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Abstract

Following an example in [13], we show how to change one coordinate function of an almost
perfect nonlinear (APN) function in order to obtain new examples. It turns out that this is
a very powerful method to construct new APN functions. In particular, we show that the
approach can be used to construct “non-quadratic” APN functions. This new example is in
remarkable contrast to all recently constructed functions which have all been quadratic.1

1 Preliminaries

In this paper, we consider functions F : F n
2 → F n

2 with “good” differential and linear properties.
Motivated by applications in cryptography, a lot of research has been done to construct functions
which are “as nonlinear as possible”. We discuss two possibilities to define nonlinearity: One
approach uses differential properties of linear functions, the other measures the “distance” to
linear functions.

Let us begin with the differential properties. Given F : F n
2 → F n

2 , we define

∆F (a, b) := |{x : F (x+ a) − F (x) = b}|.

We have ∆F (0, 0) = 2n, and ∆F (0, b) = 0 if b 6= 0. Since we are working in fields of characteristic
2, we may replace the “−” by + and write F (x+a)+F (x) instead of F (x−a)−F (x). We say that
F is almost perfect nonlinear (APN) if ∆F (a, b) ∈ {0, 2} for all a, b ∈ F n

2 , a 6= 0. Note that
∆F (a, b) ∈ {0, 2n} if F is linear, hence the condition ∆F (a, b) ∈ {0, 2} identifies functions which
are quite different from linear mappings. Since we are working in characteristic 2, it is impossible
that ∆F (a, b) = 1 for some a, b, since the values ∆F (a, b) must be even: If x is a solution of
F (x + a) − F (x) = b, then x + a, too. In the case of odd characteristic, functions F : F n

q → F n
q

with ∆F (a, b) = 1 for all a 6= 0 do exist, and they are called perfect nonlinear or planar. In the
last few years, many new APN functions have been constructed. The first example of a non-power
mapping has been described in [26]. Infinite series are contained in [5, 10, 11, 12, 13, 16, 17]. Also
some new planar functions have been found, see [15, 22, 36].

There may be a possibility for a unified treatment of (some of) these constructions in the even
and odd characteristic case. In particular, we suggest to look more carefully at the underlying
design of an APN function, similar to the designs corresponding to planar functions, which are
projective planes, see [29].
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that their function is CCZ equivalent to a quadratic one. In this paper we give several reasons why this new function
is not equivalent to a quadratic one
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Another approach is to measure the distance between linear functions h : F n
2 → F2 and the

coordinate functions Fg : F n
2 → F2: They are defined via Fg(x) := g(F (x)) where g is a nonzero

linear function F n
2 → F2. We denote the set of all linear functions f : F n

2 → F2 by F̂ n
2 . The

Hamming distance dH(f, g) between two Boolean functions f, g : F n
2 → F2 is simply the number

of x such that f(x) 6= g(x).
We say that a function F is highly nonlinear if

min
f,g∈ cF n

2
g 6=0

(dH(f, Fg), dH(f + 1, Fg)) (1)

is large, i.e. the coordinate functions g ◦ F = Fg of F are as different as possible from all affine

linear functions f and f + 1, where f ∈ F̂ n
2 .

Instead of investigating dH(f, Fg) and dH(f + 1, Fg), we may equivalently investigate

WF (f, g) =
∑

x∈F
n
2

(−1)(g◦F )(x)+f(x).

We have

2n − 2dH(f, Fg) = WF (f, g) and 2n − 2dH(f + 1, Fg) = −WF (f, g).

This shows that the distances come in pairs d1 and d2 with d1+d2 = 2n. Instead of maximizing the
minimum of the dH(f, Fg), dH(f+1, Fg) with g 6= 0, we may equivalently minimize the maximum
of |W(f, g)|, g 6= 0.

The Walsh coefficients are basically the weights of the following code of length 2n: Let F :

F
n
2 → F

n
2 be any function. Define a matrix CF ∈ F

(2n,2n)
2 as follows: The columns are the vectors(

x
F (x)

)
, x ∈ F n

2 . Then the rows of the matrix

CF =

(
· · · x · · ·
· · · F (x) · · ·

)

x∈F
n
2

generate a code CF whose codewords are the vectors

v(f, g) = (f(x) + (g ◦ F )(x))x∈F n
2
,

where f and g are linear functions F n
2 → F2. It is easy to see that the Hamming weight dH(v(f, g))

of this codeword is related to the Walsh coefficient W(f, g) as follows:

2n − 2dH(v(f, g)) = W(f, g).

If the code CF does not contain the vector (1, . . . , 1), we may add this vector as a row to CF . The
vector space generated by the rows of this extended matrix is called the extended code Cext

F

associated with the function F . This construction means that we add the vectors w := v(f + 1, g)
to the code CF . If u := v(f, g), we have dH(u) + dH(w) = 2n and therefore

2n − 2dH(u) = −(2n − 2dH(w)),

which gives rise to the Walsh coefficients ±W(f, g). We note that the vector (1, . . . 1) is not
contained in CF if F is APN, see [9, 19], for instance.

The multiset of values WF (f, g) for all linear functions f, g is called the Walsh spectrum of
F .

Usually, the Walsh spectrum is defined in terms of the trace function of a finite field. This
“finite field definition” is completely equivalent to ours. We have used the vector space definition
in order to emphasize that the Walsh spectrum (or the Walsh transformation) is just a property
of the additive group of F n

2 . If we identify F n
2 with the additive group of the finite field F2n , then
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the linear mappings f : F n
2 → F2 are just the mappings fα defined via x 7→ tr(αx), where tr is the

usual trace function tr(x) :=
∑n−1

i=0 x
2i

. We have fα 6= fβ for α 6= β, and we put

WF (fα, fβ) =: WF (α, β).

We have WF (α, 0) = 0 if α 6= 0 and WF (0, 0) = 2n.
It is well known that there are α ∈ F2n and β ∈ F2n \ {0} such that

|WF (α, β)| ≥ 2(n+1)/2,

see [28], for instance. If n is odd, there are functions F with

|WF (α, β)| ≤ 2(n+1)/2

for all β 6= 0. Functions F : F n
2 → F n

2 with |WF (α, β)| ≤ 2(n+1)/2 for all β 6= 0 are called almost
bent (AB). Note that AB functions may exist only if n is odd. It is well known that any almost
bent function is also APN (see [35]), but not vice versa, see the comments about Table 1. However,
any quadratic APN (see Definition 2) in F

n
2 must be AB, see [19]. If a function F with F (0) = 0

is AB, its Walsh spectrum is completely known:

{∗ 2n [1], 0 [(2n−1 + 1)(2n − 1)], ±2(n+1)/2 [(2n − 1)(2n−2 ± 2(n−3)/2)] ∗} (2)

(the values in brackets [ ] denote the multiplicities of the Walsh coefficients, and the notion {∗ ∗}
indicates multisets). Similarly, the Walsh spectra of the Gold APN’s (see Table 1) with n even
are completely known, too, see [20], for instance:

{∗ 2n [1], 0 [(2n − 1)(2n−2 + 1)], ±2(n+2)/2 [ 13 (2n − 1)(2n−3 ± 2(n−4)/2)],
±2n/2 [23 (2n − 1)(2n−1 ± 2(n−2)/2)] ∗}.

(3)

We say that an APN function with spectrum (2) (if n is odd) or (3) (if n is even) has the
classical Walsh spectrum. We want to stress that just the APN property does not determine
the Walsh spectrum. APN functions may have quite different Walsh spectra. The reader can find
the classical spectra in [20], for instance. If F (0) 6= 0, the distribution of the spectral values may
be different, however the distribution of the absolute values will not change, see the comments
following Proposition 1.

Table 1: Known APN power functions xd on F2n

Exponents d Conditions Proven in

Gold functions 2i + 1 gcd(i, n) = 1 [27, 35]

Kasami functions 22i − 2i + 1 gcd(i, n) = 1 [30, 31]

Welch function 2t + 3 n = 2t + 1 [24]

Niho function 2t + 2
t
2 − 1, t even n = 2t + 1 [23]

2t + 2
3t+1

2 − 1, t odd

Inverse function 22t − 1 n = 2t + 1 [35]

Dobbertin function 24t + 23t + 22t + 2t − 1 n = 5t [25]

In Table 1, we list all known power APN mappings on F2n which are known so far: The Welsh
and Niho functions are also AB, the Gold and Kasami functions are AB if n is odd. It is known
that the inverse function and the Dobbertin function are not AB: The complete Walsh spectrum
of the inverse function has been determined in [33], those of the Dobbertin function in [18], and
these are not the spectra as defined in (3) and (2).

There are two questions which arise quite naturally:

Question 1. (1.) Is the list in Table 1 complete?
(2.) Are all these examples “different”?

We will discuss these questions in the next section.
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2 Equivalence of APN mappings

Let us begin with the second part of Question 1. In order to describe whether two functions F and
H are equivalent, we introduce group ring notation. This notion is also quite useful to describe
the technique of “switching” an APN function. This is a very powerful tool to construct new APN
functions, as we will show in this paper.

Let F be an arbitrary field, and let (G,+) be an additively written abelian group (we are only
interested in abelian groups, so we do not care about the general case). The group algebra F[G]
consists of all “formal” sums ∑

g∈G

ag g, ag ∈ F.

We define componentwise addition

∑

g∈G

ag g +
∑

g∈G

bg g :=
∑

g∈G

(ag + bg)g,

and a multiplication
∑

g∈G

ag g ·
∑

g∈G

bg g :=
∑

g∈G

(
∑

h∈G

ah · bg−h

)
g.

Together with these two operations and the scalar multiplication λ
∑

g∈G agg :=
∑

g∈G(λag)g, the
set F[G] becomes an algebra, the so called group algebra. The dimension of this algebra as an
F-vectorspace is |G|. Given a function F : F n

2 → F n
2 , we associate a group algebra element GF in

F[F n
2 × F n

2 ] with it:

GF :=
∑

v∈F
n
2

(v, F (v)) in F[F n
2 × F

n
2 ].

The coefficients of the group elements in GF are just 0 or 1 (more generally, any subset T of a
group G can be identified with the element

∑
g∈T g, where the coefficients of all elements in T are

1). We have the following very easy Lemma:

Lemma 1. A function F : F
n
2 → F

n
2 is APN if and only if

GF ·GF = 2n · (0, 0) + 2 ·DF in C[F n
2 × F

n
2 ] (4)

for some subset DF ∈ F n
2 × F n

2 .

In (4), we may replace C by any field of characteristic 6= 2 if we say for some subset DF ∈
F

n
2 × F

n
2 of size 2n−1 · (2n − 1).

We emphasize that G is additively written, but this addition is quite different from the addition
in the group algebra F[G]. If, for instance, A,B ⊂ G and A ∩ B = ∅, then A ∪ B is the subset
of G corresponding to A + B in F[G]. If g ∈ G, then A · g in F[G] corresponds to the subset
{a+ g : a ∈ A}. We call A · g a translate of A. It looks a bit awkward that the product A · g is
the set of sums a+ g with a ∈ A.

The ideal generated by GF in F2[F
n
2 ×F n

2 ] is a subspace of the 22n-dimensional vector space of
the group algebra F2[F

n
2 × F n

2 ]. The dimension is called the Γ-rank of the function F . Similarly,
the dimension of the ideal generated by DF in F2[F

n
2 × F

n
2 ] is called the ∆-rank of F .

The Walsh transform of a function F is nothing else than the Discrete Fourier transform of
GF , which we will describe briefly: If G is a finite abelian group, then there are |G| different
homomorphisms χ : G → C, and the set of these homomorphisms (called characters) form a
group under multiplication χ1χ2(g) := χ1(g) · χ2(g). This group is isomorphic to G. Characters
χ may be extended to homomorphisms χ : C[G] → C[G] by linearity:

χ(
∑

g∈G

ag g) :=
∑

g∈G

agχ(g).
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Let χ be a character of G, and Ψ an automorphism of G. Then the mapping χΨ : G → C

with χΨ(g) := χ(Ψ(g)) is again a character. Moreover, Ψ may be extended to a group algebra
automorphism. This shows that the Walsh spectrum of an element D ∈ C[G] is invariant under
the application of group automorphisms.

If G = F n
2 × F n

2 , the characters are the mappings χα,β defined by χα,β(u, v) := (−1)tr(αu+βv),
where we identify the vector space F n

2 with the additive group of the finite field F2n . Therefore,
the Walsh spectrum is just the multi-set of character values of GF .

Definition 1 (CCZ and EA equivalence, [14]). Two functions F,H : F n
2 → F n

2 are called CCZ
equivalent if there is a group automorphism Ψ of F

n
2 × F

n
2 and an element (u, v) ∈ F

n
2 × F

n
2

such that
Ψ(GF ) = GH · (u, v),

hence Ψ(GF ) is a translate of GH . If Ψ fixes the subgroup {(0, y) : y ∈ F n
2 } setwise, we say that

the functions are EA equivalent (EA = extended affine equivalent). If, additionally, Ψ fixes the
set {(x, 0) : x ∈ F n

2 }, then F and G are called affine equivalent.

We call this relation CCZ equivalent since it has been first introduced (using different notation)
by Carlet, Charpin and Zinoviev [19].

Proposition 1. If F is an APN (resp. AB) function, and if H is CCZ equivalent to F , then H
is also an APN (resp. AB) function.

Proof. Let GH = Ψ(GF ) · (u, v). If χ is a character of F n
2 × F n

2 , then χ(GH) = χΨ(GF ) · χ(u, v),
hence the maximum absolute character value is invariant under CCZ equivalence, hence H is AB
if F is AB. If F is APN, then

GF ·GF = n · (0, 0) + 2 ·DF

and therefore
GH ·GH = n · (0, 0) + 2 · Ψ(DF ) in C[F n

2 × F n
2 ].

This Proposition and its proof have some consequences: The Walsh spectrum is not invariant
under CCZ equivalence: The Walsh coefficients χ(GF ) and χ(GF ) · χ(u, v) differ by the factor
χ(u, v), hence by ±1. The problem comes via the addition of the element (u, v): The Walsh
spectrum is invariant under affine equivalence, but not under EA or CCZ equivalence. The set
containing the Walsh spectrum and its negative is called the extended Walsh spectrum, and
this is invariant under CCZ equivalence.

There is one drawback in the concept of CCZ equivalence: If F is APN (or AB), the group
algebra element Ψ(GF ) does not necessarily correspond to a function H , see [14], for instance.

It is obvious that the ∆- and Γ-ranks are invariant under CCZ equivalence.
Now we discuss the first part of Question 1: Is the list in Table 1 complete? This has been

answered negatively in [26]. One of the examples in [26] has been generalized to an infinite family,
and a lot more constructions have been found since. In particular, Dillon [21] presented a list of
12 examples in F

6
2 . This list apppears in [8], together with many new examples in the cases F

7
2

and F 8
2 .

However, all the new examples that have been constructed so far are “quadratic” in the sense
that the derivatives F (x+a)−F (x) are linear mappings. Since the property of being “quadratic”
is not invariant under CCZ equivalence (see [14]), we modify the definition as follows:

Definition 2. A function F : F n
2 → F n

2 is CCZ quadratic if F is CCZ equivalent to a function
H with the property that H(x+ a) −H(x) is linear for all a ∈ F n

2 .

How can we prove that a function is not CCZ quadratic? For this purpose, we look at the
following design or incidence structure associated with an APN function. We refer the reader to
the encyclopaedic book [2] for background from design theory and difference sets: The designs
that we are going to define here may be viewed as the designs developed from a certain type of
difference set.
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Definition 3 ([29]). Let F : F n
2 → F n

2 be an APN function. Then we define two incidence
structures (designs) on the point set F n

2 × F n
2 : In the first case, the blocks are the the sets

GF · (a, b) := {(x+ a, F (x) + b) : x ∈ F
n
2 }

for a, b ∈ F n
2 , i.e. the translates of GF . We call this design the development of GF , denoted by

dev(GF ). Similarly, the design whose blocks are the translates

DF · (a, b)

of DF (see Lemma 1) is the development of DF , denoted by dev(DF ). We call two designs
isomorphic if there is a permutation π on the set of points such that blocks (which are in our
situation just subsets B = {g1, . . .} of the point set) are mapped to blocks (i.e. {π(g1, . . .} is a
block).

Any incidence structure gives rise to an incidence matrix: Rows and columns are indexed by
the points and blocks, and the (p,B)-entry is 1 if the point p is incident with the block B; the
other entries are 0. The Γ-rank defined earlier is nothing else than the rank of the incidence matrix
of dev(GF ), considered as a matrix with entries in F2; similarly, the ∆-rank is the F2-rank of an
incidence matrix of dev(DF ).

Lemma 2. If F and H are CCZ equivalent APN functions, then the designs dev(GF ) and dev(GH)
are isomorphic. Moreover, the designs dev(DF ) and dev(DH) are isomorphic.

Proof. Straightforward, see also [29]: The group automorphism Ψ with Ψ(GF ) = GH · (u, v) is the
permutation on the point set which maps blocks to blocks.

Using MAGMA [4] it is quite easy to determine the automorphism groups of these designs for
small values of n. There is another group associated with the designs dev(GF ) (resp. dev(DF )):
The sets GF (resp. DF ) are subsets of F 2n

2 . Then there may exist automorphisms ϕ of F 2n
2 such

that ϕ(GF ) = GF · (u, v) (resp. ϕ(DF ) = DF · (u, v)) for some u, v ∈ F n
2 . These automorphisms

form a group contained in the automorphism group of the designs dev(GF ) (resp. dev(DF )). Using
notion adopted from the theory of difference sets, we call the group of these automorphisms the
multiplier group M(GF ) (resp. M(DF )) of dev(GF ) (resp. dev(DF )). It turns out that this
group is much easier to compute with MAGMA than the full automorphism groups of the designs.
We denote the group of translations τa,b : F n

2 ×F n
2 → F n

2 ×F n
2 with τa,b(x, y) := (x+ a, y+ b) by

T . Obviously, we have |T | = 22n, and |M(GF ) ∩ T | = 1 as well as |M(DF ) ∩ T | = 1.
Since the multiplier group normalizes T , we have the following Lemma:

Lemma 3. Let F : F n
2 → F n

2 be an APN function. Then

1. 〈M(GF ), T 〉 ⊆ Aut(dev(GF )).

2. 〈M(DF ), T 〉 ⊆ Aut(dev(DF )).

3. |M(GF )| · 22n = |〈M(GF ), T 〉|.

4. |M(DF )| · 22n = |〈M(DF ), T 〉|.

5. M(GF ) ⊆ M(DF ).

It is possible to show that M(GF ) is just the automorphism group of the extended code Cext
F

defined in the Introduction, see [8]. In all cases known to us, the “full” automorphism group of
the design dev(GF ) is just the multiplier group “times” the translations τa,b.

We do not knwo whether this observation that holds for small values is true in general:

Question 2. Is it possible that the full automorphism group of dev(GF ) (resp. dev(DF )) is larger
than |M(GF )| · 22n (resp. |M(DF )| · 22n)?
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It seems that the automorphism group is a good invariant for CCZ equivalence, in particular
to distinguish the quadratic from the non-quadratic case:

Theorem 4. If F : F n
2 → F n

2 is an APN mapping such that F (x + a) − F (x) is linear for all
a ∈ F n

2 , then the subgroup of the automorphism group of the development of GF which is generated
by the translations τa,b and the multipliers contains an elementary abelian group of order 23n.

Proof. The mappings τa,b : F 2n
2 → F 2n

2 with τa,b(x, y) = (x + a, y + b) are automorphisms of
dev(GF ), since τa,b(GF ) = GF ·(a, b). If F is quadratic, then we may assume (after replacing F by
a CCZ equivalent function, if necessary) that the mappings La(x) = F (x+a)+F (x)+F (a)+F (0)
are linear. We compute

(La + Lb)(x) = F (x) + F (x+ a) + F (a) + F (0) + F (x) + F (x + b) + F (b) + F (0)

= F (x+ a) + F (x+ b) + F (a) + F (b).

Now we use
La(b+ x) = F (a+ b+ x) + F (b + x) + F (a) + F (0)

and
La(b + x) = La(b) + La(x) = F (b) + F (a+ b) + F (x) + F (a+ x)

to obtain

F (a+ b + x) = F (b+ x) + F (a) + F (0) + F (b) + F (a+ b) + F (x) + F (a+ x). (5)

We get

La+b(x) = F (a+ b+ x) + F (a+ b) + F (x) + F (0)

= F (b + x) + F (a) + F (b) + F (a+ x) using (5)

= La(x) + Lb(x).

This shows that the mappings ψa defined by ψa(x, y) = (x, y + La(x)) are linear, and

ψa(GF ) = {(x, F (x) + La(x) : x ∈ F
n
2 }

= {(x, F (x+ a) + F (a) + F (0) : x ∈ F
n
2 }

= {(x− a, F (x) + F (a) + F (0) : x ∈ F
n
2 }

= GF · (−a, F (a) + F (0))

is a translate of GF , hence the mappings ψa are automorphisms of dev(GF ). Moreover, ψa+b =
ψb ◦ ψa, hence the ψa’s form a group of order 2n. It is not difficult to see that the ψc together
with the mappings τa,b from a group of order 23n.

Corollary 5. Under the assumptions of Theorem 4, the multiplier group M(GF ) (equivalently
the automorphism group of the extended code Cext

F ) has size divisible by 2n, and both the orders of
Aut(dev(GF )) and Aut(dev(DF )) are divisible by 23n.

Corollary 6 (Göloğlu, Pott [29]). The Kasami power functions x13 and x57 on F 7
2 are not CCZ

quadratic, hence they are not CCZ equivalent to quadratic functions.

Proof. Using MAGMA, it is easy to compute |Aut(dev(GF ))| for F (x) = x13 and F (x) = x157:
The order of the groups is, in both cases, 214 ·7 ·(27−1) (Table 6) which is not divisible by 221.

Most people conjecture that the examples in Table 1 are all CCZ inequivalent, except for small
n where some of the cases coincide, but as far as we know there is no proof, yet. It is known that
the Gold power mappings are CCZ inequivalent to the Kasami power mappings, and different
Gold exponents are CCZ inequivalent, see [11].
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There is another concept related to quadratic APN functions: If F is quadratic, then F (x +
a) − F (x) is linear, hence

Ha := {b : F (x+ a) − F (x) = b for some x ∈ F n
2 } (6)

is an affine subspace. If a 6= 0, this subspace has 2n−1 elements (since F is APN), hence its is an
(affine) hyperplane. We say that a function is crooked if the sets in (6) are (affine) hyperplanes for
all a. This concept is due to Bending and Fon-der-Flaas [1]. “Crooked” is not invariant under CCZ
equivalence, hence it would be better to say that a function F is crooked if it is CCZ equivalent
to a function for which all the sets Ha are hyperplanes:

Definition 4. An APN function F : F n
2 → F n

2 is called CCZ crooked if F is CCZ equivalent
to a function G such that the sets

{b : G(x+ a) −G(x) = b for some x ∈ F
n
2 }

are affine hyperplanes in F n
2 .

It is obvious that any (CCZ) quadratic function is (CCZ) crooked, and it is conjectured that
the converse is also true, see [3, 32] for partial results in this direction. However, as long as we do
not know whether non-quadratic crooked functions may exist, we need to find arguments that a
function is not CCZ crooked. The following argument gives an interesting necesary condition that
a function is crooked:

Theorem 7. Let F : F n
2 → F n

2 be an APN mapping. If F is CCZ crooked, then the dimension
of the ideal generated by DF ∈ F2[F

n
2 × F n

2 ] is at most 2n+1, hence the ∆-rank is at most 2n+1

(see Lemma 1 for the definition of DF ).

Proof. If F is crooked, there are 2n − 1 (affine) hyperplanes Ha such that

DF = {(a, x) : a ∈ F
n
2 \ {0}, x ∈ Ha}

(replace F by a CCZ equivalent function if necessary). We define

Ja := {(a, x) : x ∈ F
n
2 }.

As explained above, these subsets may be also interpreted as elements in F2[F
n
2 × F n

2 ]. We will
show that the ideal generated by DF is contained in the subspace I generated (as a vector space)
by the 2n+1 elements

{DF · (u, 0) : u ∈ F
n
2 } ∪ {Ja : a ∈ F

n
2 }.

It is sufficient to show that DF · (u, v) ∈ I for all (u, v) ∈ F n
2 × F n

2 . The set corresponding to
DF · (u, v) is {(a+ u,Ha + v) : a ∈ F

n
2 }, where Ha + v = {h+ v : h ∈ Ha}. Here we have used

the notation (x, T ) to denote the set of elements {(x, t) : t ∈ T }. Since Ha is a hyperplane, we
have Ha + y = Ha or Ha + y is the complement of Ha: In group algebra notation, this means for
fixed a ∈ F n

2

(a+ u,Ha + v) = (a+ u,Ha)} or (a+ u,Ha + v) = (a+ u,Ha) + Ja+u

in F2[F
n
2 × F n

2 ]. In the equation above, we again identify subsets with the corresoponding group
algebra elements. Adding the element Ja+u has the effect of complementing Ha in (a+u,Ha).

Corollary 8. The Kasami power mappings x13 and x57 on F 7
2 are not CCZ crooked.

Proof. It is easy to compute the ∆-ranks of x13 (resp. x57) using MAGMA: The ranks are 338
(resp. 436), see Table 6.
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It would be very interesting to determine the ∆- and Γ-ranks of APN functions theoretically.
In the next section (Theorem 11), we will construct a new APN function which, at first view,

seems to be non-quadratic. In order to prove that the function is indeed non-quadratic, we use
Theorem 7 to show that the function cannot be CCZ equivalent to a crooked function, hence it
cannot be quadratic. We may also use Theorem 4 to show that the function is non-quadratic, since
the automorphism group of dev(GF ) is too small for the new function F . We have checked that
our function is equivalent to the new example given in [7]. However, in that paper the authors
erroneously claimed that their new function is CCZ equivalent to a quadratic one. Moreover, our
function has been found independently from the search in [7].

3 The switching construction

The following interesting construction of an APN function is contained in [13]:

Proposition 2. The function x3 + tr(x9) is APN in F n
2 .

This is a special case of what we will call “switching”. For this purpose, we consider certain
projection homomorphisms on the group algebra F[G]. Let U be a subgroup of G. Then the
canonical homomorphism ϕU : G→ G/U defined by ϕU (g) := g+U can be extended by linearity
to a homomorphism ϕU : F[G] → F[G/U ]. Let D =

∑
agg be an element in F[G]. The coefficient

of g + U in ϕ(D) is
∑

h∈g+U ah. If D has just coefficients 0 and 1, hence D corresponds to a set
D ⊆ G, then the coefficient of g+U is |D∩(g+U)|. In particular, if each coset of U meets D in at
most one element, then ϕU (D) has also just coefficients 0 and 1. This is the case if U ≤ {0}×F n

2 .

Definition 5 (switching neighbours). Let F,H : F n
2 → F n

2 be two functions, and let U ≤ F n
2 ×F n

2

be a subgroup of F
n
2 × F

n
2 . We say that F and H are switching neighbours with respect to

U if ϕU (GF ) = ϕU (GH). We say that they are switching neighbours in the narrow sense if
U ≤ {0} × F n

2 and dim(U) = 1.

If F and H are switching neighbours with respect to U , we may obtain H from F by first
projecting GF onto ϕU (GF ), and then we lift this element to GH . We may also try to construct
new switching neighbours H of F via such a project and lift procedure such that (hopefully) F
and H are CCZ inequivalent. This is in particular promising if the dimension of U is small. The
intuitive idea behind this approach is that ϕU (GF ) is almost an APN function, and so it may be
easy to turn this “almost” APN into an APN function.

We will describe this approach (and applications) in the situation where F : F
n
2 → F

n
2 and

U ≤ {0}× F n
2 . This has the advantage that the coefficients of ϕU (GF ) are just 0 and 1, since the

cosets of {0}× F n
2 (and therefore also the cosets of U) meet GF no more than once. In this case,

ϕU (GF ) corresponds to a mapping FU : F n
2 → F n

2 /U
′ with FU (v) := v + U ′ and

U ′ = {u : (0, u) ∈ U} (7)

(hence U ′ is basically the same as U).

Proposition 3. Let F,H : F n
2 → F n

2 , and let U ≤ {0} × F n
2 . Then

FU = HU if and only if (0, F (v) −H(v)) ∈ U for all v ∈ F
n
2 .

If U = {(0, 0), (0, u)}, then FU = HU if and only if there is a Boolean function f : F
n
2 → F2 such

that H(v) = F (v) + f(v) · u.

Proof. We define U ′ as in (7). Then FU (v) = HU (v) if and only if F (v) + U ′ = H(v) + U ′, hence
FU (v) −HU (v) ∈ U ′ for all v. This shows the first part of the proposition.

The function f is defined via

f(v) :=

{
0 if F (v) = H(v)
1 if F (v) 6= H(v)

which finishes the proof.
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The two functions F (x) = x3 and H(x) = x3 + tr(x9) are switching neighbours in the narrow
sense: Take the 1-dimensional subspace U generated by (0, 1) ∈ F n

2 × F n
2 . Then ϕU (GF ) =

ϕU (GF ).
Proposition 3 shows that we may obtain all switching neighbours of F in the narrow sense (with

respect to a one-dimensional subspace) by adding a Boolean function f times a vector u 6= 0. Let
F be an APN function. The following Theorem gives a necessary and sufficient condition for f to
produce another (not necessarily equivalent) APN function:

Theorem 9. Assume that F : F n
2 → F n

2 is an APN function. Let u ∈ F n
2 , u 6= 0, and let

f : F n
2 → F2 be a Boolean function. Then F (v) + f(v) · u is an APN function if and only if

f(x) + f(x+ a) + f(y) + f(y + a) = 0

for all x, y, a ∈ F
n
2 with

F (x) + F (x+ a) + F (y) + F (y + a) = u.

Proof. Since F is APN, the equation

F (x+ a) + F (x) + (f(x+ a) + f(x))u = b

hat at most 4 solutions for x, namely those x for which F (x+ a) + F (x) ∈ {b, b+ u}. If there are
4 different solutions x, y, x+ a, y + a, then

F (x+ a) + F (x) + (f(x+ a) + f(x))u = b

F (y + a) + F (y) + (f(y + a) + f(y))u = b.

But this is possible if and only if

F (x) + F (x+ a) + F (y) + F (y + a) = u (8)

f(x) + f(x+ a) + f(y) + f(y + a) = 1.

Remark 1. 1. The Boolean function f depends on u, i.e. for different choices of u we may
get different f ’s.

2. It seems to be difficult to find a theoretical criteria that the function F (v) + f(v)u is CCZ
equivalent to F (v).

3. The functions F (v) and F (v) + f(v)u are switching neighbours in the narrow sense with
respect to {(0, 0), (0, u)}.

Theorem 9 immediately suggests a strategy to find Boolean functions f such that F (v)+f(v)u
is APN: Determine all 4-tuples x, y, x + y, y + a such that (8) holds. These 4-tuples give rise to
constraints

f(x) + f(x+ a) + f(y) + f(y + a) = 0

We may view f as a vector of length 2n (coordinates are indexed by elements v in F n
2 , and the

entries of the vector are f(v)). Thus the constraints are linear conditions, and we may find f ’s by
solving a system of linear equations.

Here is another interpretation: Write F n
2 as direct sum U ⊕ U . The function F is uniquely

determined by its function values. Consider the n-dimensional subspace V of F 2n

2 spanned by
{F (x) : x ∈ F n

2 }. Write F n
2 as direct sum U ⊕ U , this lifts to a decomposition of V = V ′ ⊕ V .

So the evaluation of f(v)u will be in the 1-dimensional space V ′.
All 4-tuples x, y, x + y, y + a such that the condition of Theorem 9 holds thus are the vectors

of weight 4 in V
⊥

(these are automaticly in V
⊥
− V ⊥ as F is APN). Let Ṽ be the vector space

generated by these words of weight 4. An evaluation vector of f(v)u (satisfying Theorem 9) is
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just an element of Ṽ ⊥. Moreover the functions f(x)u in Ṽ ⊥ in the same coset modulo V ⊆ Ṽ ⊥

are CCZ equivalent (the difference is some AF , A being a linear map F n
2 7→ F2). So it is sufficient

to test one f(x)u from each coset.
So we know in particular that in the case that Ṽ ⊥ has dimension n− 1 there is no candidate

for a CCZ inequivalent switching function.

Definition 6. The finest equivalence relation on the set of APN functions such that all switching
neighbours in the narrow sense and all EA-equivalent functions are equivalent, is called the EA
switching equivalence relation. In the same way, we define CCC switching equivalence.

This “switching idea” is closely related to a comment of John F. Dillon (which was motivated
by [13]). Using the notion in Proposition 3, he considered just the case u = 1.

In the next section, we determine the EA switching equivalence classes of all known CCZ
inequivalent APN functions on F n

2 , n ≤ 8. Several of the new constructions in the literature are
switching equivalent. It seems that the switching idea is quite powerful to construct new APN
functions, since many of the new APN functions listed by Dillon in [8] are within just one switching
class. In the case n = 8, the switching class of the Gold function x3 contains 17 CCZ inequivalent
functions!

A more appropriate search would be to find all CCZ switching classes, which seems to be much
harder than determining the EA switching classes.

4 Computational results and open problems

There is, up to equivalence, just one APN mapping F n
2 → F n

2 for n ≤ 4, hence no interesting
things happen in these cases. In the case n = 5, a complete classification of APN functions (up
to CCZ equivalence) is contained in [6]. We summarize our computational results in the following
tables. We also include some interesting CCZ invariants:

• ∆- and Γ-Rank.

• Orders of automorphism groups of dev(DF ), dev(GF ) and M(GF ).

• extended Walsh spectrum.

If all these invariants are the same, we used a direct test to check that the examples are CCZ
inequivalent, hence the reader can be sure that all the examples in the following tables are CCZ
inequivalent. However, we do not claim that our tables are complete in the sense that they contain
all possible CCZ equivalence classes of APN functions with n = 6, 7 and 8.

We list the Walsh spectrum just if it is different from the Walsh spectrum of x3. The Walsh
spectrum of x3 is called classical.

We number the examples as 1.1, 1.2, ..., 2.1, 2.2, ... etc. The first number describes the
switching class, and the second number the CCZ inequivalent examples within this class. Our
search was complete in the sense that, starting from the known APN functions, we searched
through the entire switching class. Hence any new APN function must be a member of a new
switching class. We used the examples in [21] and [8] as the starting cases.

Some comments about the sizes of the automorphism groups are in order: The automorphism
groups contain the translations τa,b, see Theorem 4, therefore we divided the group sizes in our
tables by 22n. We were not able to determine the sizes of these groups if n = 8. However, it was
possible to determine the multiplier group M(GF ) of dev(GF ): Using MAGMA, we determined the
automorphism groups of the associated extended codes Cext

F . In the cases n ≤ 7, the automorphism
groups of dev(GF ) have been always the groups generated by the multipliers plus the translations;
therefore, it may be possible that the the group sizes in Table 10 desribe actually the sizes of the
full automorphism groups.

We did not determine the multiplier groups M(DF ). In a forthcoming paper, we will continue
the investigation of the relations between the different groups associated with APN functions
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It is quite interesting to look at the automorphism groups of the designs dev(GF ), since they
give some information about F :

Theorem 10. Let F (x) be an APN function on F2n . Let v = |M(GF )|. Then the following holds:

(1.) If F (x) is quadratic, then 2n divides v.

(2.) If F is CCZ equivalent to a power mapping, then n · (2n − 1) divides v.

(3.) If F is CCZ equivalent to a polynomial in F2[x], then n divides v.

Proof. The first statement is simply Theorem 4. If F (x) ∈ F2[x], then the mapping F2n → F2n

defined by (x, y) 7→ (x2, y2) has order n, and it fixes the set GF . This shows (3). If F (x) = γ · xd,
then the 2n − 1 mappings defined by (x, y) 7→ (αx, αd · y), α ∈ F2n , fix the set GF . Moreover, we
may assume that γ = 1, otherwise we replace F by the CCZ equivalent function 1

γF , which shows

(2).

We did mention already that quadratic functions are crooked. The following question is of
interest:

Question 3. Are all crooked functions quadratic?

A function defined by
∑

i,j αi,jx
2i+2j

is quadratic. Therefore, Theorems 10 and 7 show the
following:

Remark 2. The only non-quadratic functions in Tables 3, 5 and 7 are the function no. 2.12 in
Table 3 and the functions no. 5.1,6.1 and 7.1 in 7. Moreover, none of these functions is crooked.

We note that our new function 14.3 in Table 7 is inequivalent to a polynomial with coefficients
in F2 (Theorem 10).

We note that Table 3 contains, up to CCZ-equivalence, all APN functions on F 5
2 . In the

tables (5), (7) and (9), we only claim that we did apply the switching construction recursively to
all known APN functions, in particular to those given by Dillon. In Table (5), the Example 2.12
is new (see Theorem 11), and in Table (7), the Example 14.3 is new. However, we did not apply
the switching construction to all the memebers of the CCZ equivalence classes. In other words, we
started with the functions listed in the tables below, and we determined the EA switching classes,
not the CCZ switching classes.

In our opinion, the most interesting function is the following non-quadratic example, see also
[7]:

Theorem 11. Let F26 be the finite field which is constructed as the splitting field of x6 + x4 +
x3 + x + 1 ∈ F2[x]. Let u be a root of this polynomial in F26 . Then the function F : F26 → F26

with

F (x) = x3 + u17(x17 + x18 + x20 + x24) + u18x9 + u36x18 + u9x36 + x21 + x42+
+tr(u27x+ u52x3 + u6x5 + u19x7 + u28x11 + u2x13)

(9)

is an APN function which is a switching neighbour of Function 2.4 in Table 5.Hier habe ich auch
noch mal wg. des primitiven Elementes umgeschrieben This function cannot be CCZ equivalent to
a crooked function.

Proof. One may quite easily check that the function is APN. One may also show that it is a
switching neighbour of x3 + u17(x17 + x18 + x20 + x24). Note that the ∆-rank 152 > 27 of this
function is too big for a crooked function, see Theorem 7.

Remark 3. The function F (x) in (9) may be also written

F (x) = x3 + u17(x17 + x18 + x20 + x24) +

u14(tr(u52x3 + u6x5 + u19x7 + u28x11 + u2x13) + tr8/2((u
2x)9) + tr4/2(x

21))

where tr8/2 and tr4/2 denote the relative trace F8 → F2 and F4 → F2. Note that (u2x)9 ∈ F8 and
x21 ∈ F4, so this re-writing of F is feasible.
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Two APN functions which are switching equivalent in the narrow sense are quite “similar”,
they are “almost” equal (see Proposition 3). Therefore, the following question seems natural:

Question 4. Is there some property which distinguishes switching equivalent functions from those
which are not switching equivalent?

Our computational results are quite pessimistic regarding this question. It seems that there
is no property of an APN function which is preserved under switching. Also the sizes of the
equivalence classes seem to behave “strange”: In the n = 8 case, there is one large switching class,
but in the case n = 7 there are only small classes.

It seems that many inequivalent APN functions exist. So, in our opinion, the main question
about APN functions is to determine at least a lower bound for the number of inequivalent ones.
Let APN(n) denote the number of CCZ inequivalent APN functions F n

2 → F n
2 . Then we ask:

Question 5. Does the function APN(n) grows exponentially?

This paper contains a new non-quadratic APN function. We think that it is worth to search
for more examples:

Problem 1. Find more nonquadratic APN functions.

We described the switching construction in quite a general form, and then we specialized to
the case of 1-dimensional subspaces U ≤ {0} × F n

2 . In this case, it was (rather) easy to find
switching neighbours. But of course one may also use higher-dimensional subspaces, or one
may use subspaces not contained in {0} × F

n
2 . It will be more difficult to handle these cases, but

we do not think that it is hopeless. If U becomes larger, the projections are further away from
being APN, therefore the “lifting” will become more difficult. On the other hand, if we are using
higher-dimensional subspaces U , we obtain more freedom for the lifting. But if U is too big, the
approach will most likely become useless: If, in the extremal case, U = {0} × F n

2 , then all APN
functions F project onto the same set ϕU (GF ).

A generalization of the switching idea to functions between fields of odd characteristic is obvi-
ous. Therefore, one may also apply this approach to PN functions:

Problem 2. Try to use the switching idea for other subspaces U or for PN functions.

Finally, we come back to the original motivation for studying APN functions: APN’s are used
in cryptography because they are highly nonlinear. Moreover, functions used in cryptography
should quite often have large algebraic degree. Therefore, quadratic functions are usually “weak”
regarding applications. But our paper shows that functions of large degree can be quite similar to
quadratic (i.e. weak) functions via our projection idea. Therefore, it may be worth to see whether
“switching” can be used for cryptanalysis.

In the following tables, it is important to know the primitive element that we have used to
construct the finite fields. In Table 2, we list these polynomials p(x). The primitive element u
used later in the tables is a root of p(x) in F2[x]/(p(x)), see [34] for more information about finite
field extensions.
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Table 2: Used primitive polynomials p(x)

n p(x)
6 x6 + x4 + x3 + x+ 1
7 x7 + x+ 1
8 x8 + x4 + x3 + x2 + 1

Table 3: All switching classes of APN’s in F 5
2

n = 5

No. F (x)
1.1 x3

1.2 x5

2.1 x−1

Table 4: Invariants of switching classes in Table 3

n = 5

No. Γ-rank ∆-rank |Aut(dev(GF ))|/210 |Aut(dev(DF ))|/210 Walsh spectrum
1.1 330 42 25 · 5 · 31 25 · 5 · 31 classical
1.2 330 42 25 · 5 · 31 210 · 5 · 31 classical
2.1 496 232 2 · 5 · 31 2 · 5 · 31 non-classical, see [33]

Table 5: Known switching classes of APN’s in F 6
2

n = 6

No. No. in [8] F(x)

1.1 1 x3

1.2 2 x3 + u11x6 + ux9

2.1 3 ux5 + x9 + u4x17 + ux18 + u4x20 + ux24 + u4x34 + ux40

2.2 4 u7x3 + x5 + u3x9 + u4x10 + x17 + u6x18

2.3 5 x3 + ux24 + x10

2.4 6 x3 + u17(x17 + x18 + x20 + x24)
2.5 7 x3 + u11x5 + u13x9 + x17 + u11x33 + x48

2.6 8 u25x5 + x9 + u38x12 + u25x18 + u25x36

2.7 9 u40x5 + u10x6 + u62x20 + u35x33 + u15x34 + u29x48

2.8 10 u34x6 + u52x9 + u48x12 + u6x20 + u9x33 + u23x34 + u25x40

2.9 11 x9 + u4(x10 + x18) + u9(x12 + x20 + x40)
2.10 12 u52x3 + u47x5 + ux6 + u9x9 + u44x12 + u47x33 + u10x34 + u33x40

2.11 13 u(x6 + x10 + x24 + x33) + x9 + u4x17

2.12 new Theorem 11
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Table 6: Known switching classes of APN’s in F 6
2 : Invariants

n = 6

No. Γ-rank ∆-rank |Aut(dev(GF ))|/212 |Aut(dev(DF ))|/212 Walsh spectrum

1.1 1102 94 27 · 33 · 7 28 · 33 · 7 classical
1.2 1146 94 26 · 32 · 7 27 · 32 · 7 classical

2.1 1158 96 26 · 5 26 · 5 classical
2.2 1166 94 26 · 7 27 · 7 classical
2.3 1166 96 27 · 7 27 · 7 classical
2.4 1168 96 26 26 classical

2.5 1170 96 26 · 5 26 · 5
{ 0(1), −8(1176), 8(1512), 0(1071),

16(210), −16(126), 64(1) }

2.6 1170 96 26 26 classical
2.7 1170 96 26 26 classical
2.8 1170 96 26 26 classical
2.9 1172 96 26 26 classical
2.10 1172 96 26 26 classical
2.11 1174 96 26 26 classical
2.12 1300 152 23 23 classical

Table 7: Known switching classes of APN’s in F 7
2

n = 7

No. No. in [8] F(x)

1.1 1 x3

1.2 7 x3 + tr(x9)

2.1 8 x34 + x18 + x5

2.2 11 x3 + x17 + x33 + x34

3.1 3 x5

4.1 2 x9

5.1 4 x13

6.1 5 x57

7.1 6 x−1

8.1 9 x65 + x10 + x3

9.1 13 x3 + x9 + x18 + x66

10.1 14 x3 + x12 + x17 + x33

10.2 10 x3 + x17 + x20 + x34 + x66

11.1 15 x3 + x20 + x34 + x66

12.1 16 x3 + x12 + x40 + x72

13.1 12 x3 + x5 + x10 + x33 + x34

14.1 17 x3 + x6 + x34 + x40 + x72

14.2 18 x3 + x5 + x6 + x12 + x33 + x34

14.3 new u2x96 + u78x80 + u121x72 + u49x68 + u77x66 + u29x65 + u119x48 + u117x40 + u28x36 +
u107x34 + u62x33 + u125x24 + u76x20 + u84x18 + u110x17 + u49x12 + u102x10 + u69x9 +
u14x6 + x5 + x3
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Table 8: Known switching classes of APN’s in F 7
2 : Invariants

n = 7

No. Γ-rank ∆-rank |Aut(dev(GF ))|/214 |Aut(dev(DF ))|/214 Walsh spectrum

1.1 3610 198 27 · 7 · 127 27 · 7 · 127 classical

1.2 4026 212 27 · 7 27 · 7 classical

2.1 4034 210 27 · 7 27 · 7 classical
2.2 4040 212 27 · 7 27 · 7 classical

3.1 3708 198 27 · 7 · 127 27 · 7 · 127 classical

4.1 3610 198 27 · 7 · 127 214 · 7 · 127 classical

5.1 4270 338 7 · 127 7 · 127 classical

6.1 4704 436 7 · 127 7 · 127 classical

7.1 8128 4928 2 · 7 · 127 2 · 7 · 127 non-classical, see [33]

8.1 4038 212 27 · 7 27 · 7 classical

9.1 4044 212 27 · 7 27 · 7 classical

10.1 4048 210 27 · 7 27 · 7 classical
10.2 4040 210 27 · 7 27 · 7 classical

11.1 4048 210 27 · 7 27 · 7 classical

12.1 4048 210 27 · 7 27 · 7 classical

13.1 4040 212 27 · 7 27 · 7 classical

14.1 4048 212 27 · 7 27 · 7 classical
14.2 4050 210 27 · 7 27 · 7 classical
14.3 4046 212 27 27 classical
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Table 9: Known switching classes of APN’s in F 8
2

n = 8

No. No. in [8] F(x)

1.1 1 x3

1.2 2 x9

1.3 5 x3 + trx9

1.4 6 x9 + trx3

1.5 7 x3 + u245x33 + u183x66 + u21x144

1.6 8 x3 + u65x18 + u120x66 + u135x144

1.7 new u188x192 + u129x144 + u172x132 + u138x129 + u74x96 + u244x72 + u22x66 + u178x48 +
u150x36 + u146x33 + u6x24 + u60x18 + u80x12 + u140x9 + u221x6 + u19x3

1.8 new u37x192 + u110x144 + u40x132 + u53x129 + u239x96 + u235x72 + u126x66 + u215x48 +
u96x36 + u29x33 + u19x24 + u14x18 + u139x12 + u230x9 + u234x6 + u228x3

1.9 new u242x192 + u100x144 + u66x132 + u230x129 + u202x96 + u156x72 + u254x66 + u18x48 +
u44x36 + u95x33 + u100x24 + u245x18 + u174x12 + u175x9 + u247x6 + u166x3

1.10 new u100x192+u83x144+u153x132+u65x129+u174x96+u136x72+u46x66+u55x48+u224x36+
u180x33 + u179x24 + u226x18 + u54x12 + u168x9 + u89x6 + u56x3

1.11 new u77x192 + u133x144 + u47x132 + u229x129 + u23x96 + u242x72 + u242x66 + u245x48 +
u212x36 + u231x33 + u174x24 + u216x18 + u96x12 + u253x9 + u154x6 + u71x3

1.12 new u220x192 + u94x144 + u70x132 + u159x129 + u145x96 + u160x72 + u74x66 + u184x48 +
u119x36 + u106x33 + u253x24 + ax18 + u90x12 + u169x9 + u118x6 + +u187x3

1.13 new u98x192 + u225x144 + u111x132 + u238x129 + u182x96 + u125x72 + u196x66 + u219x48 +
u189x36 + u199x33 + u181x24 + u110x18 + u19x12 + u175x9 + u133x6 + u47x3

1.14 new u236x192 + u212x160 + u153x144 + u185x136 + u3x132 + u89x130 + u189x129 + u182x96 +
u105x80+u232x72+u219x68+u145x66+u171x65+u107x48+u179x40+u227x36+u236x34+
u189x33 +u162x24 +u216x20 +u162x18 +u117x17 +u56x12 +u107x10 +u236x9 +u253x6 +
u180x5 + u18x3

1.15 new u27x192 + u167x144 + u26x132 + u231x129 + u139x96 + u30x72 + u139x66 + u203x48 +
u36x36 + u210x33 + u195x24 + u12x18 + u43x12 + u97x9 + u61x6 + u39x3

1.16 new u6x192 + u85x144 + u251x132 + u215x129 + u229x96 + u195x72 + u152x66 + u173x48 +
u209x36 + u165x33 + u213x24 + u214x18 + u158x12 + u146x9 + x6 + u50x3

1.17 new u164x192+u224x144+u59x132+u124x129+u207x96+u211x72+u5x66+u26x48+u20x36+
u101x33 + u175x24 + u241x18 + x12 + u15x9 + u217x6 + u212x3

2.1 4 x3 + x17 + u16(x18 + x33) + u15x48

3.1 9 x3 + u24x6 + u182x132 + u67x192

4.1 10 x3 + x6 + x68 + x80 + x132 + x160

5.1 11 x3 + x5 + x18 + x40 + x66

6.1 12 x3 + x12 + x40 + x66 + x130

7.1 3 x57

17



Table 10: Known switching classes of APN’s in F 8
2 : Invariants

n = 8

No. Γ-rank ∆-rank |M(GF ))| Walsh spectrum

1.1 11818 420 211 · 255 classical
1.2 12370 420 211 · 255 classical
1.3 13800 432 211 · 3 classical
1.4 13804 434 211 · 3 classical
1.5 13842 436 210 · 3 classical
1.6 13848 438 210 · 3 classical
1.7 14034 438 28 · 3 classical

1.8 14032 438 210 · 3 classical
1.9 14036 438 210 · 3 classical
1.10 14036 438 29 · 3 classical
1.11 14032 438 210 · 3 classical
1.12 14034 438 210 · 3 classical
1.13 14030 438 29 · 3 classical
1.14 14046 454 29 classical
1.15 14036 438 28 · 3 classical
1.16 14032 438 29 · 3 classical
1.17 14028 438 29 · 3 classical

2.1 13200 414 210 · 32 · 5 classical

3.1 14024 438 210 · 3 classical

4.1 14040 454 211 classical

5.1 14044 446 211 classical

6.1 14046 438 211 classical

7.1 15358 960 23 · 255 classical
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