Efficient Quantum-immune Blind Signatures
— preliminary version —

Markus Riickert
rueckert@cdc.informatik.tu-darmstadt.de

Cryptography and Computeralgebra
Department of Computer Science
TU Darmstadt

July 25, 2008

Keywords Quantum-immune, blind signatures

Abstract We present an idea for the the first quantum-immune blind
signature scheme. Our scheme is provably secure, efficient, and round-
optimal.

1 Introduction

Since 1982, when David Chaum proposed his idea of blind signatures and a,
by now classic, application in the context of digital payments, numerous blind
signature schemes and other privacy-enhanced signature schemes have been de-
veloped.

Today, when building provably secure signature schemes, one has to keep
emerging technologies and especially quantum computers in mind. In the quantum-
age, the cryptographic assumptions change with the leap in computing power
that quantum computers will provide.

To date, there are only a few cryptographic assumptions that are conjectured
to be quantum-immune, i.e. they are considered to be able to withstand quantum
computer attacks. One of those assumptions is the hardness of approximating
shortest vectors (SVP) in a lattice. Although the work of Ludwig [10] suggests
that todays lattice reduction algorithms can benefit from the intrinsic parallelity
in quantum computation, this does not invalidate the assumption. Slightly larger
security parameters are considered to be a sufficient countermeasure.

Using the SVP as our security assumption, we construct the first quantum-
immune blind signature scheme. As for its efficiency, we state that it is almost
as efficient as the underlying signature scheme proposed by Gentry, Peikert, and
Vaikuntanathan (GPV) [8]. With its two rounds, it is even round-optimal. The
security of both, GPV signature scheme and our blind signature scheme, is proven
in the random oracle model and, due to Ajtai’s result, is based on the worst case
hardness of the SVP.

All previous constructions have one thing in common. They are built upon
number theoretic assumptions, like the hardness of factoring large integers or
computing discrete logarithms. Newer approaches, like that of [5], use pairings
and bilinear maps that yield very elegant constructions. They, however, are again
based on the discrete logarithm problem in this specific setting.

None of the above assumptions hold in the presence of quantum computers,
where both factoring and computing discrete logarithms becomes easy due to
the seminal work of Peter Shor [11].

Despite the uninstantiability result of Canetti, Goldreich, and Halevi [7], we
believe that our construction is an important step towards quantum-immune
blind signature schemes. A security proof in the standard model, however, re-
mains an open problem.

Organization. After a brief preliminaries section, we present our construction in
Section 3. There, we also prove that our scheme has the well-established security
properties and point out the open problems. In Section 4, we discuss the details
and the realization of the underlying trapdoor permutation. Finally, in Section 5,
we propose reasonable parameters that lead to secure and efficient instantiations
of our scheme.

2 Preliminaries

With n, we always denote the security parameter. (- = -) denotes the proto-
col view generated by two entities, i.e. the messages they exchange. Views are
interpreted as random variables, whose output is generated by subsequent execu-
tions of the respective protocol. Two views V; and V, are equal if they cannot be
distinguished by any computationally unbounded algorithm with non-negligible
probability.

3 Construction

In this section, we describe the construction of our blind signature scheme and
prove its security in terms of blindness and one-more unforgeability.

The underlying signature scheme was developed by Gentry, Peikert, and
Vaikuntanathan (GPV) and presented at STOC 2008 [8]. It is built upon a fam-
ily of trapdoor functions, which are arguably as good as trapdoor permutations.
The family is described via a triple (TrapGen, SampleDom, SamplePre) and has,
among others, the following properties.

Function generation. There is an efficient algorithm TrapGen that outputs
(a,t) < TrapGen(n), where a fully defines the function f, and ¢ is used to
sample from the inverse f;'(-), which is defined as SamplePre(t, -).

Efficiency. The function f, : D,, — R, is efficiently computable. Furthermore,
the two sets R,, D, are efficiently recognizable and R,, is closed under
addition.

One-wayness. Computing the function f;* : R, — D, is infeasible without
the trapdoor t.

Domain sampling with uniform output. SampleDom(n) samples values from
some distribution over D,,, such that their images under f, are uniformly
distributed over R,,.

Pre-image sampling. Let y € R,,. f; *(y) samples = « SampleDom(n) under
the condition that f,(z) = y.

Linearity. Let 1 + x2 € D,,. fo(r1 + 22) = fo(21) + fa(z2).

Collision resistance. There exists no algorithm A(n,a) that outputs a pair
(z,2') € D2, such that z # 2’ and f,(z) = f.(2'), in time polynomial in n
with non-negligible probability.

In addition to the above trapdoor function, Gentry, Peikert, and Vaikuntanathan
use the “hash-then-sign” paradigm with a full-domain hash function (cf. [6])
H «— H(n), where H: {0,1}* — R,, and H is a family of collision-resistant hash
functions implementing the random oracle. In this setting, the GPV signature
scheme is strongly unforgeable under a chosen message attack. Strong unforge-
ability of digital signatures means that an adversary is allowed to adaptively
query a signature oracle on chosen messages. The adversary wins if it is able
to output a new message-signature pair (m, o), in the sense that the signature
oracle has never answered with ¢ on the query m.
The GPV signature scheme is a tuple GPV = (Kg, Sig, Vf), where

Key generation. GPV.Kg(1™) outputs (a,t) < TrapGen(1™).

Signature issue. Let m € {0,1}* be a message. GPV.Sig(¢,m) checks whether
m has been signed before and, if so, outputs the same signature. Otherwise,
it computes o < SamplePre(t, H(m)), stores (m, o), and returns o.

Verification. Given a signature o. GPV.Vf(a, o, m) returns 1 iff o € D,, and

fa(o) = H(m).

Using a slight relaxation of the above signature scheme, we construct an
equally efficient and provably secure blind signature scheme BS = (Kg, Sig, VT,
Blind, Unblind) as follows.

Key generation. BS.Kg(n) outputs (a,t) « TrapGen(n), where a is the public
verification key and ¢ is the secret signing key.

Blinding. Let m € {0,1}* be a message. BS.Blind(a, m) chooses a blinding
value 3 «— SampleDom(n) and computes m* — H(m) + f,(3). The output
is (8, m*).

Signature issue. Let m* be a blinded message. BS.Sig(¢, m*) computes o* «
f7 Y (m*) and returns o*.

Unblinding. Let ¢* be a blinded signature for the message m and the blinding
value . BS.Unblind(a, m, 3,0*) computes o «— o*— (. After a postprocessing
step on o, explained in Section 4, it checks whether ¢ € D,, and f,(c) =
H(m). If either of the conditions is violated, the algorithm aborts with fail.

Verification. BS.Vf(a,o,m) outputs 1 iff 0 € D,, and f,(o) = H(m).

If BS.Unblind aborts, it may be that the signer is dishonest. In the special setting
of e-cash, if the obtained signature ¢ is not in the domain of f,, the process has
to be repeated with a different m and the receiver of the signature has to reveal
0 to prove to the signer that the signature is literally worthless. For the moment,
we assume that o* — § € D,,.

Completeness. The scheme BS is complete because for all honestly generated
key pairs (a,t), all messages m € {0,1}*, all outputs (3, m*) of BS.Blind(a,m),
and all signatures o < BS.Sig(t, m*) we have

oo —peD,
and

fa(0) = fa(0* =B) = fa(0™) = fa(B) = fa(f{ (H(m) + fa(B))) = fa(B) = H(m).
Therefore, BS.Vf(a,o,m) = 1.

Open problem. The unblinding step uses postprocessing to “optimize” the ob-
tained signature in order to fit it into D,,. It is unclear whether this is possible
in all cases. A different, and likely more fruitful, approach might be to accept
signatures that are slightly outside the trapdoor’s domain. We assume that this
problem is efficiently solvable.

In the following, we prove the security of our blind signature scheme. A
blind signature scheme is called secure if it satisfies blindness and one-more
unforgeability as defined by Juels, Luby, and Ostrovsky in [9].

Blindness. The notion of blindness is defined in the following experiment, where
the adversarial signer §* chooses two messages mg, m; and interacts with two
users who obtain blind signatures for the two messages in random order. After
seeing the unblinded signatures in the original order, according to mg, m1, the
signer has to guess the message that has been signed for the first user.

Experiment Expf’g“*"fés (n)
b—{0,1}
(pk, sk) — BS.Kg(n)
(mg, my) «— S*(n, pk, sk)
Setup users Uy (n, pk, my), Ui (n, pk,mi_p)
Uy, U7 interact with S* using the blind signature protocol of BS.
Uy, U7 output signatures o on my and o1 on mq_yp,
where either of them might equal fail.
d «— S*(n, sk, pk,c0,01)
Return 1 iff d =0

A signature scheme BS is (¢, €)-blind if there is no adversary §*, running in time
at most ¢, that wins the above experiment with advantage at least e, where

Advg'L"’%S = Pr[ExpgT’%S(n) =1] - 3

The next theorem proves that BS is computationally blind, i.e. (poly(n), ¢)-blind
for a negligible e.

Theorem 1 (Blindness). The blind signature scheme BS is (poly(n), €)-blind.

The proof uses random oracle techniques in order to construct a pair of blinding
values for any given pair (8g, 51) that generates the same view while reversing
the order in which the signatures are obtained from the signer. The actual proof
largely depends on the solution of the above mentioned open problems.

One-more unforgeability. Unforgeability in the context of blind signatures is
defined in the experiment Expi"jés. There, a malicious user A is successful if it is
possible to obtain k+1 distinct signatures on £+ 1 messages from k interactions
with the signer. More formally:

Experiment Exp&"jés(n)
b+— {0,1}
H «— H(n)
(pk, sk) — BS.Kg(n)
{(m1,01),...,(my,0,)} — AHC)BSSielsk) (p)
Let ¢ be the number of interaction between A and the signer.
Return 1 iff BS.Vf(pk,o;,m;) =1 foralli=1,...,7and £ < 3.

A signature scheme BS is (%, gsig, gH, €)-one-more unforgeable if there is no ad-
versary A, running in time at most ¢, making at most gsiz signature queries and
at most gy hash oracle queries, that wins the above experiment with probability
at least e.

We prove that our blind signature scheme is provably secure under a rea-
sonable assumption, namely that the following “one-more trapdoor inversion
problem” is hard.

Definition 1 (Chosen target trapdoor inversion problem (CTTI)). The
chosen target trapdoor inversion problem is defined via the following experiment,
where the adversary A has access to a challenge oracle Og, and to an inversion
oracle f{l. The adversary wins, if it outputs 3 preimages for challenges obtained
from Og, , while making only ¢ < j queries to f{l.

Ezxperiment ExpSt(n)

(a,t) < TrapGen(n)

(m,21,...,2,;) « AOr: I) (n, a)

Let y1,...,ye be the challenges returned by Og,, .

Let v be the number of queries to ft_l.

Return 1 iff

Lom:A{1l,...,9} = {1,..., £} is injective and
2. fa(%i) = Yn(i) for alli=1,...,7 and
3.1<).

The problem is (¢, gi, o, €)-hard if there is no algorithm A, running in time at
most ¢, making at most ¢ inversion queries and at most go queries to Og,,, which
wins the above experiment with probability larger than e.

The one-wayness of f, gives us (poly(n), 0,1, €)-hardness, which we will ex-
tend to (poly(n), poly(n), poly(n), €')-hardness for a negligible ¢’. With our defini-
tion and this assumption, we follow the line of thought of Bellare, Namprempre,
Pointcheval, and Semanko in [4]. They define a collection of “one-more” problems
in the RSA context.

As for its hardness, we show that it is as hard as forging GPV signatures.

Theorem 2. The CTTI is (¢, q, qo,€)-hard if and only if the GPV signature is
(t, q1, g0, €)-strongly unforgeable.

Proof. We show both directions separately.

CTTI = GPV: Let’s assume that GPV is not (¢, ¢, qo, €)-strongly unforgeable.
Thus, there exists a forger A against strong unforgeability. Using A, we construct
an adversary B that solves the CTTI. The adversary B works as follows.

Setup. B sets up a list Ly « (of triples (m,c, s), which is indexed by the
first component, and a counter ¢ < 0. It gets as input the public trapdoor
parameter a and executes A on input a in a black-box simulation. B has
access to Og, and f; '(-).

Random oracle H. For each query m of A to the random oracle H, algorithm
B searches Ly for a triple (m, ¢, *). If it exists, B outputs c. Otherwise, B
increments ¢, queries its challenge oracle ¢; «— Opg, , stores (my «— m, ¢, 0)
in Ly, and outputs ¢,. [serves as a placeholder for “uninitialized”.

Signature queries. When A queries its signature oracle on m, algorithm B
searches Ly for a triple (my,c;, s;). If it exists, B outputs s;. Otherwise, B
queries ft_1 with H(m;), receives s;, stores (my, ¢;, s;) in Ly, and returns s;
to A.

Output. When A stops, it outputs a forgery (m*,o*). Assume m* = m,. Let
Liy = {(mW M sy (mla) @) s(a)} be the set of all triples in Ly,
excluding those of form (k,*,0). B sets

7 ={(4,5) : 3aY € L{;3b; € Ly : 'V = b;} U {(q1 +1,9)}

and outputs (m, s, ..., @) %),

Analyis. Note that B perfectly simulates A’s environment. Since f, is collision
resistant, we can safely assume that A outputs a forgery on a message m* that
has never been sent to the signing oracle. Thus, B has not queried f,* on H(m*).
Therefore, B makes » = ¢ queries to f{l and outputs ¢+ 1 preimages along with
an injective map 7. Thus, the first and last requirements in the CTTI experiment
are met. As for the second requirement, we state that fq(s;) = H(mg(;) for all
i # gand fo(0*) = H(m") = H(my(;)). Therefore, B is successful whenever A is.

CTTIl <= GPV: Now, assume that the CTTI is not (¢, q, go, ¢)-hard, i.e. there
exists an adversary A that efficiently solves the problem. We show that A can
be used to break strong unforgeability of GPV. We construct a forger B as follows.

Setup. B gets as input the public trapdoor parameter a. It sets up a list Ly <
of triples (m, ¢, z), indexed by m. Furthermore it initializes a counter ¢ < 0.
It runs a black-box simulation of A on input a.

Random oracle H. On input m, B searches Ly for a triple (m, ¢, *). If it exists,
it outputs c. Otherwise, B increases ¢, chooses a new ¢; <— R,,, and stores
(mg — m,ce,0) in Ly, where “CJ” denotes “uninitialized”. Finally, B returns
Cyp.

Challenge oracle queries. B chooses a new m « D,,, computes ¢ < H(m),
and returns c.

Inversion queries. On input ¢, B searches Ly for a triple (my, ¢, ;). If it exists
and z; # [then B outputs z;. If it does not exist then B increments ¢, sets
1« £, chooses a new my «— D,,, and adds (my, c¢,0) to Ly. Finally, B queries
xp — f; '(c), stores (my, ¢, x;), and returns z;.

Output. When A stops, it outputs (7,z1,...,2,). Algorithm B searches the
lowest index i, for which (M), cr(;y, 0) € L. It outputs the forgery (mn),

Analysis. First of all, note that B perfectly simulates all of A’s oracles. Since A
is a successful chosen target trapdoor inverter, there is an index @ with f,(z;) =
Cr (i), such that A never queried the inversion oracle on cr(;). Therefore, B has
never queried its signature oracle on H(my(;) = cq(;) and z; is a valid forgery
on the message m ;).

In both proofs, the number of inversion queries equals the number of signature
queries and the number of challenge oracle oracle queries equals the number of
queries to the random oracle. The overhead of handling A’s queries is minimal
and consists mainly of list operations that can be neglected because they are
essentially the same in both reductions. This concludes the proof. ad

Using the last theorem, we can now prove one-more unforgeability of our blind
signature scheme.

Theorem 3. The BS blind signature scheme is (t, gsig, gn, €) -one-more unforge-
able if the CTTI is (¢, gsig, qn, €)-hard.

Proof. Towards contradiction, we assume that there exists a successful forger A
against one-more unforgebility of BS. Using A, we construct an algorithm B via
a black-block simulation, such that B solves the respective instance of the CTTI.
The simulation works as follows.

Setup. B gets as input the public trapdoor parameter a an has access to the
challenge oracle Op, and to a trapdoor inversion oracle f; *. B initializes a
list Ly < 0 of pairs (m,c), indexed by m, a list Ly < @ of pairs (m*,o*),
indexed by m*, and two counters £ < 0, 2 < 0. It runs A on input «a in a
black-box simulation.

Random oracle queries. On input m, B looks up m in Ly. If it finds a pair
(m, ¢) then it returns c. Otherwise, B increments 2, chooses a new ¢,, stores
(m, < m,¢,) in Ly. Afterwards, B returns c,.

Blind signature queries. On input m*, algorithm B searches a pair (m*, o*)
in L;. If it exists, B returns ¢*. Otherwise, algorithm B increments ¢, queries
its inversion oracle o} « f,"'(m*), stores (m} < m*,07) in Lj, and returns
oy.

Output. Finally, A stops and outputs ((mi,01),...,(m,,0,)), £ < 3. W.Lo.g.,
assume that (m;,¢;) € Ly, for all i = 1,..., . Algorithms B sets

m={(i,§) : falo:) = ¢;}

and outputs (mw,01,...,0,).

Analysis. First, observe that all of A’s oracles are perfectly simulated. When A
calls H, algorithm B draws a new challenge from its challenge oracle. Whenever
A queries its signature oracle on a new blinded message, B calls its inversion
oracle. Therefore, when A outputs a one-more forgery, B can use it to solve
the CTTI. B’s output is valid in the CTTI experiment because all preimages
evaluate to challenges received from Op, and the number of output inversions
7 is greater than the number of inversion queries £. As for the map 7, we state
that it is injective. Otherwise, there would be a a pair o # ¢’ in A’s output with
fa(o) = fo(o') = H(m;), which contradicts the collision resistance of f,. Thus
B is successful when A is.

Again, the overhead of handling .A’s queries is dominated by simple list pro-
cessing and can be neglected. O

Together with Theorem 2, our construction is one-more unforgeable if the GPV
signature is strongly unforgeable.

4 Realization

The underlying signature scheme was developled by Gentry, Peikert, and Vaikun-
tanathan (GPV) and presented at STOC 2008 [8]. It uses a modified Babai near-
est plane algorithm [3] and two famous results by Ajtai [1,2] in order to build
a trapdoor function that is arguably “as good as” a trapdoor permutation. It’s
security is proven in the random oracle model and reduces to the collision resis-
tance of f,, which in turn reduces to the hardness of finding short vectors in a
lattice.

GPV trapdoor function. The trapdoor function from [8] is defined as follows.

Parameters. Depending on the security parameter n, the other parameters in
[8] are the following.

Modulus g=n’
Domain dimension m = 5n log(q)
Basis length bound L=m'"e>0
Gaussian parameter s = Lw(y/log(m))

The above paramters will be made explicit in Section 5.
Spaces. The range is
R, =17y

and the domain is the set

D, ={ecZm:|e| < sw(y/log(m))}.
Trapdoor description. The public trapdoor key a describes the above public
parameters and the public matrix

AGZQX’”.

The set

AHA)={veZ":Av=0 (modq)}
describes a lattice, for which the secret trapdoor paramter ¢ describes a basis
T, such that

|7 <z

Here, T is the Gram-Schmidt orthogonalized matrix T and the norm of a
matrix is defined as

X[= || x2 - xe ||| = max x5 .
‘ ‘ 1=1,...,c

Trapdoor evaluation. On input x, the trapdoor function f,(x) evaluates to
y <— Ax mod gq.

Preimage sampling. Sampling from f; ' is performed via a modified Babai
nearest plane algorithm. The algorithm explicitly uses T and relies on its
short length. On input y, it performs the following steps.

1. Compute t € Z;', such that At =y (mod ¢). This is done by linear
algebra and most likely yields a y & D,,.
2. Use the trapdoor basis T to sample a vector v from a gaussian distribu-

tion around —t and output x =t +v

The described trapdoor function has all the properties mentioned in Section 3.
As for the required linearity in our blind signature scheme, note that f, is linear
in the sense that for for all xq + x5 € D,, :

Ja(x1 +x2) = fo(x1) + fa(x2) modq.

Therefore, all computations in D,, and R,, have to be performed modulo gq.

Postprocessing. When unblinding a blind signature on a message m, the user
obtains a vector

cefecZ™: |||, <2sw(y/log(m))},

which is in the lattice
Lyimy ={ve€Z™: Av=H(m) (modq)}.

In order to make o a valid signature, i.e. 0 € D,,, the user has to use a public
basis of Ly(,,) and the short vector o to find a slightly shorter vector o e Li(m)
with ¢’ € D,,.

It is still an open problem, if this is attainable in all cases. As mentioned
before, a different approach is to defined D,, in terms of the Euclidean norm and
accept signatures that are slightly larger than the bound given in [§].

5 Parameters

In this section, we analyze the choice of parameters in the GPV signature scheme
and show how to apply their choice to our blind signature scheme. Then, we
assess the practical efficiency of our construction.

This section will appear in the final version.

References

1. Miklés Ajtai. Generating Hard Instances of Lattice Problems (Extended Abstract).
Proceedings of the Annual Symposium on the Theory of Computing (STOC) 1996,
Lecture Notes in Computer Science, pages 99-108. Springer-Verlag, 1996.

2. Miklés Ajtai. Generating Hard Instances of the Short Basis Problem. 1999, Lecture
Notes in Computer Science, pages 1-9. Springer-Verlag, 1999.

3. Laszl6 Babai. On Lovdsz’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1-13, 1986.

4. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.
The One-More-RSA-Inversion Problems and the Security of Chaum’s Blind Sig-
nature Scheme. Journal of Cryptology, 16(3):185-215, 2003.

5. Alexandra Boldyreva. Threshold Signatures, Multisignatures and Blind Signatures
Based on the Gap-Diffie-Hellman-Group Signature Scheme. Public-Key Cryptog-
raphy (PKC) 2003, Volume 2567 of Lecture Notes in Computer Science, pages
31-46. Springer-Verlag, 2003.

6. Mihir Bellare and Pil Rogaway. Random Oracles are Practical: A Paradigm for
Designing Efficient Protocols. Proceedings of the Annual Conference on Computer
and Communications Security (CCS). ACM Press, 1993.

7. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557-594, 2004.

8. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. Proceedings of the Annual Symposium
on the Theory of Computing (STOC) 2008, Lecture Notes in Computer Science,
pages 197-206. Springer-Verlag, 2008.

10

9.

10.

11.

Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of Blind Digital Signa-
tures. Advances in Cryptology — Crypto 1997, Volume 1294 of Lecture Notes in
Computer Science, pages 150—-164. Springer-Verlag, 1997.

Christoph Ludwig. A Faster Lattice Reduction Method Using Quantum Search.
ISAAC 2003, Volume 2906 of Lecture Notes in Computer Science, pages 199-208.
Springer-Verlag, 2003.

Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing, 26(5):1484—
1509, 1997.

11

