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Abstract. Elliptic curves scalar multiplication over some �nite �elds, attrac-
tive research area, which paid much attention by researchers in the recent years.
Researchs still in progress to improve elliptic curves cryptography implemen-
tation and reducing it�s complexity. Elliptic curve point-halving algorithm
proposed in [11] and later double-base chain [3] and step multi-base chain [19]
are among e¢ cient techniques o¤ered in this �eld.Our paper proposes new al-
gorithm combining step multi-base number representation and point halving.
We extend the work done by [14], which combined double base chain with point
halving technique. The expriment results show our contribution will enhance
elliptic curves scalar multiplication.

Keywords: Elliptic curves cryptography, Integer representation, Multi-number
rsystem, Point halving.

1. Introduction

The rapid advances in the information technology in the past few decades led
to an intensive researches about information security. Many technologies and cryp-
tographical systems are invented, all to secure information and keep it away from
unuthorized invaders. Public-key cryptography widely studied and used since 1975
when R.L. Rivest, A. Shamir, and L. Adleman invented RSA public key cryptog-
raphy. This system heavily depends on integer factorization problem IFP, using
very big size key bits as 1024 bits and 2048 bit and more. Later De¢ e-Hellman in
[6] developed the public key exchange algorithm using discrete logarithm problem
DLP. ElGamal also used DLP in encryption and digital signature scheme. In 1985
Neal Koblitz and Victor Miller independently used elliptic curves ECs in cryptog-
raphy using Elliptic curves discrete logarithm problem ECDLP in their papers in
[8] and [?]. In recent years researchers pay more attention to develop the proposed
ECC algorithms and improve their e¢ ciency. Improving the e¢ ciency of scalar
multiplication in elliptic curves one of the main interests of many researchers in
the �eld of cryptology. The techniques proposed so far, use di¤erent tricks for rep-
resenting the scalar k; which clearly show di¤erent level of computation speed and
security. Binary representation is extended to signed binary representation , and
it�s Non-Adjacent Form NAF algorithm [10]. Other well known techniques such
as window methods and Montgomery method bring about much improvement in
term of the e¢ ciency of elliptic curve arithmetic. When doubling one point P to get
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2P=R as a new point on E, requires extra �eld squaring over prime �elds but it is
the same cost as in point adding if the curve been de�ned over the binary �elds. As
we see in the next section adding two points P and Q on the same elliptic curve E,
requires solving three equations, that involve one �eld inversion, one �eld squaring
and two �eld multiplications, which are costly operations in EC implementation.
Some other operations involved in adding two points are additions, subtractions and
multiplication by small integers, which are in most cases neglectible operations.
The proposed algorithms o¤ered many di¤erent formula for point multiplication

�nding from the given point P. One can use many doublings 2(...(2(2P))) with one
or more extra point addition. The reverse operation also lead to �nd points such as
�nding P from (2P) which is called point halving or involve triplings (3P), triple-and-
add (3P)+P, quadruplings (4P), quadruple-and-add (4P)+P and recently proposed
(5P) for example �nding 127P such that P = (xp; yp), the above options available
to represent 127. Using each thechnique requires di¤erent amount of operations
and di¤erent number of computer iteration.
Elliptic curve point-halving algorithm [11] and [12] and later double-base chain

[3] and step multi-base chain [19] are among e¢ cient techniques o¤ered in this �eld.
In section 2 we present more detail about the above three algorithms. In section 3
we show our work which extend the work done by [14], which is a combination of
double base chain with point halving technique. Our contribution will be combining
Multi-base representation with point halving. We expect that our contribution will
enhance elliptic curves scalar multiplication.

2. Background

Elliptic curves are used for several kinds of cryptosystems, including key ex-
change protocols and digital signature algorithms. If q is a prime or prime power,
we let Fq denote the �eld with q elements. When gcd(q; b) = 1, an elliptic curve
over the �eld Fq is given by an equation of the form E : y2 = x3 + ax+ b
with a; b in Fq and 4a3 + 27b2 6= 0. (See [9]).
The general curve equation subsumes the case
E2 : y

2 + xy = x3 + ax2 + b
with a, b in Fq and b 6= 0, which is used over �elds of characteristic 2.
In all cases, the group used for cryptosystem is the group of points on the curve

over Fq. If represented in a¢ ne coordinates, the points have the form (x; y), where x
and y are in Fq and they satisfy the equation of the curve, as well as a distinguished
point O (called the point at in�nity) which acts as the identity for the group law
[4].
The addition of any two distinct points on the eliptic curve will be done through

some formula as shown below. For the curves over �nite �elds of charactristic more
than three we consider the simple form of the elliptic curve equation.
When P = (xP ,yP ) and Q = (xQ,yQ) are not negative of each other, then P+Q =

R.
First step we need to �nd � as the slope of the line through P and Q.

� =
yP�yQ
xP�xQ

xR = �
2 � xP � xQ and

yR = �yP + �(xP � xR)
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The doubling operation for any point in the elliptic curve group, requires some
steps (the result is same point when doubing 2P , or adding P + P ). Lets say we
want to double the point P = (xp; yp), when yP is not 0,
2P = D , where

� =
3x2P+a
2yP

xD = �
2 � 2xP and

yD = �yP + �(xP � xD)
For each doubling of the point P we need the above procedure to get 2P; 2(2P ); 2(2(2P )),

and so on. Here we note, to compute kP , for k any integer, we need a number of
doublings and additions until we get P + P + ::: + P (k-times). The scalar k in
elliptic curves cryptosystems is considered as a secrete key in the system, usually
with very long bits. Such point multiplication arithmetic requires much memory
and time for running and implementing necessary cryptographical operations.
Points are added using a geometric group law which can be expressed alge-

braically through rational functions involving x and y. Whenever two points are
added, forming P +Q, or a point is doubled, forming 2P , these formulae are evalu-
ated at the cost of some number of multiplications, squarings, and divisions in the
�eld. For example, to double a point in a¢ ne coordinates using the short Weier-
strass form, costs 1 multiplication, 2 squarings, and 1 division in the �eld, not
counting multiplication by 2 or 3 [2] . To add two distinct points in a¢ ne coordi-
nates costs 1 multiplication, 1 squaring, and 1 division in the �eld. Performing a
doubling and an addition 2P+Q costs 2 multiplications, 3 squarings and 2 divisions
if the points are added as (P + P ) +Q, i.e., �rst double P and then add Q [1].

2.1. Field Operation. Reducing the �eld operations over the elliptic curves could

speed up the ECC systems. An algorithm proposed by [1] showing some improve-
ment of speed of scalar multiplication on general curves, using a¢ ne coordinates.
This achieved by eliminating a �eld multiplication when computing 2P + Q from
given points P and Q on the curve.
Suppose P = (xp; yp) and Q = (xQ; yQ) are distinct points on E, and xp 6= xQ.

The point P +Q will have coordinates (xR; yR), where
�1 = (yQ � yp)=(xQ � xp),
xR = �1 � xp � xQ, and
yR = (xp � xR)�1 � yp.
Now suppose we want to add(P + Q) to P . We must add (xp; yp) to (xR; yR)

using the above rule. Assume xR 6= xp. The result has coordinates (x4; y4), where
�2 = (yR � yp)=(xR � xp);
x4 = �2 � xp � xR, and
y4 = (xp � x4)�2 � yp:
We can omit the yR computation, because it is used only in the computation of

�2, which can be computed without knowing yR as follows:
�2 = �1� 2yp=(xR � xp):
Omitting the yR computation saves a �eld multiplication. Each � formula re-

quires a �eld division, so the overall saving is this �eld multiplication. This trick
can also be applied to save one multiplication when computing 3P , the triple of a
point P 6= O, where the �2 computation will need the slope of a line through two
distinct points 2P and P . This trick can be used twice to save 2 multiplications
when computing 3P +Q = ((P +Q)+P )+P . Thus 3P +Q can be computed using
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1 multiplication, 3 squarings, and 3 divisions. Such a sequence of operations would
be performed repeatedly if a multiplier were written in ternary form and left-to-
right scalar multiplication were used. Ternary representation performs worse than
binary representation for large random multipliers k, but the operation of triple
and add might be useful in another context. A similar trick works for elliptic curve
arithmetic in characteristic 2[1]. The �eld inversion is the most expensive opera-
tion over the computer system using a¢ ne coordinates (x; y), while we don�t need
any �eld inversion when working on projective coordinates (X;Y; Z). This work
can be extended through saving more operations and applying the same trick on
other eliptic curves. later Ciet et al.[15] proposed a variant to the previous work
provided by [1] which is faster whenever a �eld inversion is more expensive than
six �eld multiplications. The paper provides an improvement when doubling (2P ),
tripling (3P ), and quadrupling (4P ) of a point P .

2.2. Point Halving. For the same purpose, there are algorithms dealing with the
arithmetic of ECs, such as the scalar multiplication kP , which conducted through
double-and-add algorithm is the origin algorithm used for conducting the operations
in EC group law. The opposit operation for the previous algorithm is halve-and-
add algorithm, which was proposed independently by Knudsen [11] and Schroeppel
[12]. The method replacing all point doublings in the double-and-add algorithm with
another operation called point halving. This method implemented for conducting
scalar multiplication on a non-supersingular elliptic curves in charactristic two.
Point halving applied to the curves with minimal two-torsion. For polynomial
basis, the disadvantage is the amount of storage needed, while for normal basis,
according to [11] there are no disadvantages. The point halving method is faster
than doubling method if implemented using a¢ ne coordinates.
Let P = (x; y) be a point on the elliptic curve de�ned over binary �eld using

a¢ ne coordinates.
A point doubling requires to calculate the coordinates of the point Q = 2P =

(u; v) using the following equations:

(2.1) � = x+
y

x

(2.2) u = �2 + �+ a

(2.3) v = x2 + u(�+ 1)

Point halving is just the opposite, i.e., given Q = (u; v), �nd P = (x; y) such
that Q = 2P . It is computed by solving equation 2.2 for �, Eq. (3) for x, and
�nally, Eq. (1) for y. This means that we have to solve �2 + � = u + a for �;
x2 = v + u(�+ 1) for x, and �nally obtain y = �x+ x2.
A detail analysis of the computational complexity of point halving was made in

[13].
It was reported that the point halving method is 15 � 24% faster than point

doubling. Moreover, this approach performs better when the point P is not known
in advance and the inversion-to- multiplication ratio is small [14].
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For E over F2n , the coe¢ cients of the curve lie in a small sub�eld of F2n , one
can use the Frobenius � of the �eld extension to replace doublings . Since the cost
of � is negligible if normal bases are used, the scalar multiplication is written in
�base ��and the resulting �� -and-add�algorithm gives very good performance .
In [17], the authors combined the above two ideas of point halving and Frobenius
endomorphism to have a new decomposition of the scalar. This method faster than
the mentioned Frobenius method without any precomputation, if applied on Koblitz
curves. The combined � -NAF approach with a single point halving, reducing the

amount of point additions from n=3 to 2n=7, and providing a speed with about
14:29% saving. The idea is, using a single point halving, to replace some sequences
of a � -NAF having density 1=2 (and containing at least three non-zero coe¢ cients)
with sequences having weight 2.

2.3. Double Base Chain. An important contributation by [15] was a new ternary/binary
method to perform e¢ cient scalar multiplication. This method evaluate expressions
of the form 6P � Q, that can be computed as 2(3P )�Q or 3(2P )�Q. When using
the short Weierstrass form y2 = x3+ ax+ b, the latter takes an extra inversion but
saves �ve (�eld) multiplications. For binary curves, the costs are 3I + 4S + 11M
and 2I + 6S + 16M , so the trade-o¤ is 1I for 2S + 5M ..
A similar idea was suggested in [16] when an integer k is represented in double-

base number system as the sum or di¤erence of mixed powers of two and three, as
given by following de�nition.

De�nition 1. (Double-Base Chain) Given k > 0, a sequence (Ki)i>0, of positive
integers satisfying:

K1 = 1; Ki+1 = 2
u3vKi + si with i � 2; si 2 f1;�1g;

for some u; v � 0, and such that Km = k for some m > 0, is called a double-
base chain for k. The length, m, of a double-base chain is equal to the number of
2-integers in DBNS equation, used to represent k.
Let P 2 E(Fq) and k > 0 is represented in DBNS as

k =
Pm

i=1 si2
bi3ti with si 2 f1;�1g and bi; ti � 0:

If the sequences of binary and ternary exponents decrease monotonically, i.e.
b1 � b2 � ... � bm � 0 and t1 � t2 � ... � tm � 0, a double-base chain is

formed.

Algorithm 1. The proposed DB Chain algorithm is shown below
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Algorithm1: Conversion to DBNS with restricted exponents

Algorithm 2. Point Multiplication in Even Characteristic In even characteristic,
i.e., with P 2 E(F2n) and k de�ned as above, Algorithm 2 below, computes the new
point kP.

Algorithm2. Double-Base Scalar Multiplication in even characteristic

We remark that although m-1 additions are required to compute kP, we never
actually use the addition operation (ADD); simply because we combine each ad-
dition with either a doubling (Step13), a tripling (Step 6) or a quadrupling (Step
11), using the DA, TA and QA primitives.
As a result, fast computation of scalar multiplication is achieved by the following

recursive calculations. For example 314159 which used in [16]. Its double-base
chain representation is 314159 = 21234 � 21132+ 2831 + 2431 � 2030
The calculation successively computes 17P, 409P, 6545P and �nally 314159P.

If prime �eld is chosen, it needs to calculate 13 inversions, 55 squarings and 95
multiplications[14]. The analyses made in [16] show that this method is faster than
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the classical binary, 2-NAF, 4-NAF and the ternary/binary approach proposed in
[15], over both binary and prime �elds, without requiring any precomputation.
Advantage taken by [3] in using sparseness and the ternary nature of the double-

base number system (DBNS) to propose new point multiplication algorithm based
on double-base chains. The speed-ups attained through reducing point additions
and improving formulae for point triplings and quadruplings in both even and
odd characteristic. Dimitrov et al. show that this algorithm faster than windowing
methods and protected against simple and di¤erential side-channel analysis by using
side-channel atomicity and classical randomization techniques.
In another work [18] produce a practical algorithm to �nd a DBNS decomposi-

tion, and re�ne the decomposition into an e¤ective scalar multiplication algorithm
to compute nP on some supersingular elliptic curves of characteristic 3. The pro-
posed algorithm can be used for cryptographic protocols based on supersingular
curves, such as identity based schemes.
The previous two papers extended by [17] It examine the double-base decompo-

sitions of integers n, namely expansions loosely of the form
n =

P
i;j A

iBj

for some base fA;Bg in the case when A;B lie in N . It shows how to extend
the results of [18] to Koblitz curves over binary �elds, obtaining a sublinear scalar
algorithm to compute, given a generic positive integer n and an elliptic curve point

P , the point nP in time O
�

logn
log logn

�
elliptic curve operations with essentially no

storage, claiming the method faster than any known scalar multiplication algorithm
on Koblitz curves. Scalar multiplication using double base numbers been analyzed
and shown that on a generic elliptic curve over a �nite �eld, one cannot expect a
sublinear algorithm.
Combination of two or more di¤erent methods of scalar multiplication is one

of the techniques used by researchers for proposing new faster algorithms. In [14]
instead of using powers of 2 and 3 in double-base chain representation of scalar, a
new representation with decreasing powers of 1/2 and 3 been presented. The point
halving operation incorporated in the new double-base chain to achieve fast scalar
multiplication. The paper shows that the advantage of this representation is that all
point doublings required in the original chain point doubling and quadrupling can
be replaced by faster point halving while keeping the tripling operations. For binary
�elds, the approach requires only about half the number of inversions, one-third the
number of squarings, and a fewer number of multiplications if compared with the
scalar multiplication using the original double base chain. The idea is to multiply
k with a large power of 2, say, 2q. From the experimental results, can choose 2q

to be a value around the �eld size. Then we �nd the remainder k0 after modulo
the �eld size p, as given by k0 = 2qkmod p, then need to obtain the double-base
chain of k0 with powers of 2 and 3 in the form of increasing binary exponents but
decreasing ternary exponents. Some more steps lead to have the following forms of
representation k as given by

k = k
0

2q =
Pm

i=1 si2
b
0
i3ti

2q =
Pm

i=1 si
�
1
2

�(q�b0i) 3ti mod p with k0 = 2qkmod p

where si 2 f1;�1g, 0 � b01 < b02 < ::: < b0m; t1 � t2 � ::: � tm � 0; q � b0i8i:
As we see in the following table, we can evaluate proposed algorithm by checking

the number of �eld operations required. Most part of this table o¤ered by [16] and
the rest by other mentioned sourses, showing the number of inversions [i], squarings
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[s] and multiplications [m] we need for di¤erent curve operations over Fp and F2m
with using a¢ ne coordinates.

Curveoperation Binary�elds
P+Q 1[i]+1[s]+2[m]
2P 1[i]+1[s]+2[m]

2P+Q 1[i]+2[s]+9[m]
3P 1[i]+4[s]+7[m]

3P+Q 2[i]+3[s]+9[m]
4P 1[i]+5[s]+8[m]

4P+Q 2[i]+6[s]+10[m]
5P[19] 1[i]+5[s]+13[m]

(1/2)P [14] � � 1[m]
(1/2)P +Q [14] 1[i] � 5[m]

Table1: The costs of di¤erent curve operations

2.4. Step Multi-Base Number Representation. The above so called double-
base number representation has been generalized to multi-base number representa-
tion by it�s authors in their recent paper [19]. They proposed two e¢ cient formulas
for computing (5P), when P is an elliptic curve point over prime and binary �nite
�elds. This work led to a new scalar multiplication algorithm, which represent
the scalar using three bases 2, 3 and 5and computes the scalar multiplication very
e¢ ciently.

De�nition 2. a multiple representation n = si2bi3ti5qi using the bases {2,3,5} is
called a step multi-base number representation SMBR, which each exponent {bi},
{ti} and {qi} are seperate monotonic decresing sequences.

The length of MBNR are shorter than DBNR and also more redundant, as the
number of representations of n grows very fast based of the number of base elements.
The example shown in [19] the number 50 has 72 DBN representations using the
bases (2 and 3), while has 489 MBN representations using the bases (2, 3 and
5). The special MBNR is more suitable for scalar multiplication algorithms than
general MBNR.

Algorithm 3. An integer can be converted to multi-base representationusing greedy
algorithm, which produces shortest representation.

Algorithm3: mGreedy Algorithm for Conversion into SMBR
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Algorithm 4. The scalar multiplication using SMBR is a generalization of the
algorithm of scalar multiplication using DBNR.

Algorithm4: Scalar Multiplication for Curves over Binary Finite Fields

According to the experiments conducted by the authors of [19] the multi-base
algorithm perform faster and more competitive comparing to the other sequential
scalar multiplication algorithms. In algorithm 4 for computng the scalar multipli-
cations over binary �nite �elds, the required curve operations can be calculated as
bi doublings, ti triplings and qi quintauplings. The number of curve additions is as
same as the number of terms in the chain. Whenever the components of the binary
and ternary are not zero, we can use double-and-add and triple-and-add operations
instead of curve addition.
The authors of SMBR showing unability to provide theoritical proofs of e¢ ciency

of this scalar multiplication algorihms. The average performance shown in applying
them to the huge numbers of randomly chosen scalars.

3. The Proposed Method

In order to have faster ECC scalar multiplication, we propose a new multi-base
chain representation for scalars. We modify mixed powers of 2, 3 and 5, proposed
in [19] by representing the scalar by a new multi-base chain with monotonic de-
creasing powers of 1=2; 3 and 5. With this method we remove point doubling and
quadrupling to use point halving instead, with keeping the tripling and quintupling
points operations. Besides of a number of point additions, which equal to the num-
ber of the terms in the chain. Halve-and-add operation can be used instead of
normal point addition as long as the power of (1/2) is not zero. In case the power
of (1/2) equal to zero we need to use triple-and-add operation if the power of the
base (3) not zero. In the worst case when dont have the above choices we have to
use the normal point additin since we dont have any (quintaple-and-add) formula.
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We take the same technique used by [14] to apply it in our proposed new multi-base
number representation.
Some more steps lead to have the following forms of representation k as given

by

(3.1)

k =
k
0

2q
=

Pm
i=1 si2

b
0
i3ti5li

2q
=

mX
i=1

si

�
1

2

�(q�b0i)
3ti5li mod p with k0 = 2qkmod p

where si 2 f1;�1g, 0 � b01 < b02 < ::: < b0m; t1 � t2 � ::: � tm � 0; l1 � l2 �
::: � lm � 0; q � b0i8i:

The �rst step in our algorithm starts with multiplying the origin scalar k by
2qmod p;which is preferable to �nd 2q with a value around the �eld size . Then we
�nd the remainder k0 as given by next equation.

(3.2) k0 = 2qkmod p

The next step is to obtain the multi-base chain of k0 with powers of 2, 3 and
5 in the form of increasing binary exponents but decreasing ternary and quinary
exponents. We achieve this by an iterative approach. First, we �nd n such that k =
0modn, with the trial of n in the order of f30; 27; 25; 24; 20; 18; 16; 15; 12; 10; 9; 8; 6; 5; 4; 3; 2g
respectively. The formula can be as: k = 0modn;return 2n1 � 3n2 � 5n3( kn ) when
always 2n1 � 3n2 � 5n3 = n, for example
If k = 0mod 30, return 2 � 3 � 5( k30 )
If k = 0mod 27, return 33( k27 )
...
If k = 0mod 3, return 3(k3 )
If k = 0mod 2, return 2(k2 )
In any round if such modular not found; the algorithm will �nd k1-a power of

2, which should be the closest to k, then �nds jk � k
1
j. The power of 2 is chosen

as an approximation to k since doubling (which becomes halving later) is cheaper
than tripling. As the returned value is getting smaller and smaller, it can always
be approximated by a lower power of 2 in next round.
Thus, the binary exponents in this multi-base chain keep strictly decreasing

and so triple-and-add and quintuple-and-add operations are not required in this
scalar multiplication. The recursion never stops until k is equal to 1, a power
of 2 or a power of 3, i.e., a positive number that can be represented by 2b3t for
any non-negative integers b and t. This iterative algorithm will return the terms
in an order from the highest power of 2 times the lowest power of 3 times the
lowest power of 5 to the lowest power of 2 times the highest power of 3 times the
highest power of 5. If we reverse the order of the terms, i.e., the last term becomes
the �rst term, the expression becomes the desired multi-base chain with increasing
binary exponents but decreasing ternary and quinary exponents. Finally, we divide
the double-base chain by 2q to make all the binary exponents negative but with
decreasing magnitude. The ternary and quinary exponents are una¤ected and are
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all positive or zero with decreasing magnitude. This is actually a new multi-base
chain with decreasing powers of 1/2,3 and 5 with value equal to k.

Example 1. Here we try to use the same example used in prevoius papers [14]

if the �eld size p is chosen as 314161, the scalar k=314159 becomes 104034 after
multiplied 218 and mod 314161. The steps in �nding the new multi�base chain
representation of 314159 are shown in the following table. For this example in both
algoeithm the number of terms are 4 terms. While the cost elliptic curve arithmetic
and �eld operations are not same in the two algorithms. As shown in the table
using our algorithm costs less �eld inversions [i],less �eld squarings [s] and less
�eld multiplications [m]

4. Experimental Results

To get better evaluation of the new representation we compare step multi-base
number representation SMBR with the new combination by testing some recom-
mended big size numbers. The algorithms programmed on C and C++ with running
them on the LINUX platform. Our experiment based on testing both algorithms
in same platform and invironment. Same hardware and software have been used
during entire experiment. Three binary �eld sizes have been selected, 163 bits,
233 bits and 283 bits. For each �eld size above we tested 100 randomely selected
integers, for each random number both algorithms applied and been run, such that
at the end the average costs of that 100 numbers been considered. The number of
terms of each scalar found, the curve operations and �eld arithmetic costs calcu-
lated, including the number of inversions, squarings and multiplications required.
In the tables shown below [D] refers to number of doublings required, [DA] used
for double-and-add, [T] for triplings, [TA] for triple-and-add, [Q] for quintuplings,
[A] for additions, [H] for halvings, [HA] for halve-and-add, [i] for �eld inversions,
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[s] for squarings and [m] for multiplications. As shown in the table below the aver-
age savings of �eld inversions is 45.5%, squarings about 53% and multiplications is
about 8.6%.
For computng the scalar multiplications over binary �nite �elds, the required

curve operations can be calculated as bi doublings, ti triplings and qi quintauplings,
which is the same formula o¤ered by [19]. The number of curve additions is as
same as the number of terms in the chain. Whenever the components of the binary
and ternary are not zero, double-and-add and triple-and-add operations been used
instead of curve addition.

Number of elliptic curve and �eld operations over binary �elds using Step multi-
base representation

No of Bits [Terms] [D] [DA] [T] [TA] [Q] [A]
[i] [s] [m]
163 bit 31 38 25 34 2 19 1

124 331 824
233 bit 44 56 38 47 2 26 2

176 465 1163
283 bit 53 68 46 57 2 32 3

213 567 1412

Number of elliptic curve and �eld operations over binary �elds using our proposed
algorithm

No of Bits [Terms] [H] [HA] [T] [Q]
[i] [s] [m]
163 bit 34 129 32 24 10

67 149 729
233 bit 47 185 46 35 15

97 218 1051
283 bit 58 224 57 42 18

117 259 1267

In some cases the average number of terms in our algorithm is more than the
terms in the original multi-base algorithm, but still our method costs less than the
original algorithm.

5. Conclusion

Some scalar multiplication algorithms such as point halving and double base are
among the well known algorithms in speeding up elliptic curve arithmetic. Recently,
Mishra and Dimitrov proposed a generalization of their previous work DB chain In
our work we proposed a new multi-base number representation algorithm combining
two scalar multiplication algorithms. The experiment shows great improvement
of step multi-base number represention algorithm after it is combined with the
point halving algorithm. The main procedure in the new algorithm using elliptic
curve point halving and halve-and-add operations instead of using elliptic curve
point doubling and double-and-add operations, which are less cost as we showed in
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table1. The results show that this new algorithm will enhance elliptic curves scalar
multiplication, which can applied to any other related applications.
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