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Abstract

In this work, we design a method for creating public key broadcast encryption systems.
Our main technical innovation is based on a new “two equation” technique for revoking
users. This technique results in two key contributions:

First, our new scheme has ciphertext size overhead O(r), where r is the number of
revoked users, and the size of public and private keys is only a constant number of group
elements from an elliptic-curve group of prime order. In addition, the public key allows
us to encrypt to an unbounded number of users. Our system is the first to achieve such
parameters. We give two versions of our scheme: a simpler version which we prove to be
secure in the standard model under a new, but non-interactive assumption, and another
version that employs the new dual system encryption technique of Waters to obtain security
under the d-BDH and decisional Linear assumptions.

Second, we show that our techniques can be used to realize Attribute-Based Encryption
(ABE) systems with non-monotonic access formulas, where our key storage is significantly
more efficient than previous solutions. This result is also proven in the standard model
under our new non-interactive assumption.

We believe that our new technique will be of use elsewhere as well.

1 Introduction

In a broadcast encryption system [20], a broadcaster encrypts a message such that a particular
set S of devices can decrypt the message sent over a broadcast channel. Broadcast systems
have a wide range of applications including file systems, group communication, DVD content
distribution, and satellite subscription services. In many of these applications, the notion of
revocation is important. For example, if a DVD-player’s key material is leaked on the Internet,
one might want to revoke it from decrypting future disks. In another example, consider a group
of nodes communicating sensitive control and sensor information over a wireless network; if any
of these nodes becomes compromised, we’d like to revoke them from all future broadcasts.

In this work, we design new broadcast encryption schemes, and we focus on two important
contributions.

Revocation Systems with Small Key Sizes. We create public key revocation encryption
systems with small cryptographic private and public keys. Our systems have two important
features relating respectively to public and private key size.
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First, public keys in our two systems are short (just 5 group elements and 12 group elements
respectively) and enable a user to create a ciphertext that revokes an unbounded number of
users. This is in contrast to other systems [10, 33, 18] where the public parameters bound the
number of users in the system and must be updated to allow more users.

Second, the cryptographic key material that must be stored securely on the receiving devices
is small. Keeping the size of private key storage as low as possible is important as cryptographic
keys will often be stored in tamper-resistant memory, which is more costly. This can be especially
critical in small devices such as sensor nodes, where maintaining low device cost is particularly
crucial. Device keys in our systems are only a small constant number of group elements (in
fact, just 3 group elements and 5 group elements respectively) from an elliptic-curve group of
prime order. Furthermore, our schemes are public-key stateless broadcast encryption schemes1,
and we work with stateless receivers.

We achieve this small device key size without compromising on other critical parameters
such as ciphertext length – our ciphertexts will consist of just O(r) group elements, where r is
the number of revoked users. This is the same behavior as the previously best-known schemes
for revocation. We also do not compromise on security: we obtain our results in the standard
model under the well-established d-BDH and decisional Linear assumptions.

Attribute-Based Encryption with Non-Monotonic Formulas. Our second key contri-
bution is that we show how our techniques can be applied to achieving efficient Attribute-Based
Encryption (ABE) [36] schemes with non-monotonic access formulas. Ostrovsky, Sahai, and
Waters [34] showed a connection between revocation schemes and achieving non-monotonic ac-
cess formulas in ABE; to negate an attribute in an access formula one applies a revocation
scheme using the attribute as an identity to be revoked. Ostrovsky, Sahai, and Waters give
a particular instance by adapting the revocation scheme of Naor and Pinkas [33] to the ABE
scheme of Goyal et. al [24]. The primary drawback of their scheme is that the private key size
of their scheme blows up by a multiplicative factor of log n, where n is the maximum number
of attributes. More precisely, once the DeMorgan’s law transformation is made, each negated
attribute in the private key will have O(log n) group elements. By adapting our new revocation
techniques to the Goyal et. al ABE scheme, we get that each negated attribute will only take
two group elements. In practice, for many applications the private key storage will decrease by
an order of magnitude.

Our Techniques. The primary challenge in constructing broadcast encryption schemes is to
achieve full collusion resilience – to make sure that if all the revoked users combine their key
material, they still cannot decrypt ciphertexts.

In order to understand our techniques it is useful to review the Naor-Pinkas [33] revocation
scheme. In their system in order to revoke r users2 a degree r polynomial q(x) is chosen and
O(r) group elements are published allowing anyone to compute gq(x) for generator g in group
G of order p. A private key for user i consists of q(i). To encrypt, a user selects a revoked
set of users S and a secret exponent s ∈ ZP . The ciphertext consists of gs along with gsq(j)

for each revoked user j in the set S. If an attacker consists of just users from the set S,
he will be unable to produce any new points of the polynomial s · q(x). From a high level
view, this system revokes by giving revoked users redundant information. The system provides
collusion resistance by defining a “global” polynomial across the whole system. Unfortunately,

1And in fact, our schemes are identity-based: each device’s private key can be based on the device’s natural
“identity,” which could be an arbitrary string like a serial number or even an email address. In most previous
schemes, every device had to be assigned a specific number between 1 and n.

2To revoke less than r users, they simply revoke some “dummy” users.
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this structure inherently locks the system to a predetermined maximum number of revoked
users and a long public key.

In order to avoid these limitations, we propose a new methodology for building revocation
systems. Like the Naor-Pinkas system, we use the idea of revocation by redundant equations.
However, instead of using a system that defines a global polynomial, we let the encryption algo-
rithm define several “local” revocation equations. Our techniques have two major components:

First, we use a “two equation” method for decryption. A ciphertext will be encrypted such
that a certain set S = {ID1, . . . , IDr} will be revoked from decrypting it. Since the ciphertext
consists of O(r) group elements, there will be a ciphertext component for each IDi. Intuitively,
when decrypting, a user ID will apply his secret key to each component. If ID 6= IDi, he will
get two independent equations and be able to extract the ith decryption share. However, if
ID = IDi (i.e. he is revoked), then he will only get two dependent equations of a two variable
formula and thus be unable to extract the decryption share. Alternatively, we can view each
ciphertext component as locally defining a different degree one polynomial. For component i, a
user ID will get two points on a fresh degree one polynomial qi(x) iff ID 6= IDi (and otherwise
the user will essentially only get one point on the polynomial, which is not enough to solve).
We can view this as a local revocation of each user to a component of the ciphertext.

One large challenge of our “local” revocation approach is that we need to make sure that
multiple users cannot collude to decrypt the message. For example, if there is a ciphertext that
revokes S = {ID1, ID2}, these users might try to decrypt by letting user ID2 get the first share
and user ID1 obtain the second share. To prevent this attack, our key shares are randomized
or “personalized” to each user to prevent combination of decryption shares. To achieve this,
we devise a new technique for achieving collusion resilience using novel cancellation techniques
based on the power of a bilinear map.

Our first (simpler) system clearly demonstrates our techniques and is shown to be secure
under a new non-interactive assumption that we call the decisional q-Multi Exponent Bilinear
Diffie-Hellman (q-MEBDH) assumption. We show the assumption to hold in the generic bilinear
group model in Appendix A.13. We prove security in the standard model, showing that a
ciphertext that revokes up to r users is secure if the decisional r-MEBDH assumption holds.

Our second system combines the techniques of our first system with the recent dual system
encryption technique of Waters [44]. This technique was used to give a fully secure IBE system
under the d-BDH and decisional Linear Assumptions which we will adapt to form our revocation
system. In a dual system, keys and ciphertext can take on two forms: they can either be normal
(as used in the real system) or semi-functional. (Semi-functional keys and ciphertexts are not
used in the real system, they are only used in proving its security.) When a normal key is used
to decrypt a semi-functional ciphertext or a semi-functional key is used to decrypt a normal
ciphertext, decryption will still work. When a semi-functional key is used to decrypt a semi-
functional ciphertext, decryption will fail. Security for dual systems is proved using a sequence
of indistinguishable games. In the first game, all keys and ciphertexts are normal as in the real
system. Next, the ciphertext is changed to be semi-functional. Then, the keys are changed to
be semi-functional one by one. Once all the keys given to the attacker are semi-functional, none
are useful for decrypting the challenge ciphertext, so proving security becomes much easier.

In the intermediate games where the keys switch to semi-functional, the simulator is prepared
to create a semi-functional key for any identity and a challenge ciphertext for any allowed subset
of revoked identities. This may seem problematic, since the simulator might try to test semi-
functionality of the key in question for itself by creating a semi-functional challenge ciphertext

3One might wonder if the security proof of our assumption in the generic group model suggests the need for
much larger security parameters, thereby negating the efficiency advantages claimed here; indeed we show that
this is not the case. See Section A.3 and Appendix A.1 for more details.

3



where that user is not revoked. We will avoid this issue by making sure the simulator can only
form the semi-functional ciphertext properly when the key in question is a revoked user. This
is similar to the technique used in the Broadcast Encryption scheme in [44], but this system
had key sizes which were linear in the number of users while our system achieves constant key
sizes.

We prove our system to be secure in the standard model under the well-established d-BDH
and decisional Linear assumptions. The clear advantage of this system is its reliance on simpler,
more standard assumptions. Its only (relatively) disadvantage is that the constant public and
private key sizes are slightly higher than in our first system.

We believe that our technique will be of use in other cryptographic applications, as well.
Recently, Waters [44] applied the revocation techniques of a prior version of this paper to
construct new fully secure HIBE schemes based on simple assumptions, and fully secure IBE
schemes with very short public parameters.

1.1 Related Work

Fiat and Naor [20] first introduced the problem of broadcast encryption. In their system they
proposed a scheme that is secure against a collusion of t users, where the ciphertext size was
O(t log2 t log n). This system and other following work [40, 41, 42, 29, 21, 22], used a combina-
torial approach. For this type of approach, there is an inherent tradeoff between the efficiency
of the system and the number, t, of colluders that the system is resistant to. An attacker in the
system that compromises more than t users can compromise the security of the scheme.

For systems without a bound on the number of revoked users at setup, there have been
two general classes of revocation broadcast schemes. The first stateless tree-based revocation
schemes were proposed by Naor, Naor and Lopspeich [32] where they introduced the “subset
cover” framework. In their framework users were assigned to leaves in a tree and belonged to
different subsets. An encryptor encrypts to the minimum number of subsets that covers all
the non-revoked users and none of the revoked ones. The primary challenge is to structure the
subsets so that they are expressive enough to allow for small ciphertext overhead, yet don’t
impose large private key overhead on the user. The NNL paper proposed two systems with
ciphertext sizes of O(r lg n) and O(2r) and private key sizes of O(lg n) and O(lg2 n) respectively.
These methods were subsequently improved upon in future works by Halvey and Shamir [26]
and by Goodrich, Sun, and Tamassia [23], where the GST system gives O(r) size ciphertexts
and O(lg n) size private keys. Dodis and Fazio [19] show how to make the the NNL and Halevy
and Shamir systems public key by employing hierarchical identity-based encryption methods.
It is unknown how to realize the more efficient GST scheme in the public key setting.

The second class of methods is based on polynomial interpolation in the exponents of group
elements and was given by Kurosawa and Desmedt [30] and Naor and Pinkas [33]. In these
systems the setup algorithm picks a polynomial of degree d, where d is the maximum number
of users that can be revoked. Both the public key and ciphertexts are of size d. Yoo et. al. [46]
observe that lg(n) parallel systems can be used to handle n users with O(r) size private keys,
O(n) size public keys and O(r) size ciphertexts.

We note that there are a class of stateful encryption schemes known as logical-tree-hierarchy
schemes independently discovered by Wallner et al. [43] and Wong [45], which are improved in
further work [13, 16, 38]. The drawback of stateful schemes is that if a receiver misses an update
it won’t be able to decrypt future messages (or this must be corrected somehow). Even so, our
stateless solution actually provides a more efficient way to revoke users in the stateful setting
than previous schemes.

We remark that two equation techniques are somewhat reminiscent of of those used for
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knowledge extraction in discrete log proof of knowledge settings [37]. In addition, different
types of two equation techniques have been applied in ecash applications (see e.g., [12] and the
references therein).

We also note that [10] proposed the first non-trivial fully collusion resistant broadcast en-
cryption scheme; broadcasts to a set of uncompromised users remain secure no matter how
many other keys the adversary obtained. (In contrast, our approach and those referenced above
would lead to very long ciphertexts if the number of revoked users were very large.) Their
scheme allows for broadcasts to an arbitrary set of users where the ciphertexts and private key
material are both a constant number of group elements, however, the public key material is
linear in the number of users in the system and, moreover, the public key must be accessible by
any decryptor in the system. This makes their solution unusable for small devices that cannot
store the public key. In comparison, our solution is appropriate for applications, like group
encryption, where we expect relatively few devices will be compromised and revoked from the
encryption and where we need very small storage.

Finally, Delerablée, Paillier and Pointcheval [18] use a type of inversion technique to achieve
a system with small private keys, but public parameters still require a linear number of group
elements in the number of users.4 Unlike our system, the published public parameters will es-
tablish an upper bound on the number of users that may be encrypted to (without “appending”
to the public key), although private keys need not be modified.

Attribute-Based Encryption was introduced by Sahai and Waters [36]; subsequent works [24,
6, 17, 34, 25] have proposed ABE systems with different properties. Different authors [39, 31,
3, 11, 1, 4] have considered similar problems without considering collusion resistance.

Key Sizes. We stress that, as summarized above, all previous public key and identity-based
revocation schemes required5 either (1) larger private key size by at least a factor of log n, where
n is the number of users, or (2) much larger public parameter size, by a factor of n.

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we provide the relevant definitions for
revocation systems and background information on groups with efficiently computable bilinear
maps. We then give the construction of our simple revocation system in Section 3 and our
second system in Section 4. We prove security of our system in Section 5. Finally, we show how
to realize a non-monotonic Attribute-Based Encryption system with small private key sizes in
Section 6.

2 Background

We begin by providing a security definition for a revocation system, in the identity-based frame-
work. We use definitions that are similar, for example, to the definitions for broadcast encryption
used by Boneh, Gentry, and Waters [10]; however we adapt our definition to the Identity-Based
setting. Later, we state our complexity assumptions.

4The authors additionally describe a secret key version of the scheme where the broadcaster is the same as
the authority. In this case the trusted broadcaster can contain a short secret for encryption (e.g., the seed used
for system setup).

5We also stress that this is an “apples to apples” comparison, since in all these public-key schemes, the
underlying group size would be comparable for a given security level (or favor our setting of elliptic curve
groups).
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2.1 Identity-Based Revocation Systems

An encryption system is made up of three randomized algorithms: For simplicity of notation,
we assume an implicit security parameter of λ.

Setup. An authority will run the setup algorithm. The algorithm outputs a public key PK and
master secret key MSK.

KeyGen(MSK, ID). The key generation algorithm takes in the master secret key MSK and
an identity, ID. It generates a private key SKID for the identity.

Encrypt(S,PK,M). The encryption algorithm takes as input a revocation set S of identities
along with the public key and a message M to encrypt. It outputs a ciphertext CT such
that any user with a key for an identity ID /∈ S can decrypt.

Decrypt(S,CT, ID, DID) The decryption algorithm takes as input a ciphertext CT that was
generated for the revocation set S, as well as an identity ID and a private key for it. If
ID /∈ S the algorithm will be able to decrypt and recover the message M encrypted in the
ciphertext.

We now define (chosen plaintext) security of an ID-based revocation encryption system
against a static adversary. Security is defined using the following “Revocation Game” between
an attack algorithm A and a challenger, for a revocation set S of identities.

Setup. The challenger runs Setup to obtain a public key PK and master secret key MSK.
It gives A the public key PK. In addition, it gives A the decryption keys dID for all
ID ∈ S.

Challenge. The attacker gives the challenger two messages M0,M1. Next, the challenger
picks a random b ∈ {0, 1}. The challenger runs algorithm Encrypt to obtain CT R←
Encrypt(S, PK,Mb). It then gives CT to algorithm A.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Definition 1 We say that a revocation system is (chosen-plaintext) secure if, for all revocations
sets S of size polynomial in the security parameter, no polynomial-time adversary can win the
“Revocation Game” (defined above) with non-negligible advantage over 1/2.

Our attack models the game where all users in the revoked set S get together and collude
(this is because the adversary gets all private keys from the revoked set).

Chosen-Ciphertext Security. We will also consider chosen-ciphertext (CCA) security, where
the adversary can also issue decryption queries for ciphertexts that it constructs (as long as the
challenge ciphertexts are not equal to the challenge ciphertext). The game is identical to the
game above, except decryption queries (for arbitrary revocation sets) are allowed. Our main
construction will be chosen-plaintext secure; however it can be made CCA-secure using the
techniques of Cannetti, Halevi, and Katz [15].

2.2 Bilinear Maps

We briefly review the necessary facts about bilinear maps and bilinear map groups. We use the
following standard notation [27, 28, 7]:

1. G and GT are two (multiplicative) cyclic groups of prime order p;
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2. g is a generator of G.
3. e : G×G→ GT is a bilinear map.

Let G and GT be two groups as above. A bilinear map is a map e : G×G→ GT with the
following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) 6= 1.

We say that G is a bilinear group if the group action in G can be computed efficiently and
there exists a group GT and an efficiently computable bilinear map e : G×G→ GT as above.
Note that e(, ) is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.3 Complexity Assumptions

Decisional Bilinear Diffie-Hellman Assumption The decisional Bilinear Diffie-Hellman
problem is defined as follows. We choose a group G of prime order p. We choose a random
generator g of G and random exponents c1, c2, c3 ∈ Zp. If the attacker is given

~y = {g, gc1 , gc2 , gc3},

it must remain hard to distinguish e(g, g)c1c2c3 ∈ GT from a random element of GT .
An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decisional BDH in G if∣∣∣∣Pr

[
B
(
~y, T = e(g, g)c1c2c3

)
= 0
]
− Pr

[
B
(
~y, T = R

)
= 0
] ∣∣∣∣ ≥ ε

Definition 2 We say the decisional BDH assumption holds if no poly-time algorithm has a
non-negligible advantage in solving the decisional BDH problem.

Decisional Linear Assumption The decisional Linear problem is defined as follows. We
choose a group G of prime order p. We choose random generators g, f, ν of G and random
exponents c1, c2 ∈ Zp. If the attacker is given

~y = g, f, ν, gc1 , f c2 ,

it must remain hard to distinguish νc1+c2 from a random element of G.
An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving the decisional Linear

problem in G if ∣∣∣∣Pr
[
B
(
~y, T = νc1 + c2

)
= 0
]
− Pr

[
B
(
~y, T = R

)
= 0
] ∣∣∣∣ ≥ ε.

Definition 3 We say the decisional Linear assumption holds if no poly-time algorithm has a
non-negligible advantage in solving the decisional Linear problem.

q-Decisional Multi-Exponent Bilinear Diffie-Hellman Assumption To prove the secu-
rity of our simple system we use a new assumption that we call the q-decisional Multi-Exponent
Bilinear Diffie-Hellman assumption. Our assumption falls within a class of assumptions shown
to be secure in the generic group model by Boneh, Boyen, and Goh [9]. While our assumption
is non-standard, we emphasize that it is non-interactive and thus falsifiable.

Let G be a bilinear group of prime order p. The q-MEBDH problem in G is stated as follows:
A challenger picks a generator g ∈ G and random exponents s, α, a1, . . . , aq. The attacker

is then given ~y=
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g, gs, e(g, g)α

∀1≤i,j≤q gai gais gaiaj gα/a
2
i

∀1≤i,j,k≤q,i 6=j gaiajs gαaj/a
2
i gαaiaj/a

2
k gαa

2
i /a

2
j ,

it must remain hard to distinguish e(g, g)α·s ∈ GT from a random element in GT .
An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decisional q-parallel

BDHE in G if ∣∣∣∣Pr
[
B
(
~y, T = e(g, g)αs

)
= 0
]
− Pr

[
B
(
~y, T = R

)
= 0
] ∣∣∣∣ ≥ ε.

Definition 4 We say that the q-decisional Multi-Exponent Bilinear Diffie-Hellman assumption
holds if no poly-time algorithm has non-negligible advantage in solving the q-MEBDH problem.

Remark. It is tempting to try to simplify our assumption using previous techniques. For
example, we might consider letting choosing a single variable a and substituting all aj with aj .
Unfortunately, this substitution gives rise to an problem that is insecure.

3 Our Simple Revocation System

We now present our simpler revocation system. Our system has the following features: both
public and private keys are of size independent of the number of users (i.e. only a constant
number of group elements6); the ciphertext only contains O(r) group elements, where r is the
number of revoked users.

Intuition Our construction uses a novel application of a secret sharing in the exponent.
Suppose an encryption algorithm needs to create an encryption with a revocation set S =
ID1, . . . , IDr of r identities. The algorithm will create an exponent s ∈ Zp and split it into r
random shares s1, . . . , sr such that

∑
si = s. It will then create a ciphertext such that any user

key with ID = IDi will not be able to incorporate the i − th share and thus not decrypt the
message.

Our approach presents us with two challenges. First, we need to make sure that a user with
revoked identity ID = IDi cannot do anything useful with share i. Second, we need to worry
about collusion attacks between multiple revoked users. Suppose a user with ID = IDi and a
user with ID = IDj collude to attack a ciphertext. The attack we need to worry about is where
user j processes ciphertext share i, while user i processes share j, and then they combine their
results.

The first problem is addressed by the method of decryption. For each share, the ciphertext
will have two components. A user with ID 6= IDi can use these two components to obtain two
linearly independent equations (in the exponent) involving the share si ( and another variable),
which he will use to solve for the share si. However, if ID = IDi he will get two linearly
dependent equations and not be able to solve the system. We remark that these techniques
are somewhat reminiscent of of those used for knowledge extraction in discrete log proof of
knowledge settings [37]. In addition, different types of two equation techniques have been
applied in ecash applications (see e.g., [12] and the references therein).

6Indeed, since we are using elliptic curves of prime order, these elements can be quite short.
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To address the second challenge, we randomize each user’s private key by an exponent t
such that in decryption each user recovers shares t ·si in the exponent. Thus, we disallow useful
collusions in a similar manner to some Identity-Based [14, 8] and Attribute-Based [36, 24, 6]
encryption systems. Our construction follows.

3.1 Simple Construction

In the description of our construction we will use a bilinear group G of prime order p. We
will assume that identities are taken from the set Zp; in practice, of course, we can perform a
collision resistant hash from identity strings to Zp. We now give our construction as a set of
four algorithms.

Setup The setup algorithm chooses a group G of prime order p. It then picks random gener-
ators g, h ∈ G and picks random exponents α, b ∈ Zp. The public key is published as:

PK = (g, gb, gb
2
, hb, e(g, g)α).

The authority keeps α, b as secrets.

Key Gen(MSK, ID) The key generation algorithm first chooses a random t ∈ Zp and pub-
lishes the private key as:

D0 = gαgb
2t, D1 = (gb·IDh)t, D2 = g−t.

Encrypt(PK,M, S) The encryption algorithm first picks a random s ∈ Zp. Then it lets
r = |S| and chooses random s1, . . . , sr such that s = s1 + . . . + sr. We let IDi denote the i-th
identity in S. It then creates the ciphertext CT as:

C ′ = e(g, g)αsM,C0 = gs

together with, for each i = 1, 2, . . . , r:(
Ci,1 = gb·si , Ci,2 =

(
gb

2·IDihb
)si)

Decrypt(S,CT, ID, DID) If there exists ID′ ∈ S such that ID = ID′ then the algorithm
aborts; otherwise, the decryption algorithm computes:

e(C0, D0)

e
(
D1,

∏r
i=1C

1/(ID−IDi)
i,1

)
· e
(
D2,

∏r
i=1C

1/(ID−IDi)
i,2

)
which gives us e(g, g)αs; this can immediately be used to recover the message M from C ′. Note
that this computation is only defined if ∀i ID 6= IDi.

We can verify the correctness of the decryption computation.
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e(C0, D0)/

(
e

(
D1,

r∏
i=1

C
1/(ID−IDi)
i,1

)
· e

(
D2,

r∏
i=1

C
1/(ID−IDi)
i,2

))

= e(C0, D0)/

(
r∏
i=1

(e (D1, Ci,1) · e (D2, Ci,2))ID−IDi

)

= e(gs, gαgb
2t)/

(
r∏
i=1

(
e
(

(gbIDh)t, gbsi
)
· e
(
g−t, (gb

2IDihb)si
))ID−IDi

)

= e(g, g)sαe(g, g)sb
2t)/

(
r∏
i=1

e(g, g)sib
2t)

)
= e(g, g)sα

We obtain the following theorem. (The proof appears in Appendix A.)

Theorem 5 Suppose the decisional q-MEBDH assumption holds. Then no poly-time adversary
can selectively break our system with a ciphertext encrypted to r∗ ≤ q revoked users.

4 Our Second Revocation System

This system retains the desirable properties of our simpler system: public and private keys
still require only a constant number of group elements, and the ciphertext requires O(r) group
elements, where r is the number of revoked users. The primary advantage of this system is
that we obtain security from simple assumptions, namely the decisional Linear assumption and
d−BDH.

Intuition We combine the techniques of our simple construction with the dual system en-
cryption technique of Waters [44]. Essentially, we append a version of our simple construction
onto the core IBE construction of Waters.

4.1 Construction

We will again use a bilinear group G of order p and assume that identities are taken from Zp.

Setup The setup algorithm chooses a bilinear group G of prime order p. It then chooses
random generators g, v, v1, v2, w, h ∈ G and random exponents a1, a2, b, α ∈ Zp. It lets τ1 =
vva1

1 , τ2 = vva2
2 . The public key is published as:

PK = (gb, ga1 , ga2 , gba1 , gba2 , τ1, τ2, τ
b
1 , τ

b
2 , w, h, e(g, g)αa1b).

The master secret key is:
MSK = (g, gα, gαa1 , v, v1, v2, PK).

KeyGen(MSK, ID) The key generation algorithm chooses random exponents d1, d2, z1, z2 ∈
Zp and sets d = d1 + d2. The private key DID is:

D1 = gαa1vd, D2 = g−αvd1g
z1 , D3 = (gb)−z1 , D4 = vd2g

z2 , D5 = (gb)−z2 , D6 = gd2b,

D7 = gd1 ,K = (wIDh)d1 .
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Encrypt(PK,M,S) The encryption algorithm chooses random exponents s1, s2, t1, . . . , tr
and sets s = s1 + s2, t = t1 + · · · + tr (where r = |S|, the number of revoked users). We
let IDi denote the i-th identity in S. The ciphertext CT is constructed as:

C0 = M
(
e(g, g)αa1b

)s2
, C1 = (gb)s, C2 = (gba1)s1 , C3 = (ga1)s1 ,

C4 = (gba2)s2 , C5 = (ga2)s2 , C6 = τ s11 τ s22 , C7 = (τ b1)s1(τ b2)s2w−t,

along with, for each i = 1, 2, . . . , r:

Ci,1 = gti , Ci,2 = (wIDih)ti .

Decrypt(S,CT, ID,DID) If ID = IDi for some IDi ∈ S, then the algorithm aborts. Other-
wise, the decryption algorithm begins by computing:

A1 = e(C1, D1)e(C2, D2)e(C3, D3)e(C4, D4)e(C5, D5)
= e(g, g)αa1bs2e(v, g)bsde(v1, g)a1bs1de(v2, g)a2bs2d.

Next, the algorithm computes:

A2 = e(C6, D6)e(C7, D7)
= e(v, g)bsde(v1, g)a1bs1de(v2, g)a2bs2de(g, w)−d1t.

Now,
A3 = A1/A2 = e(g, g)αa1bs2e(g, w)d1t,

so if we separately compute e(g, w)d1t, we can cancel this term and compute the blinding factor
and hence recover the message. We compute e(g, w)d1t as follows:

A4 =
r∏
i=1

(
e(Ci,1,K)
e(Ci,2, D7)

) 1
ID−IDi

=
r∏
i=1

(
e(g, w)d1ti(ID−IDi)

) 1
ID−IDi

=
r∏
i=1

e(g, w)d1ti = e(g, w)d1t.

Thus, the message can be computed as:

C0/(A3/A4) = M.

5 Security

We will prove the following theorem.

Theorem 6 If the decisional Linear and decisional BDH assumptions hold, then our revocation
system above is secure.

To prove this, we first define semi-functional keys and ciphertexts. These are not used
in the real system, but they will be used in our proof of security. These objects have the
following functionality: a semi-functional key can decrypt a normal ciphertext and a normal
key can decrypt a semi-functional ciphertext. However, a semi-functional key cannot decrypt a
semi-functional ciphertext. We define these as in the Waters IBE system:
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Semi-Functional Ciphertexts We generate a semi-functional ciphertext by first running
the encryption algorithm to produce a normal ciphertext for message M and set S:

C ′0, C
′
1, C

′
2, C

′
3, C

′
4, C

′
5, C

′
6, C

′
7, C

′
i,1, C

′
i,2∀i ∈ S.

Then we set C1 = C ′1, C2 = C ′2, C3 = C ′3, Ci,1 = C ′i,1, Ci,2 = C ′i,2∀i ∈ S (these values are left
unchanged). We choose a random x ∈ Zp, and set the rest of the ciphertext as:

C4 = C ′4 · gba2x, C5 = C ′5 · ga2x, C6 = C ′6 · v
a2x
2 , C7 = C ′7 · v

a2bx
2 .

Semi-Functional Keys We generate a semi-functional key by first running the key generation
algorithm to produce a normal private key for identity ID:

D′1, D
′
2, D

′
3, D

′
4, D

′
5, D

′
6, D

′
7,K

′.

Then we set D3 = D′3, D5 = D′5, D6 = D′6, D7 = D′7,K = K ′ (these values are left unchanged).
We choose a random γ ∈ Zp. We set the rest of the key as:

D1 = D′1 · g−a1a2γ , D2 = D′2 · ga2γ , D4 = D′4 · ga1γ .

We will prove selective security of our system under the decisional Linear and d-BDH as-
sumptions through a hybrid argument. We use the following sequence of games which we will
show are indistinguishable.

GameReal: This denotes the real security game. We let GameRealAdvA denote the advantage
of an algorithm A in the real security game.

Game0: This is the same as GameReal, except that the ciphertext given to the attacker is
semi-functional.

Gamek: In this game, the ciphertext is semi-functional, and the keys given out for the first
k users in the revoked set S are semi-functional, while the rest of the keys are normal. For an
adversary that submits a revocation set S of size r, we will let k range from 0 to r. Note that
in Gamer, the ciphertext and all the keys are semi-functional.

GameFinal: This is the same as Gamer, except that the ciphertext is a semi-functional en-
cryption of a random message instead of Mb.

Lemma 7 Suppose there exists an algorithm A such that GameRealAdvA − Game0AdvA = ε.
Then we can build an algorithm B with advantage ε in the decision Linear game.

Proof. (This proof is essentially the same as the proof of Lemma 1 in [44], but we in-
clude it for completeness.) B first receives an instance of the decisional Linear problem:
(G, g, f, ν, gc1 , f c2 , T ). B must decide whether T = νc1+c2 or is random. To accomplish this, B
will call on A by simulating either GameReal or Game0. A first sends a set S = {ID1, . . . , IDr}
to B.

Setup B chooses random exponents b, α, yv, yv1 , yv2 ∈ Zp and random group elements w, h ∈
G. It then sets g = g, ga1 = f, ga2 = ν, w = w, h = h. Note that B does not know the values
a1, a2. It also sets:

gb, gba1 = f b, gba2 = νb, v = gyv , v1 = gyv1 , v2 = gyv2 .

B also computes τ1, τ2, τ b1 , τ
b
2 , e(g, g)αa1b = e(g, f)αb. Note that τ1 (for example) can be computed

as τ1 = vva1
1 = vfyv1 . B sends the public parameters to A.
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Key Generation B only needs to produce normal keys for IDi for all IDi ∈ S. It can produce
these through the usual key generation algorithm since it knows MSK = {g, ga1 , α, v, v1, v2}.

Challenge Ciphertext Once B has given A the public parameters and the keys for all
elements of S = {ID1, . . . , IDr}, A sends B two messages M0,M1. B chooses a random
value β ∈ {0, 1} and will create a semi-functional ciphertext for Mβ, S as follows. First, B
chooses random exponents, s′1, s

′
2, t1, . . . , tr, and uses the normal encryption algorithm to pro-

duce C ′0, C
′
1, . . . , C

′
7, C

′
1,1, C

′
1,2, . . . , C

′
r,1, C

′
r,2. It leaves the terms Ci,1 = C ′i,1, Ci,2 = C ′i,2 un-

changed for i from 1 to r. The rest of the terms are set as:

C0 = C ′0 (e(gc1 , f)e(g, f c2))bα , C1 = C ′1(gc1)b, C2 = C ′2(f c2)−b, C3 = C ′3(f c2)−1, C4 = C ′4(T )b,

C5 = C ′5T,C6 = C ′6(gc1)yv(f c2)−yv1T yv2 , C7 = C ′7
(
(gc1)yv(f c2)−yv1T yv2

)b
.

If T = νc1+c2 , this will be a normal ciphertext with s1 = −c2 + s′1, s2 = c1 + c2 + s′2, and
s = s1 + s2 = c1 + s′1 + s′2. If T is random, this will be a properly distributed semi-functional
ciphertext. Thus, B can use A’s output to obtain the same advantage in distinguishing T =
νc1+c2 from random that A has in distinguishing GameReal from Game0. �

Lemma 8 Suppose there exists an algorithm A that submits a revoked set of r users and
Gamek−1AdvA − GamekAdvA = ε for some k with 1 ≤ k ≤ r. Then we can build an al-
gorithm B with advantage ε in the decision Linear game.

Proof. B first receives an instance of the decisional Linear problem: (G, g, f, ν, gc1 , f c2 , T ).
B must decide whether T = νc1+c2 or is random. To accomplish this, B will call on A by
simulating either Gamek or Gamek−1. A first sends a set S = {ID1, . . . , IDr} to B.

Setup B chooses random exponents α, a1, a2, yv1 , yv2 , yw, yh ∈ Zp and sets the public param-
eters by computing:

gb = f, ga1 , ga2 , gba1 = fa1 , gba2 = fa2 , v = ν−a1a2 , v1 = νa2gyv1 , v2 = νa1gyv2 ,

e(g, g)αa1b = e(f, g)αa1 , τ1 = vva1
1 , τ2 = vva2

2 , τ
b
1 = fyv1a1 , τ b2 = fyv2a2 , w = fgyw , h = w−IDkg

yh .

Key Generation To generate a normal key for IDj when j > k, the simulator B can run
the usual key generation algorithm, since it knows the MSK. To generate a semi-functional
key for IDj when j < k, the simulator can run the semi-functional key generation algorithm
described above because it knows the exponents a1 and a2. For IDk, the simulator will create
a key that is normal if T = νc1+c2 and is semi-functional if T is random.

To generate the key for IDk, B starts by running the usual key generation algorithm to
produce a normal key SKIDk : D′1, D

′
2, . . . , D

′
7,K

′. We let d′1, d
′
2, z
′
1, z
′
2 denote the random

exponents that were chosen. We then set:

D1 = D′1T
−a1a2 , D2 = D′2T

a2(gc1)yv1 , D3 = D′3(f c2)yv1 , D4 = D′4T
a1(gc1)yv2 ,

D5 = D′5(f c2)yv2 , D6 = D′6f
c2 , D7 = D′7(gc1),K = K ′(gc1)yh .

We note that we have implicitly set z1 = z′1 − yv1c2 and z′2 − yv2c2. If T = νc1+c2 , then this
is a normal key with d1 = d′1 + c1 and d2 = d′2 + c2. We can compute K because the wIDk
terms cancel: K = (wIDkw−IDkgyh)d

′
1+c1 . If T is random, we can write T as T = νc1+c2gγ

and we obtain a semi-functional key with γ playing the same role as in the semi-functional key
definition above.
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Challenge Ciphertext Once B has given A the public parameters and the keys for all
elements of S = {ID1, . . . , IDr}, A sends B two messages M0,M1. B chooses a random value
β ∈ {0, 1} and will create a semi-functional ciphertext for Mβ, S as follows. First, B uses the
normal encryption algorithm with randomly chosen exponents s′1, s

′
2, t
′ to create C ′0, C

′
1, . . . , C

′
7.

Then C0 = C ′0, C1 = C ′1, C2 = C ′2, C3 = C ′3 are left unchanged. To add semi-functionality, B
chooses a random exponent x ∈ Zp and sets:

C4 = C ′4f
a2x, C5 = C ′5g

a2x, C6 = C ′6v
a2x
2 , C7 = C ′7f

a2yv2xν−a1xywa2 .

To create C7, we have implicitly set gt = gt
′
νa1xa2 . We let yν denote the unknown discrete

log of ν in base g. Then, we have set t = t′ + yνa1a2x, so t is not known to B, but t′ is. For
i 6= k, 1 ≤ i ≤ r, B sets ti to be a randomly chosen value. We let t′′ denote the sum of these
values. Then tk is defined to be t′ − t′′ + yνa1a2x. For i 6= k, the simulator B knows the value
of ti, and so can compute:

Ci,1 = gti , Ci,2 = (wIDih)ti .

For i = k, B computes:
Ck,1 = gtk = gt

′−t′′νa1a2x,

Ck,2 = (wIDkw−IDkgyh)yνa1a2x+t′−t′′ = νyha1a2xgyh(t′−t′′).

We note that the we could only form the semi-functional ciphertext because IDk ∈ S: otherwise
we would not have been able to use the cancelation of wIDk to compute the ciphertext term
corresponding to the unknown share. This is an essential feature of our argument: the simulator
must not be able to test semi-functionality of key k for itself by doing a test decryption on the
semi-functional ciphertext it can create. In this case, such a test will fail because the created
key k must always be for a revoked user who cannot decrypt, otherwise the semi-functional
challenge ciphertext cannot be created.

In summary, when T = νc1+c2 , B has properly simulated Gamek−1. When T is random, B
has properly simulated Gamek. Thus, B can use A’s output to obtain the same advantage in
distinguishing T = νc1+c2 from random that A has in distinguishing Gamek−1 from Gamek. �

Lemma 9 Suppose there exists an algorithm A that submits a revoked set of r users and
GamerAdvA − GameFinalAdvA = ε. Then we can build an algorithm B with advantage ε
in the decision BDH game.

Proof. (This proof is essentially the same as the proof of Lemma 3 in [44], but we include
it for completeness.) B first receives an instance of the d-BDH problem: (g, gc1 , gc2 , gc3 , T ). B
must decide whether T = e(g, g)c1c2c3 or is random. To accomplish this, B will call on A by
simulating either Gamer or GameFinal. A first sends a set S = {ID1, . . . , IDr} to B.

Setup B chooses random exponents a1, b, yv, yv1 , yv2 , yw, yh ∈ Zp. It sets:

g = g, gb, ga1 , ga2 = gc2 , gba1 , gba2 = (gc2)b, v = gyv , v1 = gyv1 ,

v2 = gyv2 , w = gyw , h = gyh , e(g, g)a1αb = e(gc1 , gc2)a1b.

Note that this implicitly sets a2 to the unknown value c2 and α to the unknown value c1c2. B
also computes τ1 = vva1

1 , τ
b
1 , τ2 = v(gc2)yv2 , τ b2 and sends the public parameters to A.

14



Key Generation B must now generate semi-functional keys for ID1, . . . , IDr. For each IDi,
B chooses random exponents d1, d2, z1, z2, γ

′ ∈ Zp and sets d = d1 + d2. The key elements are
computed as:

D1 = (gc2)−γ
′a1vd, D2 = (gc2)γ

′
vd1g

z1 , D3 = (gb)−z1 , D4 = (gc1)a1ga1γ′vd2g
z2 ,

D5 = g−bz2 , D6 = gd2b, D7 = gd1 ,K = (wIDih)d1 .

Challenge Ciphertext Once B has given A the public parameters and the keys for all
elements of S = {ID1, . . . , IDr}, A sends B two messages M0,M1. B chooses a random value
β ∈ {0, 1} and will create either a semi-functional ciphertext for Mβ or a semi-functional
encryption of a random message.
B chooses random exponents s1, x′, t1, . . . , tr and sets t = t1+· · ·+tr. It forms the ciphertext

as:

C0 = MβT
a1b, C1 = gs1b(gc3)b, C2 = gba1s1 , C3 = ga1s1 , C4 = (gc2)x

′b, C5 = (gc2)x
′
,

C6 = τ s11 (gc3)yv(gc2)yv2x
′
, C7 = (τ b1)s1(gc3)yvb(gc2)yv2x

′bw−t,

C1,1 = gt1 , C1,2 = (wID1h)t1 , . . . , Cr,1 = gtr , Cr,2 = (wIDrh)tr .

These assignments implicitly set s2 = c3 and x = −c3 + x′.
If T = e(g, g)c1c2c3 , then this is a properly distributed semi-functional encryption of Mβ.

If T is random, then this is a properly distributed semi-functional encryption of a random
message. Thus, B can use A’s output to distinguish T = e(g, g)c1c2c3 from random with the
same advantage that A has in distinguishing Gamer from GameFinal. �

6 Attribute-Based Encryption

Our simple revocation scheme also gives rise to a new efficient Attribute-Based Encryption
(ABE) scheme that allows access policies to be expressed in terms of any access formula over
attributes. Until the recent work of Ostrovsky, Sahai, and Waters [34], all previous ABE schemes
were limited to expressing only monotonic access structures. Our new ABE scheme, however,
achieves significantly superior parameters in terms of key size. In the random oracle model,
our new scheme will have the following key sizes: public parameters will be only O(1) group
elements, and private keys for access structures involving t leaf attributes will be of size O(t).
This is a significant improvement over previous work, which needed public parameters consisting
of O(n) group elements, and private keys consisting of O(t log(n)) group elements, where n is a
bound on the maximum number of attributes that any ciphertext could have. In our scheme,
we do not need any such bound.

For brevity, we only describe at a high level what makes our revocation scheme so amenable
to incorporation into ABE schemes. The essential property of our revocation scheme is that
successful decryption (if a non-revoked user tries to decrypt) allows the user to recover e(g, g)αs,
where α is a system parameter, while s is a random choice made at the time of encryption.
This idea can be applied with α replaced by a linear secret share of α that corresponds to a
negated leaf node in an access formula. By the properties of linear secret sharing schemes, and
the randomization provided by s, this allows for a secure ABE system to be built using our
revocation scheme as a building block.

Taken altogether, our revocation scheme gives a new and much more efficient instiantion of
the OSW framework for non-monotonic ABE. We now describe our construction. We refer the
reader to [34] for definitions. Our proofs appear in Appendix B.
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6.1 Description of ABE construction

We follow the notation of [34] here, and describe our construction in the random oracle model
to highlight the most efficient form of our construction.

Setup. The setup algorithm chooses generators g, h and picks random exponents α′, α′′, b ∈
Zp. We define α = α′ · α′′, g1 = gα

′
and g2 = gα

′′
.) The public parameters are published as the

following, where H is a random oracle that outputs elements of the elliptic curve group:

PK = (g, gb, gb
2
, hb, e(g, g)α, H(·)).

The authority keeps (α′, α′′, b) as the master key MK.

Encryption (M,γ,PK). To encrypt a message M ∈ GT under a set of d attributes γ ⊂ Z∗p,
choose a random value s ∈ Zp, and choose a random set of d values {sx}x∈γ such that s =∑

x∈γ sx. Output the ciphertext as

E = (γ,E(1) = Me(g, g)α·s, E(2) = gs, {E(3)
x = H(x)s}x∈γ ,

{E(4)
x = gb·sx}x∈γ , {E(5)

x = gb
2·sxxhb·sx}x∈γ)

Key Generation (Ã,MK,PK). This algorithm outputs a key that enables the user to decrypt
an encrypted message only if the attributes of that ciphertext satisfy the access structure Ã. We
require that the access structure Ã is NM(A) for some monotonic access structure A, (see [34]
for a definition of the NM(·) operator) over a set P of attributes, associated with a linear secret-
sharing scheme Π. First, we apply the linear secret-sharing mechanism Π to obtain shares {λi}
of the secret α′. We denote the party corresponding to the share λi as x̆i ∈ P, where xi is the
attribute underlying x̆i. Note that x̆i can be primed (negated) or unprimed (non negated). For
each i, we also choose a random value ri ∈ Zp.

The private key D will consist of the following group elements: For every i such that x̆i is
not primed (i.e., is a non-negated attribute), we have

Di = (D(1)
i = gλi2 ·H(xi)ri , D

(2)
i = gri)

For every i such that x̆i is primed (i.e., is a negated attribute), we have

Di = (D(3)
i = gλi2 g

b2ri , D
(4)
i = gribxihri , D

(5)
i = g−ri)

The key D consists of Di for all shares i.

Decryption (E,D). Given a ciphertext E and a decryption key D, the following procedure
is executed: (All notation here is taken from the above descriptions of E and D, unless the
notation is introduced below.) First, the key holder checks if γ ∈ Ã (we assume that this can
be checked efficiently). If not, the output is ⊥. If γ ∈ Ã, then we recall that Ã = NM(A),
where A is an access structure, over a set of parties P, for a linear secret sharing-scheme Π.
Denote γ′ = N(γ) ∈ A, and let I = {i : x̆i ∈ γ′}. Since γ′ is authorized, an efficient procedure
associated with the linear secret-sharing scheme yields a set of coefficients Ω = {ωi}i∈I such
that

∑
i∈I ωiλi = α. (Note, however, that these λi are not known to the decryption procedure,

so neither is α.)
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For every positive (non negated) attribute x̆i ∈ γ′ (so xi ∈ γ), the decryption procedure
computes the following:

Zi = e
(
D

(1)
i , E(2)

)
/e
(
D

(2)
i , E

(3)
i

)
= e

(
gλi2 ·H(xi)ri , gs

)
/e (gri , H(x)s)

= e (g, g2)sλi

For every negated attribute x̆i ∈ γ′ (so xi /∈ γ), the decryption procedure computes the
following, following a simple analogy to the basic revocation scheme:

Zi =
e
(
D

(3)
i , E(2)

)
e

(
D

(4)
i ,
∏
x∈γ

(
E

(4)
x

)1/(xi−x)
)
· e
(
D

(5)
i ,
∏
x∈γ

(
E

(5)
x

)1/(xi−x)
)

= e (g, g2)sλi

Finally, the decryption is obtained by computing

E(1)∏
i∈I Z

ωi
i

=
Me(g, g)sα

e(g, g2)sα′
= M

Note on Efficiency and Use of Random Oracle Model. We note that encryption re-
quires only a single pairing, which may be pre-computed, regardless of the number of attributes
associated with a ciphertext. We also note that decryption requires two or three pairings per
share utilized in decryption, depending on whether the share corresponds to a non-negated
attribute or a negated attribute, respectively.

We also note that we use a random oracle for description simiplicity and efficiency of the
system. We can, alternatively, realize our hash function concretely as in other previous ABE
systems [36, 24, 34].
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A Security of our Simple Revocation System

A.1 Generic Security of Multi-Exponent BDH

We briefly show that are decisional MEBDH assumption is generically secure. We use the
generic proof template of Boneh, Boyen, and Goh [9].

Using the terminology from BBG we need to show that f = αs in independent of the
polynomials P and Q. We have that Q = {1, α} In addition, we have

P = {1, s, ∀i,j∈[1,q] ai, ais, aiaj , α/(ai)2}
∪ {∀i,j,k∈[1,q],i 6=j aiajs, αaj/a

2
i , αaiaj/a

2
k, αa

2
i /a

2
j}

We first note that this case at first might appear to be outside the BBG framework, since
the polynomials are rational function (due to the terms with inverses. However, by a simple
renaming of terms we can see this is equivalent to an assumption where we use a generator u
and let g = g

∏
j∈[1,q] a

2
j . Applying this substitution we get a a set of polynomials where maximum

degree of any polynomial in the set P is 2q + 3.
We need to also check that f is symbolically independent of the of any two polynomials

in P,Q. To realize f from P,Q we would need to have a term of the form αs. We note that
no such terms can be realized from the product of two polynomials p, p′ ∈ P . If we use the
polynomial s as p then no other potential p′ has α. If we use ai · s as p then no other potential
p′ has α/ai. Finally, if we use aiajs with i 6= j for p then no other potential p′ is of the form
α/(aiaj) for i 6= j. Any dependence on f must have an a term of s in it, but we just eliminated
all possibilities.

It follows from the BBG framework that the assumption is then generically secure. In
particular, for an attacker that makes at most n queries to the group oracle we have that its
advantage is bounded by

(n+ 2(q3 + 4q2 + 3q) + 2)2 · (4q + 6)
2p

In the general case where n > q3 we have that the advantage is O(n2 · q/p).
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A.2 Proof of Security for Simple Revocation System

We now prove the following theorem.

Theorem 10 Suppose the decisional q-MEBDH assumption holds. Then no poly-time adver-
sary can selectively break our simple revocation system with a ciphertext encrypted to r∗ ≤ q
revoked users.

Suppose we have an adversary A with non-negligible advantage ε = AdvA in the selective
security game against our construction. Moreover, suppose attacks our system with a ciphertext
of at most q revoked users. We show how to build a simulator, B, that plays the decisional
q-MEBDH problem.

The simulator begins by receiving a q-MEDDH challenge ~X, T . The simulator then proceeds
in the game as follows.

Init The adversary A declares a revocation set S∗ = ID1, . . . , IDr∗ of size r∗ ≤ q that he gives
to the simulator. (If r < q the simulator will just ignore some of the terms given in ~X).

Setup The simulator now creates the public key PK and gives A the private keys for all
identities in S∗. Conceptually, it will set b as a1 + a2 + · · · ar. The simulator first chooses a
random y ∈ Zp.

The public key PK is published as:(
g, gb =

∏
1≤i≤r∗

gai , gb
2

=
∏

1≤i,j≤r
(gai·aj ), h =

∏
1≤i≤r∗

(gai)−IDigy, e(g, g)α
)

We observe that the public parameters are distributed identically to the real system and
that the revocation set S∗ is reflected in the simulation’s construction of the parameter h.

Now the simulator must construct all private keys in the revocation set S. For each identity
IDi the simulator will choose a random zi ∈ Zp and will (implicitly) set the randomness ti of
the ith identity as ti = −α/a2

i + zi.
Setting ti allows us to generate the private key components for two reasons. First, in the

D0 component we need to cancel out the gα term that we do not know. Since gb
2

contains a
term of ga

2
i raising it to the −α/a2

i will cancel this term. Second, we need to make sure that
we can still realize the D2 component. To generate this we will have several terms of the form
gαaj/a

2
i , which we have for i 6= j. Yet, if i = j this generates a term gα/ai that we do not have.

However, by our setting of the h parameter a term like this will never appear.
The private key for IDi is generated as follows:

D0 =

 ∏
1≤j,k≤n

s.t. if j=k then j,k 6=i

(g−αajak/a
2
i )

 ∏
1≤j,k≤n

(gajak)zi

D1 =

 ∏
1≤j≤n
j 6=i

(g−α·aj/a
2
i )(IDi−IDj)(g(IDi−IDj)·aj )zi

 (g−α/a
2
i )ygyzi

D2 = gα/a
2
i g−zi
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Remark. Note that in the above construction, for any fixed coefficient µ, by changing ti =
−µα/a2

i +zi, and appropriately raising the relevant parts of the construction above to a µ factor,
one can create D0 = gµα+b2ti , while keeping D1 = (gbIDih)ti , and D2 = g−ti . This observation
is not relevant to this proof, but will be useful in the proof of our related ABE scheme.

Challenge The simulator receives M0,M1 and chooses random β ∈ {0, 1}. The simulator
then chooses random s′, s′1, . . . , s

′
r∗ ∈ Zp such that s′ =

∑
i s
′
i. For notational convenience let

ui = gb
2IDihb, note this is computable from the public parameters, which were already set.

Conceptually, the ciphertext will be encrypted under randomness s̃ = s+ s′ and be broken
into shares s̃i = ais/b+ s′i. Recall, that b =

∑
j aj ; therefore,

∑
s̃i = s̃.

Our methodology is to split s into pieces such that we can simulate all ciphertext components.
Conceptually, we will look for a “hole” in each term. We will use the fact that from the
simulator’s view the function gbIDih has no term of gai by cancellation. Therefore, if we raise
this to s · ai the simulator will have all the necessary terms. In this manner we “spread” the
different shares of s as s · ai/b, each into its own “slot”.

Our proof technique has two important points. First, in simulating the Ci,1 and Ci,2 compo-
nents the b−1 term from the shares will cancel out. Second, in generating the Ci,2 components
we will need elements of the form gsaiaj that we have for i 6= j. Yet, if i = j this creates an
element that we do not have. Again, by our setting of h we do not run into this case.

The challenge CT is created as

C ′ = Te(g, g)αs
′ ·Mβ C0 = gsgs

′
Ci,1 = gsai(

∏
j

gaj )s
′
i Ci,2 =

 ∏
1≤j≤r∗
i 6=j

(gsaiaj )IDi−IDj

 (gais)yus
′
i
i

The Ci,2 equation can be understood by recalling that Ci,2 = (gbIDih)bs̃i and then noting that
bs̃i = sai + s′i.

Guess The adversary will eventually output a guess β′ of β. The simulator then outputs 0 to
guesses that T = e(g, g)αs if β = β′; otherwise, it and outputs 1 to indicate that it believes T
is a random group element in GT .

When T is a tuple the simulator B gives a perfect simulation so we have that

Pr
[
B
(
~X, T = e(g, g)αs

)
= 0
]

=
1
2

+ AdvA.

When T is a random group element the message Mβ is completely hidden from the adversary

and we have Pr
[
B
(
~X, T = R

)
= 0
]

= 1
2 . Therefore, B can play the decisional q-MEBDH game

with non-negligible advantage.

A.3 Remark on Security Parameters

Our system is shown to be secure under a new non-interactive assumption. Our proof, in the
standard model, shows that a ciphertext that revokes up to r users is secure if the decisional
r-MEBDH assumption holds. We remark that generically, an adversary that makes n queries
to a group oracle will have advantage O(n2r/p) (see Appendix A.1 for a group of prime order
p. Equivalent generic security to decisional Bilinear Diffie-Hellman can then be realized by
increasing the size of p by just an additive factor of lg(r) bits. We recognize, of course, that in
general for concrete groups a simpler assumption is desirable, and leave achieving comparable
efficiency under simpler assumptions as an important open problem.
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B Proof of Security for ABE scheme

We prove that the security of our main construction in the attribute-based selective-set model
reduces to the hardness of the q-MEBDH assumption.

Theorem 11 If an adversary can break our ABE scheme with advantage ε in the attribute-
based selective-set model of security, then a simulator can be constructed to play the q-MEBDH
game with advantage ε/2.

Proof. Our proof will follow the outline of, and include much of the text from, the proofs
of previous ABE schemes [36, 24, 34], but will incorporate the ideas from our new revocation
scheme. We note that our revocation scheme, which we will use to realize “negated” attributes
in our ABE scheme, is based on the q-MEDDH assumption. The technique we use to deal with
ordinary, non-negated attributes, is the same as [24], which was based on the BDDH assumption.
To adapt that part to the q-MEDDH assumption, we note that the BDDH assumption is
embedded (in many different ways) in the q-MEDDH assumption that we use. In the BDDH
assumption, we are given A = gã, B = gb̃, gs and must distinguish e(g, g)ãb̃s from a random
element. We will implicitly set ã = α/a2

1, and b̃ = a2
1. Note that in the q-MEDDH assumption,

we are given A = gã and B = gb̃ for these settings of ã and b̃. Below we will use A and B to
mean these values.

Suppose there exists a polynomial-time adversary A that can attack our scheme in the
selective-set model with advantage ε. We build a simulator B that can play the q-MEDDH
game with advantage ε/2. The simulation proceeds as follows:

The simulator begins by receiving a q-MEDDH challenge ~X,Z. Note that with probability
1/2, Z = e(g, g)αs. We will denote this event as Ξ = 0. With probability 1/2, however,
Z = e(g, g)z where z is a random element of Zp. We will denote this event as Ξ = 1.

Init The simulator B runs A. A chooses the challenge set, γ, a set of d members of Z∗p.

Setup The simulator assigns the public parameters g1 = A and g2 = B, thereby implicitly
setting α′ = α/a2

1 and α′′ = a2
1.

The simulator will also program the random oracle H(x) as follows. Suppose the adversary
queries the oracle on x. If the simulator already answered such a query, it simply returns the
same answer. Otherwise, it picks a random fx ∈ Zp and responds as follows:

H(x) =

{
gfx if x ∈ γ
g2g

fx if x /∈ γ

The simulator sets up the remainder of the public key exactly as in the proof of the revocation
scheme, where the revocation set S∗ = γ.

Phase 1 A adaptively makes requests for several access structures such that γ passes through
none of them. Suppose A makes a request for the secret key for an access structure Ã where
Ã(γ) = 0. Note that by assumption, Ã is given as NM(A) for some monotonic access structure
A, over a set P of parties (whose names will be attributes), associated with a linear secret-
sharing scheme Π.

Let M be the share-generating matrix for Π: Recall, M is a matrix over Zp with ` rows and
n + 1 columns. For all i = 1, . . . , `, the i’th row of M is labeled with a party named x̆i ∈ P,
where xi is the attribute underlying x̆i. Note that x̆i can be primed (negated) or unprimed
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(non-negated). When we consider the column vector v = (s, r1, r2, . . . , rn), where s is the secret
to be shared, and r1, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of ` shares of the
secret s according to Π.

We make use of the following well-known observation about linear secret-sharing schemes
(see, e.g. [5]7): If S ⊂ P is a set of parties, then these parties can reconstruct the secret iff the
column vector (1, 0, 0, . . . , 0) is in the span of the rows of MS , where MS is the submatrix of M
containing only those rows that are labeled by a party in S. Note that since Ã(γ) = 0, we know
that A(γ′) = 0, where γ′ = N(γ). Thus, we know that (1, 0, . . . , 0) is linearly independent of
the rows of Mγ′ .

During key generation, a secret sharing of the secret α′ = ã is supposed to be selected. In
this simulation, however, we will choose this sharing (implicitly) in a slightly different manner,
as we describe now: First, we pick a uniformly random vector v = (v1, . . . , vn+1) ∈ Zn+1

p . Now,
we make use of the following simple proposition [2, 35] from linear algebra:

Proposition 12 A vector π is linearly independent of a set of vectors represented by a matrix
N if and only if there exists a vector w such that Nw = ~0 while π · w = 1.

Since (1, 0, . . . , 0) is independent of Mγ′ , there exists a vector w = (w1, . . . , wn+1) such that
Mγ′w = ~0 and (1, 0, . . . , 0) ·w = w1 = 1. Such a vector can be efficiently computed [2, 35]. Now
we define the vector u = v + (ã − v1)w. (Note that u is distributed uniformly subject to the
constraint that u1 = ã.) We will implicitly use the shares ~λ = Mu. This has the property that
for any λi such that x̆i ∈ γ′, we have that λi = Miu = Miv has no dependence on ã.

Now that we have established how to distribute shares to “parties”, which map to negated
or non negated attributes, we need to show how to generate the key material.

We first describe how to generate decryption key material corresponding to negated parties
x̆i = x′i. Note that by definition, x̆i ∈ γ′ if and only if xi /∈ γ.

• If xi ∈ γ, then since x̆i /∈ γ′, we have that λi may depend linearly on ã, and in general
λi = µã + θ, for some known constants µ and θ. However, by the simulator’s choices at
setup, we can invoke the proof of the revocation scheme to generate the appropriate key
material. Note that in our setting, the randomness ri is the name of the randomness ti
from the revocation scheme, and xi is the name of the identity IDi. Furthermore, note
that with our parameters, we have that D(3)

i = gλi2 g
b2ri = gµαgb

2ri · gθα′′ . Note that gθα
′′

can be generated immediately from gα
′′

= ga
2
1 which is given as part of the q-MEDDH

assumption. The remainder of the key material is generated exactly as specified in the
proof of the revocation scheme (see also the remark following the key generation part of
the proof).

• If xi /∈ γ, then since x̆i ∈ γ′, we have that λi is independent of any secrets and is completely
known to the simulator. In this case, the simulator chooses ri ∈ Zp at random, and outputs
the following:

Di = (D(3)
i = gλi+b

2ri
2 , D

(4)
i = gribxihri , D

(5)
i = g−ri)

Note that the simulator can compute all these elements using elements already computed
as part of the computation of the public key (gb

2
, gb, h).

We now describe how to give key material corresponding to non negated parties x̆i = xi.
The simulated key construction techniques for non negated parties is similar to previous work
[24, 36].

7Here, we are essentially exploiting the equivalence between linear secret-sharing schemes and monotone span
programs, as proven in [5]. The proof in [5] is for a slightly different formulation, but applies here as well.
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• If xi ∈ γ, then since λi has no dependence on any unknown secrets, we simply choose
ri ∈ Zp, and output Di = (D(1)

i = gλi2 ·H(xi)ri , D
(2)
i = gri).

• If xi /∈ γ, then we work as follows: Let g3 = gλi . Note that the simulator can compute g3
using A and g. Choose r′i ∈ Zp at random, and output the components of Di as follows:

D
(1)
i = g

−fxi
3 (g2gfxi )r

′
i

D
(2)
i = g−1

3 gr
′
i

Claim 13 The simulation above produces valid decryption keys, that are furthermore distributed
identically to the decryption keys that would have been produced by the ABE scheme for the same
public parameters.

Proof.
We will establish this claim by a case analysis. For key material corresponding to negated

parties x̆i, this has already been verified in the proof of the revocation scheme.
For key material corresponding to non negated parties x̆i:

• If xi ∈ γ, then the simulation produces key material using the same procedure as the ABE
scheme.

• If xi /∈ γ, then to see why the simulated key material is good, note that by our program-
ming of the hash function H(x) has a g2 component for all xi /∈ γ. Now let ri = r′i − λi.
Note that ri is distributed uniformly over Zp and is independent of all other variables
except r′i. Then,

D
(1)
i = g

−fxi
3 (g2gfxi )r

′
i

= g−λifxi (g2gfxi )r
′
i

= gλi2 (g2gfxi )−λi(g2gfxi )r
′
i

= gλi2 (g2gfxi )r
′
i−λi

= gλi2 H(xi)ri

and
D

(2)
i = g−1

3 gr
′
i = gr

′
i−λi = gri

�

Challenge The adversary A, will submit two challenge messages M0 and M1 to the simulator.
Let C denote gsgs

′
, where s′ is chosen at random, and gs is as provided by the q-MEDDH

assumption. The simulator flips a fair binary coin ν, and returns an encryption of Mν . The
ciphertext is output as

E =
(
γ,E(1) = MνZ,E

(2) = C, {E(3)
x = Cf(x)}x∈γ , {E(4)

x }, {E(5)
x }

)
where {E(4)

x }, {E(5)
x } are constructed exactly as Ci,1 and Ci,2, respectively, in the proof of the

revocation scheme.
If Ξ = 0 then Z = e(g, g)αs. Then by inspection, the ciphertext is a valid ciphertext for the

message Mν under the set γ.
Otherwise, if Ξ = 1, then Z = e(g, g)z. We then have E(1) = Mνe(g, g)z. Since z is random,

E(1) will be a random element of GT from the adversary’s viewpoint and the message contains
no information about Mν .
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Phase 2 The simulator acts exactly as it did in Phase 1.

Guess A will submit a guess ν ′ of ν. If ν ′ = ν the simulator will output Ξ′ = 0 to indicate
that it was given a valid q-MEDDH tuple; otherwise, it will output Ξ′ = 1 to indicate it was
given a random target element Z.

As shown above, the simulator’s generation of public parameters and private keys is identical
to that of the actual scheme.

In the case where Ξ = 1 the adversary gains no information about ν. Therefore, we have
Pr[ν 6= ν ′|Ξ = 1] = 1

2 . Since the simulator guesses Ξ′ = 1 when ν 6= ν ′, we have Pr[Ξ′ = Ξ|Ξ =
1] = 1

2 .
If Ξ = 0 then the adversary sees an encryption of Mν . The adversary’s advantage in this

situation is ε by assumption. Therefore, we have Pr[ν = ν ′|Ξ = 0] = 1
2 + ε. Since the simulator

guesses Ξ′ = 0 when ν = ν ′, we have Pr[Ξ′ = Ξ|Ξ = 0] = 1
2 + ε.

The overall advantage of the simulator in the q-MEDDH game is 1
2 Pr[Ξ′ = Ξ|Ξ = 0] +

1
2 Pr[Ξ′ = Ξ|Ξ = 1]− 1

2 = 1
2(1

2 + ε) + 1
2

1
2 −

1
2 = 1

2ε. �
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