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1 Introduction

Since 1982, when Chaum proposed his idea of blind signatures [Cha83], it has become an important
primitive for anonymous Internet banking, e-voting applications (e.g. [RHOAGZ07, Kim04]), as well
as for multi-party computation such as oblivious transfer [CNS07]. These applications will retain
their importance in both, near and far future. As for the near future, we are convinced that current
factoring and discrete logarithm based instantiations are efficient and secure. But for how long?

Today, when building provably secure cryptographic schemes, one has to keep emerging tech-
nologies and especially quantum computers in mind. In the quantum-age, the cryptographic as-
sumptions change with the leap in computing power that quantum computers will provide.

There are only a few cryptographic assumptions that are conjectured to be post-quantum, i.e. they
are considered to withstand quantum computer attacks. One of those assumptions is the hardness of
finding short vectors in a lattice. There is also a benefit of building cryptography upon hard lattice
problems today because, unlike factoring or computing discrete logarithms, they have withstood
even subexponential attacks and the best known algorithm [AKS01] is exponential in the lattice
dimension. Furthermore, lattice problems typically allow a worst-case to average-case reduction
that goes back to Ajtai [Ajt96]. It states that a randomly chosen instance of a certain lattice
problem is at least as hard as the worst-case instance of a related lattice problem. The reduction
was later on adapted to work with ideal lattices by Lyubashevsky and Micciancio [LM06].

According to the security model, mainly influenced by Juels, Luby, and Ostrovsky [JLO97] as
well as Pointcheval and Stern [PS00], blind signature schemes have to satisfy blindness and one-
more unforgeability. Blindness states that the signer must not obtain any information on the
signed messages and one-more unforgeability enforces that an adversarial user cannot obtain more
signatures than there were interactions with the signer.

1.1 Our contribution

We construct two lattice-based blind signatures. One is based on preimage samplable functions
that were introduced by Gentry, Peikert, and Vaikuntanathan (GPV) [GPV08] along with a digital
signature scheme. The scheme is stateful, unconditionally blind, one-more unforgeable if a certain
interactive assumption (similar to the one-more trapdoor inversion assumption in [BNPS03] for
RSA) holds, and has three moves. The scheme is presented using general (not ideal) lattices but
recently Stehlé, Seinfeld, Tanaka, and Xagawa [SSTX09] showed how to improve the GPV signature
scheme using ideal lattices. Their modifications are directly applicable to our blind signature scheme
and significantly reduce the public-key size.

Our second construction is far stronger. It is built upon Lyubashevsky’s identification and
signature scheme [Lyu08b, Lyu08a]. It is also unconditionally blind and one-more unforgeable if
standard lattice problems in ideal lattices are hard in the worst-case. With its four rounds it is still
very efficient, i.e., all operations have quasi-linear complexity and all keys and signatures require
a quasi-linear amount of bits. In both schemes, we establish blindness via an abstraction of the
filtering technique from [Lyu08a].

We believe that our work is an important contribution and that we solve a longstanding prob-
lem because the previous efficient constructions, like [Cha83], [PS97], [PS00], [Abe01], [BNPS03],
[CKW04], [KZ05], [Oka06], have one thing in common: they are built upon classic number theoretic
assumptions, like the hardness of factoring large integers or computing discrete logarithms. The
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newer approaches of Boldyreva [Bol03] and Okamoto [Oka06] tend to use pairings and bilinear maps
that yield very elegant constructions. They, however, are again based on the discrete logarithm
problem in this specific setting. None of the above schemes withstands subexponential attacks or
remains secure in the presence of reasonably large quantum computers, where both factoring and
computing discrete logarithms become easy due to the seminal work of Shor [Sho97].

Finally, we would like to mention that there are also (typically inefficient) instantiations from
general assumptions, e.g. by Juels, Luby, and Ostrovsky [JLO97], Fischlin [Fis06], and Hazay,
Katz, Koo, and Lindell [HKKL07]. Whether they are post-quantum, largely depends on the exact
realization of primitives.

1.2 Organization

After a preliminaries section with a brief introduction to lattice theory and the relevant security
models, we present our constructions in Sections 3 and 4. The instantiation in Section 3 is based on
a trapdoor function in lattices, whereas the one in Section 4 is based on an identification scheme in
ideal lattices. There, we also prove that our scheme has the well-established security properties.

2 Preliminaries

With n, we always denote the security parameter. (a, b)← 〈A(x),B(y)〉 denotes the joint execution
of two algorithms A and B in an interactive protocol with private inputs x to A and y to B. The
private outputs are a for A and b for B. 〈A(x),B(y)〉k means that the interaction can take place
up to k times.
x

$← X means that x is chosen uniformly at random from the finite set X. Recall that the
statistical distance of two random variables X,Y over a domain D is defined as ∆(X,Y ) =
1/2

∑
a∈D |Prob[X = a] − Prob[Y = a] |. A function is negligible in n if it vanishes faster than

1/p(n) for any polynomial p(n).
In the following, we recall the definitions of blind signatures and commitments. Afterwards, we

briefly recall the forking lemma and some necessary facts from lattice theory.

2.1 Blind signatures

A blind signature scheme BS consists of three algorithms (Kg, Sign,Vf), where Sign is an interactive
protocol between a signer S and a user U . The specification is as follows.

Key generation. Kg(1n) outputs a private signing key sk and a public verification key pk.

Signature issse. Sign(sk,M) describes the joint execution of S and U . The private output of S is a
view V and the private output of U is a signature s on the message M ∈M under sk. Thus,
we write (V, s)← 〈S(sk),U(pk,M)〉.

Signature verification. The algorithm Vf(pk, s,M) outputs 1 if s is a valid signature on M under
pk and otherwise 0.

Completeness is defined as with digital signature schemes, i.e., every honestly created signature
for honestly created keys and for any messages M ∈ M has to be valid under this key. Views
are interpreted as random variables, whose output is generated by subsequent executions of the
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respective protocol. Two views V1 and V2 are considered equal if they cannot be distinguished by
any computationally unbounded algorithm with noticeable probability.

As for security, blind signatures have to satisfy two properties: blindness and one-more unforge-
ability [JLO97, PS00]. The notion of blindness is defined in the following experiment Expblind

S∗,BS,
where the adversarial signer S∗ chooses two messages M0,M1 and interacts with two users who
obtain blind signatures for the two messages in random order. Note that the executions of the two
users may be arbitrarily interleaved. After seeing the unblinded signatures in the original order,
with respect to M0,M1, the signer has to guess the message that has been signed for the first user.
If either of the user algorithms fails in outputting a valid signature, the signer is merely notified
of the failure and does not get any signature. In particular, he does not see which user algorithm
aborted.

Experiment Expblind
S∗,BS(n)

b
$← {0, 1}

(pk, sk)← BS.Kg(1n)
(M0,M1, statefind)← S∗(find, sk, pk)
(d, stateissue)← S∗〈·,U(pk,Mb)〉1,〈·,U(pk,M1−b)〉1(issue, statefind)
Let sb and s1−b be the outputs of U(pk,Mb) and U(pk,M1−b), respectively.
If s0 6= fail and s1 6= fail

d← S∗(guess, s0, s1, stateissue)
Else

d← S∗(guess, fail, fail, stateissue)
Return 1 iff d = b

A signature scheme BS is (t, δ)-blind, if there is no adversary S∗, running in time at most t, that
wins the above experiment with advantage at least δ, where the advantage is defined as

Advblind
S∗,BS =

∣∣∣∣Prob
[
Expblind

S∗,BS(n) = 1
]
− 1

2

∣∣∣∣ .
The second security property, one-more unforgeability, ensures that each completed interaction
between signer and user yields at most one signature. It is formalized in the following experi-
ment Expomf

U∗,BS, where an adversarial user tries to output  valid signatures after ` <  completed
interactions with an honest signer.

Experiment Expomf
U∗,BS(n)

H
$← H(1n)

(pk, sk)← BS.Kg(1n)
{(M1, s1), . . . , (M, s)} ← U∗H(·),〈S(sk),·〉(pk)
Let ` be the number of (complete) interaction between U∗ and the signer.
Return 1 iff

1. Mi 6= Mj for all 1 ≤ i < j ≤ ;
2. BS.Vf(pk, si,Mi) = 1 for all i = 1, . . . , ;
3. ` < .

A signature scheme BS is (t, qSign, qH, δ)-one-more unforgeable if there is no adversary A, running
in time at most t, making at most qSign signature queries and at most qH hash oracle queries, that
wins the above experiment with probability at least δ.
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2.2 Commitments

Commitments typically work in two phases. First, one party publishes a commitment C =
com(M ; r) to a message M without revealing any information about it. This is the “hiding”
property of the commitment scheme. In the second phase, the party can prove that C actually
corresponds to M by revealing r. It is important that no algorithm can find a second message M ′

and randomness r′ such that C = com(M ′; r′) — the “binding” property. A scheme is (t, δ)-hiding
(-binding) if there is no algorithm running in time at most t that can break the hiding (binding)
property with probability at least δ.

Both properties can be satisfied computationally or unconditionally but there is no scheme that is
unconditionally hinding and unconditionally binding [Gol04]. For our schemes, we want blindness
to be as strong as possible, which is why we assume the existence of a unconditionally hiding and
computationally binding commitment scheme that is (t, δcom)-binding for any polynomial t in n.

As we are interested in fully lattice-based schemes, we would like to point out that commitment
schemes can be built upon on hard lattice problems [KTX08].

2.3 Forking Lemma

The generalized forking lemma of Bellare and Neven [BN06] is an important tool for proving security
in the random oracle model. It provides a lower bound for the probability that a randomized
algorithm outputs two related values when run twice with the same random tape but with a
different random oracle. We use it in Section 4 to prove one-more unforgeability.

Lemma 2.1 (Lemma 1 in [BN06]) Fix an integer q ≥ 1 and a set H of size h ≥ 2. Let A be
a randomized algorithm that on input x, h1, . . . , hq returns a pair, the first element of which is an
integer in the range 0, . . . , q and the second element of which we refer to as a side output. Let IG
be a randomized algorithm that we call the input generator. The accepting probability of A, denoted
acc, is defined as the probability that J ≥ 1 in the experiment

x
$← IG;h1, . . . , hq

$← H; (J, σ) $← A(x, h1, . . . , hq) .

The forking algorithm FA associated to A is the randomized algorithm that takes input x proceeds
as follows:

Algorithm FA(x)
Pick coins ρ for A at random

h1, . . . , hq
$← H

(I, σ)← A(x, h1, . . . , hq; ρ)
If I = 0 then return (0, ε, ε)

h′I , . . . , h
′
q

$← H

(I ′, σ′)← A(x, h1, . . . , hI−1, h
′
I , . . . , h

′
q; ρ)

If I = I ′ and hI 6= h′I′ then return (1, σ, σ′)
Else return (0, ε, ε).

Let
frk = Prob

[
b = 1 : x $← IG; (b, σ, σ′)FA(x)

]
.
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Then

frk ≥ acc
(
acc

q
− 1
h

)
.

2.4 Lattices

A lattice in Rn is a set Λ = {
∑d

i=1 xi bi |xi ∈ Z}, where b1, . . . ,bd are linearly independent over
R. The matrix B = [b1, . . . ,bd] is a basis of the lattice Λ and we write Λ = Λ(B). The number
of linearly independent vectors in the basis is the dimension of the lattice. Now, consider modular
lattices as a special form of lattices. Given a modulus q, a matrix A ∈ Zn×mq , and the equation
Av ≡ 0 (mod q), then the set of all vectors v ∈ Zmq that satisfy the above equation is a lattice.
Lattices of this form are denoted with Λ⊥q (A).

The main computational problem in lattices is the (approximate) shortest vector problem (SVP),
where an algorithm is given a description, a basis, of a lattice Λ and is supposed to find the shortest
vector v ∈ Λ\{0} with respect to a certain `p norm (up to an approximation factor). More precisely,
find a vector v ∈ Λ \ {0}, such that ‖v‖p ≤ γ ‖w‖p for all w ∈ Λ \ {0} for a fixed approximation
factor γ ≥ 1. This problem is known to be NP-hard for all `p norms [Din02, RR06, Kho05] with a
constant approximation factor. For exponential (in the lattice dimension) approximation factors,
the problem is solvable in polynomial time by the famous LLL algorithm by Lenstra, Lenstra, and
Lovász [LLL82]. For polynomial approximation factors, which are relevant for cryptography, the
best known algorithm is exponential (space and time) [AKS01]. We refer the interested reader to a
recent survey [Reg07] by Regev for the currently known “approximability” and “inapproximability”
results. The practical hardness of these lattice problems is analyzed in [GN08, BLR08].

In the special case of modular lattices, there is also a special version of the SVP, named short
integer solution problem (SIS). There, an algorithm is given a basis of Λ⊥q (A) and is supposed to
output a non-zero solution v ∈ Zmq to the above equation. The algorithm succeeds if ‖v‖p ≤ ν for
a given norm bound ν. The SIS was, in principle, introduced by Ajtai [Ajt96] and its hardness is
analyzed in [MR07] and [GPV08]. The latter work also explicitly deals with the `∞ norm, which
we will use in our security proofs. We write SISp(m, q, ν) for the SIS problem in m-dimensional
lattices Λ⊥q (A) with norm bound ν w.r.t. the `p norm. The problem is (t, δ)-hard if no algorithm
that runs in time t can solve it with probability at least δ. Similarly, the inhomogeneous version
(find a short v with Av ≡ y, for a given y 6= 0) is denoted with ISISp(m, q, ν).

Yet another special class of lattices are ideal lattices. In particular, consider lattices corre-
sponding to ideals in the ring R = Zq[X]/〈Xn + 1〉. We identify f ∈ R with its coefficient
vector f = (f0, . . . , fn−1) ∈ Znq . Furthermore, we denote elements of the R-module Rm with
â = (a0, . . . ,am−1) or directly with (a0, . . . , amn−1) ∈ Zmnq . Consequently, we define ‖f‖∞ =
‖(f0, . . . , fn−1)‖∞. A lattice corresponds to an ideal I if and only if every lattice vector is the
coefficient vector of a polynomial in I. The above problems SIS and ISIS easily translate to ideal
lattices.

Both, ideal SIS and SIS are considered as average-case problems, which are directly related to
uniformly random chosen problem instances in lattice cryptography. By a worst-case to average-
case reduction [Ajt96, LM06] they are provably at least as hard as all instances of ideal SVP (ISVP)
resp. SVP in a certain smaller dimension.
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3 Blind signatures from preimage samplable functions

In this section, we describe our blind signature scheme and prove its security in terms of blindness
and one-more unforgeability. It is based on the signature scheme by Gentry et al. [GPV08] and we
describe it in terms of general lattices. However, following the ideas of [SSTX09], there is also a
version using ideal lattices, which has a significantly shorter public keys.

The roadmap for this section is as follows: We describe the 3-round blind signature scheme BS
= (Kg,Sign,Vf) after briefly recalling the concept of preimage samplable functions as they will be
needed in our construction. Then, we prove unconditional blindness and one-more unforgeability
based on an interactive assumption that is related to a certain lattice prolem but not equivalent.

The underlying family of preimage samplable trapdoor functions is a triple (TrapGen, SampleDom,
SamplePre), with the following specification.

Trapdoor generation. TrapGen(1n) outputs (a, t), where a fully defines the function fa : Dn 7→ Rn
and the trapdoor t is used to sample from the inverse f−1

t : Rn 7→ D?
n, which is implemented as

SamplePre(t, ·). Let m = 5n log(q), q = Ω(n3), and D = ω(m log(m)). The function domain
is Dn = {x ∈ Zm : ‖x‖∞ ≤ xmD − D}, x ∈ N>0, and the range is Rn = Znq . SamplePre
samples preimages from a subset D?

n = {x ∈ Zm : ‖x‖∞ ≤ D} of Dn.

Evaluation. The function fa(x) outputs Ax mod q, where A ∈ Zn×mq is part of the public key a.

Domain sampling with uniform output. SampleDom(n) draws samples from some distribution over
D?
n, such that their images under fa are uniformly distributed over Rn(cf. [GPV08]).

Preimage sampling. Let y ∈ Rn. f−1
t (y) samples x ← SampleDom(n) under the condition that

fa(x) = y. There are at least ω(log(n)) such preimages for every image y.

One-wayness. Computing an inverse of the function fa : Dn 7→ Rn is infeasible without the
trapdoor t as long as ISIS∞(m, q, xmD −D) is hard.

Collision resistance. Finding a collision (x,x′) ∈ D2
n under fa is infeasible unless SIS∞(m, q, 2xmD−

2D) is easy.

Note that we slightly modified the original setting regarding the sets Dn, D
?
n. In [GPV08], it is

always the same, whereas we have introduced different Dn, D
?
n for trapdoor evaluation and preimage

sampling, respectively. As in the original work, we will always assume that the above properties,
especially the statistical distributions, hold for fa in a perfect sense. Using a proposition from
[GPV08], we can establish the following corollary for our choice of parameters:

Corollary 3.1 Let n,m, q,D, x as above. If there is a polynomial time (in n) algorithm that
breaks SIS with ν (or ISIS with ν) with non-negligible probability then there is another polynomial
time algorithm that solves SIVP (a variant of SVP) with approximation factors γ ≥ νÕ(

√
n) in all

lattices of dimension n.

In addition to the above trapdoor function, we need a full-domain hash function (cf. [BR93])
H ← H(1n), where H : {0, 1}∗ → Rn and H is a family of collision resistant hash functions.
We assume that there is no polynomial time algorithm that finds collisions but with negligible
probability δH.

Our blind signature scheme BS = (Kg,Sign,Vf) is defined as follows.
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Key generation. BS.Kg(1n) outputs (a, t) ← TrapGen(1n), where a is the public verification key
and t is the secret signing key, and sets up a list of already signed messages LM = {0} ⊆ Rn.

Signature protocol. Let Dβ = {x ∈ Zm : ‖x‖∞ ≤ xmD}. The signature issue protocol for
messages M ∈ {0, 1}∗ is shown in Figure 1. The user employs a commitment scheme com :
{0, 1}∗ × {0, 1}n → {0, 1}∗ that is unconditionally hiding and computationally binding (but
with probability δcom). Note that the blind signature scheme is stateful, i.e. the signer does
not sign a blinded message µ twice and it does not sign µ = 0 ∈ Rn in particular1. The result
is s ∈ Dn.

Verification. BS.Vf(a, (r, s),M) outputs 1 iff s ∈ Dn and fa(s) = H(com(M ; r)).

Completeness. The scheme BS is complete with constant probability e−1/x because for all honestly
generated key pairs (a, t), all messages M ∈ {0, 1}∗, and all signatures (r, s), we have s = σ − β
and fa(s) = fa(σ − β) = fa(σ)− fa(β) = fa(f−1

t (H(com(M ; r)) + fa(β)))− fa(β) = H(com(M ; r)).
Assuming σ ∈ Dn, we also have BS.Vf(a, s,M) = 1. This happens with constant probability as
shown in the following probabilistic lemma with k = n,A = D,B = xmD.

Lemma 3.2 Let k ∈ N and a,b ∈ Zk with

a ∈ {v ∈ Zk : ‖v‖∞ ≤ A}

b $← {v ∈ Zk : ‖v‖∞ ≤ B}

and B ≥ xkA for x ∈ N>0. Then

Prob
b

[‖a− b‖∞ ≤ B −A] >
1
e1/x

− o(1).

Proof. Observe that Prob[‖a− b‖∞ ≤ B −A] = Prob[ |ai − bi| ≤ B −A]k and that bi needs to be
in the range [−(B −A) + ai, B −A+ ai] ⊆ [−B,B]. Therefore, the probability for this event is(

2(B −A) + 1
2B + 1

)k
>

(
1− A

B

)k
≥
(

1− 1/x
k

)k
>

1
e1/x

− o(1).

�

Setting x ≥ 2, we expect the protocol to be complete in a single run. If the protocol fails, the
user simply reveals the current interaction (com(M ; r), β, σ) to the signer in order to prove that
the execution failed. If the commitment scheme is perfectly hiding, the user does not reveal any
information about M . Then, the protocol is repeated with fresh values for r and β. Observe
that this does not affect the upcoming security analysis because the individual protocol runs are
indepedent. In particular, the hiding property of com can be directly used in the blindness proof
and the binding property is used in the proof of unforgeability.

1Signing 0 would result in a short vector in Λ⊥q (A) and help learn the private signing key similar to the method in
[NR06]. Due to the linearity of fa, the same applies if a message is signed twice.
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Signer S(t) User U(a,M)

r
$← {0, 1}n

β
$← Dβ

C ← com(M ; r)
µ←−−−−−−−−−−− µ← H(C) + fa(β)

If µ ∈ LM
Set σ ← fail

Else
Compute σ ← f−1

t (µ)
LM ← LM ∪ {µ}

σ−−−−−−−−−−−→ If σ 6∈ D?
n

Abort with s← fail
s← s− β
If s 6∈ Dn

result = (C, β)
Else

result←−−−−−−−−−−− result← ok
If result 6= ok

Parse result = (C, β)
If µ = H(C) + fa(β)
If fa(σ − β) = H(C)
and σ − β 6∈ Dn and β ∈ Dβ

Trigger restart
Output V ← (µ, σ) or (µ, β, C, σ) Output (M, (r, s))

Figure 1: Issue protocol of the blind signature scheme BS.

Blindness. We prove that BS is unconditionally blind, i.e. (∞, 0)-blind, if com is uncondition-
ally hiding. If it is only statistically or computationally hiding, the blind signature scheme is also
statistically resp. computationally hiding. The intuition is that the signer only sees random ele-
ments from Rn after the user has applied a random blinding value. The output signature is again
randomized by a sufficiently large value β, which hides the internal ordinary signature.

Theorem 3.3 (Blindness) The blind signature scheme BS is (∞, 0)-blind.

Proof.

9



The idea of the proof is that, given the signer’s view in the experiment Expblind
S∗,BS, it cannot relate

M and µ and it cannot distinguish the whether σ hides a signature on M0 or M1. The former is due
to the fact that fa is regular [Lyu08a] for uniformly random chosen inputs β ∈ Dβ but with 2−ω(n)

statistical distance from uniform over Rn. The latter is a consequence of the following probabilistic
lemma (Lemma 3.4) with k = n,A = D,B = xmD. Furthermore, since the commitment scheme
is unconditionally hiding, the signer cannot learn anything about the message by aborting the
protocol because the views for independent runs for the same message are completely independent
as the user does not ever reveal the randomness r for a failed interaction and the blinded message
µ is always uniformly distributed over Rn. Thus, we infer that the signer can only guess b with
probability 1/2.

Lemma 3.4 Let k ∈ N and a,a′,b ∈ Zk with

a,a′ ∈ {v ∈ Zk : ‖v‖∞ ≤ A}

b $← {v ∈ Zk : ‖v‖∞ ≤ B}

such that ‖a− b‖∞ , ‖a′ − b‖∞ ≤ B −A and B > A. Then

∆(a− b,a′ − b) = 0.

Proof (Lemma 3.4). By definition, the statistical distance is

∆(a− b,a′ − b) =
∑

c∈Zk:‖c‖∞≤B−A

∣∣∣∣Prob
b

[a− b = c]− Prob
b

[
a′ − b = c

]∣∣∣∣
=

∑
c

∣∣∣∣Prob
b

[b = a− c]− Prob
b

[
b = a′ − c

]∣∣∣∣ .
Observe that ‖a− c‖∞ , ‖a′ − c‖∞ ≤ A+ (B − A) = B and ‖b‖∞ ≤ B. Hence, the probability in
either case is 1/(2B + 1)k and the statistical distance is 0. �

In the context of blindness, the above lemma states that the signer cannot distinguish whether a
given blind signature σ is of the form sb − β or s1−b − β, where sb is valid for Mb and s1−b is valid
for M1−b. This conludes the proof of blindness. �

One-more unforgeability. We prove that our blind signature scheme is unforgeable under a special
assumption, namely that the following “one-more trapdoor inversion problem” is hard.

Definition 3.5 (Chosen target trapdoor inversion problem (CTTI)) The chosen target trap-
door inversion problem is defined via the following experiment Expctti

A , where the adversary A has
access to a challenge oracle ORn and to an inversion oracle f−1

t . The adversary wins, if it outputs
 preimages for challenges obtained from ORn, while making only ı <  queries to f−1

t . The oracle
f−1
t does not answer queries twice and its does not invert 0 ∈ Rn and it returns preimages in D?

n.

Experiment Expctti
A (n)

(a, t)← TrapGen(1n)
(π,x1, . . . ,x)← AORn ,f

−1
t (·)(n, a)
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Note: f−1
t does not answer to 0 or already queried values.

Let y1, . . . ,y` be the challenges returned by ORn .
Let ı be the number of queries to f−1

t .
Return 1 iff

1. The xi are pairwise distinct and
2. ‖xi‖∞ ≤ xmD +D and fa(xi) = yπ(i) for all i = 1, . . . ,  and
3. ı < .

The problem is (t, qI, qO, δ)-hard if there is no algorithm A, running in time at most t, making
at most qI inversion queries, and at most qO queries to ORn , which wins the above experiment
with probability at least δ. The one-wayness of fa gives us (poly(n), 0, 1, δ)-hardness, which we will
extend to (poly(n), poly(n), poly(n), δ′)-hardness for a negligible δ′. With our definition and this
assumption, we follow the line of thought of Bellare, Namprempre, Pointcheval, and Semanko in
[BNPS03]. They define a collection of “one-more” problems in the RSA context, which are perfectly
tailored for proving one-more unforgeability. In [BMV08], Bresson, Monnerat, and Vergnaud give
a separation result on these “one-more” problems, showing that they cannot be proven equivalent
to “simple” RSA inversion. The same seems to apply here. There is also a recent work on so-called
adaptive one-way functions by Pandey, Pass, and Vaikuntanathan [PPV08], which discusses similar
assumptions.

In the following, we will assume (poly(n), poly(n), poly(n), δ)-hardness of CTTI on the grounds
that it is directly related to the provably hard problem of forging GPV signatures. In both cases, one
has to find a solution x ∈ Dn to the equation fa(x) = y for a given y, while knowing polynomially
many distinct preimage-image pairs.

Theorem 3.6 (One-more unforgeability) Let TSig and TH be the cost functions for simulating
the oracles Sig and H, respectively. The BS blind signature scheme is (t, qSign, qH, δ)-one-more
unforgeable if the CTTI is (t, qSig, qH, δ − δH − δcom)-hard.

Proof. Towards contradiction, we assume that there exists a successful forger A against one-more
unforgeability of BS. Using A, we construct an algorithm B via a black-box simulation, such that
B solves the respective instance of the CTTI. The simulation works as follows.

Setup. B gets as input the public trapdoor parameter a and has access to the challenge oracle ORn

and to a trapdoor inversion oracle f−1
t . B initializes a list LH ← ∅ of pairs (M, c), indexed

by M , a list LI ← ∅ of pairs (µ, σ), indexed by µ, and two counters ` ← 0, ı ← 0. It runs A
on input a in a black-box simulation.

Random oracle queries. On input M , B looks up M in LH. If it finds a pair (M, c) then it returns c.
Otherwise, B increments ı, chooses a new cı ← ORn , stores (Mı ←M, cı) in LH. Afterwards,
B returns cı.

Blind signature queries. On input µ, algorithm B searches a pair (µ, σ) in LI. If it exists, B
returns σ. Otherwise, algorithm B increments `, queries its inversion oracle σ` ← f−1

t (µ),
stores (µ` ← µ, σ`) in LI, and returns σ`.

Output. Finally, A stops and outputs ((M1, (r1, s1)), . . . , (M, (r, s))), ` < , for distinct messages.
W.l.o.g., assume that (com(Mi; ri), ci) ∈ LH, for all i = 1, . . . , . Algorithm B sets π′ = {(i, j) :
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fa(si) = cj}. Furthermore, it collects all views (µ′+1, β
′
+1, C

′
+1, σ

′
+1), . . . , (µ′k, β

′
k, C

′
k, σ
′
k) for

which the protocol was aborted and sets π′′ = {(i, j) : fa(σ′i − βi) = H(C ′j)} to account for
the inversions that are not used by A. It outputs (π′∪π′′, s1, . . . , s, σ+1−β+1, . . . , σk−βk).

Analysis. First, observe that all of A’s oracles are perfectly simulated. When A calls H, algorithm
B draws a new challenge from its challenge oracle. Whenever A queries its signature oracle on a
new blinded message, B calls its inversion oracle. Therefore, when A outputs a one-more forgery,
B can use it to solve CTTI.

Firstly, we have to rule out that the user has an additional advantage via user-side aborts. Con-
sider the case, where the user outputs a (fake) result = (C ′, β′) that satisfies the abort conditions
H(C ′) + fa(β′) = µ and σ − β′ 6∈ Dn, while obtaining a valid signature s = σ − β ∈ Dn for
C = com(M ; r). If C = C ′, the simulation outputs two distinct preimages σ − β and σ − β′ for C,
which is valid in the CTTI experiment. If C 6= C ′, the simulations records σ − β′ as a preimage
for H(C ′) and outputs it at the end and H(C) 6= H(C ′) but with probability δH. Hence, even with
aborts, B is able to output the required number of preimages for solving CTTI.

Secondly, assume that all the s1, . . . , s are distinct. Then, B’s output is valid in the CTTI
experiment because all preimages are small and evaluate to challenges received from ORn and the
number of output inversions k is greater than the number of inversion queries ` and from with the
previous paragraph we know that aborts contribute valid additional preimages that are different
from the s1, . . . , s.

Finally, assume there is a pair (M, (r, s)), (M ′, (r′, s)) in A’s output with M 6= M ′ such that
H(com(M ; r)) = fa(s) = H(com(M ′; r′)). That either implies a collision under H or a successful
attack against the binding property of com.

Thus, if A succeeds with probability δ, B succeeds with probabiltiy δ − δH − δcom. �

4 Blind signatures from ideal lattices

In this section, we construct a second lattice-based blind signature scheme. Here, the construction
is not built upon a trapdoor, which allows us to fully simulate the scheme in our security proofs
and give very strong arguments for one-more unforgeability. The underlying signature scheme is
due to Lyubashevsky [Lyu08b]. Both, Lyubashevsky’s signature scheme and our blind signature
scheme are secure in the random oracle model under a worst-case assumption in ideal lattices and
their time and space complexity is only Õ(n).

The roadmap for this section is as follows: We describe the 4-round blind signature scheme BS
= (Kg, Sign,Vf). Then, we prove unconditional blindness and one-more unforgeability based on the
assumptions that solving ISVP in dimension n is hard in the worst case.

For the setup, we need the global parameters in Table 1, where R = Zp[X]/〈Xn+1〉. The scheme
relies on the lattice-based collision resistant hash function family H(R, D,m) by Lyubashevsky and

Micciancio [LM06]. We fix a random h
$← H(R, D,m), mapping Dm 7→ R, D ⊂ R. Note that

the function is linear over Rm, i.e., h(a(x̂ + ŷ) = a(h(x̂) + h(ŷ)) for all a ∈ R, x̂, ŷ ∈ Rm. In
addition, finding a collision (x, x′) ∈ D2 under h, i.e. solving Col(h,D) or alternatively ideal SIS∞

with ν = |D|1/n− 1, implies being able to solve ISVP∞ in every lattice that corresponds to an ideal
in R. More formally, from [Lyu08b], we know:
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Parameter Value

m log(n)

p (prime) ≥ 4n2m log2(n)(x3n3m2 − x2n2m2 − 2x2n2m+ 2xnm+ xn) = Θ(n5 log5(n))

Ds, Dε {f ∈ R : ‖f‖∞ ≤ 1}

Dα {f ∈ R : ‖f‖∞ ≤ xn} for a constant x ∈ N>0

Dε∗ {f ∈ R : ‖f‖∞ ≤ xn− 1}

Dy {f ∈ R : ‖f‖∞ ≤
√
n log(n)(x2n2m− xnm)}

Dβ {f ∈ R : ‖f‖∞ ≤
√
n log(n)(x3n3m2 − x2n2m2 − x2n2m+ xnm)}

G∗ {f ∈ R : ‖f‖∞ ≤
√
n log(n)(x2n2m− xnm− xn+ 1)}

G {f ∈ R : ‖f‖∞ ≤
√
n log(n)(x3n3m2 − x2n2m2 − 2x2n2m+ 2xnm+ xn− 1)}

D {f ∈ R : ‖f‖∞ ≤
√
n log(n)(x3n3m2 − x2n2m2 − xn+ 1)}

Table 1: Parameters for the security parameter n.

Theorem 4.1 (Theorem 3.1 in [Lyu08b]) Let D = {f ∈ R : ‖f‖∞ ≤ d}, m > log(p)/ log(2d),
and p ≥ 4dmn

√
n log(n). An adversary C that solves the Col(h,D) problem, i.e., finds two preim-

ages x̂, ŷ ∈ Dm such that h(x̂) = h(ŷ), can be used to solve ISVP∞ with an approximation factor
of γ ≥ 16dmn log2(n) in every lattice that corresponds to an ideal in Z[X]/〈f〉.

Furthermore, we need a random oracle H
$← H(1n) mapping {0, 1}∗ 7→ Dε. Again, there is no

polynomial time algorithm that finds collisions but with negligible probability δH.

Key generation. BS.Kg(1n) selects a secret key ŝ $← Dm
s and computes the public key S ← h(ŝ).

The output is (ŝ,S).

Signature protocol. The signature issue protocol for messages M ∈ {0, 1}∗ is depicted in Figure 2.
Note that values controlled by the user are written as Greek letter and those controlled by
the signer are in Latin. In the first step, the user employs a commitment scheme com :
{0, 1}∗×{0, 1}n → {0, 1}∗ that we assume to be unconditionally hiding and computationally
binding (but with probability δcom).

Whenever the signer triggers a restart, the user chooses a fresh r in order to make the protocol
execution independent of the previous one. Therefore, we omit values from previous runs in
the signer’s view. The signer can also detect a cheating user that tries to trigger a restart
although it has received a valid signature. In this case, the signer can stop the protocol and
assume that the user has obtained a valid signature.

Eventually, the user outputs (r, ẑ, ε).

Verification. BS.Vf(a, (r, ẑ, ε),M) outputs 1 iff ẑ ∈ Gm and H(h(ẑ)− Sε, com(M ; r)) = ε.

13



Signer S(ŝ) User U(S,M)

ŷ $← Dm
y

Y−−−−−−−−−−−→ r
$← {0, 1}n

Y ← h(ŷ) C ← com(M ; r)

α
$← Dα

β̂
$← Dm

β

ε← H(Y − Sα− h(β̂), C)
ε∗ ← ε− α
If ε∗ 6∈ Dε∗

Start over with fresh α
ε∗←−−−−−−−−−−−

ẑ∗ ← ŝε∗ + ŷ
If ẑ∗ 6∈ Gm∗

Trigger restart
ẑ∗−−−−−−−−−−−→ ẑ← ẑ∗ − β̂

If ẑ 6∈ Gm
result← (C,α, β̂, ε)

Else
result← ok

result←−−−−−−−−−−−
If result 6= ok

Parse result = (C,α, β̂, ε)
If ε∗ + α = ε = H(Y − Sα− h(β̂), C)
and H(h(ẑ∗ − β̂)− Sα,C) = ε
and ẑ∗ − β 6∈ Gm

Trigger restart
Output V ← (Y, ε∗, ẑ∗) Output (M, (r, ẑ, ε))

Figure 2: Issue protocol of the blind signature scheme BS.

Completeness. Assuming that the protocol does not abort, then for all honestly generated key
pairs (ŝ,S), all messages M ∈ {0, 1}∗, and all signatures (r, ẑ, ε) we have ẑ ∈ Gm and h(ẑ)− Sε =
h(ẑ∗ − β̂) − Sε = h(ŝ(ε − α) + ŷ − β̂) − Sε = Y − Sα − h(β̂) and com(M ; r) = C. Therefore
H(h(ẑ)− Sε, com(M ; r)) = ε and BS.Vf(s, (r, ẑ, ε),M) = 1.

Potentially, the protocol has to be restarted a couple of times at three stages. First, the user
may have to “start over with a fresh α”, which is not noticed by the signer. Applying Lemma 3.2
on ε− α ∈ Dε∗ (k = n,A = 1, B = xn) yields a constant probability for this event.

Second, the signer may abort in case ẑ∗ 6∈ Gm∗ in order to hide its secret key. The probability
for not aborting here is again constant by Lemma 3.2 (k = mn,A =

√
n log(n)(xn − 1), B =
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√
n log(n)(x2n2m− xnm)) because ‖ŝε∗‖∞ ≤

√
n log(n)(xn− 1) but with negligible probability for

randomly chosen ε∗ by [Lyu08b, Lemma 2.11].
Third, the user might abort if ẑ 6∈ Gm. Again, Lemma 3.2 with k = mn,A =

√
n log(n)(x2n2m−

xnm − xn + 1), and B =
√
n log(n)(x3n3m2 − x2n2m2 − x2n2m + xnm) provides that it will not

abort with constant probability.
Thus, we only need a logarithmic (in n) number of trials to pass each of these aborts. In practice,

2 trials are sufficient for each of them and by choosing x ≥ 3 we expect the protocol to be complete
in a single run.

Observe that all operations in BS have Õ(n) complexity and that private keys, public keys, and
signatures have size Õ(n).

Blindness. We prove that our scheme is (∞, 0)-blind based on the observation that the signer
only sees values that are statistically independent of the message being signed. More precisely, the
views generated by two different messages are indistinguishable.

Theorem 4.2 (Blindness) The blind signature scheme BS is (∞, 0)-blind.

Proof. Assuming that the signer can even control M0,M1 in the blindness experiment, we show
that the users involved do not leak any information about their respective message whatsoever.
Technically, we establish that ε∗, r, ẑ, and ε (interpreted as random variables) are distributed in-
dependently of the message being signed. As for ε and r we need not worry as they are chosen
uniformly at random. Moreover, we need not worry about aborts in the protocol as the user makes
individual runs of the protocol completely independent by choosing fresh values for r, α, β̂ and it
never reveals r for a commitment C that was used in an aborted run. Since com is unconditionally
hiding, the revealed commitment does not leak any information about the message.

Distribution of ε∗. With ε∗b , ε
∗
1−b denote the first protocol message of U(pk,Mb) resp. U(pk,M1−b).

We enforce that they are in Dε∗ and they are both of the form ε−α with ε ∈ Dε and α ∈ Dα. The
statistical ∆(ε∗b , ε

∗
1−b) is 0 by Lemma 3.4 with k = n,A = 1, B = xn because the coefficients in Dε∗

are bounded by B −A = xn− 1.

Distribution of ẑ. With ẑ0, ẑ1 we denote parts of the final output of U(pk,M0) resp. U(pk,M1).
Both are of the form ẑ∗ − β̂ for ẑ∗ ∈ Gm∗ and a randomly chosen β̂ ∈ Dm

β . Forthermore, ẑ0 and ẑ1

are forced to be in Gm. Hence, their statistical distance ∆(ẑ0, ẑ1) is 0 because of Lemma 3.4 with
k = mn,A =

√
n log(n)(x2n2m−xnm−xn+1), B =

√
n log(n)(x3n3m2−x2n2m2−x2n2m+xnm)

and the fact that their coefficients are bounded by B −A

=
√
n log(n)(x3n3m2 − x2n2m2 − x2n2m+ xnm− x2n2m+ xnm+ xn− 1)

=
√
n log(n)(x3n3m2 − x2n2m2 − 2x2n2m+ 2xnm+ xn− 1),

which is exactly the norm bound enforced by “∈ Gm”. �

One-more unforgeability. BS is one-more unforgeable if there is at least one ideal lattice, cor-
responding to an ideal in R, within which the ISVP∞ is hard. We will use the forking lemma
[PS00, BN06] to obtain a solution to the collision problem Col(h,D), which can be used to find

15



short lattice vectors in the worst case via Theorem 4.1. Col(h,D) is (t, δ)-hard if no t-time adver-
sary can solve it with probability at least δ. For our proof, it is crucial that the blind signature
scheme is witness-indistinguishable with respect to the private key ŝ, i.e., there are at least two
distinct ŝ, ŝ′ ∈ Ds with h(ŝ) = h(ŝ′) such that no efficient algorithm can distinguish whether ŝ
or ŝ′ was used by the signer with probability more than 1/2 + 2−ω(log(n)). We then use the fork-
ing lemma and “hope” that the adversary in the one-more unforgeability experiment outputs a
signature that corresponds to a private key ŝ′, while we use ŝ in the simulation. Our scheme is
witness-indistinguishable because it yields valid signatures for the witness-indistinguishable signa-
ture scheme in [Lyu08b].

Theorem 4.3 (One-more unforgeability) Let TSig and TH be the cost functions for simulating
the oracles Sig and H, respectively, and let c < 1 be the constant probability with which one protocol
run has to be aborted. BS is (t, qSign, qH, δ)-one-more unforgeable if Col(h,D) is (t′, δ′)-hard with
t′ = t+ qSigTSig + qHTH and non-negligible δ′ if and only if δ is non-negligible.

Proof. Towards contradiction, we assume that there exists a successful forger A against one-more
unforgeability of BS. Using A, we construct an algorithm B via a black-box simulation, such that
B solves the collision problem Col(h,D).

Setup. B gets as input the public description of h. B initializes a list LH ← ∅ of query-hash pairs
(R × {0, 1}∗, Dε). It chooses ŝ $← Ds and sets S ← h(ŝ). Furthermore, it randomly pre-

selects random oracle answers h1, . . . ,hqH
$← Dε and a random tape ρ. It runs A on input

((h,S),h1, . . . ,hqH ; ρ) in a black-box simulation.

Random oracle queries. On input (u, C), B looks up (u, C) in LH. If it finds corresponding hash
value ε then it returns ε. Otherwise, B chooses the first unused value ε from the list h1, . . . ,hqH ,
stores ((u, C), ε) in LH, and returns ε.

Blind signature queries. On input ε∗, B acts according to BS.Sign.

Output. Finally, A stops and outputs (M1, (r1, ẑ1, ε1)), . . . , (M, (r, ẑ, ε)), qSign < , for distinct
messages. W.l.o.g., assume that (h(ẑi) − Sεi, com(Mi; ri)), εi) ∈ LH, for all i = 1, . . . , .

Algorithm B guesses an index k $← {1, . . . , } such that hı = εk. Then, B starts over, running

A on input ((h,S),h1, . . . ,hı−1,h′ı, . . . ,hqH ; ρ) for a fresh set h′ı, . . . ,hqH
$← Dε. Note that

both A and B run with the same random tape as in the first run. Among other values, A
outputs (M ′k, (r

′
k, ẑ
′
k, ε
′
k)). B outputs (ẑk − ŝεk, ẑ′k − ŝε′k) as its solution to Col(h,D).

Analysis. Observe that A’s environment is perfectly simulated. Especially, signer-side and user-
side aborts happen with the same probability as in the original protocol. The probability that B
guesses k correctly, i.e. the k-th output of A corresponds to a signature that was not obtained via
honestly following the protocol, is at least 1/ ≥ 1/(qSign + 1). Note that εk is a random oracle
answer but with probability 1/|Dε|.

Applying Lemma 2.1 (Forking Lemma) we know that with probability ≥ (1− c)(δ−1/|Dε|)((δ−
1/|Dε|)/qH − 1/|Dε|), A is again successful in the one-more unforgeability experiment and outputs
(M ′k, (r

′
k, ẑ
′
k, ε
′
k)) using the same random oracle query as in the first run. Observe that the (1− c)
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factor takes signer-side aborts into account, which happen with probability at most c. Therefore,
we know that (h(ẑk − Sεk), com(Mk; rk)) = (h(ẑ′k − Sε′k), com(M ′k; r

′
k)).

Now, we turn to solving the collision problem. We have to show that ẑk − ŝεk 6= ẑ′k − ŝε′k and
h(ẑk − ŝεk) = h(ẑ′k − ŝε′k). The second requirement follows directly from the previous paragraph
and from the fact that we know ŝ. The first is tricker. Here, it is important that the protocol is
witness-indistinguishable, i.e., the adversary does not recognize whether we used one of at least
two possible ŝ, ŝ′ with probability greater than 1/2 + 2−ω(log(n)). Thus, with probability at least
1/2−2−ω(log(n)) it will output signatures that correspond to ŝ′. We apply the same proof technique
as in [Lyu08b] to show that either ẑk − ŝεk 6= ẑ′k − ŝε′k or ẑk − ŝ′εk 6= ẑ′k − ŝ′ε′k. Assume both are
equal, we substract the equations and obtain (εk − ε′)(ŝ′− ŝ) = 0. We know that εk − ε′ 6= 0. Now,
‖(εk − ε′)(ŝ′ − ŝ)‖∞ ≤ 4n < q/2 because ‖εk − ε′‖∞ , ‖ŝ′ − ŝ‖∞ ≤ 2. Thus, (εk − ε′)(ŝ′ − ŝ) = 0
over Z[X]/〈Xn + 1〉 (without mod q), which is an integral domain. So, we have the contradiction
ŝ′ = ŝ and a collision with probability 1/2− 2−ω(log(n)) because ẑk − ŝεk, ẑ′k − ŝε′k ∈ D. The success
probability of this strategy is at least

δfrk =
(
δ − 1
|Dε|

)(
1/2− 2−ω(log(n))

) 1
qSign + 1

(1− c)
(
δ − 1/|Dε|

qH
− 1
|Dε|

)
,

which is non-negligible if δ is non-negligible.
Concerning aborts, we argue that the user cannot obtain a valid signature out of an aborted

interaction. In order to trigger an abort it outputs result = (C ′, α′, β̂′, ε′) which, together with
ẑ∗, ŷ, ε∗, satisfies all abort criteria. Assume that it obtains a valid signature (r, ẑ, ε̂) from this
interaction. If ε = ε′, then h(ẑ∗ − β̂∗ − ŝε) = h(ẑ− ŝε) but with probability δcom. If the arguments
under h are equal, we have ẑ = ẑ∗ − β̂ ∈ Gm — a contradiction. If the arguments are distinct, we
have a collision in D. If ε 6= ε′, but necessarily ε∗ = ε′ − α′ = ε − α for an α 6= α, we know that
α = ε − ε′ + α′. So, the adversary has to be able to predict the output of H, which it can only
achieve with probability 1/|Dε|. The probability that we can extract a collision from a cheating
user during an abort is at least

δabort = δ

(
1− 1
|Dε|

)
(1− δcom) ,

which is non-negligible if δ is non-negligible. Thus, the overall success probability of the reduction
is δ′ = min(δfrk, δabort). �

By Theorem 4.1, we get the following, strong security guarantees.

Corollary 4.4 BS is one-more unforgeable if solving ISVP∞ is hard in the worst case for approx-
imation factors γ ≥ 16mn

√
n log2(n)(x3n3m2 − x2n2m2 − 2x2n2m + 2xnm + xn) = Õ(n4√n) in

lattices that correspond to ideals in R.

Comparing Corollary 4.4 with Corollary 3.1 may lead to the conclusion that the scheme in Section
3 has stronger security guarantees. This, however, is not the case because it is not provably as
hard to break as finding collisions under the employed trapdoor function. Corollary 3.1 is a mere
indication of hardness while Corollary 4.4 is an actual reduction from worst-case lattice problems.
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5 Conclusions

We have shown how to construct efficient and provably secure blind signature schemes based on
worst-case lattice problems. Our first construction is comparable to RSA blind signatures, which
also rely on an interactive assumption. However, our second construction is provably secure with-
out such assumptions and directly relies on the hardness of standard lattice problems, which are
conjectured to be intractable even by quantum computers and subexponential attacks. All in all,
our second scheme is the preferred scheme for practical purposes as it is more efficient and has
stronger security guarantees.
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