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Abstract We present the first quantum-immune blind signature scheme. Our scheme is provably secure
in the random oracle model, efficient, and round-optimal. The basis of security is a new computational
problem related to finding short lattice vectors. The underlying signature scheme is stateful and its
basis of security is the problem of finding short vectors in a lattice.

1 Introduction

Since 1982, when David Chaum proposed his idea of blind signatures and a, by now classic, ap-
plication in the context of digital payments, numerous blind signature schemes and other privacy-
enhanced signature schemes have been developed. According to the security model, mainly influ-
enced by Juels, Luby, and Ostrovsky [20] as well as Pointcheval and Stern [32], blind signature
schemes have to satisfy blindness and one-more unforgeability. Blindness states that the signer
must not obtain any information on the signed messages and one-more unforgeability enforces that
an adversarial user cannot obtain more signatures than there were interactions with the signer.

Today, when building provably secure signature schemes, one has to keep emerging technologies
and especially quantum computers in mind. In the quantum-age, the cryptographic assumptions
change with the leap in computing power that quantum computers will provide.

To date, there are only a few cryptographic assumptions that are conjectured to be quantum-
immune, i.e. they are considered to be able to withstand quantum computer attacks. One of those
assumptions is the hardness of approximating shortest vectors in a lattice. Although the works
of Ludwig [26] and Regev [33] suggest that today’s lattice reduction algorithms can benefit from
the intrinsic parallelism in quantum computation, this does not invalidate the assumption. Slightly
larger security parameters appear to be a sufficient countermeasure.

Our Contribution and related work. Using a problem that is related — yet not equivalent — to
the problem of approximating the shortest vectors in a lattice (SVP) as our security assumption,
we construct the first quantum-immune blind signature scheme. In order to prove unforgeability of
our blind signature scheme, we introduce a new computational problem similar to the “one-more”
problems [8] in the RSA context. As for its efficiency, we state that it is almost as efficient as
the underlying signature scheme proposed by Gentry, Peikert, and Vaikuntanathan (GPV) [17] and
with its two rounds, it is even round-optimal. Note that the GPV signature scheme is stateful and



that the stateless modification in [17] cannot be directly applied in the context of blind signatures,
which is why we stick to the stateful variant.

The security of both, GPV signature scheme and our blind signature scheme, is proven in the
random oracle model and, due to Ajtai’s result [2], is based on the worst-case hardness of the SVP.
Ajtai showed that solving the average-case SVP is at least as hard as solving a related problem in
the worst-case in lattices of a certain smaller dimension. The works of Micciancio and Regev [27]
and [17] improve the tightness of the worst-case to average-case reduction.

Despite the uninstantiability result of Canetti, Goldreich, and Halevi [11], we believe that our
construction is an important contribution and that we solve a longstanding problem because the
previous efficient constructions [12], [31], [32], [1], [8], [13], [23], and [30] have one thing in common:
they are built upon number theoretic assumptions, like the hardness of factoring large integers
or computing discrete logarithms. The newer approaches of Boldyreva [9] and Okamoto [30] tend
to use pairings and bilinear maps that yield very elegant constructions. They, however, are again
based on the discrete logarithm problem in this specific setting.

None of the above schemes remain secure in the presence of reasonably powerful quantum com-
puters, where both factoring and computing discrete logarithms becomes easy due to the seminal
work of Shor [36]. Until the recent works of Lyubashevsky and Micciancio [25] and Gentry, Peik-
ert, and Vaikuntanathan [17], it was not even clear that lattice problems can give rise to provably
secure signature schemes. The earlier approaches of Goldreich, Goldwasser, and Halevi (GGH) [16]
and Hoffstein, Howgrave-Graham, Pipher, Silverman, and Whyte (NTRUSign) [18] came without
security proofs and where successfully broken by Nguyen [28] and Nguyen and Regev [29].

Finally, we would like to mention that there are also (inefficient) instantiations from general
assumptions. The one of Juels, Luby, and Ostrovsky [20], e.g., can be used to construct a quantum-
immune scheme because it is, like our construction, based on trapdoor permutations. In addition,
there are the blind signature schemes of Fischlin [15] and of Hazay, Katz, Koo, and Lindell [19] that
are built upon general assumptions as well. Whether they are quantum-immune, largely depends
on the exact realization of primitives.

Organization. After a preliminaries section, we present our construction in Section 3. There, we
also prove that our scheme has the well-established security properties. In Section 4, we discuss the
details and the realization of the underlying trapdoor function.

2 Preliminaries

With n, we always denote the security parameter. (a, b)← 〈A(x),B(y)〉 denotes the joint execution
of two algorithms A and B in an interactive protocol with private inputs x to A and y to B. The
private outputs are a for A and b for B.

In the following, we recall the definitions of digital signature schemes and of blind signature
schemes along with their respective security models, followed by a brief introduction to lattice
theory.

Digital signatures. A digital signature scheme DS is a triple (Kg,Sig,Vf) where

Key Generation. Kg(n) outputs a private signing key sk and a public verification key pk.
Signature Generation. Sig(sk,M) outputs a signature σ on a message M from the message space
M under sk.
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Signature Verification. The algorithm Vf(pk, σ,M) outputs 1 if σ is a valid signature on M
under pk and otherwise 0.

Signature schemes are complete if for all (sk, pk) ← Kg(n), all messages M ∈ M, and any σ ←
Sig(sk,M), we have Vf(pk, σ,M) = 1.

Security of digital signature schemes is typically proven against existential forgery under a
chosen message attack (EU-CMA), where an adversary wins if it outputs a signature on a new
message M∗ after accessing a signature oracle on a polynomial number of different messages. For
our construction, we need the notion of strong unforgeability under a chosen message attack (SU-
CMA), where the adversary even wins if it is able to output a new pair (M∗, σ∗), i.e. it is not forced
to output a signature on a new message. In the random oracle model, the adversary has access to
a hash oracle H that is chosen from the family of all collision resistant hash functions H(n). The
described concept is formalized in the following experiment.

Experiment Expsu-cma
A,DS (n)

H← H(n)
(sk, pk)← Kg(n)
(M∗, σ∗)← AH(·),Sig(sk,·)(pk)
let (Mi, σi) be the answer returned by Sig(sk, ·) on input Mi, for i = 1, . . . , k.

Return 1 iff Vf(pk,M∗, σ∗) = 1 and (M∗, σ∗) 6∈ {(M1, σ1), . . . , (Mk, σk)}.

The scheme DS is called (t, qSig, qH, ε)-strongly unforgeable if there is no adversary, running in time
at most t while making at most qSig queries to the oracle Sig(sk, ·) and at most qH queries to the
hash oracle, that succeeds in the above experiment with probability at least ε.

Blind signatures. A blind signature scheme BS consists of three algorithms (Kg,Sig,Vf), where Sig
is an interactive protocol between a signer S and a user U . The specification is as follows.

Key Generation. Kg(n) outputs a private signing key sk and a public verification key pk.
Signature Generation. Sig(sk,M) describes the joint execution of S and U . The private output

of S is a view V and the private output of U is a signature on the message M under sk. Thus,
we write (V, σ)← 〈S(sk),U(pk,M)〉.

Signature Verification. Vf(pk, σ,M) outputs 1 if σ is a valid signature on M under pk and
otherwise 0.

Completeness is defined as with digital signature schemes. Views are interpreted as random vari-
ables, whose output is generated by subsequent executions of the respective protocol. Two views
V1 and V2 are considered equal if they cannot be distinguished by any computationally unbounded
algorithm with noticeable probability.

As for security, blind signatures have to satisfy two properties: blindness and one-more un-
forgeability [20,32]. The notion of blindness is defined in the following experiment Expblind

S∗,BS, where
the adversarial signer S∗ chooses two messages M0,M1 and interacts with two users who obtain
blind signatures for the two messages in random order. After seeing the unblinded signatures in the
original order, with respect to M0,M1, the signer has to guess the message that has been signed
for the first user.

Experiment Expblind
S∗,BS(n)

b← {0, 1}
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(pk, sk)← BS.Kg(n)
(M0,M1)← S∗(pk, sk)
(V0, σb)← 〈S∗(sk),U0(pk,mb)〉
(V1, σ1−b)← 〈S∗(sk),U1(pk,m1−b)〉
Either of the signatures might equal fail.
If σ0 6= fail and σ1 6= fail

d← S∗(sk, pk, σ0, σ1)
Else

d← S∗(sk, pk, fail, fail)
Return 1 iff d = b

A signature scheme BS is (t, ε)-blind, if there is no adversary S∗, running in time at most t, that
wins the above experiment with advantage at least ε, where

Advblind
S∗,BS = Pr[Expblind

S∗,BS(n) = 1]− 1
2
.

The second security property, one-more unforgeability, ensures that each completed interaction
between signer and user yields at most one signature. It is formalized in the following experi-
ment Expomf

U∗,BS, where an adversarial user tries to output  valid signatures after ` <  completed
interactions with an honest signer.

Experiment Expomf
U∗,BS(n)

H← H(n)
(pk, sk)← BS.Kg(n)
{(M1, σ1), . . . , (M, σ)} ← U∗H(·),〈S(sk),·〉(pk)
Let ` be the number of (complete) interaction between U∗ and the signer.

Return 1 iff
1. mi 6= mj for all 1 ≤ i < j ≤ 
2. BS.Vf(pk, σi,Mi) = 1 for all i = 1, . . . , 
3. ` < .

A signature scheme BS is (t, qSig, qH, ε)-one-more unforgeable if there is no adversary A, running
in time at most t, making at most qSig signature queries and at most qH hash oracle queries, that
wins the above experiment with probability at least ε.

Lattices. A lattice in Rn is a set Λ = {
∑d

i=1 xi bi |xi ∈ Z}, where b1, . . . ,bd are linearly independent
over R. The matrix B = [b1, . . . ,bd] is called a basis of the lattice Λ and we write Λ = Λ(B). The
number of linearly independent vectors in the basis is the dimension of the lattice. Now, consider
modular lattices as a special form of lattices. Given a modulus q, a matrix A ∈ Zn×mq , and the
equation

A v ≡ 0 (mod q) ,

then the set of all vectors v ∈ Zmq that satisfy the above equation is a lattice. Lattices of this form
are denoted with Λ⊥q (A).

The main computational problem in lattices is the (approximate) shortest vector problem (SVP),
where an algorithm is given a description, a basis, of a lattice Λ and is supposed to find the shortest
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vector v ∈ Λ\{0} with respect to a certain `p norm (up to an approximation factor). More precisely,
find a vector v ∈ Λ \ {0}, such that

‖v‖p ≤ γ ‖w‖p for all w ∈ Λ \ {0}

for a fixed approximation factor γ ≥ 1. This problem is known to be NP-hard for all `p norms
[14,35,21] with a constant approximation factor. For exponential (in the lattice dimension) approxi-
mation factors, the problem is solvable in polynomial time by the famous LLL algorithm by Lenstra,
Lenstra, and Lovász [24]. We refer the interested reader to a recent survey [34] by Regev for the
currently known “approximability” and “inapproximability” results.

In the special case of modular lattices, there is also a special version of the SVP, named short
integer solution problem (SIS). There, an algorithm is given a basis of Λ⊥q (A) and is supposed to
output a non-zero solution v ∈ Zmq to the above equation. The algorithm succeeds if ‖v‖2 ≤ ν for a
given norm bound ν. The SIS was, in principle, introduced by Ajtai [2] and its hardness is analyzed
in [27] and [17]. The latter work also explicitly deals with the `∞ norm, which we will use in our
security proofs.

3 Our Construction

In this section, we describe the construction of our blind signature scheme and prove its security
in terms of blindness and one-more unforgeability. We start with the specification of the required
trapdoor function, whose realization is given in the STOC 2008 paper of Gentry, Peikert, and
Vaikuntanathan (GPV) [17]. Then, we recall the GPV signature scheme, also presented in [17], and
show how it can be used to implement blind signatures. For both, trapdoor function and signature
scheme, we need some modifications that have been clearly marked below. The details are given in
Section 4.

Our blind signature scheme is built upon a family of trapdoor functions, which are almost
as good as trapdoor permutations. The family is described via a triple (TrapGen,SampleDom,
SamplePre) and has the following properties.

Function generation. There is an efficient algorithm TrapGen that outputs (a, t)← TrapGen(n),
where a fully defines the function fa and the trapdoor t is used to sample from the inverse
f−1
t (·), which is defined as SamplePre(t, ·).

Efficiency. The function fa : Dn → Rn is efficiently computable. Furthermore, the three finite
sets Rn, Dn, D?

n are efficiently recognizable and Rn is closed under addition. Furthermore, let
D?
n ⊆ Dn, such that x1 ± x2 ∈ Dn for all x1, x2 ∈ D?

n

One-wayness. Computing the function f−1
t : Rn → D?

n, is infeasible without the trapdoor t.
Domain sampling with uniform output. SampleDom(n) samples from some distribution over

D?
n, such that their images under fa are uniformly distributed over Rn.

Preimage sampling. Let y ∈ Rn. f−1
t (y) samples x ← SampleDom(n) under the condition that

fa(x) = y. The entropy of x is at least ω(log(n)).
Linearity. Let x1 + x2 ∈ Dn. fa(x1 + x2) = fa(x1) + fa(x2).
Collision resistance. There is no algorithm A(n, a) that outputs a pair (x, x′) ∈ D2

n, such that
x 6= x′ and fa(x) = fa(x′), in time polynomial in n with noticeable probability.

Note that we slightly modified the original construction regarding the sets Dn, D
?
n. In [17], it is

always the same, whereas we have introduced different Dn, D
?
n for trapdoor evaluation and preimage
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Signer S(t) User U(a,M)

β ← SampleDom(n)
M? ← H(m) + fa(β)

M?

←−−−−−−−−−−−
If M? ∈ LM set σ? ← fail
Otherwise, compute σ? ← f−1

t (M?)
LM ← LM ∪ {M?}

σ?

−−−−−−−−−−−→
Check σ? ∈ D?

n

Set σ ← fail on failure
Otherwise, set σ ← σ? − β

output V ← (M?, σ?) output σ ∈ Dn

Fig. 1. Issue protocol of the blind signature scheme BS

sampling, respectively. As in the original work, we will always assume that the above properties,
especially the statistical distributions, hold for fa in a perfect sense.

In addition to the above trapdoor function, Gentry, Peikert, and Vaikuntanathan use the “hash-
then-sign” paradigm with a full-domain hash function (cf. [10]) H← H(n), where H : {0, 1}∗ → Rn
and H is a family of collision resistant hash functions. In this setting, the GPV signature scheme is
strongly unforgeable under a chosen message attack (cf. [17]). In Section 4, we show that this still
holds with our modification.

With the modification D?
n ⊆ Dn, the GPV signature scheme is a tuple GPV = (Kg,Sig,Vf),

where:

Key generation. GPV.Kg(n) outputs (a, t)← TrapGen(n).
Signature issue. Let M ∈ {0, 1}∗ be a message. GPV.Sig(t,M) checks whether M has been signed

before and, if so, outputs the same signature. Otherwise, it computes σ ← f−1
t (H(M)), stores

(M,σ), and returns σ ∈ D?
n.

Verification. Given a signature σ. GPV.Vf(a, σ,M) returns 1 iff σ ∈ Dn and fa(σ) = H(M).

Using a slight relaxation of the above signature scheme, we construct an equally efficient and
provably secure blind signature scheme BS = (Kg,Sig,Vf) as follows.

Key generation. BS.Kg(n) outputs (a, t) ← TrapGen(n), where a is the public verification key
and t is the secret signing key, and sets up a list of already signed messages LM = {0}.

Signature protocol. The signature issue protocol for messages M ∈ Rn is shown in Figure 1.
Note that the blind signature scheme is again stateful, i.e. the signer does not sign a blinded
message twice and it does not sign M? = 0 in particular. The returned signature is σ? ∈ D?

n.
Verification. BS.Vf(a, σ,M) outputs 1 iff σ ∈ Dn and fa(σ) = H(M).

If the user outputs fail, it may be that the signer is dishonest. In the special setting of e-cash, if the
obtained signature σ is not in the domain of fa, the process has to be repeated with a different M
and the receiver of the signature has to reveal β to prove to the signer that the signature is literally
worthless. For the moment, we assume that σ?−β ∈ Dn. In Section 4, it becomes obvious that this
always holds if both parties are honest.
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Completeness. The scheme BS is complete because for all honestly generated key pairs (a, t), all
messages m ∈ {0, 1}∗, all outputs (β,M?) of BS.Blind(a,M), and all signatures σ? ← BS.Sig(t,M?)
we have

σ ← σ? − β ∈ Dn

and
fa(σ) = fa(σ? − β) = fa(σ?)− fa(β) = fa(f−1

t (H(M) + fa(β)))− fa(β) = H(M) .

Therefore, BS.Vf(a, σ,M) = 1.
In the following, we prove the security of our blind signature scheme. A blind signature scheme

is called secure if it satisfies blindness and one-more unforgeability as described in Section 2.

Blindness. We prove that, like Chaum’s blind signature scheme [12], BS is unconditionally blind,
i.e. (∞, 0)-blind. The intuition is that the signer only sees random elements from Rn after the user
has applied a random blinding value.

Theorem 1 (Blindness). The blind signature scheme BS is (∞, 0)-blind.

The idea of the proof is that, given the signer’s views V0,V1 in the experiment Expblind
S∗,BS, there

are always two equally distributed pairs of blinding values (fa(β0), fa(β1)) and (fa(β′0), fa(β′1)),
such that both generate the same views, (fa(β0), fa(β1)) is a witness for b, and (fa(β′0), fa(β′1))
is a witness for b′ = 1 − b. From this, we infer that the signer can only guess the correct b with
probability 1/2.

Proof. Let M0,M1 be the messages obtained from the signer. Assume that b is fixed and β0, β1 ←
SampleDom(n) were chosen by the users U0,U1, who compute

M?
0 ← H(Mb) + fa(β0) ,

M?
1 ← H(M1−b) + fa(β1) ,

and receive σ?0 and σ?1, such that σ?0 contains a signature on Mb and σ?1 contains a signature on
M1−b. Then, the signer’s views are

V0 = (M?
0 , σ

?
0)

and V1 = (M?
1 , σ

?
1) .

Now, we show that for the given choice of blinding values (fa(β0), fa(β1)), there is exactly one pair
(B0, B1) that results in the same views while reversing the order, in which the messages are signed.
Let

B0 ← H(Mb)− H(M1−b) + fa(β0)
and B1 ← H(M1−b)− H(Mb) + fa(β1)

and observe that there are β′0, β
′
1 ∈ D?

n with B0 = fa(β′0) and B1 = fa(β′1). Since H is a random
oracle and fa(β0), fa(β1) are distributed uniformly at random over Rn, so are the blinding values
B0 and B1. Assuming b′ = 1− b, the blinding values B0, B1 yield the following blinded messages:

U0 computes M?
0
′ ← H(Mb′) +B0 = H(M1−b) +B0 = H(Mb) + fa(β0) = M?

0 ;
U1 computes M?

1
′ ← H(M1−b′) +B1 = H(Mb) +B1 = H(M1−b) + fa(β1) = M?

1 .

The resulting views V ′0 and V ′1 of the signer are equal to V0 and V1, respectively. Therefore, there are
indistinguishable witnesses (fa(β0), fa(β1)) for b and (fa(β′0), fa(β′1)) for b′ = 1−b, which concludes
the proof. ut
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One-more unforgeability. We prove that our blind signature scheme is unforgeable under a reason-
able assumption, namely that the following “one-more trapdoor inversion problem” is hard.

Definition 1 (Chosen target trapdoor inversion problem (CTTI)). The chosen target trap-
door inversion problem is defined via the following experiment, where the adversary A has access to
a challenge oracle ORn and to an inversion oracle f−1

t . The adversary wins, if it outputs  preim-
ages for challenges obtained from ORn, while making only ı <  queries to f−1

t . The oracle f−1
t does

not answer queries twice and its does not invert 0.

Experiment Expctti
A (n)

(a, t)← TrapGen(n)
(π, x1, . . . , x)← AORn ,f

−1
t (·)(n, a)

Let y1, . . . , y` be the challenges returned by ORn.
Let ı be the number of queries to f−1

t .
Return 1 iff

1. π : {1, . . . , } → {1, . . . , `} is injective and
2. xi ∈ Dn and fa(xi) = yπ(i) for all i = 1, . . . ,  and
3. ı < .

The problem is (t, qI, qO, ε)-hard if there is no algorithm A, running in time at most t, making at
most qI inversion queries, and at most qO queries to ORn , which wins the above experiment with
probability at least ε. The one-wayness of fa gives us (poly(n), 0, 1, ε)-hardness, which we will extend
to (poly(n), poly(n), poly(n), ε′)-hardness for a negligible ε′. With our definition and this assumption,
we follow the line of thought of Bellare, Namprempre, Pointcheval, and Semanko in [8]. They define
a collection of “one-more” problems in the RSA context, which are perfectly tailored for proving
one-more unforgeability. In [7], Bresson, Monnerat, and Vergnaud give a separation result on these
“one-more” problems, showing that they cannot be proven equivalent to “simple” RSA inversion.
The same dilemma seems to apply here as we are not able to prove equivalence of CTTI and simple
trapdoor inversion.

In the following, we will assume (poly(n), poly(n), poly(n), ε)-hardness of CTTI on the grounds
that it is similar to the provably hard problem of forging GPV signatures. In both cases, one has
to find a solution x ∈ Dn to the equation fa(x) = y for a given y, while knowing polynomially
many distinct preimage-image pairs. Furthermore, we argue that an adversary cannot successfully
recombine answers of f−1

t in order to produce more preimages than there were oracle queries because
adding or substracting more than two of the oracle’s answers yields an invalid preimage 6∈ Dn. This
will become obvious in Section 4, where we show how fa is realized using lattices.

Theorem 2 (One-more unforgeability). The BS blind signature scheme is (t, qSig, qH, ε)-one-
more unforgeable if the CTTI is (t, qSig, qH, ε)-hard.

Proof. Towards contradiction, we assume that there exists a successful forger A against one-more
unforgeability of BS. Using A, we construct an algorithm B via a black-box simulation, such that
B solves the respective instance of the CTTI. The simulation works as follows.

Setup. B gets as input the public trapdoor parameter a and has access to the challenge oracle
ORn and to a trapdoor inversion oracle f−1

t . B initializes a list LH ← ∅ of pairs (M, c), indexed
by M , a list LI ← ∅ of pairs (M?, σ?), indexed by M?, and two counters ` ← 0, ı ← 0. It runs
A on input a in a black-box simulation.
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Random oracle queries. On input M , B looks up M in LH. If it finds a pair (M, c) then it
returns c. Otherwise, B increments ı, chooses a new cı ← ORn , stores (Mı ← M, cı) in LH.
Afterwards, B returns cı.

Blind signature queries. On input M?, algorithm B searches a pair (M?, σ?) in LI. If it exists,
B returns σ?. Otherwise, algorithm B increments `, queries its inversion oracle σ?` ← f−1

t (M?),
stores (M?

` ←M?, σ?` ) in LI, and returns σ?` .
Output. Finally,A stops and outputs ((M1, σ1), . . . , (M, σ)), ` < , for distinct messages. W.l.o.g.,

assume that (Mi, ci) ∈ LH, for all i = 1, . . . , . Algorithm B sets

π = {(i, j) : fa(σi) = cj}

and outputs (π, σ1, . . . , σ).

Analysis. First, observe that all of A’s oracles are perfectly simulated. When A calls H, algorithm
B draws a new challenge from its challenge oracle. Whenever A queries its signature oracle on a
new blinded message, B calls its inversion oracle. Therefore, when A outputs a one-more forgery,
B can use it to solve the CTTI. B’s output is valid in the CTTI experiment because all preimages
(σi ∈ Dn) evaluate to challenges received from ORn and the number of output inversions  is greater
than the number of inversion queries `. As for the map π, we state that it is injective. Otherwise,
there would be a pair σ 6= σ′ in A’s output with fa(σ) = fa(σ′) = H(Mi), which contradicts the
collision resistance of fa. Thus, B is successful if A is. ut

4 Realization

The underlying signature scheme was developed by Gentry, Peikert, and Vaikuntanathan (GPV)
and presented at STOC 2008 [17]. It uses a modified Babai nearest plane algorithm [4,22] and
two famous results by Ajtai [2,3] in order to build a trapdoor function that is arguably “as good
as” a trapdoor permutation. Its security is proven in the random oracle model and reduces to the
collision resistance of fa, which in turn reduces to the hardness of finding short vectors in a lattice.
We refer the reader to [17] and to [27] for further details and a comprehensive discussion of the
involved lattice problems and on Gaussians in the lattice context. The practical hardness of these
lattice problems is analyzed in [5] and subsequently in [6].

GPV trapdoor function. The trapdoor function from [17] is defined as follows.

Public parameters. Depending on the security parameter n, the other parameters in [17] can be
chosen as

Modulus q = n3 ,

Domain dimension m = 5n log(q) ,

Basis length bound L = m1+ε, ε > 0 ,

Gaussian parameter s = Lω(
√

log(m)) .

Spaces. The range is
Rn = Znq ,
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the (modified) domain Dn is

Dn = {e ∈ Zm : ‖e‖∞ ≤ 2 s ω(
√

log(m))} ,

and the range of the function SamplePre is

D?
n = {e ∈ Zm : ‖e‖∞ ≤ s ω(

√
log(m))} .

Trapdoor description. The public trapdoor key a describes the above public parameters and
the public matrix

A ∈ Zn×mq .

The set
Λ⊥q (A) = {v ∈ Zm : A v ≡ 0 (mod q)}

describes a lattice, for which the secret trapdoor parameter t describes a basis T, such that∥∥∥T̃∥∥∥ ≤ L .
Here, T̃ is the Gram-Schmidt orthogonalization of T and ‖·‖ is defined as

‖X‖ =

∥∥∥∥∥∥
x1 · · · xc

∥∥∥∥∥∥ = max
i=1,...,c

‖xi‖2 .

Trapdoor evaluation. On input x, the trapdoor function fa(x) evaluates to

y← A x mod q.

Preimage sampling. Sampling from f−1
t is performed via a modified Babai nearest plane algo-

rithm. The algorithm explicitly uses T and relies on its short length. On input y, it performs
the following steps.
1. Compute t ∈ Zmq , such that A t ≡ y (mod q). This is done by linear algebra and most likely

yields a t 6∈ D?
n.

2. Use the trapdoor basis T to sample a vector v from a Gaussian distribution around −t with
standard deviation s, conditioned with A v ≡ 0 (mod q), and output x = t + v ∈ D?

n.

The described trapdoor function has all the properties mentioned in Section 3. As for the required
linearity in our blind signature scheme, note that fa is linear in the sense that for all x1 +x2 ∈ Dn :

fa(x1 + x2) ≡ A (x1 + x2) ≡ A x1 + A x2 ≡ fa(x1) + fa(x2) (mod q) .

Therefore, all computations in Dn, D?
n, and Rn have to be performed modulo q.

Concerning security of the GPV signature scheme, [17] states that it is strongly unforgeable if
the problem of finding short integer solutions v ∈ Zm, ‖v‖∞ ≤ 2 s ω(

√
log(m)), of the equation

A v ≡ 0 (mod q) ,

i.e. the respective SIS problem, is hard. As for our modified setting, with D?
n and Dn, we need a

slightly stronger assumption, i.e. the above problem has to be hard with ‖v‖∞ ≤ 3 s ω(
√

log(m)).
Furthermore, we claim that this special setting cannot be exploited to forge a signature σ′ ∈ Dn

from two valid signatures σ1, σ2 ∈ D?
n by simply adding them as σ′ ← σ1 + σ2 because of the

collision resistance of the full-domain hash H. We support this intuition by a modified security
proof for the GPV signature scheme.
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Unforgeability of the modified GPV signature In the following, we adapt the proof from [17] (Propo-
sition 6.1 in the extended version) to the modified signature scheme in Section 3.

Theorem 3. Let the parameters n,m, q, L, s, Λ⊥q (A), a be as defined above and let TSampleDom(n),
Tfa(n) be the cost functions for domain sampling and trapdoor evaluation. The modified GPV sig-
nature scheme is (t, qSig, qH, ε)-strongly unforgeable if finding a vector v ∈ Λ⊥q (A) \ {0} with

‖v‖∞ ≤ 3 s ω(
√

log(m))

is (t′, ε′)-hard with

t′ = t+ (qSig + qH) (TSampleDom(n) + Tfa(n)) and ε′ = ε− 2−ω(log(n)) .

Proof. Given a successful adversary A against strong unforgeability with success probability ε, we
build an algorithm B that finds a collision in fa and, with that, a short vector in Λ⊥q (A). Algorithm
B runs A in a black-box simulation and uses random oracle techniques to simulate the signature
oracle.

Setup. Algorithm B receives the public parameter a of Λ⊥q (A) as input sets up a list LH ← ∅ of
triples (M,h, σ) in order to simulate H and f−1

t consistently. It runs A on input a.
Random oracle H. When queried with M ∈ {0, 1}∗, algorithm B looks for a triple (M,h, σ) ∈ LH.

If it exists, B returns h. Otherwise, the simulator chooses σ ← SampleDom(n), sets h← fa(σ),
stores (M,h, σ) in LH, and returns h.

Signature Queries. On input M ∈ {0, 1}∗, algorithm B runs H(M), yielding a triple (M,h, σ) ∈
LH. The simulator returns σ ∈ D?

n.
Output. Finally, A stops and returns a valid forgery (M∗, σ∗) with H(M∗) = h∗ and σ∗ ∈ Dn.

W.l.o.g., there is a triple (M∗, h∗, σ) ∈ LH with σ ∈ D?
n. Algorithm B outputs σ∗ − σ.

Analysis. Observe that B simulates the random oracle and the signature oracle perfectly and
consistently. As for the output of B, we have to show that σ∗ − σ 6= 0 holds but with negligible
probability. We have to distinguish three cases:

1. If σ∗ ∈ Dn \D?
n, the condition trivially holds.

2. The adversary A outputs a forgery in the strong sense, i.e. it has previously queried its signature
oracle on M∗. Then, we have σ∗ − σ 6= 0 by definition.

3. Algorithm A has not queried its signature oracle on M∗. W.l.o.g., it has queried H on M∗ and
B has a triple (M∗, h∗, σ) ∈ LH. By the minimum conditional entropy ω(log(n)) of σ, we infer
that σ∗ = σ with probability at most 2−ω(log(n)), which is still negligible.

Since σ∗ and σ are valid signatures on M∗, we have

fa(σ∗) = H(M∗) = fa(σ)

and therefore a non-trivial solution to the characteristic equation of Λ⊥q (A):

A(σ∗ − σ) ≡ 0 mod q .

In consequence, algorithm B has learned a lattice vector of norm

‖σ∗ − σ‖∞ ≤ 2 s ω(
√

log(m)) + s ω(
√

log(m)) ≤ 3 s ω(
√

log(m)) .

The overhead of the reduction is dominated by the computational cost for domain sampling and
trapdoor evaluation. In the worst-case, the adversary A never queries H and Sig with the same
message, which is why the overhead is (qSig + qH) (TSampleDom(n) + Tfa(n)). ut

11



5 Conclusions

We have shown how to construct a provably secure blind signature scheme from a lattice based
signature scheme in the random oracle model. The conjectured quantum-immunity of the involved
lattice problem makes our scheme secure even in the presence quantum computers. However, it is
still an open question whether there exists an efficient quantum-immune blind signature scheme
in the standard model. Furthermore, as our basis of security, we have introduced and analyzed
the chosen target trapdoor inversion problem (CTTI), whose precise relation to SIS is unknown.
We hope that this problem will be useful for other applications as well and eventually be proven
equivalent to one of the well-established lattice problems.
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