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Abstract. We consider RSA with N = pq, q < p < 2q, public encryption exponent e and private
decryption exponent d. Boneh and Durfee (Eurocrypt 1999, IEEE-IT 2000) used Coppersmith’s method
(Journal of Cryptology, 1997) to factorize N using e when d < N0.292, the theoretical bound. However,
the experimental bound that has been reached so far is only N0.280 for 1000 bits integers (and less
for higher number of bits). The basic idea relied on LLL algorithm, but the experimental bounds were
constrained by large lattice dimensions. In this paper we present theoretical results and experimental
evidences to extend the bound of d for which RSA is weak. This requires the knowledge of a few most
significant bits of p (alternatively these bits need to be searched exhaustively). We provide experimental
results to highlight that the problem can be solved with low lattice dimensions in practice. Our results
outperform the existing experimental results by increasing the bounds of d and also we provide clear
evidence that RSA with 1000 bit N and d of the order of N0.3 can be cryptanalysed in practice from
the knowledge of N, e.
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1 Introduction

RSA [13] is one of the most popular cryptosystems in the history of cryptology. Here, we
use the standard notations in RSA as follows: primes p, q, with q < p < 2q; N = pq,
φ(N) = (p− 1)(q− 1); e, d are such that ed = 1 + kφ(N), k ≥ 1; N, e are available in public
and the message M is encrypted as C = M e mod N ; the secret key d is required to decrypt
the message as M = Cd mod N .

Wiener [17] showed that if one uses d < 1
3
N0.25, then RSA is insecure. Boneh and Dur-

fee [3] extended this bound up to d < N0.292 using Coppersmith’s technique [6]. There exist
considerable amount of references in the literature where the bound on d is increased till
O(N0.5) depending on different constraints on the differences of primes or the values of d, e
(see [2, 18, 12] and the references therein). However, there is no general result and experimen-
tal evidence where the bound for d can be increased exceeding O(N δ), where for example
δ = 0.3. Here we present ideas to achieve better bounds on δ such that N can be factorized
from the knowledge of e when d is O(N δ). This is to note that in [15], it has been clearly
pointed out that Wiener’s method cannot be extended with good efficiency beyond d of the
order of N0.25. In [8], RSA cryptanalysis has been studied following the idea of [6], where it
was considered that some bits of d are known.

In this paper we concentrate on the existing techniques [3, 4, 1] with the idea that a few
MSBs of the prime p is known. We consider that some estimate p0 of p is known such that



|p − p0| < Nγ, γ ≤ 1
2
. That is (1

2
− γ) log2 N many MSBs of p are known. The other way

of interpreting it is that one may need to try for N
1
2
−γ many possible options to guess the

MSBs of p. With this idea, we find that it is possible to exceed the bound of d over the works
of Boneh-Durfee [3, 4] and Blömer-May [1] with low lattice dimensions as used in [3, 4, 1].

The idea of [3] uses the full rank lattice for attacking this problem. Later in [4], sub-lattices
have been used for better results. This idea has been further extended in [1]. The main idea
used in [3, 4, 1] and in this work relies on three important parts: (i) reduction of lattice or
sub-lattice, (ii) calculation of resultant, (iii) finding roots of the resultant polynomial. The
idea of using sub-lattices (with lesser lattice dimension than the full rank lattice) instead of
full rank lattice provides improvements in time complexity during the first step, i.e., if sub-
lattice is used instead of lattice the requirement of time is less. This we detail in experimental
results. However, we have observed that the calculation of resultant needs significantly more
time than the first step irrespective of using lattice or sub-lattice. This shows that though
the idea of sub-lattices [4, 1] improved the bound on d than in [3] theoretically, there is not
much improvement in experimental results due to the overhead in calculating the resultant.
This has been pointed out in [1, Section 6] too.

The outline of the paper is as follows. In Section 1.1, we briefly discuss some background
materials. Next, in Section 2 we present our strategy on a theoretical framework which is
in the line of [3]. Section 3 describes the complete experimental details with comparison of
existing works.

1.1 Preliminaries

Now we briefly present some basics on basis reduction in lattice (see [3, 6] and the references
therein for more details). Consider that u1, . . . , uw ∈ Zn are linearly independent vectors
with w ≤ n. A Lattice, spanned by < u1, . . . , uw >, is the set of all linear combinations of
u1, . . . , uw, i.e., w is the dimension of the lattice. A lattice is called full rank when w = n. Let
L be a lattice spanned by linearly independent vectors u1, . . . , uw, where u1, . . . , uw ∈ Zn.
By u∗1, . . . , u

∗
w, we denote the vectors obtained by applying the Gram-Schmidt process to the

vectors u1, . . . , uw. It is known that given a basis u1, . . . , uw of a lattice L, LLL algorithm
can find a new basis b1, . . . , bw of L with the following properties.

– ‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2, for 1 ≤ i < w

– For all i, if bi = b∗i +
∑i−1

j=1 µi,jb
∗
j then |µi,j| ≤ 1

2
for all j.

– ‖ b1 ‖≤ 2
w
2 det(L)

1
w , ‖ b2 ‖≤ 2

w
2 det(L)

1
w−1 .

The determinant of L is defined as det(L) =
∏w

i=1 ||u∗i ||, where ||.|| denotes the Euclidean
norm on vectors.

Let us now explain the issue of solving the small inverse problem as presented in [3]. Let
d < N δ. We assume e is same order of magnitude as N . As e gets reduced, the Boneh-Durfee
technique [3] works better. Thus for the worst case scenario, one can assume d < eδ. It has

been noticed that ed = 1 mod φ(N)
2

. So ed + k(N+1
2

+ s) = 1, where k ∈ Z, s = −p+q
2

, i.e.,
k(N+1

2
+ s) − 1 = 0 mod e. Let f(x, y) = x(N + 1 − y) − 1. We have to find x0, y0 such



that f(x0, y0) ≡ 0(mode), where, |x0| < eδ and |y0| < e0.5. To find the roots, the modular
equation is transformed to an equation over integers by the idea of Coppersmith [6]. Given
a polynomial g(x, y) =

∑
ai,jx

iyj, we define the norm as ‖ g(x, y) ‖2=
∑

a2
i,j.

Theorem 1. [9] Let g(x, y) be a polynomial which is a sum of ω many monomials. Suppose
g(x0, y0) = 0 mod em for some positive integer m, where |x0| < X and |y0| < Y . If ‖
g(xX, yY ) ‖< em

√
ω
, then g(x0, y0) = 0 holds over integers.

Following [3], one can define the polynomials gi,k(x, y) = xifk(x, y)em−k and hj,k(x, y) =
yjfk(x, y)em−k for a given positive integer m and k = 0, . . . ,m, i = 0, . . . ,m − k and
j = 0, . . . , t for some positive integer t. Now consider the lattice LB spanned by the coefficient
vectors of the polynomials gi,k(xX, yY ) and hj,k(xX, yY ). One can check that the basis
vectors B(m, t) of the lattice LB form a triangular matrix MB.

Now we present the definition of geometrically progressive matrices following [4].

Definition 1. Let M be an (a+1)b×(a+1)b matrix. The pair (i, j) corresponds to (bi+j)-th
column of M . Similarly a pair (k, l) can be used to index (bk + l)-th row of M .

Let C, D, c0, c1, c2, c3, c4, β be real numbers with C, D, β ≥ 1. A matrix M is said to be
geometrically progressive with parameters (C, D, c0, c1, c2, c3, c4, β) if the following conditions
hold for all i, k in [0, . . . , a] and for all j, l, in [1, . . . , b]:

– |M(i, j, k, l)| ≤ C ·Dc0+c1i+c2j+c3k+c4l,
– M(k, l, k, l) = Dc0+c1k+c2l+c3k+c4l,
– M(i, j, k, l) = 0 whenever i > k or j > l.
– βc1 + c3 ≥ 0 and βc2 + c4 ≥ 0.

Theorem 2. [4, Theorem 5.1] Let M be an (a + 1)b × (a + 1)b geometrically progressive
matrix with parameters (C, D, c0, c1, c2, c3, c4, β), and let B be a real number. Define

SB = {(k, l) ∈ 0, . . . a× 1, . . . b|M(k, l, k, l) ≤ B}

and set w = |SB|. If L is the lattice defined by rows (k, l) ∈ SB of M , then

det(L) ≤ ((a + 1)b)w/2(1 + C)w2

M(k, l, k, l).

Blomer-May [1] referred to the coefficient vectors of the polynomials gi,k(xX, yY ) as the X
block. The X block is further divided into (m+1) many blocks named as Xl for l = 0, . . . ,m,
where the block Xl consists of the l +1 many coefficient vectors of gi,k with i+ k = l. Fixing
l, each of these l + 1 vectors is denoted as Xl,k, 0 ≤ k ≤ l (the k-th vector in the Xl block).
That is, Xl,k is the coefficient vector of gl−k,k.

Further, a Yj block is defined as the block of all m+1 coefficient vectors of the polynomials
that are shifted by yj. The k-th vector in Yj block is called Yj,k, which is the coefficient vector
of hj,k.

All column vectors with label xlyj, l ≥ j form a column block named X(l). Similarly the
column block Y (l) contains all column vectors labeled with xiyi+l. Then a new lattice LM is
presented in [1] as follows.



– Lattice parameters m and t are chosen to build a lattice basis B(m, t).
– In the block Yt of B(m, t), every vector is removed except for the last vector Yt,m.

In the block Y(t−1) of B(m, t), every vector is removed except for the last two vectors
Yt−1,m, Yt−1,m−1. This continues upto the block Y1, where every vector is removed except
the last t vectors Y1,m, Y1,m−1, . . . , Y1,m−t+1.

– Every vector in the block X is removed except for the vectors in the t + 1 many blocks
Xm−t, . . . , Xm.

– The columns need to be deleted in such a manner that the resulting basis is again trian-
gular. All column blocks X(0), X(1), . . . , X(m−t−1) are removed. Moreover, in the column
block Y (l), 1 ≤ l ≤ t, the columns labeled with xiyi+1, 0 ≤ i ≤ m− t + l, are removed.

Below, we give an example of the lattice basis for the parameter choice m = 3, t = 1. For
this m, t, the basis vectors B(3, 1) of the lattice LB form a triangular matrix MB as follows.
In case of [3], the product of the diagonal elements gives det(MB).

↓ ↓ ↓ ↓ ↓ ↓
1 | x xy | x2 x2y x2y2 | x3 x3y x3y2 x3y3 | y xy2 x2y3 x3y4

→ e3 e3

→ xe3 e3X
→ fe2 − − e2XY

x2e3 e3X2

xfe2 − − e2X2Y
f2e − − − − − eX2Y 2

x3e3 e3X3

x2fe2 − − e2x3Y
xf2e − − − − − eX3Y 2

f3 − − − − − − − − − X3Y 3

⇒ ye3 e3Y
⇒ yfe2 − − e2XY 2

⇒ yf2e − − − − − eX2Y 3

yf3 − − − − − − − − X3Y 4

In case of [4], the rows marked by ⇒ are removed. In that case, the sub-matrix of MB is
not a square matrix and the determinant is calculated following [4, Theorem 5.1] (presented
above in Theorem 2 also). The work of [1] removes the rows marked by ⇒ a well as →. This
sub-matrix of MB is again not a square one, but the columns marked by ↓ are also removed
to get a square matrix (see [1, Theorems 2, 3] for more details).

It has been demonstrated in [3] that for δ < 0.284, one can find m, t such that N can be
factored using the LLL algorithm. Further the idea was improved to extend this bound upto
0.292 by using non-triangular lattice bases [4]. Improvements towards implementation have
been studied in [1] by significantly reducing the lattice dimension for same m, t. They could
achieve the bound of δ till N0.290 theoretically which is less than the Boneh-Durfee bound of
N0.292, but the results of [1] were more efficient in practice.

Our idea in this paper is to extend the bounds of [3, 4, 1] further with small lattice
dimension given a few MSBs of p (which can also be searched exhaustively). One may note
that given the constraint q < p < 2q, a few bits of p, q can be known in polynomial time
(e.g., around 7 bits for 1024 bit N and 9 bits for 2048 bit N following the work of [16]). This
will indeed reduce the search effort further.



It is time consuming to handle large lattice dimensions and that is the constraint in
extending the value of δ using Boneh-Durfee [3] and related techniques [4, 1]. Also it is not
very clear how large lattice dimensions can be handled efficiently in a parallel environment.
In our case, it is very easy to distribute the work in different machines independently for
different choices of the MSBs, given the small lattice dimension to work with. Advantage of
our ideas in comparison with [3, 4, 1] is presented in Section 3.

2 Reduction in Lattice Dimension

We start working in the direction of [3, Section 4].

Theorem 3. Let N = pq, where p and q are primes of same bitsize. Let d = N δ. Suppose,
p0 ≥

√
N be an approximation of p with |p−p0| < Nγ, γ ≤ 1

2
. We show that, RSA is insecure

if δ <
γ+3−2

√
γ(γ+3)

3
.

Proof. We assume e = N as for e < N one can get better upper bound on δ (similar to the
approach of [3, Page 9]).

Let q0 = N
p0

. We have ed = 1+kφ(N) = 1+k(N+1−p−q) = 1+k(N+1−p0−q0−(p+q−
p0−q0)) = 1+x(A+y), where x = k < d = N δ = eδ, A = N+1−p0−q0, y = −(p+q−p0−q0).
As p >

√
N and as we assume p0 ≥

√
N too, we have |y| < Nγ = eγ.

We have to find x0, y0 such that 1 + x0(A + y0) ≡ 0 mod e, where |x0| < eδ and |y0| < eγ.
Let X = eδ, Y = eγ. Note that we consider the same X as in [3, Section 4], but our Y is

generalized as Y has been taken as e
1
2 in [3, Section 4].

One may refer to [3, Section 4] for detx = em(m+1)(m+2)/3Xm(m+1)(m+2)/3Y m(m+1)(m+2)/6

and dety = etm(m+1)/2X tm(m+1)/2Y t(m+1)(m+t+1)/2. Plugging in the values of X and Y (note

that our Y is different than [3, Section 4]), we obtain, detx = em3( 1
3
+ δ

3
+ γ

6
)+o(m3), dety =

etm2( 1
2
+ δ

2
+ γ

2
)+t2m γ

2
+o(tm2). Now det(L) = detxdety and we need to satisfy det(L) < emw, where

w = (m + 1)(m + 2)/2 + t(m + 1), the dimension of L. To satisfy det(L) < emw, we need
m3(1

3
+ δ

3
+ γ

6
)+tm2(1

2
+ δ

2
+ γ

2
)+t2mγ

2
< (tm+ m2

2
)m. This leads to m2(−1

6
+ δ

3
+ γ

6
)+tm(−1

2
+

δ
2

+ γ
2
) + t2 γ

2
< 0. After fixing an m, the left hand side is minimized at t =

1
2
− δ

2
− γ

2

γ
. Putting

this value we have, m2(−1
6

+ δ
3

+ γ
6
) +

m2(− 1
2
+ δ

2
+ γ

2
)( 1

2
− δ

2
− γ

2
)

γ
− ( 1

2
− δ

2
− γ

2
)2m2

γ2
γ
2

< 0, simplying

(−1
6
+ δ

3
+ γ

6
) +

(− 1
2
+ δ

2
+ γ

2
)( 1

2
− δ

2
− γ

2
)

γ
− ( 1

2
− δ

2
− γ

2
)2

γ2
γ
2

< 0. Hence, δ <
2γ+6−

√
(2γ+6)2+12(γ2+2γ−3)

6
and

simplifying we get δ <
γ+3−2

√
γ(γ+3)

3
.

Similar to the idea presented in [3, Section 4], if the first two elements (polynomials
P1(x, y), P2(x, y)) of the reduced basis out of the LLL algorithm are algebraically indepen-
dent (i.e., nonzero resultant res(P1, P2) which is a polynomial of y, say), then we will get
x0, y0 correctly which will in turn provide the factorization of N making RSA insecure. (This
actually happens with a high probability in practice as we have also checked by experimen-
tation.)



ut
First note that the result presented in Theorem 3 gives the same upper bound 0.284

presented in [3] when γ = 1
2
. In the above theorem we use lattice of full rank. We can

improve the bounds on δ if we use the techniques based on sub-lattice [4, 1]. These ideas are
discussed in Section 2.1.

Based on Theorem 3, one can design

– a probabilistic polynomial time algorithm A, which will take
– N, e, p0 as inputs
– and will provide correct p if

• |p− p0| < Nγ,

• δ <
2γ+6−

√
(2γ+6)2+12(γ2+2γ−3)

6
• and the resultant polynomial res(P1, P2) on y is nonzero with integer solution (in

practice the integer solution is correct with a high probability).

It is important to study the performance of the algorithm A, based on different values of
m, t. Our main improvement is achieved due to the lesser bound on Y . Once again, we like
to reiterate that we consider the same X as in [3, Section 4], but our Y = eγ is smaller than

the Y considered as e
1
2 in [3, Section 4].

The knowledge of MSBs of p0 can be interpreted as following also. One can use A for
p0 =

√
N to

√
2N (as for q < p < 2q, we have

√
N < p <

√
2N) at an interval of Nγ, i.e.,

one needs to try for (
√

2− 1)N
1
2
−γ many steps. Each step will require π(N) time complexity

when π(N) is the running time for A. It is important to mention here that proper choice
of m, t are required to get the results and we will compare this with [3, Section 6, Page 9]
and [1, Table 1, Section 6, Page 18].

For γ = 0.477, we find that δ < 0.30044, and for γ = 0.478, we find that δ < 0.29975.
Thus, for δ = 0.3, it is enough to consider γ = 0.477, which gives 1

2
− γ = 0.023. Hence,

theoretically speaking, we either need to know (1
2
−γ)×log2 N many bits of p0 or N

1
2
−γ many

invocations of A are required. Thus, N can be factorized in O(N0.023π(N)) time complexity
with the knowledge of e when d is O(N0.3). For 1000 bit integers, our strategy will require
either the knowledge of 23 bits or 223 invocations of A. See Table 1 later in Section 2.1 for
more detailed results. However, these are only theoretical estimates and we will present the
exact experimental details in Section 3.

Remark 1. If we do not neglect the lower order terms in Theorem 3, then to satisfy det(L) <
emw we need

m(m+1)(
m + 2

3
+

t

2
)δ +(m+1)(

m(m + 2)

6
+

t(m + t + 1)

2
)γ < m(m+1)(

m + 2

6
+

t

2
). (1)

The value of γ is always 1
2

in the analysis of [3]. However, due to the knowledge of a few bits,
we can have γ < 1

2
, and thus it is possible to get extended bound on δ in our case. This is

the reason we get improved bounds on d from Theorem 3 than the idea of [3] for same lattice
dimension. Later in Section 2.1 where we exploit the ideas related to sub-lattice, the similar
technique is used and hence following Theorems 4, 5, we get better bounds on d than what
presented in [4, 1] respectively.



2.1 Exploiting the Sub-lattice based Techniques

Boneh and Durfee showed how they improve their result δ < 0.284 [3] to δ < 0.292 [4] using
the sub-lattice technique. We will now follow the idea of [4]. This idea has also been followed
in [18, Section 6].

Theorem 4. Let N = pq, where p and q are primes of same bitsize. Let d = N δ. Suppose,
p0 ≥

√
N be an approximation of p with |p−p0| < Nγ, γ ≤ 1

2
. We show that, RSA is insecure

if 1− 2γ < δ < 1−√
γ.

Proof. This proof is similar to the proof of Theorem 3, till the calculation of detx. However,
dety will be different here than in the proof of Theorem 3.

Let MBy be the portion of the matrix MB with rows corresponding to the y shifts and
columns corresponding to the variables of the form xuyv, for v > u. In this case, MBy is a
geometrically progressive matrix with parameter choice (m2m, e, m, δ + γ, γ − 1,−1, 1, b) for
some b. One may note that the first three conditions of Definition 1 hold. To satisfy the fourth
condition, the parameter b should satisfy b(δ + γ)− 1 ≥ 0 and b(γ− 1) + 1 ≥ 0 together and
thus we get the constraint δ > 1− 2γ, which in turn gives a possible value of b as b = 2

2−2γ
.

Similar to the idea of [4], we also get the optimal choice for t as twice the value of t in
Theorem 3, i.e., t = 1−δ−γ

γ
m. Following Definition 1, we have MBy(k, l, k, l) = em+(δ+γ−1)k+γl.

Denote SB (as in Theorem 2) by S when B = em. By our choice of t, we have (k, l) ∈ S iff

l ≤ 1−δ−γ
γ

k. Neglecting the lower order terms, |S| = 1−δ−γ
2γ

m2. Thus w = (m+1)(m+2)
2

+ |S| =
m2

2
+ |S| = (1

2
+ 1−δ−γ

2γ
)m2 (neglecting lower order terms) = 1−δ

2γ
m2. Following the similar

idea as in [4] and going through similar calculation in [18, Section 6] for the sub-lattice, we

get dety = e
1
12

9−4(δ+1
2+γ)2

2γ
m3

. Then the condition det(L) = detxdety < emw gives the bound
δ < 1−√

γ. ut

The result presented in Theorem 4 gives the same upper bound 0.292 presented in [4] when
γ = 1

2
. Next we present an approach following [1, Section 4].

Theorem 5. Let N = pq, where p and q are primes of same bitsize. Let d = N δ. Suppose,
p0 ≥

√
N be an approximation of p with |p−p0| < Nγ, γ ≤ 1

2
. We show that, RSA is insecure

if δ <

√
16γ2−4γ+4−(6γ−2)

5
.

Proof. This proof is again similar to the proof of Theorem 3, but both detx and dety will be
different here than in the proof of Theorem 3. Given that certain rows and columns of MB

will be removed following the idea of [1], the diagonal elements of the new matrix will be
Xmem, XmY em−1, . . . , XmY m,
Xm−1em, Xm−1Y em−1, . . . , Xm−1Y m−1e,
. . .,
Xm−tem, Xm−tY em−1, . . . , Xm−tY m−tet

for x-shifts (i.e., they will contribute to detx) and
XmY m+t,



XmY m+t−1, Xm−1Y m+t−2e,
. . .,
XmY m+1, Xm−1Y me, . . . Xm−t+1Y m−t+2et−1,
for y-shifts (i.e., they will contribute to dety).
Multiplying the diagonal elements and neglecting the lower order terms, we need the

condition

X tm2−mt2

2
+ t3

6 Y
tm2

2
+ t3

6 < e
tm2

2 .

Putting the values of X = eδ, Y = eγ, t = τm, we have the required condition

(
δ

6
+

γ

6
)τ 2 − 1

2
δτ + (δ +

γ

2
− 1

2
) < 0.

The left hand side is minimum when τ = δ
2
3
(δ+γ)

. Putting this value of τ , in the previous

inequality we get the bound on δ. ut

The result presented in Theorem 5 gives the same upper bound 0.290 presented in [1]
when γ = 1

2
.

In Table 1 we present the corresponding values of γ for which the values of δ can be
reached. The value of 1

2
−γ gives the proportion of bits we need to know or search exhaustively.

We start listing the results from δ = 0.285, as already there is theoretical result available for
δ = 0.284 using full rank lattice [3] (the theoretical result achieving δ = 0.292 is presented
using sub-lattice in [4]).

δ γ γ γ
Theorem 3 Theorem 4 Theorem 5

0.285 0.49962 0.5 0.5

0.290 0.49224 0.5 0.49985

0.295 0.48491 0.49703 0.49284

0.300 0.47763 0.48999 0.48589

Table 1. Theoretical estimate of γ following Theorems 3, 4, 5 to reach the corresponding bounds on δ.

It is clear from the Table 1, that from theoretical point of view, the best efficiency is
achieved in Theorem 4, followed by Theorem 5 and Theorem 3.

3 Complete Experimental Details

We have implemented the program in SAGE 2.10.1 over Linux Ubuntu 7.04 on a computer
with Dual CORE Intel(R) Pentium(R) D CPU 2.80GHz, 1 GB RAM and 2 MB Cache.
While comparing our results to the existing results [3, 4, 1], we will present higher bounds on
d indeed.

In Section 3.1, we present the results related to the algorithms in [3, 4, 1] on our platform.
Then we discuss the implementation results in Section 3.2 related to Theorem 3, where the



full rank lattice is exploited. The results related to sub-lattice (i.e., experimental results
related to Theorems 4, 5) are presented in Section 3.3.

3.1 Existing Experimental Results

First we restate the results of [3, Table in Section 6] in Table 2 with the running time on our
experimental setup, which will provide a clear idea of our improvement while presenting our
results.

N δ m t lattice dimension running time [3] running time on our machine

1000 bits 0.265 5 3 39 45 minutes 23 seconds

3000 bits 0.265 5 3 39 5 hours 128 seconds

10000 bits 0.255 3 1 14 2 hours 7 seconds

Table 2. Running time estimate of [3] on our setup.

In Table 3 we present the results of [4, 1] to give an idea of lattice dimensions required
for certain δ values. The time estimates are presented as in the corresponding papers [4, 1].

N δ m t lattice dimension running time Reference

1000 bits 0.270 6 2 21 19 minutes [1]

1000 bits 0.274 8 3 36 300 minutes [1]

1000 bits 0.2765 10 4 55 26 hours [1]

1000 bits 0.278 11 5 72 6 days [1]

1000 bits 0.280 7 3 45 14 hours [4]

2000 bits 0.265 4 2 15 6 minutes [1]

2000 bits 0.275 7 3 45 65 hours [4]

4000 bits 0.265 5 2 25 14 hours [4]

6000 bits 0.265 4 2 15 100 minutes [1]

6000 bits 0.269 5 2 18 8 hours [1]

10000 bits 0.255 3 1 11 90 minutes [4]

Table 3. Results from [4, 1].

We have already pointed out that for practical experiments, the resultant calculation
takes more time than lattice reduction. It is not clear from the experimental results in [3,
4] whether the resultant calculation time has been considered. In [1, Section 6], it has been
clearly commented that only lattice reduction time has been presented.

Let us denote the lattice reduction time by T l
i , the resultant calculation time by T r

i and
the solution time by T s

i (in seconds).
We have implemented the algorithms of [3, 4, 1] to study all the time requirements in

detail. Below we present the running time for 1000, 2000 and 4000 bits N and for δ = 0.26,
where m = 7, t = 3. It is clear from the experimental results in Table 4 that the resultant



calculation takes more time than lattice reduction. The experiments are for a single run in
each case.

N w Reference Tl Tr Ts

1000 bits 60 [3] 76.29 411.42 3.90
1000 bits 45 [4] 61.17 410.72 4.20
1000 bits 32 [1] 29.58 333.76 2.46

2000 bits 60 [3] 347.56 1139.58 11.03
2000 bits 45 [4] 283.69 1147.34 13.17
2000 bits 32 [1] 148.71 938.79 8.02

4000 bits 60 [3] 1358.30 2461.80 37.89
4000 bits 45 [4] 1041.47 2465.66 58.23
4000 bits 32 [1] 605.03 2028.11 32.96

Table 4. Experimental Results for execution of the algorithms presented in [3, 4, 1] on 1000, 2000 and 4000 bits N
give our platform, when m = 7, t = 3, δ = 0.26.

Note that, given m, t, the lattice dimension w can be calculated directly as w = (m +
1)(m + 2)/2 + t(m + 1) for [3] (Theorem 3 in our approach) and w = (m + 1)(t + 1) for [1]
(Theorem 5 in our approach). However, the there is no exact formula for calculating w from
m, t for the case of [4] (Theorem 4 in our approach). Thus, in this section, the value of w is
presented as found experimentally following Theorem 4 in our approach and we present the
maximum value of w, when more than one runs are executed.

3.2 Our Experimental Results: Using Complete Lattice

In this section we concentrate on the experimental results following our Theorem 3.

In Table 5, we present our results for 1000-bit N that shows that the bound on δ can be
increased much further than the work of [3, 4, 1] as listed in Tables 2, 3. While considering
the primes, we take q < p < 2q, i.e., p, q are of same bit size. Further we select p, q randomly
with the constraint that p − q > n0.45 and 2q − p > n0.45 so that the ideas in the direction
of [18, 12] do not work efficiently. The cryptanalytic strategy of [18] works well when p− q is
bounded and in the same direction, the method of [12] works well when 2q − p is bounded.

By τ -bit N we mean that p, q are of τ
2

bits each. The column with δ provides that we
consider the first d which is greater than or equal to dN δe such that d is coprime to φ(N).
After fixing δ, the size of N (which is 1000 bits for the Table 5) and the lattice parameters
(m, t, w), we go for 100 runs for each case (except for m = 7, t = 3, when we go for 10 runs).
For each run, we calculate the minimum number of bits (for i-th run, call this variable vi)
that need to be known to factorize N from the knowledge of N, e using the idea of Theorem 3.
We present the minimum min(vi), maximum max(vi), average v and standard deviation σ(v)
of the data set vi, for i = 1, . . . , 100. Further, consider that the time required for each run is
Ti second(s), while considering vi many bits are known.



As the solution time is almost negligible compared to the other two, for the results in
this subsection we consider Ti = T l

i + T s
i . The average of Ti over 100 data is also presented

as T , which is in second(s).

m = 3, t = 1, w = 14

δ min(vi) max(vi) v σ(v) T

0.280 30 33 31.3 0.900 0.252

0.285 37 41 39.0 1.096 0.327

0.290 45 48 46.1 0.700 0.325

0.295 52 55 53.6 0.800 0.332

0.300 60 62 61.0 0.775 0.328

m = 3, t = 2, w = 18

δ min(vi) max(vi) v σ(v) T

0.280 29 34 31.41 1.040 0.286

0.285 38 41 39.04 0.811 0.362

0.290 44 50 46.36 0.986 0.365

0.295 51 57 53.81 1.102 0.366

0.300 59 64 61.13 1.064 0.368

m = 5, t = 1, w = 27

δ min(vi) max(vi) v σ(v) T

0.280 18 23 20.96 1.076 20.380

0.285 27 32 29.0 0.970 20.422

0.290 34 39 37.17 1.105 20.493

0.295 44 48 45.35 0.910 20.565

0.300 51 57 53.45 0.994 21.534

m = 5, t = 2, w = 33

δ min(vi) max(vi) v σ(v) T

0.280 15 19 16.75 1.014 23.613

0.285 22 27 24.37 0.976 24.040

0.290 29 34 31.56 0.962 24.876

0.295 36 41 38.72 1.021 25.114

0.300 44 48 45.99 0.995 25.267

m = 5, t = 3, w = 39

δ min(vi) max(vi) v σ(v) T

0.280 15 19 16.61 0.915 24.158

0.285 22 27 24.17 0.960 24.606

0.290 30 34 31.47 1.044 25.484

0.295 37 41 38.72 0.991 25.677

0.300 44 48 45.82 0.993 25.851

m = 7, t = 3, w = 60

δ min(vi) max(vi) v σ(v) T

0.280 8 10 8.7 0.640 481.016

0.285 15 17 16.5 1.118 483.016

0.290 23 25 23.9 0.831 487.354

0.295 30 33 31.5 1.204 499.738

0.300 37 40 38.59 0.917 520.45

Table 5. Our results for 1000 bits N and different m, t, w.

The data in Table 5 clearly presents the improvements over the works of [3, 4, 1] for
achieving higher bounds on δ for 1000 bits N .

We present detailed results for 1000 bits N in Table 5 and for 10000 bits N in Table 7. A
few results are provided for 2000, 4000 and 6000 bits N in Table 6. We consider the δ values
which are higher than the results achieved in [4, 1] (see also Table 3). To have a comparison,
we take same values of m, t as used in the highest values for δ in [3, 4, 1].

N δ m t w min(vi) max(vi) v T

2000 bits 0.280 7 3 60 15 17 16 1341.61

4000 bits 0.270 5 2 33 0 0 0 183.49

6000 bits 0.270 5 2 33 0 0 0 305.21

Table 6. Our Results for 2000, 4000 and 6000 bits N .

For 2000 bits N , we need to search 16 bits on an average and out of that 9 bits can be
known using the technique of [16, Section 3.3]. Thus, the total work can be completed in a
day with two computers with our specifications. We could reach the bound δ = 0.270 (this



is a better bound than what described in [3, 4, 1]) for 4000 and 6000 bits N , without the
knowledge of any bit in p0.

Next we present our experimental results for 10000 bits N in Table 7.

δ min(vi) max(vi) v σ(v) T

0.260 0 0 0 0 7.38

0.261 0 0 0 0 7.21

0.262 2 4 3 0.63 7.12

0.263 18 21 19.6 1.11 7.12

0.265 51 53 51.79 0.60 7.19

0.270 131 133 132.1 1.22 7.54

δ min(vi) max(vi) v σ(v) T

0.275 212 215 213.5 0.81 7.82

0.280 293 295 293.8 0.75 7.95

0.285 369 370 369.4 0.488 10.61

0.290 442 443 442.7 0.44 10.62

0.295 516 519 517.1 0.96 10.74

0.300 589 591 589.9 0.68 10.79

Table 7. Our results for 10000 bits N and different m = 3, t = 1, w = 14.

Refer to the result of [4] in this direction (see also Table 3) where in such a case the bound
of δ = 0.255 could be achieved. However, we could reach the bound δ = 0.261 without the
knowledge of any bit in p0. Moreover, from the results in Table 7, it is clear that the bound of
δ = 0.263 can be achieved easily in practice by searching around 20 MSBs of p. Considering
that at least 10 bits will be available using the technique of [16], the other 10 bits can be
exhaustively searched in less than two hours on a computer with our specification.

3.3 Our Experimental Results: Using Sub-Lattice

In this section, we compare the experimental results related to Theorems 3, 4, 5. For com-
parison, we go for 10 runs for each case as presented in Table 9. One may easily note from
Table 9 that the lattice reduction time reduces when sub-lattice is used instead of full rank
lattice.

Below we present the results using the lattice parameters m = 11, t = 5. Using the
technique of Theorem 3, we get the lattice dimension w = 138 and exploiting the strategy
using sub-lattice following Theorem 4, we get w = 108 at maximum. Among the techniques
we discuss in this paper, the minimum sub-lattice dimension is w = 72, using the idea of
Theorem 5. We present the implementation results for this in Table 8. Due to longer time
requirement, we present the result of one run in each case.

m = 11, t = 5, w = 72 (Theorem 5)

δ vi Tl Tr Ts

0.280 3 1185.81 16741.77 46.92

0.285 10 1425.12 16954.72 39.11

0.290 18 1630.63 17107.79 40.23

0.295 25 1687.21 17135.02 59.61

0.300 33 1770.66 17222.95 59.38

Table 8. Experimental results following Theorem 5.



Remark 2. We like to estimate the best possible scenario in these attacks.

– The bound of δ = 0.285 has never been achieved so far for 1000 bit N . Using m = 7, t =
3, w = 32, we find from Table 9 that around 17 bits need to be known to cryptanalyze
RSA. In [16, Section 3.3], experimental results are known that a few bits of p, q can
be extracted in polynomial time (around 7 bits for 1024 bit N). Thus, using the 7-bits
available from the technique of [16], only 9-bits need to be known. Given each run requires
around 354 seconds, we need only a day with 2 machines.

– Now we present the estimate for m = 11, t = 5 following Table 8. Here the lattice
dimension is 72 only. Our estimate is less than 6 hours to reduce the lattice in the
machine we have referred (i.e. around 4 lattice reductions in a day). The requirements
of bits will be around 33 for δ = 0.3. Given that 7 bits will be available from the idea
of [16], we need 216 many CPUs to complete the task in 256 days (less than a year).

4 Conclusion

In this paper we show that the techniques of [3, 4, 1] can be modified to have higher bounds
on d with low lattice dimensions. First of all, our idea provides theoretical extension of the
bound of N0.292 given the knowledge of some MSBs of p, which can also be managed by
exhaustive search. We use the same lattice dimensions as presented in [3, 4, 1] to have larger
values of d for which RSA can be attacked given N, e. Our experimental results outperform
the results of [3, 4, 1] for 1000, 2000, 4000, 6000 and 10000 bits N . We justify that for 1000
bits N , RSA can be crypanalyzed in practice when d is of the order of N0.3.
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m = 3, t = 1, w = 14 (Theorem 3)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 30 32 31.2 0.600 0.072 0.167 0.016

0.285 38 40 39.2 0.600 0.077 0.242 0.038

0.290 46 48 47.0 0.894 0.077 0.241 0.039

0.295 53 56 53.9 1.044 0.080 0.240 0.038

0.300 59 63 61.3 1.110 0.081 0.242 0.038

m = 5, t = 2, w = 33 (Theorem 3)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 15 17 16.6 0.48 2.17 21.5 0.57

0.285 23 25 24.2 0.74 2.39 21.59 0.57

0.290 32 33 32.2 0.39 2.51 22.32 0.61

0.295 37 39 38.2 0.74 2.68 22.33 0.56

0.300 45 47 46.6 1.01 2.84 22.45 0.67

m = 3, t = 1, w = 12 (Theorem 4)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 31 34 32.1 1.136 0.056 0.164 0.016

0.285 38 40 39.1 0.831 0.057 0.242 0.038

0.290 45 47 46.3 0.640 0.056 0.231 0.037

0.295 53 55 54.1 0.700 0.059 0.244 0.041

0.300 60 62 61.4 0.800 0.061 0.242 0.038

m = 5, t = 2, w = 27 (Theorem 4)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 16 17 16.4 0.48 1.42 21.34 0.65

0.285 23 25 24.4 1.02 1.45 21.67 0.54

0.290 30 32 31.6 0.79 1.84 22.45 0.51

0.295 39 40 39.2 0.39 2.02 22.48 0.66

0.300 45 48 46.6 1.01 2.14 22.42 0.50

m = 3, t = 1, w = 8 (Theorem 5)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 27 31 29.9 0.860 0.037 0.165 0.016

0.285 36 40 38.0 0.843 0.038 0.166 0.016

0.290 43 48 45.8 0.941 0.039 0.166 0.016

0.295 52 56 54.1 0.840 0.040 0.166 0.015

0.300 59 64 62.1 0.990 0.041 0.166 0.015

m = 5, t = 2, w = 18 (Theorem 5)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 16 18 17 0.89 1.22 16.97 0.33

0.285 24 26 25.4 0.80 1.28 16.94 0.28

0.290 31 33 32.2 0.74 1.31 16.76 0.32

0.295 39 41 40 0.63 1.74 16.81 0.29

0.300 47 49 48 0.48 1.48 16.86 0.28

m = 5, t = 3, w = 39 (Theorem 3)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 16 18 16.9 0.83 2.59 21.54 0.58

0.285 23 26 24.8 0.87 2.93 22.08 0.56

0.290 31 33 31.9 0.7 3.06 22.36 0.58

0.295 38 40 38.8 0.6 3.28 22.46 0.56

0.300 45 47 45.6 0.66 3.41 22.42 0.59

m = 7, t = 3, w = 60 (Theorem 3)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 8 10 8.9 0.70 34.33 449.42 5.74

0.285 16 19 17.0 0.89 36.99 449.31 5.66

0.290 23 26 24.1 0.83 39.02 450.50 5.96

0.295 31 33 31.4 0.66 46.070 456.99 5.87

0.300 37 41 38.7 1.19 47.91 475.73 5.81

m = 5, t = 3, w = 27 (Theorem 4)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 16 18 16.7 0.64 1.42 21.59 0.59

0.285 23 26 24.7 0.9 1.76 21.95 0.60

0.290 30 33 31.5 0.81 1.89 22.26 0.62

0.295 38 40 38.6 0.66 2.00 22.44 0.60

0.300 45 48 46.5 0.67 2.11 22.45 0.57

m = 7, t = 3, w = 48 (Theorem 4)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 8 10 9 0.89 26.22 450.46 6.12

0.285 15 18 16.4 0.80 28.48 449.73 5.59

0.290 23 24 23.8 0.40 32.23 449.79 5.55

0.295 30 33 31.8 0.97 36.93 465.58 5.96

0.300 38 40 38.6 0.66 42.44 476.71 6.09

m = 5, t = 3, w = 24 (Theorem 5)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 15 17 15.9 0.7 1.56 21.50 0.59

0.285 23 24 23.4 0.49 1.66 21.62 0.57

0.290 30 32 30.7 0.64 1.81 22.40 0.62

0.295 36 38 37.8 0.60 1.93 22.36 0.59

0.300 44 46 44.8 0.75 2.03 22.40 0.57

m = 7, t = 3, w = 32 (Theorem 5)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 9 11 10.2 0.60 14.9 334.5 2.37

0.285 16 19 17.5 0.90 16.0 335.38 2.41

0.290 25 26 25.4 0.49 16.68 333.98 2.44

0.295 32 34 32.9 0.54 16.93 33.98 2.41

0.300 39 41 40.3 0.64 18.10 334.23 2.33

Table 9. Comparison of Experimental results following Theorems 3, 4, 5


