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Abstract.  At EUROCRYPT 2005, Sahai and Waters presented the Fuzzy Identity Based 
Encryption (Fuzzy-IBE) which could be used for biometrics and attribute-based encryption in the 
selective-identity model. When a secure Fuzzy-IBE scheme in the selective-identity model is 
transformed to full identity model it exist an exponential loss of security. In this paper, we use the CPA 
secure Gentry's IBE (exponent inversion IBE) to construct the first Fuzzy IBE that is fully secure 
without random oracles. In addition, the same technique used to the modification of CCA secure 
Gentry's IBE which introduced by Kiltz and Vahlis to get the CCA secure Fuzzy IBE in the full-identity 
model. 
Keywords: full-identity security, fuzzy identity based encryption, without random oracles. 
1 Introduction 
In an Identity Based Encryption (IBE) system any string like an e-mail address or other identifier can 
function as a public key. The ability that uses identities as public keys largely reduces the need for 
public key certificates and for certificate authorities to distribute public key certificates. This can 
simplify public key and certificate management in a public key infrastructure (PKI). Shamir [23] 
proposed the concept of IBE in 1984, and the first IBE systems were demonstrated by Boneh and 
Franklin [5] and Cocks [12], which could be proven secure in the random oracle model. Ever since then, 
a rapid development of IBE has taken place, and a series of papers [3][4][6][7][9][15][20][24] have 
reported progress in achieving stronger notions of security in the standard model. In 2007, Boneh et al. 
[2] presented a space-efficient Identity Based Encryption without pairings. 

However, a unique string identifier does not necessarily exist for each person. Instead, people are 
more often identified by their attributes. To fulfill this task, the concept of Fuzzy-IBE recently 
introduced by Sahai and Waters [22] in 2005 is to provide an error-tolerance property for IBE which 
could be used for encryption using biometrics and attribute based encryption (ABE). Namely, in 
Fuzzy-IBE, a user with the secret key for the identity ω  can decrypt a ciphertext encrypted with the 
public key 'ω  if ω  and 'ω  are within a certain distance of each other. Since Sahai and Waters' 
first work, Fuzzy-IBE has been discussed in the context of the ABE. Instead of allowing decryption 
conditionally on the satisfaction of a single threshold gate (whose inputs are the matching attributes in 
the ciphertext and the key), Goyal et al. [16] proposed an ABE scheme that provides fine-grained 
sharing of encrypted data. In this model, when a user requests a private key, the authority determines 
what combinations of attributes must be present in order for this user to decrypt and gives the user the 
corresponding private key. In 2006, Piretti et al. [21] used Sahai and Waters' "large universe" 
construction of Fuzzy-IBE to realize their secure information management architecture. In 2007, Baek 
et al. [1] presented two new Fuzzy-IBE schemes in the random oracle model in which their public 
parameter's size is independent of the number of attributes in each identity. Recently, Chase [10] 
presented a scheme which allows any polynomial number of independent authorities to monitor 
attributes and distribute secret keys. Boyen[6] showed the exponent inversion IBE with parallel 



semantic security against selective-ID chosen-plaintext attacks, that has an appropriate linear structure, 
can extension to the Fuzzy IBE. But the ambiguity of Gentry's IBE as an exponent inversion candidate 
presents an intriguing open problem.  

Recently, Fang [13] used hybrid encryption [17][18][19] with Fuzzy Identity-Based Encryption 
(Fuzzy-IBE) schemes and presented the first and efficient fuzzy identity-based key encapsulation 
mechanism (Fuzzy-IB-KEM) schemes which are CCA-secure without random oracle in the 
selective-identity model.  
1.1 Related Work 
To the best of our knowledge, all of the results reported in [1][10][13][16][21][22] are in the 
selective-ID model (Note that the selective-ID attack [3] refers to the attack in which an attacker 
commits ahead of time an identity that it intends to attack). It is easy to show that any selective-ID 
secure Fuzzy IBE is readily converted into a full-identity secure Fuzzy IBE by artificially restricting 
the space of identities, but the proof uses an inefficient security reduction [4]. Suppose all identities are 
composed of attributes and we have a universe of attributes, . Sahai and Waters' scheme is secure in 

the full-identity model with a factor of 
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in the reduction. As mentioned in [22]: "Therefore, we 

conjecture that a scheme that has a non-exponential loss of security in the full-identity model will 
require significantly different methods than those seen in prior work". 

In IBE schemes, there are two major techniques to achieve IBE in the full model with 
non-exponential reductions. One is used in commutative blinding IBE which introduced by Boneh and 
Boyen [4] and later Waters [24] to devise IBE systems fully secure without random oracles, the 
methods achieve fully secure by essentially removing the relationships between nearby identities. 
Unfortunately, it is essential that there exists a relationship between nearby identities in Fuzzy-IBE. 
Another is introduced by Gentry [15] to get practical IBE in full-identity model, we observed that this 
technique can be extend to achieve a fully secure Fuzzy IBE scheme. Boyen [6] also showed exponent 
inversion IBE can extension to the Fuzzy IBE, they use different setup algorithm for each identity to 
achieve parallel IBE security, the result is the public key is different for each identity except generators. 
Being different as [6], our scheme have the same part of public key for each identity, so is more 
efficient. 
1.2 Our contributions 
In this paper, we use the CPA secure Gentry's IBE (exponent inversion IBE) to construct a Fuzzy IBE 
that is fully secure without random oracles and present a CPA secure scheme which gives comparable 
generalization performance as that of Sahai and Waters' "large universe" construction and a tightness 
reduction. We give a standard-model security proof reducing the intractability of decisional augmented 
bilinear Diffie-Hellman exponent ( ) problem to breaking the CPA security of our scheme 

in full-identity model. We remark that the proof technique is significantly different from the one used 
for Gentry's IBE scheme.  

q ABDHE−

In addition, the same technique is used to the modification of CCA secure Gentry's IBE [15] which 
introduced by Kiltz and Vahlis [20] to get the CCA secure Fuzzy IBE in the full-identity model.  
1.3 Organization 
The rest of the paper is organized as follows. In Section 2, we formally define the Fuzzy Identity-Based 
Encryption scheme and the symmetric encryption scheme. Then, the intractability assumptions are 
described in Section 3, and a description of our CPA secure Fuzzy IBE follows in Section 4. In Section 



5, we present a CCA secure Fuzzy IBE. We compare our schemes with known Fuzzy IBE schemes 
without random oracles from the literature in Section 6. Finally, we conclude in Section 7. 
2 Preliminaries 
We begin by presenting our definition of security, and then we follow with a brief review of symmetric 
encryption. 
2.1 Notation 

If x is a string, then x  denotes its length, while if is a set then S S denotes its size. If  then 
denotes the string of ones. If is a set then 

k N∈
1k k S Rs S←  denotes the operation of picking an 
element s  of uniformly at random. Unless indicated specifically, algorithms are randomized and 
polynomial time. By we denote the operation of running algorithm 

S
1 2, ( , , )o o

Rz A x y⋅⋅⋅← ⋅⋅ ⋅ A  with 
inputs , ,x y ⋅ ⋅ ⋅ and access to oracles 1 2, ,O O ⋅ ⋅ ⋅ , and letting be the output. An adversary is an 
algorithm or a tuple of algorithms. 

z

2.2 Security Model for Fuzzy Identity-Based Encryption 
A Fuzzy-IBE system consists of four algorithms [22].  
Setup: Setup establishes the PKG's parameter pk (public key) and mk (master key).  
KeyGen: KeyGen applies the master key to an identity to generate the private key for that identity.  
Enc: Enc uses the public key to encrypt a message to a given identity.  
Dec: Dec decrypts a ciphertext for an identity by using a private key of that identity to get back the 
message.  

Similar to the Fuzzy-sID-CPA game [22], a Fuzzy-full-identity-CCA game is captured by defining 

the following advantage function for an adversary 1 2( , )A A A= : 

, ,
1( ) Pr[ ( ) 1] 2

CCA CCA
FIBE A FIBE AAdv k Exp k≡ = −  

Where ( )CCA
FIBEExp k  is defined by the following experiment. Identities will be element subsets of some 

universeu . 

Experiment  ( )CCA
FIBEExp k  

( , ) ( , ,1 )k
Rpk mk setup u d←  

* (
0 1 1 1( , , , ) ( )keygen Dec

Rm m St A pkα ⋅ ⋅ ⋅← ), ( , )  

{0,1}Rb← ; * *( , , )R bE Enc pk mα←  

' ( ), ( , ) *
2 1( , )keygen Dec

Rb A E St⋅ ⋅ ⋅←  

If ' Return 1 else return 0 b b=
The oracle KeyGen( iγ ) where *

iγ α∩ < : The challenger runs KeyGen on d iγ  and forwards 
the resulting private key to the adversary. 

The oracle Dec( ,i iEγ ): 2A  can not request a Dec query ,i iEγ< >where *
iγ α∩ ≥ d  and 

*
iE E= . Otherwise, the challenger runs KeyGen on iγ , decrypts iE  using the private key, and sends 

the result to the adversary. 
Definition 2.1  A Fuzzy-IBE system is ( , , , )ID Ct q q ε Fuzzy full-identity CCA secure if all -time 
Fuzzy-full-identity-CCA adversaries making at most 

t

IDq  Key generation queries and at most 
chosen ciphertext queries have advantage at most Cq ε  in winning the above game. 



Definition 2.2  A Fuzzy-IBE system is ( , ,0, )IDt q ε Fuzzy-full-identity-CPA secure if all t -time 
Fuzzy-full-identity-CCA adversaries making at most IDq  Key generation queries and no chosen 
ciphertext queries have advantage at most ε  in winning the above game. 

Note that in contrast to the definition of Fuzzy slectiver-identity CPA game [22], we consider a 
full identity model instead of the selective-identity model, this is mean the adversary should not declare 
the challenge identity firstly in the full-identity model. 
2.3 Symmetric Encryption 

A symmetric encryption scheme [20] ( , )SE E D=  is specified by its encryption algorithm 
E (encrypting with key( )m MsgSp k∈ ( )K kκ∈ ) and decryption algorithm D (returning 

or reject). Here we restrict ourselves to deterministic algorithms( )m MsgSp k∈ E and D . 
 The most common notion of security for symmetric encryption is formalized as following: 
CIPHERTEXT INDISTINGUISHABILITY. Let ( , )SE E D=  be a symmetric encryption scheme, 
and let 1 2( , )A A A= be an adversary. We define the following experiment: 

Experiment , ( )IND
SE AExp k  

( )RK kκ←  

0 1 1( , , ) (1 )k
Rm m St A←  

*{0,1}; ( )R R K bb c E← ← m

)

 
*

2' (1 , ,k
Rb A St c←  

If ' Return 1 else return 0 b b=
The advantage of A in breaking the ciphertext indistinguishability security of SE is: 

, ,
1( ) Pr[ ( ) 1] 2

IND IND
SE A SE AAdv k Exp k= = −  

Definition 2.3 The symmetric encryption scheme has indistinguishable ciphertexts if for every 

adversary

SE

A the advantage is negligible. , ( )IND
SE AAdv ⋅

CIPHERTEXT AUTHENTICITY. In this work we are only interested in one-time authenticated schemes. 
These schemes are that no efficient adversary can produce a new valid ciphertext after seeing the 
encryption of a single message. 

Let be a symmetric encryption scheme, and let ( , )SE E D= 1 2( , )A A A= be an algorithm. We 
define the following experiment: 

Experiment , ( )CT IND
SE AAdv k−  

( )RK kκ←  

1( , ) (1 )k
Rm St A←  

( )Kc E m←  

2' (1 , ,k
Rc A St← )c  

If and return 1 else return 0 'c c≠ ( ')kD C ≠⊥

The advantage of A in breaking the ciphertext integrity of is: SE

, ,( ) Pr[ ( ) 1]CT IND CT IND
SE A SE AAdv k Exp k− −= =  

Definition 2.4 The symmetric encryption scheme has ciphertext integrity, if for every adversary A , 

the advantage is negligible. 

SE

, ( )CT IND
SE AAdv − ⋅

AUTHENTICATED ENCRYPTION. A symmetric encryption scheme which is secure according to both 



Definition 2.3 and Definition 2.4 is secure in the sense of one time authenticated encryption (of 

AE-OT). 
CONSTRUCTIONS. In our IBE constructions we will require an abstract notion of algebraic symmetric 
encryption where the key-space consists of a cyclic group . How to build such symmetric 
encryption schemes satisfying all required functionality and security is well known (following the 
encrypt-then-mac approach) from the following basic primitives: 

κ 2G

A (computationally secure) one-time symmetric encryption scheme with binary -bit keys (such 
as AES or padding with a PRNG) 

κ

A (computationally secure) MAC (existentially unforgeable) with κ -bit keys 
A (computationally secure) key-derivation function that maps elements from into 2 -bit 
strings (such as SHA-1). 

2G κ

We refer the reader to previous literature [17][20] for more details. 
3 Intractability assumptions 

3.1 Bilinear Maps 

We briefly review the facts about groups with efficiently computable bilinear maps. We refer the 

reader to previous literature [5] for more details. Let  be groups of prime order1 2,G G p , and let g be 

a generator of . We say  has an admissible bilinear map,1G 1G 1 1:e G G G2× → , into , if the 

following two conditions hold.  
2G

The map is bilinear; for all we have . ,a b ( , ) ( , )a b abe g g e g g=

The map is non-degenerate; we must have ( , ) 1e g g ≠ . 

3.2 The Truncated q ABDHE−  Assumption  

Let is a bilinear map, we define the advantage function 1 1:e G G G× → 2 1 , ( )q abdhe
G BAdv k−  of an 

adversary B as 
2 1 2

Pr[ ( , , , , , ( , ) ) 1] Pr[ ( , , , , , ( , ) ) 1]
q q q q qx x z zx zx x x z zx rB g g g g e g g B g g g g e g g

+ + +

⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅ =  

where , , , R px y z r ← . We say that the truncated q ABDHE−  assumption relative to generator  

holds if 

1G

1 , ( )q abdhe
G BAdv k−  is negligible for all B. 

4 CPA Secure Fuzzy IBE  
In this section we present our CPA secure Fuzzy IBE scheme from the q ABDHE−  assumption. It is 

based on the exponent inversion IBE scheme [3] in its full-identity secure variant of Gentry [15]. 
An important security requirement for a fuzzy IBE scheme which used for biometric applications 

and attribute-based encryption is the security against collusion attack, which implies that no group of 
users should be able to combine their keys in such a way that they can decrypt a ciphertext that none of 
them alone could [22]. In Sahai and Waters' scheme [22], each user's keys are generated using different 
random sharing of a secret, so keys generated for different users cannot be combined. We use the same 

technique to the Gentry's CPA secure IBE, let xu g← ; be the public key in Gentry's 

scheme, 

1
1 ( , ) yv e g g←

x is the master key; the private key for identity isiid
1

( , )
idi

i

i i

y s
x id

id ids d g
−

−= ; the ciphertext for 

identity  is , ;iid 1 ( )iid rC ug −← 2
r
TC g← 3 1( )rC v m← ⋅ . To prevent collusion in Fuzzy IBE, a 

private key for a user we will associate a random 1d − degree polynomial, , with each user with 1( )q x



the restriction that each polynomial have the same valuation at point , that is . The result 

is a user is able to perform decryption as long as he is able to match at least  components of the 
ciphertext with their private key components. This may cause a new problem for a fuzzy 

identity

0 1(0)q = 1y

d

1{ , , }Iid idω = ⋅⋅ ⋅ , when using the same randomness to encrypt the attribute part of fuzzy 

identity

r

ω : 1, ( ) ;i

i

id r
id iC ug id ω−= ∈

)

, the adversary can easily from two attribute part of 

ciphertext to construct a new attribute part of ciphertext 

by 

1

11, ( )id r
idC ug −= 2

21, ( id r
idC ug −=

3

31, ( )id r
idC ug −=

1 3
2 11

3 1
2

( )
(1,

1, 1,
1,

( )
id id

id idid
id id

id

CC C C
−

−= ) . To solving this problem we use the 

different for each attribute . A description of our CPA secure Fuzzy IBE follows in below. 
iidu iid

4.1 The Fuzzy IBEⅠ 

As in [22], let   be bilinear group of prime order , and let 1G P g be a generator of . Additionally, 

let bilinear map

1G

1 1:e G G G2× → . We restrict the length of identities to be some fixed n. We also define 

the Lagrange coefficient for and a set, , as elements in :Δi,S Pi∈ S P
,

( )
j S j i

x
∈ ≠

Δ = ∏i,S

x-j

i-j
. 

Identities will be sets of  elements of . Let  be a target collision-resistant 

hash function. Our construction follows: 

N *
P

*
1: pTCR G →

Setup( , ,1 )ku d  

 Parse u as 1{ , , }Nid id⋅ ⋅ ⋅  

1 2, ,i R px y y ← idi; x ;  1
1

y
Tv g←idu g

i
←

1( , , , )id idp
1 N

k u u v← ⋅⋅⋅

1( , , , )
Nid idmk x x y← ⋅⋅⋅

)

 

 
1

Return ( ,pk mk  

KeyGen( , )mk ω  

Two degree polynomials  and  are randomly chosen such that . 1d − 1( )q x 3 ( )q x 1 1(0)q y=

Parse ω as 1{ , , }Iid id⋅ ⋅ ⋅  

For iid ω∈  do 1, 3 ( )
iid is q id← ;

1 1,( )

1,

i idi

id ii

i

q id s
x id

idd g
−

−←  

1, 1,{( , ) }
i i iid id idsk s dω ω∈←  

Return skω  



Enc( , ', )pk mω  

Parse 'ω as 1{ , , }Lid id⋅ ⋅ ⋅  

R pr ← ; '1, ( ) ;iid r
id id iC u g id−

i i
← ω∈

3 m K← ⋅

 

2
r
TC g← ; ; C  1( )rK v←

11, 1, 2 3( ', , , , , )
Lid idE C C C Cω← ⋅⋅⋅  

Return E  

Dec( , )Eω  

Parse E as 
11, 1, 2 3( ', , , , , )

Lid idC C C Cω ⋅⋅ ⋅  

Parseω as 1{ , , }Iid id⋅ ⋅ ⋅  

Parse skω as 1, 1, 2, 2,{( , , , ) }
i i i i iid id id id ids d s d ω∈  

Randomly choose '&S Sω ω⊆ ∩ = d

iid S

 

1, , (0)
1, 1, 2( ( , ) )id id Si i

i i

s
id idK e C d C Δ

∈

←∏ ; 3Cm K←  

Return  m
We now demonstrate the accuracy of the scheme, i.e. that the  computed in the encryption 

algorithm matches the computed in the decryption algorithm. 
m

m
Correctness: 

1, ,

1 1,

1, ,

1 1,

1, ,

3
(0)

1, 1, 2

3
( )

(0)

3
( )

(0)

3

( ( , ) )

( (( ) , ) ( , ) )

( (( ) , ) ( , ) )

( ( ,

id id Si i

i i

i

i idi

id i id id Si i i i

i

i

i idi

id i id i id id Si i i i

i

s
id id

id S

q id s
x id rsid r

id
id S

q id s
x id x id rsr

id S

qr

Cm
e C d C

C

e u g g e g g

C

e g g e g g

C
e g g

Δ

∈

−

− Δ−

∈

−

− − Δ

∈

=

=

=

=

∏

∏

∏

1 1, 1, , ,1

1 , 11 ,

3
( ) (0) (0)( )

3 3 3
( ) (0) ( ) (0)

) ( , ) ) ( ( , ))

( , )( , ) ( , )

i id id id S id Si i i i

i i

i id Si i id Si
id Si

i

id s rs q idr

id S id S

rq id ryrq id

id S

C
e g g e g g

C C C me g ge g g e g g ∈

− Δ

∈ ∈

Δ Δ

∈

=

= = =∑

∏ ∏

∏

iΔ

=

 

4.2 Security 

Theorem 4.1 Assume is a target collision resistant hash function. Let TCR IDq  is the number of key 

generation queries for identity iγ . Under the truncated q ABDHE−  assumption relative to 

generator , the above Fuzzy IBE scheme is IND-CPA secure in the full-identity model. In particular, 

we have
1G

1 1, ,( ) ( )CPA q abdhe
FIBE t G tAdv k Adv k−≤ , exp( maxID i it t q q tο γ= − ⋅ ⋅ ⋅ ) where is the time expt



required to exponentiate in . 1G
First we give some main points of intuition behind the reduction. Then we follow with a more 

formal proof in Appendix A. 
We will show that we can reduce the q ABDHE−  problem to the problem of breaking our 

encryption scheme. That means we are given 
2

( , , , , , , )
q qx x z zxg g g g g T

+

⋅ ⋅ ⋅ and asked to distinguish 

 from a random element in . We assume there exists an adversary that can break 

the security properties of our Fuzzy IBE system (as defined in Section 2) and we show that we could 
use such an adversary to solve this problem.  

1

( , )
qz xT e g g
+

= 2G

The difficult is to answer the key generation query and simulate the challenge ciphertext 

using
2

( , , , , , , )
q qx x z zxg g g g g T

+

⋅ ⋅ ⋅ . We picks a random degree q polynomial 1( )f X  and defines 

xu g= , 1 ( )
1 ( , ) f xv e g g= . where is randomly chosen from . idi

i

e id
idu u g= i

idi
e

*
p

KeyGen( , )mk γ for identity  γ< >  where *γ α∩ < : d 'Γ can be any set such that 

' γΓ ⊆ , ' 1dΓ = − , and . ' {0}S = Γ ∪

1) For : we choose a random element'iid ∈Γ 1, iid R ps ← , and pick a random 

degree polynomial q 1, ( )
iidf X  such that 1, 1,(0)

iid idi
f s= , then define a degree 1q −  polynomial 

1, 1,
1,

( )
( ) i i

i

id id
id

f X s
F X

X
−

= . Let 1,

1
( )

1, ( )id idi

i

iF x e
idd g← . The intuition behind these assignments is that 

we are implicitly choosing two random 1d − degree polynomials and  by choosing its 

value for the  points in 

1( )q Y 3 ( )q Y

1d − 'Γ  randomly by setting 

and1 1,( ) ( )
ii idq id f x= 3 1,( ) (0)

ii idq id f s1, iid= = , In addition to having 

and . 1 1 1(0) ( )q y f= = x

'

3 1(0) (0)q f=

2) We also need to calculate the decryption key values for all 'iid γ∈ −Γ . We calculate these 

points to be consistent with our implicit choice of and . 1( )q Y 3 ( )q Y

For generation of the challenge ciphertext for *α , we proceed as follows. It define a degree 

polynomial

q
2

* 1( )
q

qXF X X
X

+
+= = , let , , , 

,

* * ( )r zF x=
2 *

*
*

1,
( )

q
idi

i

ezx
id

C g
+

= *
2C T=

*
* *1, ,

* *
*

(0)* * * *
21, 1,

( ( , )( ) )id id Si i

i i
i

s

id id
id S

K e C d C
Δ

∈

= ∏ * *
3 bC M K= ⋅ where is a random bit.  b



We refer the reader to Appendix A for more details. 
5 CCA Secure Fuzzy IBE 

We now present an efficient Fuzzy IBE system that is full-identity CCA secure without random 
oracles under the truncated decision q ABDHE−  assumption. It is based on modification of CCA 

secure Gentry's IBE which introduced by Kiltz and Vahlis [20].  
5.1 The Fuzzy IBE Ⅱ 

As in [22], let   be bilinear group of prime order , and let 1G P g be a generator of . 

Additionally, let bilinear map . We restrict the length of identities to be some fixed n. 

We also define the Lagrange coefficient 

1G

1 1:e G G G× → 2

Δi,S  [22] for Pi∈ and a set, , as elements in 

:

S

P
,

( )
j S j i

x
∈ ≠

Δ = ∏i,S

x-j

i-j
. Identities will be sets of  elements of . Let  be a 

target collision-resistant hash function. Our construction follows: 

N *
P

*
1: pTCR G →

Setup( , ,1 )ku d  

 Parse u as 1{ , , }Nid id⋅ ⋅ ⋅  

1 2, ,i R px y y ← idi;
i

x
idu g←

( , , , , )
; ;  1

1
y
Tv g← 2

2
y
Tv g←

p
1 1 2Nid idk u u v v← ⋅⋅⋅

1 2( , , , , )
Ndmk x x y y← ⋅⋅⋅

)

 

 
1id i

Return ( ,pk mk  

KeyGen( , )mk ω  

Four degree polynomials , , and are randomly chosen such that 

 and . 

1d − 1( )q x 2 ( )q x 3 ( )q x 4 ( )q x

1 1(0)q = y 2 2(0)q y=

Parse ω as 1{ , , }Iid id⋅ ⋅ ⋅  

For iid ω∈  do 1, 3 ( )
iid is q id← , 2, 4 ( )

iid is q id←  

1 1,( )

1,

i idi

id ii

i

q id s
x id

idd g
−

−← ; 
2 2,( )

2,

i idi

id ii

i

q id s
x id

idd g
−

−←  

1, 1, 2, 2,{( , , , ) }
i i i i iid id id id idsk s d s dω ω∈←  

Return skω  

Enc( , ', )pk mω  

as 1{ , , }Lid id⋅ ⋅ ⋅  'ωParse 

R pr ← ; 1, ( ) : 'iid r
id id iC u g for id−

i i
← ω∈ 2

r
TC g←  

1, 1, 2( , , ,
Lid idt TCR C C C← ⋅⋅⋅

,

) , 1 2( )t rK v v← , 3 ( )kC E m←  
1

E
11, 1, 2 3( ', , , , , )

Lid idC C C Cω← ⋅⋅ ⋅  



E  Return 

( , )EωDec  

Parse E as ,
11, 1, 2 3( ', , , , )

Lid idC C C Cω ⋅⋅ where 1' ( , , )Lid idω = ⋅⋅⋅  ⋅

Parse ω as{ 1id , , }id⋅ I⋅ ⋅  

Parse skω as 1,{( }ids 1, 2, 2,, , , )id id id idd s d
i i i i i ω∈  

Randomly choose '&S S dω ω⊆ ∩ =  

)

2, 2( ( , ) ) id Siid idi i

i id ii

s t st
id idK e C d d C

Δ+←∏  

 

of t computed in the 
encry m matches the ke computed in the decryption algorithm. 

Correctness: 

11, 1, 2( , , ,
Lid idt TCR C C C← ⋅⋅⋅  

,1, 2,

1,

(0)

1,
iid S∈

3( )Km D C←

Return m  
he accuracy he scheme, i.e. that the symmetric key K

y K
We now demonstrate t
ption algorith
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5.2 Security 
llisi

se s

= =

 

Theorem 5.1 Assume TCR is a target co on resistant hash function and ( , )SE E D=  is an 

AE-OT- cure ymmetric scheme. Let IDq  is the number of key queries for 

identity i

 generation 

γ and Cq  is e number of decryption queries. Under the truncated q ABDHEth −  assumption 

relative to generator 1G , the above Fuzzy IBE scheme is IND-CCA secure i ity model. In 

particular, we have 

n the full-ident

2 1, , , , ,( ) 2 ( ) )CCR t SE t SE tk A k q Adv k Adv( ) ( ) (CCA q abdhe TCR CT INT IND C
FIBE t G t T

qAdv k Adv dv k p
− −≤  + + ⋅ ⋅ + +

exp( max )ID i iq q tο γ− ⋅ ⋅ ⋅ where expt is the time required to exponentiate in 1G . t t=



The proof of Theorem 5.1 will be given in Appendix B. We give some intuition why the sche e is 
IND-CCA secure. The idea comes from 

m

show that con

[20]. As we can known, the proof of Gentry[15] can be used to 

sistent decryption queries (well-formed ciphertexts) for the challenge identity *α are 
basically useless for an adversary attacking the scheme (unless it can efficiently solve the 
q ABDHE−  problem). However, inconsistent decryption queries (ill-formed ciphertexts) with 

respect to the challenge identity *α  may leak information about the hidden bit b . As the same 
argument as Cramer-Shoup, the notion of linear independence. More specifically, when one expresses 
the adversary’s knowledge (from the public key, queries, etc.) as equations in the simulator’s private 
key variables, one may ask whether a target equation that the adversary is trying to solve is linearly 
independent to the equations in its knowledge base; if so, ersary 

This will be come clearer below, the * * * * * * *
* * * *
1, 1, 2, 2,

{( , , , ) }
i i i i iid id id id id

sk s d s d
α α∈
= come 

from the internal random polynomials ( )q Y and ( )q Y  that is initially hidden from the adversary’s 

view. During the simulation of the IND-CCA environment the challenge ciphertex  

information-theoretic sense) one linear equation on the hidden ran m polynomials ( )q Y and ( )q Y . 

Decryption queries of inconsisten ex se a key K  for symmetric decryption that is 

computed as a linear equation in 3 ( )q Y and )q Y , which is linearly independ t from the equation 

the adversary knows. Henc one single key K is uniformly distributed over G . By the ciphertext 

authenticity p will n  come  an inconsistent 

rtext ( ', , , , , )

then in certain circumstan e adv
have an uncondition egligible probability of finding a solution to the target equ tion. 

user secret-key 

(in an

do

t ciphert ts will u

en

e, 

roperty of  th rsary ot be ab  up with

Lid id

ces, th
can be said to ally n a

3 4

t will leak 

3 4

4 (

2

SE e adve le to

11, 1, 2 3E C C C Cω= ⋅⋅ ⋅  where * ' dα ω∩ ≥ such that 3( )KD Cciphe  does not reject. 

l inconsistent ciphertext will get rejected by the scheme. 

e compare our schemes with known Fuzzy IBE schemes without random oracles from 

Table1 su e cost of computing sub-algorithms of the 

proposed f ruction[22]. 

results show that our fuzzy IBE scheme from Section 5 gives full 
entity CCA secure than the Sahai and Waters' construction which is selective identity CPA secure 

re 

Consequently, al
 
6 Comparison 
In this section w
the literature.  
6.1 Efficiency 

mmarizes the size of various parameters and th

uzzy IBE schemes and the Sahai and Waters' const

1SW : Sahai and Waters' simple (basic) construction. 

2SW : Sahai and Waters' "large universe" construction. 

1Our : Our CPA secure fuzzy IBE scheme from Section 4. 

2Our : Our CCA secure fuzzy IBE scheme from Section 5. 
From the table 1 it is observed that our CPA secure fuzzy IBE scheme from Section 4 gives 

comparable generalization performance as that of Sahai and Waters' "large universe" construction at 
full identity model. Further, the 
id
albeit to a mo private key size. 



 
 Public key size Ciphertext size Private key size Encryption cost Decryption cost model

1SW  1 2u G G⋅ +  1 2n G G+  1n G  
1 2G GnT T+  ed T⋅  

sID 

2SW 1( 2)u G+  1 2( 1)n G G+ +  12n G  
1 2

( 1) G Gn T T Te+ + +  2 ed T⋅   
sID 

1Our  1 2u G G⋅ +  1 22n G G+  1( )pn G +   )
1 2

2G GnT T′ +  2
( G ed T T+  full 

2Our  1 22u G G  
full 

1 2G GnT T′ +  
1 2

( )G G ed T T T′ + +1 2( 1)n G G+ +  12 ( )pn G +⋅ +  

 

Table1: Comparisons of Various zzy IBE Sche out random oracles. Identities will be 

m s of some universe u . Abbreviations: 

 Fu mes with

ele ent subset S - the b length of an element in set (or group) 

S ; n -the numb f elem  id T and T -the computation time for a single 

G G T ′ T

it-

er o en  an entity; ts in
1G 2G

′exponentiation in 1 and 2 ; 
1G and

2G -the computation tim ngle multiplication e for a si

r. 
arks on the Tightnes

In the reduction, B's success probability and time complexity are the same as A's, except for additive 

in 1G and 2G ; eT -the computation time for a single pairing operation; d -an error tolerance paramete
6.2 Rem s of the Reduction 

factors exp( max )ID i iq q tγ⋅ ⋅ ⋅ . Note that in our scheme there is n that 1IDq q+ ≤

to the recent attacks by Cheon 

o restriction . Due 

[11] it seems reasonable that the q ABDHE− assumption is q  

times less secure than the BDDH assumption. So, we stress that rity 
 com ich is secure 

our IBE system has a tight secu
reduction in the full identity model. Being pared with Sahai and Waters' scheme wh

in the full-identity model with a factor of 
u
n

⎛ ⎞
⎜ ⎟ in t
⎝ ⎠

he reduction, our scheme provides a 

d Waters' "la
del security proof reducing the 

intra

non-exponential loss of security in the full model. 
7 Conclusions 
In this paper, we present the first and efficient CPA secure Fuzzy IBE scheme in the full identity model 
which gives comparable generalization performance as that of Sahai an rge universe" 
construction and a tightness reduction. We give a standard-mo

ctability of decisional augmented bilinear Diffie-Hellman exponent ( q ABDHE− ) problem to 

breaking the CPA security of our scheme without random oracles .  
In addition, the same technique used to the modification of CCA secure Gentry's IBE which 

 Kiltz and Vahlis to get the CCA secure Fuzzy IBE in the full-identity model. 
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A Proof of Theorem 4.1 

 Suppose there exists a polynomial-time adversary, A, that can attack our sch e in ll-ID 

q ABDHE−  game. 

The simulation proceeds as follows: We first let the challenger set the groups and with an 

efficient bilinear map and a generator  of . Adversary B inputs a truncated 

, and has to distinguish from a random 

y ctly n queries, all with distinc

identities. 

Setup: B picks a random degree polynomial 

1G 2G

 e  g 1G q ABDHE−  

instance
2

( , , , , , , )
q qx x z zxg g g g g T

+

⋅ ⋅ ⋅
1

( , )
qz xT e g g
+

=  

element in 2G . We assume adversar A makes exa key generatio t  IDq

q 1( )f X  and defines xu g= , 1 ( )
1 ( , ) f xv e g g= . 

 wher is randomly chosen from , using the values idi i

i

e id
idu u g= e

iide *
p , , ,

qx xg g g⋅ ⋅ ⋅ . Note that 

this does not change the distribution of the public-ke )y
1 1( , , ,

Nid idpk u u v← ⋅⋅⋅ . This implicitly 

defines the secret key values as .  

Phase 1: 

1 1( )y f x=

 where *γ α∩ < dKeyGen( , )mk γ for identity  γ< > :  

Suppose A requests a private key where *γ α∩ < dγ  . Firstly, we define three sets  in 

the following manner: can be any set such that

', SΓ

'Γ ' γΓ ⊆ , ' 1dΓ = − , and ' {0}S = Γ ∪ . Next, we 

define the decryption key component )

For as: B chooses a random elements

s 1, 1,( ,
i iid ids d . 

'iid ∈Γ 1, iid R ps ← , and picks a random 

lynomial degree q po 1, ( )
iidf X  such that 1, 1,(0)

i iid idf s= , th  defines a degree 

pol

en 1q −  

1, 1,
1,

( )
( ) i i

i

id id
id

f X s
1,

1
( )

1, ( )id idi i

i

F x e
idd g← . X

X
−

= and letFynomial

Correctness:
1, 1, 1, 1, 1, 1,1, 1,

1,

( ) ( ) ( )1 1( )
( )

1, ( ) ( )id id id id i i id ii i i i ie e e x e x id id x idxg g g g+ − −= = = = = . 

The signm hoosing two random 1d − degree 

id id id id id idi i i i i iid idi i
idi

i

f x s f x s f x sf x s
F x

idd g
− − −−

intuition behind these as ents is that we are implicitly c



polynomials  by choosing its value for the1( )q Y and 3( )q Y  1d −  points in  randomly by 

set

'Γ

ting 1 1,( ) ( )
ii idq id f x= and 3 1, 1,( ) (0)

i ii id idq id f s= = , In to having 

1 1 1(0) ( )q y f x= = and 3 1(0) (0)q f= . 

 addition 

values for all ' 'iid γ∈ −ΓThe simulator also ne  calculate the deds to ecryption key . We calculate 

these points to be consis icit choice of and   

We define a degree  polynomial: 

 

1( )q Y 3( )q Y .tent with our impl

1q −

1 1 0, 1, 1, ,
'

1, '

( ( ) (0)) ( ') ( ( ) (0)) ( ')
( )

i i i

i

i

S i id id id S i
id

id

f X f id f X f id
F X

X
∈Γ

− Δ + − Δ
=

∑
  

The key components f ' 'iid γ∈ −Γor are calculated as:  

( ') ( ') (0) ( ') (0) ( ')
i i i i

i i

S i id id S i S i id id S i
id id

id s id f id f id
∈Γ ∈Γ

Δ + Δ = Δ + Δ∑ ∑  1, ' 1(0)
iids f= 0, 1, , 1 0, 1, ,

' '

1, ' '

1
( )

1, ' ( )id idi iF x e
idd g= . 

i

Correctness: 

1 1 0, 1, 1, ,
'

1, ' ' '

1 0, 1, , 1 0, 1, ,{ ( ) ( ') ( ) ( ')} { (0) ( ') (0) ( ')}S i id id S i S i id id S ii i i if x id f x id f id f idΔ + Δ − Δ + Δ
' '

( ( ) (0)) ( ') ( ( ) (0)) ( ')
1 1

( )
1, ' ( ) ( )

( )

S i id id id S ii i i
idi

id id idi i i

i

id idi i

f x f id f x f id

F x e ex
id

x

d g g

g

∈Γ

∈Γ ∈Γ

− Δ + − Δ∑

= =

=

∑ ∑
'

1,1, ' 1, '
' ' ' '

( )
' ' '( )

idi

idi i i i i iid idi i
id id id i i id ii i i i

e

f x s
e e x e x id id x idxg g g + − −= = = =

 

Therefore, the simulator is able to construct a private key for the identity

1, ' ' 1, 1, ' 1, ' 1, '

1

( ) ( ) ( )1 id id id id idf x s f x s f x s

g
− − −−

γ . Furthermore, the 

distribution of the private key for  γ  is identical to that of original scheme since our choices of 

and 1,id induce two random degree 

polynomials and  and our construction of the private key 

component ) . 

Challenge: A outputs challenge identity 

1 1,( ) ( )
ii idq id f x= 3 1,( ) (0)

i ii idq id f s= = 1d −

1( )q Y 3 ( )q Y

s 1, 1, 2, 2,( , , ,
i i i iid id id ids d s d

*α and two messages and B generates a random bit 

. For generation of the challenge ciphertext fo

0m 1m , 

{0,1}b∈ r *α , B proceeds as follows. Parse 



*α as 1{ , }* *, Jid .The experime es a r ance  id⋅ ⋅ ⋅ nt first internally generat andom inst  of the user secret

key *
* * * * *

* *
1, 1,

{( , ) } KeyGen( , )
i i i

Rid id id
sk s d mk

α α
α

∈
= ← . 

It define a q degree polynomial

 

2
* 1( )

q
qXF X X

+

X
+= = , let

, The symmetric key is then computed as in decryption as: 

*

(0)* * * *
2)( ) )id id Si i

i
i

s

d
K C

Δ
 where *)R C C C← ⋅⋅⋅ . Finally, 

* *( )r zF x= , 
2 *

*
*

1,
( )

q
idi

i

ezx
id

C g
+

=  

*
2C T← *K

*
* *1, ,

*
*

1, 1,
( ( ,

iid i
id S

e C d
∈

= ∏ C * *
1

* * *
21, 1,

( , , ,
Jid id

t T

*
3C * *

3 bC m K← ⋅is computed as and is a random bit.  

Return the ciphertext

b

* *
1 *

* * * * *
2 31, 1,

( , , , , , )
id id

*E C C C C
α

α= ⋅⋅⋅ . 

Correctness: 

2
* *

* * * ** * * 2 *

q
qi i

xze x id id e x e e
+

++ −

* *
* ( ) ( ) ( )
1,

( ) ( ) ( ) (( ) ) ( )id id id idi i i i i

i i

id zF x zF x zF x x zxx
id id

C u g g g g g−= = = = =  

2
* ** ( )

2 ( , ) ( , ) ( , )
q

q
xzr zF x zxx

TC g e g g
1

g g e g g T
+

+

← = = =  

B’s input values from 

ration queries, and B responds as in Phase 1. 

e=

Note that the challenge ciphertext can be entirely computed from 

2

( , , , , , , )
q qx x z zxg g g g g T

+

⋅ ⋅ ⋅ .  

Phase 2: A makes key gene

Guess: Finally, the adversary outputs a bit 'b , B outputs 1 if 'b b=  and 0, otherwise. 

 
B Proof of Theorem 5.1 
A be ersary on the he fu entity model. We will consider a

sequence of games, Game 1, Game 2

 an adv  IND-CCA security of Fuzzy IBE in t ll id  

, each game involving A. Let iX, ⋅⋅⋅ be the event that the 

adversary succeeds in Game i, it holds that 'b b= . 

Dec( , )Eω is a decryption query, Parse E as 3( )C
11, 1, 2', , , , ,

Lid idC C CωLet ⋅ ⋅ ⋅  

where 1' ( , , )Lid idω = ⋅⋅⋅ , parse ω as id id1{ , , }I⋅ ⋅ , parse skω⋅ as 
i i i iid id id ids d s d1, 1, 2, 2,{( , , , ) }

iid ω∈ . 

'&S S⊆ domly chosen fo ecryption. For a tuple 1,( idC e 

1,log idi
idi

idu g− , 2 logr

dω ω∩ = is ran r d 1, 2, , , )
LidC C⋅ ⋅ ⋅ , w

consider
i iidr C= 2C

1

1, Tg= , wher )C C Ce 
11, 1, 2( , , ,

Lid idt TCR← ⋅⋅⋅ . We 



say
11, 1, 2( , , , )

Lid idC C C⋅ ⋅ ⋅ relative to  is consistent where S &S S dω⊆ = if 

e. 

kes exactly  d ption queries

1, 2{ }
i iid id Sr r ∈= and inconsistent otherwis  

We assume adversary A makes exactly q key generation queries, all with distinct identities. 

We further as ecry

ID

Cq Dec( , )Eω . sume that A ma

Game1. Let Game1 be the CCA security experiment run with adversary  is to put an upper  A. Our goal

bound on , , 1[ ]
2IBE A t X  

Game 2. We now 

1( ) PrCCA
FuzzyAdv k− ≡ −

change the generation of the challenge ciphertext * *, Eα< >  as follows. Parse 

*α as{ }* *
1 , , Jid wherid⋅ ⋅ ⋅ e *J α= . The experiment first internally generates a random instance of 

r secret key *
1, 2,

{( , , ,
i i iid id id

sk d s
α

the use * * * * * * *
* * * *
1, 2,

) } KeyGen( , )
i i

Rid id
s d mk

α
α

∈
. Then = ← it picks a 

rando im r ∈ and for *id1 p
* α∈ computes 

*
1

* *
*
1,

( )i

i i

id r
id id

C u g −← ; 1*
2 ( , )rC e g g← .               

mmetric key is then computed pti

*

(0)* *
22,

) )( ) )id id id Si i i

i
i

s t st
id

id S

d C
+ Δ

∈

                   (2) 

wher * * * *( , , , )t TCR C C C← ⋅⋅⋅ . Finally, C is computed as ( )C E m← . Since 

purely con

                  (1) 

The sy  as in decry on as: 

* *
*

* * *
1, 1,

( ( , (
i iid id

K e C d= ∏

*K
* * *

* * * *1, 2, ,

e * *
1

21, 1, Jid id 3 *3 bk
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phase. Since 2C is generated as 2 ( , )C e g g , independently from A’s view until it sees the 

challenge ciphertext, we have 
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3 2Pr[ ] Pr[ ] CqX X p− ≤  

Game 4. For ge ration of the challenge ciphertext the experiment proceeds as follows. The 

expe generates   from Equation (1) y picking 

ne

riment now  b*
2C 2 1/{ }pr r∈ and computing 

Lemma B.1 
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Proof: We show that ther A  such 

that
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2 4] Pr[ ]X− . Ad, ( ) Pr[q abdhe
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⋅ ⋅ ⋅ ,                         g               (3) 

and has to distinguish 
1

( , )
qz xT e g g
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 public-key
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We generate
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e key 
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=
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(3). Adversary B runs 2A  on input *( , )E St , answering all oracle querie nputting a 
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a
qz x +
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 con er the distribution of the challenge ciphertext in Games 2 and 

4. Note that the element only leaks through B’s simulation in the element from the 
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, for 

. I , then 
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Game 5. Let *

'=  

We make the following claim that completes the proof of the lemma: if ( , )T e g g=  then A’s 
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+
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+
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* * 11

* * * *
2 1,1, 1,

( , , , ) ( , , ,
LJ

id idid id
TCR C C C t t TCR C C C⋅ ⋅ ⋅ = = = ⋅⋅⋅  
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hows that considering all Cq decryption queries one obtains 
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To prove the above claim, consider the hidden random polynomials ( )q Y and ( )Y  for 
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Claim B.1  is linearly independent to the equation in adversary A's knowledge base. l *l

Proof: Let , we have , so * * *
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Game 7. The challenge key *K is replaced with the random challenge key K  (instead of computing 
*K as in Equation (2)). The proof of Lemma B.2 essentially shows that from the adversary’s point of 

view, *K  looks like a uniform element in and hence 
2G

 7 6Pr[ ] Pr[ ]X X=  



Finally, in Game7 the adversary A basically carries out a chosen-ciphertext attack on the 
symmetric cipher since A is still allowed to query ciphertext of the 

form
11, 1, 2, ( ', , , , ,*)

Lid idE C C Cω ω< = ⋅⋅⋅ >  for which *S α⊆   and 

which are answered using a uniform key*
1, 1, 2 2( ) &i i i SC C C C∈= *= *K . Consequently, using the fact 

that chosen-ciphertext security is implied by AE-OT security we obtain 

   7 , ,
1Pr[ ] ( ) ( )
2

CT INT IND
C SE t SE tX q Adv k Adv k−− ≤ +  

Summary.  We now summarize the above statements into a bound on the advantage of the adversary 
in the CCA game:  

2 1, , , , ,( ) ( ) ( ) 2 ( ) ( )CCA q abdhe TCR CT INT IND C
FIBE t CG t TCR t SE t SE t

qAdv k Adv k Adv k q Adv k Adv k p
− −≤ + + ⋅ ⋅ + +
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