invalid ciphertext. For consistency, we require that for all k ∈ N, all messages
m ∈ MsgSp(k), it must hold that Pr[Dec(sk ,Enc(pk ,m)) = m] = 1 where the probability is
taken over the above randomized algorithms and (pk , sk) $← Kg(1k).

The security we require for PKE is IND-CCA2 security [19, 7]. To an adversary A = (A1,A2)
we associate the following experiment Expcca2

PKE,A(k).

Experiment Expcca2
PKE,A(k)

(pk , sk) $← Kg(1k)
(m0,m1,St) $← A

Dec(sk ,·)
1 (pk) s.t. |m0| = |m1|

b
$← {0, 1} ; C ∗ $← Enc(pk ,mb)

b′
$← A

Dec(sk ,·)
2 (C ∗,St)

If b = b′ return 1 else return 0

The adversary A2 is restricted not to query Dec(sk , ·) with C ∗. We define the advantage of A in
the experiment as

Advcca2
PKE,A(k) def=

∣∣∣∣Pr[Expcca2
PKE,A(k) = 1]− 1

2

∣∣∣∣ .
PKE scheme PKE is said to be indistinguishable against chosen-ciphertext attacks (IND-CCA2
secure in short) if the advantage function Advcca2

PKE,A(k) is a negligible function in k for all
adversaries A = (A1,A2) with probabilistic PTA A1, A2.

For integers k, t,Q we also define Advcca2
PKE,t,Q(k) = maxA Advcca2

PKE,A(k), where the maximum
is over all A that run in time at most t while making at most Q decryption queries.

We also mention the weaker security notion of indistinguishability against lunch-time attacks
(IND-CCA1 security), which is defined as IND-CCA2 security with the restriction that the adver-
sary is not allowed to make decryption queries after having seen the challenge ciphertext. The
corresponding advantage term Advcca1

PKE,t,Q(k) is defined analogously.

2.3 Symmetric Encryption

A symmetric encryption scheme SE = (E,D) is specified by its encryption algorithm E (encrypt-
ing m ∈ MsgSp(k) with keys K ∈ K(k)) and decryption algorithm D (returning m ∈ MsgSp(k)
or ⊥). Here we restrict ourselves to deterministic algorithms E and D.

The most common notion of security for symmetric encryption is that of ciphertext in-
distinguishability, which requires that all efficient adversaries fail to distinguish between the
encryptions of two messages of their choice. Another common security requirement is ciphertext
authenticity. Ciphertext authenticity requires that no efficient adversary can produce a new
valid ciphertext under some key when given one encryption of a message of his choice under the
same key. A symmetric encryption scheme which satisfies both requirements simultaneously is
called secure in the sense of authenticated encryption (AE-OT secure). Note that AE-OT security
is a stronger notion than chosen-ciphertext security. The above requirements are formalized as
follows:
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Ciphertext Indistinguishability. Let SE = (E,D) be a symmetric encryption scheme, and
let A = (A1,A2) be an adversary. The advantage of A in breaking the ciphertext indistinguisha-
bility security of SE is:

Advind-ot
SE,A (k) def=

∣∣∣∣∣Pr

[
b = b′ :

K∗ $← K(k) ; (m0,m1,St) $← A1(1k) ;
b

$← {0, 1} ; ψ∗ $← EK∗(mb) ; b′ $← A2(1k,St , ψ∗)

]
− 1/2

∣∣∣∣∣
The symmetric encryption scheme SE is one-time secure in the sense of indistinguishability
(IND-OT) if i for every adversary A with probabilistic PTA A1 and A2, the advantage Advind-ot

SE,A (·)
is negligible.

Ciphertext Integrity. This captures the property that no efficient adversary can produce
a new valid ciphertext after seeing the encryption of a single message. Let SE = (E,D) be a
symmetric encryption scheme, and let A = (A1,A2) be an algorithm.

Advint-ot
SE,A (k) def= Pr

[
ψ 6= ψ∗ ∧ DK∗(ψ) 6= ⊥ :

K∗ $← K(k) ; (m,St) $← A1(1k) ;
ψ∗ ← EK∗(m) ; ψ $← A2(1k,St , ψ∗)

]

The symmetric encryption scheme SE is one-time secure in the sense of ciphertext integrity
(INT-OT) if for every adversary A with probabilistic PTA A1 and A2, the advantage Advint-ot

SE,A (·)
is negligible.

We also define weak ciphertext integrity (WINT-OT) where in the above security experiment
the adversary (in the second stage) never sees the ciphertext ψ∗. The corresponding advantage
function is denoted as Advwint-ot

SE,A .
A symmetric encryption scheme is secure in the sense of one-time authenticated encryption

(AE-OT) iff it is IND-OT and INT-OT secure. For the notion of weak one-time authenticated
encryption (WAE-OT) we only require it to be IND-OT and WINT-OT secure.

In Appendix A we recall (following the encrypt-then-mac approach [1, 5]) how to build a
symmetric scheme secure in the sense of AE-OT, respectively WAE-OT, from the following basic
primitives:
• a (computationally secure) one-time symmetric encryption scheme with binary k-bit keys

(such as AES or padding with a PRNG);
• a (computationally secure) MAC (existentially unforgeable) with k-bit keys;
• and a (computationally secure) key-derivation function (pseudorandom).

2.4 Hardness assumptions

A group scheme GS [5] specifies a sequence (GRk)k∈N of group descriptions. For every value of
a security parameter k ∈ N, the pair GRk = (Gk, pk) specifies a cyclic (multiplicative) group
Gk of prime order pk. Henceforth, for notational convenience, we tend to drop the index k.
We assume the existence of an efficient sampling algorithm x

$← G and an efficient membership
algorithm. We define the ddh-advantage of an adversary B as

Advddh
GS,B(k) def=

∣∣Pr[B(g1, g2, gr
1, g

r
2) = 1]− Pr[B(g1, g2, gr

1, g
r̃
2) = 1]

∣∣ ,
where g1, g2

$← G, r $← Zp, r̃
$← Zp \ {r}. We say that the DDH problem is hard in GS if the

advantage function Advddh
GS,B(k) is a negligible function in k for all probabilistic PTA B.
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2.5 Extractors

Here we review a few concepts related to probability distributions and extracting uniform bits
from weak random sources. The statistical distance between two random variables X and Y
having a common domain D is SD(X,Y ) = 1

2

∑
x∈D |Pr[X = x]−Pr[Y = x]|. The min-entropy

of a random variable A is defined as H∞(A) = − log(maxa∈D Pr[A = a]).
Let HS be a family of hash functions H : X → Y. With |HS| we denote the number of

functions in this family and when sampling from HS we assume a uniform distribution. Let
k > 1 be an integer, the hash-family HS is k-wise independent if for any sequence of distinct
elements x1, . . . , xk ∈ X the random variables H(x1), . . . ,H(xk), where H $← HS, are uniform
random.2

We will now prove a generalization of the leftover hash lemma [11]. Recall that the leftover
hash lemma states that for a 2-wise independent hash function H and a random variable X
with min-entropy slightly larger than the range of H, the random variable (H,H(X)) is close to
uniformly random. We show that if H is 4-wise independent, then (H,H(X),H(X̃)) is close to
uniformly random, where X, X̃ can be dependent (but of course we have to require X 6= X̃).

Lemma 2.1 Let (X, X̃) ∈ X × X be two random variables (having joint distribution) where
H∞(X) ≥ κ,H∞(X̃) ≥ κ and Pr[X = X̃] = 0. Let HS be a family of 4-wise independent hash
functions with domain X and image {0, 1}`. Then for H $← HS and U2`

$← {0, 1}2`

SD((H,H(X),H(X̃)), (H, U2`)) ≤ 2`−κ/2

so in particular (for 0 < ε < 1)

SD((H,H(X),H(X̃)), (H, U2`)) ≤ ε

as long as 2`−κ/2 ≤ ε or, equivalently, κ ≥ 2`+ 2 log 1/ε.

Proof: Let d = log |HS|. For a random variable Y and Y ′ an independent copy of Y , we denote
with Col(Y ) = Pr[Y = Y ′] the collision probability of Y , in particular

Col(H,H(X),H(X̃)) = Pr
H,(X,X̃),H′,(X′,X̃′)

[(H,H(X),H(X̃)) = (H′,H′(X ′),H′(X̃ ′))]

= Pr
H,H′

[H = H′] · Pr
H,(X,X̃),H′,(X′,X̃′)

[(H(X),H(X̃)) = (H′(X ′),H′(X̃ ′))|H = H′]

= Pr
H,H′

[H = H′]︸ ︷︷ ︸
=2−d

· Pr
H,(X,X̃),(X′,X̃′)

[(H(X),H(X̃)) = (H(X ′),H(X̃ ′))] (1)

We define the event E, which holds if X, X̃,X ′, X̃ ′ are pairwise different.

Pr
(X,X̃),(X′,X̃′)

[¬E] = Pr
(X,X̃),(X′,X̃′)

[X = X ′ ∨X = X̃ ′ ∨ X̃ = X ′ ∨ X̃ = X̃ ′]

≤ 4 · 2−κ = 2−κ+2

2 A simple construction of a k-wise independent hash function Zp → Zp is the following: to sample a function,

sample k elements c0, . . . , ck−1
$← Zk

p, and define hc0,...,ck−1(X) = c0 + c1X + c2X
2 + . . . + ck−1X

k−1 mod p.
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Where in the first step we used that X 6= X̃,X ′ 6= X̃ ′ by assumption, and in the second step
we use the union bound and also our assumption that the min entropy of X and X̃ is at least
κ (and thus e.g. Pr[X = X ′] ≤ 2−κ). With this we can write (1) as

Col(H,H(X),H(X̃)) ≤ 2−d · (Pr[(H(X),H(X̃)) = (H(X ′),H(X̃ ′))|E] + Pr[¬E]) (2)

≤ 2−d(2−2` + 2−κ+2) (3)

where in the second step we used that H is 4-wise independent. Let Y be a random variable
with support Y and U be uniform over Y, then

‖Y − U‖22 = Col(Y )− |Y|−1

in particular

‖(H,H(X),H(X̃))− (H, U2`)‖22 = Col(H,H(X),H(X̃))− 2−d−2`

≤ 2−d(2−2` + 2−κ+2)− 2−d−2` = 2−d−κ+2

Using that ‖Y ‖1 ≤
√
|Y|‖Y ‖2 for any random variable Y with support Y, we obtain

SD((H,H(X),H(X̃)), (H, U2`)) =
1
2
‖(H,H(X),H(X̃))− (H, U2`)‖1

≤ 1
2

√
2d+2`‖(H,H(X),H(X̃))− (H, U2`)‖2

≤ 1
2

√
2d+2`

√
2−d−κ+2 = 2`−κ/2 .

This concludes the proof.

We note that if Pr[X = X̃] = εc > 0, this introduces an additional term of at most εc to the
statistical difference above. Moreover, the statement also holds when auxiliary information Z
about X and X̃ leaks, as long as H∞(X|Z) ≥ k and H∞(X̃|Z) ≥ k (and H is independent of
(X, X̃, Z)).

3 Damg̊ard’s ElGamal and its variants

3.1 Hybrid Damg̊ard’s ElGamal

We now propose a hybrid version of Damg̊ard’s original encryption scheme that incorporates
the use of a strongly secure symmetric cipher. We need a special hash function that serves as
a bridge between the group scheme and the symmetric cipher. We assume that, for a security
parameter k, the symmetric cipher takes keys from {0, 1}`(k). We therefore need a family of hash
functions HS with H : G → {0, 1}`(k). As a minimal security requirement we assume that HS
is pseudorandom, i.e., that uniform input gets mapped to (computationally) uniform output.
(See Appendix A for a formal definition.)

Let GS be a group scheme where GRk specifies (G, p) and a generator g1 ∈ G, let H be a
family of hash functions with H : G → {0, 1}`, and let SE = (E,D) be a symmetric encryption
scheme with keyspace {0, 1}`. Hybrid Damg̊ard’s ElGamal HDÅG = (Kg,Enc,Dec) is defined as
follows.
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PKE scheme HDÅG = (Kg,Enc,Dec)
Kg(1k)
ω, x

$← Zp ; g2 ← gω
1 ; X ← gx

1

Pick random key κ for H
pk ← (g2, X, κ) ; sk ← (x, ω)
Return (sk , pk)

Enc(pk ,m)
r

$← Z∗
p ; c1 ← gr

1 ; c2 ← gr
2

K ← Hκ(Xr) ∈ {0, 1}`
ψ ← EK(m)
Return C = (c1, c2, ψ)

Dec(sk ,C )
Parse C as (c1, c2, ψ)
if cω1 6= c2 return ⊥
K ← Hκ(cx1)
Return {m,⊥} ← DK(ψ)

Damg̊ard’s original scheme [6] is a special case of HDÅG where H is the identity function and
SE is “any easy to invert group operation” [6], for example the one-time pad with EK(m) = K⊕
m. In his paper, Damg̊ard proved IND-CCA1 security of his scheme under the DDH assumption
and the knowledge of exponent assumption in GS.3

3.2 Equivalent description of the scheme

In HDÅG, invalid ciphertexts of the form cω1 6= c2 are reject explicitly. Similar to [5], we now
give a variant of this scheme called “implicit rejection Hybrid Damg̊ard’s ElGamal”, HDÅGIR =
(Kg,Enc,Dec), in which such invalid ciphertexts only get rejected implicitly using the security
properties of the symmetric cipher SE. In this variant we assume that GRk specifies (G, p) and
two independent generators g1, g2 ∈ G.

PKE scheme HDÅGIR = (Kg,Enc,Dec)
Kg(1k)
x1, x2

$← Zp ; X ← gx1
1 gx2

2

Pick random key κ for H
pk ← (X,κ) ; sk ← (x1, x2)
Return (sk , pk)

Enc(pk ,m)
r

$← Z∗
p ; c1 ← gr

1 ; c2 ← gr
2

K ← Hκ(Xr) ∈ {0, 1}`
ψ ← EK(m)
Return C = (c1, c2, ψ)

Dec(sk ,C )
Parse C as (c1, c2, ψ)
K ← Hκ(cx1

1 c
x2
2 )

Return {m,⊥} ← DK(ψ)

Theorem 3.1 Let SE be a symmetric encryption scheme that is secure in the sense of INT-OT
and let HS be a family of pseudorandom hash functions. Then HDÅG is IND-CCA2 secure if
and only if HDÅGIR is IND-CCA2 secure. In particular, for integers t, Q,

|Advcca2

HDÅG,t,Q
(k)−Advcca2

HDÅGIR,t,Q
(k)| ≤ Q · (Advint-ot

SE,t (k) + Advpr
HS,t(k)) .

Theorem 3.1 can be easily proved with the methods of the proof of Theorem 4.1, where Lemma 4.2
is the main technical tool.

We remark that a similar theorem can be proved concerning IND-CCA1 security, given that
SE is WINT-OT secure.

4 Security of Hybrid Damg̊ard’s ElGamal

4.1 IND-CCA2 Security

We prove IND-CCA2 security of Hybrid Damg̊ard’s ElGamal where
• GS is a group scheme where GRk specifies (G, p) and the DDH assumption holds
• HS is a family Hk : G → {0, 1}`(k) of 4-wise independent hash functions with log2(p) ≥

4`(k)
3 To be more precise, Damg̊ard only formally proved one-way (OW-CCA1) security of his scheme, provided

that the original ElGamal scheme is OW-CPA secure. But he also remarks that his proof can be reformulated to
prove IND-CCA1 security, provided that ElGamal itself is IND-CPA secure. IND-CPA security of ElGamal under
the DDH assumption was only formally proved later in [20].
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• SE = (E,D) is a AE-OT secure symmetric encryption scheme with key-space {0, 1}`(k).

Theorem 4.1 Let GS = (G, p) be a group scheme where the DDH problem is hard, let H be a
family of 4-wise independent hash functions from G to {0, 1}`(k) with log2 p ≥ 4`(k), and let SE
be a symmetric encryption that is secure in the sense of AE-OT. Then HDÅGIR is secure in the
sense of IND-CCA2. In particular,

Advcca2

HDÅGIR,t,Q
(k) ≤ Advddh

GS,t(k) + 2Q ·Advint-ot
SE,t (k) + Advind-ot

SE,t (k) +
Q+ 1
2`(k)

.

IND-CCA2 security of the “explicit-rejection” version HDÅG follows by Theorem 3.1. We remark
that even though we cannot prove the KEM part of the above scheme IND-CCA2 secure, it can
be proved “IND-CCCA” secure. The latter notion was defined in [12] and proved sufficient to
yield IND-CCA2 secure encryption when combined with a AE-OT secure cipher.

Efficiency. A particular advantage of HDÅG is its efficiency. Compared to the reference scheme
by Kurosawa and Desmedt [14] and its more recently proposed variants with improved efficiency
[9, 12] it saves one standard exponentiation in encryption and its key-sizes are smaller. Further-
more, it does not use any kind of (target) collision resistant hash function which can be quite
expensive to implement from the DDH assumption. Decryption and ciphertext expansion are
the same. On the other hand, in terms of concrete security, Theorem 4.1 requires the image
{0, 1}` of H to be sufficiently small, i.e., ` ≤ 1

4 log2 p. Consequently, for a symmetric cipher with
` = k = 80 bits keys we are forced to use groups of order log2 p ≥ 4k = 320 bits. For some
specific groups such as elliptic curves this can be a drawback since there one typically works
with groups of order log p = 2k = 160 bits. However, for many other practical groups such as
prime sub-groups of Z∗

q one usually takes a group of order between 768 and 1024 bits in which
case the requirement log2 p ≥ 4k can be easily fulfilled. In the latter case Hybrid Damg̊ard’s
ElGamal seems to be an attractive alternative to the scheme by Kurosawa and Desmedt.

Proof of Theorem 4.1: Let A be an adversary on the IND-CCA2 security of the PKE HDÅGIR.
We will consider a sequence of games, Game 1, Game 2, . . . , each game involving A. Let Xi be
the event that in Game i, it holds that b = b′, i.e., that the adversary succeeds.

Game 1. The PKE IND-CCA2 game with random b ∈ {0, 1}, i.e., we have

|Pr[X1]− 1/2| = Advcca2

HDÅGIR,A
(k) .

Let us introduce some notation. Let C ∗ = (c∗1, c
∗
2, ψ

∗) = (gr
1, g

r
2,EK∗(mb)) be the challenge

ciphertext, where K∗ = H(A∗) is the challenge key and A∗ = Xr is the algebraic challenge
key. A ciphertext C = (c1, c2, ψ) ∈ G×G× {0, 1}∗ is said to have an invalid KEM part if
logg1

c1 6= logg2
c2.

Game 2. Change the generation of the challenge key as follows. Instead of computing H(Xr)
compute K∗ ← H((c∗1)

x1(c∗2)
x2). Since Xr = (c∗1)

x1(c∗2)
x2 this does not change the view of

the adversary, hence
Pr[X2] = Pr[X1] .

Game 3. Change the generation of the challenge ciphertext as follows. Instead of computing
c∗1 and c∗2 based on the same exponent r, use different exponents for each of them: c∗1 = g

r∗1
1
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and c∗2 = g
r∗2
2 , where r∗1

$← Zp and r∗2
$← Zp \ {r∗1}. Essentially this means that the

challenge ciphertext is no longer valid. However, the DDH assumption will ensure this will
go unnoticed by adversary A.

Indeed, given any adversary, we can turn him into a DDH-solver as follows. Given a
quadruple (g1, g2, h1, h2) we want to determine whether it is a DDH-tuple or arbitrary.
Run the adversary with challenge ciphertext (c∗1, c

∗
2, ψ

∗) = (h1, h2,H(hx1
1 h

x2
2 )), simulating

the rest of the experiment as before (using x1, x2). Output whatever A outputs. If the
given quadruple is DDH, we are running Game 2 and output 1 with probability Pr[X2].
If the given quadruple is arbitrary, we are running Game 3 and output 1 with probability
Pr[X3]. Hence

|Pr[X3]− Pr[X2]| ≤ Advddh
GS,t(k) .

Game 4. Now we are done with the DDH assumption. Key generation now computes g2 as
g2 = gω

1 , for uniform ω ∈ Z∗
p. A query (c1, c2, ψ) adversary A makes to the decryption

oracle is now processed in the following way:
Case 1: If (c1, c2) = (c∗1, c

∗
2) then use K∗ to compute {m,⊥} ← DK∗(ψ).

Case 2: If (c1, c2) 6= (c∗1, c
∗
2) then the simulator checks whether the ciphertext is valid by

using its trapdoor ω. If c2 = cω1 the adversary proceeds as normal. If the check fails (and
the ciphertext is invalid), the adversary outputs ⊥.

The proof of the following key lemma will be given later.

Lemma 4.2 |Pr[X4]− Pr[X3]| ≤ Q · (Advwint-ot
SE,t (k) + 1

2` ).

Game 5. Replace the symmetric key K∗ used to create the challenge ciphertext with a random
key K∗, uniformly independently chosen from {0, 1}`. Linear algebra shows that this
essentially is simply a change of random variables and therefore

|Pr[X5]− Pr[X4]| ≤ 2−`. (4)

More precisely, in the proof of Lemma 4.2 we showed that given X, the random variable
A∗ in Game 4 is uniformly distributed over G, independent of A’s view. Again, Lemma 2.1
gives us SD((H,H(A∗)), (H, U`)) ≤ 2−` since log2 p ≥ ` + 2 log(1/2−`) = 3`. This proves
Equation (4).

The next (last) two games are standard since at this point A essentially plays a symmetric
chosen-ciphertext game with the challenger.

Game 6. Reject all decryption queries of the form (c∗1, c
∗
2, ∗). Since ψ∗ was generated using a

random key K∗ that only leaks to A through ψ∗, integrity of SE implies

|Pr[X6]− Pr[X5]| ≤ Q ·Advint-ot
SE,Bdem

(k)

for a suitable adversary Bdem against the INT-OT security of SE. We remark that here we
really need the stronger notion of INT-OT security since A sees one encryption ψ∗ under
K∗.

Finally, Game 6 models one-time security of the symmetric scheme, and we have

|Pr[X6]− 1/2| ≤ Advind-ot
SE,t (k) .

9



Collecting the probabilities proves the theorem.

It leaves to prove Lemma 4.2.

Proof: For j ∈ {1, . . . , Q}, let Ej denote the event that in Game 4, adversary A submits as j-th
decryption query a ciphertext (c1, c2, ψ) that gets rejected, but would not have been rejected in
Game 3; all earlier queries where treated identically in Game 4 and 3. Let E := E1 ∨ . . . ∨ EQ.
Games 3 and 4 proceed identical unless a decryption query gets treated differently. We can
remark that all decryption queries that get rejected in Game 3 will also get rejected in Game 4
and that for all decryption queries that are not rejected in Game 4, the answers in both games
will coincide. Consequently,

|Pr [X3 ]− Pr [X4 ] ≤ Pr [E1 ] + . . .+ Pr [EQ ] = Pr [E ]. (5)

Now consider events Êj , where for j ∈ {1, . . . , Q}, event Êj denotes that the j-th decryption
query in Game 4 gets rejected, but DK′ 6= ⊥ under an independently uniformly chosen symmetric
key K ′ $← {0, 1}` (and all earlier queries were treated identically in Games 4 and 3). By the
integrity property of SE, we have for j ∈ {1, . . . , Q},

Pr[Êj ] ≤ Advwint-ot
SE,Bdem

(k),

for a suitable adversary Bdem against WINT-OT security of the symmetric encryption scheme.
We now claim that

for all j: |Pr[Êj ]− Pr[Ej ]| ≤ 2−` . (6)

This implies

Pr [E1 ] + . . .+ Pr [EQ ] ≤ Pr[Ê1] + . . .+ Pr[ÊQ] +
Q

2`
≤ Q · (Advwint-ot

SE,t (k) +
1
2`

).

Combining this with (5) completes the proof of Lemma 4.2.

It leaves to prove Equation (6). Fix a security parameter k and j ∈ {1, . . . , Q(k)}. Let (c1, c2, ψ)
be the ciphertext of the j-th decryption query in Game 3. Without loss of generalization we
assume that all decryption queries are made after seeing the challenge ciphertext.

Let r1 := logg1
c1, and r2 := logg2

c2. Write furthermore ω = logg1
g2, and x = logg1

X =
x1 +ωx2. Then (c1, c2) is a valid KEM part iff r1 = r2 or, alternatively, if cω1 = c2. Furthermore,
if (c1, c2) is valid, then Ej and Êj cannot be fulfilled by definition.

Let A = cx1
1 c

x2
2 be the virtual algebraic key and K = H(A) be the virtual symmetric key used to

determine whether DK(ψ) = ⊥ or not (according to the rules of Game 4). We claim that under
the condition that (c1, c2, ψ) has an invalid KEM part, K is, just as the key K ′ of event Êj ,
uniformly distributed and independent of ψ. To this end we compute the average min-entropy
of A, conditioned on the view of the adversary.

Consider the random variables X = gx1
1 gx2

2 = gx1+ωx2
1 , A = cx1

1 c
x2
2 = gx1r1+ωx2r2

1 with r1 6= r2,
and A∗ = (c∗1)

x1(c∗2)
x2 = g

x1r∗1+ωx2r∗2
1 with r∗1 6= r∗2.

Claim: H∞(A|X) = log p and H∞(A∗|X) = log p.

To prove the claim we show that given X, A still looks like a uniform random element from
G. By r1 6= r2, the equation logg1

(A) = x1r1 + ωx2r2 is linearly independent from logg1
(X) =

x1 + ωx2. Therefore, H∞(A|X) = log p. The same argument also shows H∞(A∗|X) = log p
which concludes the proof of the claim.
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Now we can apply Lemma 2.1 to induce

SD((X,H,K = H(A),K∗ = H(A∗)), (X,K = H(A),H,K ′) ≤ 2−`

since 4` = log p ≥ 2`+ 2 log(1/2−`) = 4`.

4.2 IND-CCA1 security

In this section we consider the security properties of Hybrid Damg̊ard’s ElGamal where
• GS is a group scheme where GRk specifies (G, p) and the DDH assumption holds;
• HS is the identity function;
• SE = (E,D) is a WAE-OT secure symmetric encryption scheme with key-space G.

Theorem 4.3 Let GS = (G, p) be a group scheme where the DDH problem is hard, let H be a
secure key-derivation function, and let SE be a symmetric encryption that is secure in the sense
of WAE-OT. Then HDÅGIR is secure in the sense of IND-CCA1. In particular,

Advcca1

HDÅGIR,t,Q
(k) ≤ Advddh

GS,t(k) +Q ·Advwint-ot
SE,t (k) + Advind-ot

SE,t (k)

We only sketch the proof of Theorem 4.3 since it is essentially the same as the one of Theorem 4.1.
However, now we do not need the strong extractor properties of the 4-wise independent hash
function anymore. Indeed, given X = gx1

1 gx2
2 any single invalid decryption query yields an

algebraic key A = cx1
1 c

x2
2 which is uniformly distributed. By using a hybrid argument one can

show that all those queries will be rejected by the strong integrity properties of the symmetric
cipher. This shows that all decryption queries with an invalid KEM part will get rejected during
the IND-CCA1 experiment. Finally, using the same argument as in the proof of Theorem 4.1
one can then show that the challenge key K∗ (computed from the invalid KEM part (c∗1, c

∗
2)) is

uniformly random.
On the other hand, we remark that the scheme is, in general, not IND-CCA2 secure any-

more. In fact, there exists symmetric encryption schemes that are secure in the sense of AE-OT
(constructed using the encrypt-then-mac paradigm, see Appendix A) but that are “malleable”
with respect to the symmetric key: That is, given ψ∗ = EK∗(m), it is possible to compute (with
high probability) a ψ = EK(m), where K = g · K∗ ∈ G. Note that this does not contradict
the security definition since AE-OT only guarantees security with respect to a uniform key K∗.
The schemes usually loose all their security properties once the key can be altered. If such a
symmetric scheme is deployed a decryption query (c∗1 ·g, c∗2 ·g, ψ) reveals the message m contained
in the challenge ciphertext (c∗1, c

∗
2, ψ

∗).
In terms of efficiency, the scheme discussed in this subsection seems to be the most efficient

schemes based on a standard number-theoretic security assumotion.

5 Hybrid encryption from Hash Proof Systems

In [4] Cramer and Shoup showed that their original scheme in [5] was a special instance of a
generic framework based on hash proof systems (HPS). In this section we will show how our
security results of the last section can be re-phrased in terms of HPS. As our main technical
result we show an efficient transformation from a 1-universal to a 2-universal HPS. Combining the
latter with an AE-OT secure symmetric cipher gives an IND-CCA2 secure public-key encryption
scheme. This result can be readily applied to all known 1-universal hash proof systems with
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a hard subset membership problem (e.g., from Paillier, QR [4] and n-Linear [12]) to obtain a
number of alternative IND-CCA2 secure encryption schemes. We remark that in [4], Cramer
and Shoup also propose a generic transformation from 1-universal to 2-universal HPSs but their
construction involves a significant overhead: the key of their transformed 2-universal HPS has
linearly many keys of the original 1-universal HPS.

5.1 Hash proof systems

Let C,K be sets and V ⊂ C a language. Let Λsk : C → K be a hash function indexed with
sk ∈ S, where S is a set. A hash function Λsk is projective if there exists a projection µ : S → P
such that µ(sk) ∈ P defines the action of Λsk over the subset V. That is, for every C ∈ V, the
value K = Λsk (C) is uniquely determined by µ(sk) and C. In contrast, nothing is guaranteed
for C ∈ C \V, and it may not be possible to compute Λsk (C) from µ(sk) and C. More precisely,
we define 1- and 2-universal as follows.

1-universal. The projective hash function is ε-almost 1-universal if for all C ∈ C \ V,

SD((pk ,Λsk (C)), (pk ,K)) ≤ ε (7)

where in the above pk = µ(sk) for sk $← S and K $← K.

2-universal. The projective hash function is ε-almost 2-universal if for all C,C∗ ∈ C \ V with
C 6= C∗,

SD((pk ,Λsk (C∗),Λsk (C)), (pk ,Λsk (C∗),K)) ≤ ε (8)

where in the above pk = µ(sk) for sk $← S and K $← K.

A hash proof system HPS = (Param,Pub,Priv) consists of three algorithms. The randomized
algorithm Param(1k) generates instances of params = (group,K, C,V,P,S,Λ(·) : C → K, µ : S →
P), where group may contain some additional structural parameters. The deterministic public
evaluation algorithm Pub inputs the projection key pk = µ(sk), C ∈ V and a witness w of the
fact that C ∈ V and returns K = Λsk (C). The deterministic private evaluation algorithm inputs
sk ∈ S and returns Λsk (C), without knowing a witness. We further assume there are efficient
algorithms given for sampling sk ∈ S and sampling C ∈ V uniformly together with a witness w.

As computational problem we require that the subset membership problem is hard in HPS
which means that the two elements C0 and C1 are computationally indistinguishable, for random
C0 ∈ V and random C1 ∈ C\V. This is captured by defining the advantage function Advsm

HPS,A(k)
of an adversary A as

Advsm
HPS,A(k) def=

∣∣ Pr[A(C,V, C1) = 1]− Pr[A(C,V, C0) = 1]
∣∣ .

where C is taken from the output of Param(1k), C1
$← C and C0

$← C \ V.

5.2 Hybrid encryption from HPS

Using the above notion of a hash proof system, Kurosawa and Desmedt [14] proposed the fol-
lowing hybrid encryption scheme which improved the schemes from [4]. The system parameters
of the scheme consist of params $← Param(1k).

Kg(k). Choose random sk $← S and define pk = µ(sk) ∈ P. Return (pk , sk).
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Enc(pk ,m). Pick C $← V together with its witness ω that C ∈ V. The session key K = Λsk (C) ∈
K is computed as K ← Pub(pk , C, ω). The symmetric ciphertext is ψ ← EK(m). Return
the ciphertext (C , ψ).

Dec(sk ,C ). Reconstruct the key K = Λsk (C) as K ← Priv(sk , C) and return {m,⊥} ← DK(ψ).

The following was proved in [14, 9, 12].

Theorem 5.1 Assume HPS is ε-almost 2-universal with hard subset membership problem, ε =
ε(k) is negligible and SE is AE-OT secure. Then the encryption scheme is secure in the sense of
IND-CCA2.

The analogue “lite version” for 1-universal HPS can be stated as follows.

Theorem 5.2 Assume HPS is ε-almost 1-universal with hard subset membership problem, ε =
ε(k) is negligible and SE is WAE-OT secure. Then the encryption scheme is secure in the sense
of IND-CCA1.

5.3 From 1-universal to 2-universal HPS

Given HPS and a family of hash functions HS with H : K → {0, 1}` we define the hashed
variant of it, HPSHS , such that for all C ∈ C, ΛHS

sk (C) := Hκ(Λsk (C)). Therefore we formally
have that ΛHS

sk : C → {0, 1}`. We also need to add the choice of hash H ∈ HS to the index
of the overall hash in HPSHS . To this end define the projection µHS : S × HS → P × HS by
µ(sk ,H) = (pk ,H). Note that C and V are the same for HPSHS and HPS.

Theorem 5.3 Assume HPS is ε1-almost 1-universal and H is a family of 4-wise independent
hash functions K → {0, 1}`, let κ = log(|K|) and εc = maxC,C∗∈C\V,C 6=C∗(Prsk [Λsk (C) =

Λsk (C∗)]. Then HPSHS is ε2-almost 2-universal for ε2 ≥ 2
`−κ
2 + 2

2`−κ
2 + 3ε1 + εc.

Proof of Theorem 5.3: Let us consider, for all C,C∗ ∈ C \ V with C 6= C∗, the statistical
distance relevant for 2-universality for HPSHS and let Y be the random variable (pk ,H, U2`)
where pk = µ(sk) for sk $← S, H $← HS and U2`

$← {0, 1}2`. Then we can use the triangle
inequality to get

SD((pk ,H,H(Λsk (C∗)),H(Λsk (C))), (pk ,H,H(Λsk (C∗)), U`))

≤ SD((pk ,H,H(Λsk (C∗)),H(Λsk (C))), Y )) + SD(Y, (pk ,H,H(Λsk (C∗)), U`)) (9)

where as before pk = µ(sk) for sk $← S, H $← HS and U`
$← {0, 1}`. We can upper bound the

second term of (9), using again the triangle inequality in the first step, as

SD(Y, (pk ,H,H(Λsk (C∗)), U`))

≤ SD(Y, (pk ,H,H(K), U`)) + SD((pk ,H,H(K), U`), (pk ,H,H(Λsk (C∗))), U`)

≤ SD(Y, (pk ,H,H(K), U`)) + SD((pk ,K), (pk ,Λsk (C∗)))

≤ 2
`−κ
2 + ε1 .

In the last step we used the (standard) leftover hash-lemma and ε1-almost universality of the
HPS (cf. eq.(7)) which states that for any C ∈ C \ V

SD((pk ,K), (pk ,Λsk (C))) = SD(K,Λsk (C)|pk) ≤ ε1 .
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By the above, for C ∈ C \ V we can define an event EC , such that H∞(Λsk (C)|pk,EC) =
H∞(K|pk) = k where Pr[¬EC ] ≤ ε1. Further, let ECol denote the event [Λsk (C) 6= Λsk (C∗)], by
assumption Prsk[¬ECol ] ≤ εc.

We now bound the first term of (9) as

SD((pk ,H,H(Λsk (C∗)),H(Λsk (C))), Y )

≤ SD((pk ,H,H(Λsk (C∗)),H(Λsk (C))), Y |EC ∧ EC∗ ∧ ECol ) + Pr
sk

[¬EC ∨ ¬EC∗ ∨ ¬ECol ]

≤ 2
2`−κ

2 + 2ε1 + εc

where in the last step we used Lemma 2.1.

5.4 A 1-universal HPS from the DDH assumption

We recall a 1-universal HPS from [4] whose hard subset membership problem is based on the
DDH assumption. Let GS be a group scheme where GRk specifies (G, p). Let group = (GR,
g1, g2), where g1, g2 are independent generators of G. Define C = G2 and V = {(gr

1, g
r
2) ⊂ G2 :

r ∈ Zp} The value r ∈ Zp is a witness of C ∈ V. Let S = Z2
p, P = G, and K = G. For

sk = (x1, x2) ∈ Z2, define µ(sk) = X = gx1
1 gx2

2 . This defines the output of Param(1k). For
C = (c1, c2) ∈ C define

Λsk (C) := cx1
1 c

x2
2 . (10)

This defines Priv(sk , C). Given pk = µ(sk), C ∈ V and a witness r ∈ Zp such that C = (c1, c2) =
(gr

1, g
r
2) public evaluation Pub(pk , C, r) computes K = Λsk (C) as

K = Xr .

Correctness follows by Equation (10) and the definition of µ. This completes the description
of HPS. Clearly, under the DDH assumption, the subset membership problem is hard in HPS.
Using the techniques from the proof of Theorem 4.1, (perfect) 1-universality of the HPS is easy
to verify. See also [4]. Since εc = 1/p, Theorems 5.3 and 5.1 reproduce (a slightly less tight
version of) Theorem 4.1.
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A Construction of authenticated encryption schemes

We recall details of the encrypt-then-mac approach [1, 5] for constructing authenticated sym-
metric encryption.

A.1 Building blocks

Key Derivation Functions. A key-derivation function KDF is a family of functions KDFk :
{0, 1}` → {0, 1}2k. We assume its output on a random input is computationally indistinguishable
from a random 2k-bit string (pseudorandomness), captured by defining the pr-advantage of an
adversary Bkdf as

Advpr
KDF,Bkdf

(k) = |Pr[Bkdf(KDF(K)) = 1]− Pr[Bkdf(X) = 1]|,

where K $← {0, 1}` and X $← {0, 1}2k.

Message Authentication Codes. A message authentication code MAC = (Tag,Vfy) with
keys mk ∈ {0, 1}k consists of a tag algorithm Tagmk (m) and a verification algorithm Vfymk (τ).
For consistency we require that for all messages M , we have Pr[Vfymk (M,Tagmk (M)) 6= ⊥] = 1,
where the probability is taken over the choice of coins of all the algorithms in the expression
above.
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MAC needs to be strongly unforgeable against one-time attacks (SUF-OT) captured by defin-
ing the suf-ot-advantage of an adversary Bmac as

Advsuf-ot
MAC,Bmac

(k) = Pr[Vfymk (m
∗, τ∗) 6= ⊥ : mk $← {0, 1}k ; (M∗, τ∗) $← B

Tagmk (·)
mac (1k)] .

Above, oracle Tagmk (·) returns τ ← Tagmk (m) and A may only make one single query to oracle
Tagmk (·). The target pair (m∗, τ∗) must be different from the pair (m, τ) obtained from Tagmk (·)
(strong unforgeability).

We remark that efficient MACs satisfying the above definition can be constructed without
any computational assumption (and secure against unbounded adversaries) using, e.g., almost
strongly-universal hash families [21].

A.2 Construction of AE-OT and WAE-OT secure ciphers

Let OTP = (Ẽ, D̃) be a symmetric encryption that inputs keys from {0, 1}k, let KDF a key-
derivation function that outputs bitstrings of length 2k, and let MAC be a MAC scheme with
keys mk ∈ {0, 1}k. Using the “Encrypt-then-MAC” paradigm we can construct SE = (E,D)
that inputs keys K ∈ {0, 1}` as follows.

EK(m)
(mk ||dk)← KDF(K), where mk , dk ∈ {0, 1}k
ψ′ ← Ẽdk (m)
τ ← Tagmk (ψ′)
Return ψ = (ψ′, τ)

DK(ψ = (ψ′, τ))
(mk ||dk)← KDF(K)
If Vfymk (ψ′, τ) = ⊥ return ⊥
M ← D̃dk (ψ′)
Return M

Typically, a MAC tag (from a computationally secure MAC) has k bits, so the above construction
generates ciphertexts of size d(k) = |m|+ k. The following lemma [5, 13, 1] guarantees the AE
scheme is one-time secure.

Lemma A.1 Assume OTP is IND-OT, KDF is pseudorandom, and MAC is SUF-OT. Then SE
is AE-OT. In particlar, we have

Advind-ot
SE,t (k) ≤ Advpr

KDF,t(k) + Advind-ot
OTP,t(k), Advint-ot

SE,t (k) ≤ Advpr
KDF,t(k) + Advsuf-ot

MAC,t(k) .

We remark that for authenticated encryption is a strictly stronger security notion than
chosen-ciphertext security (using a separation example from [1]), whereas the latter is already
sufficient for the KEM/DEM composition theorem [5] (i.e., a IND-CCA2 secure KEM plus chosen-
ciphertext secure symmetric encryption implies IND-CCA2 secure PKE). On the other hand,
there exists redundancy-free chosen-ciphertext secure symmetric encryption [18] (with d(k) =
|m|) whereas redundancy-free authenticated encryption do not exist.

If we only require WAE-OT security, we can construct SE = (E,D) without a MAC as follows.

EK(m)
(mk ||dk)← KDF(K), where mk , dk ∈ {0, 1}k
ψ′ ← Ẽdk (m)
Return ψ = (ψ′,mk)

DK(ψ = (ψ′,mk ′))
(mk ||dk)← KDF(K)
If mk 6= mk ′ return ⊥
Returm m← D̃dk (ψ′)

Lemma A.2 Assume OTP is IND-OT and KDF is pseudorandom. Then SE is WAE-OT. In
particlar, we have

Advind-ot
SE,t (k) ≤ Advpr

KDF,t(k) + Advind-ot
OTP,t(k), Advint-ot

SE,t (k) ≤ Advpr
KDF,t(k) .
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